Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
35269 views
1
//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10
// basic loop CFG cleanup, primarily to assist other loop passes. If you
11
// encounter a noncanonical CFG construct that causes another loop pass to
12
// perform suboptimally, this is the place to fix it up.
13
//
14
//===----------------------------------------------------------------------===//
15
16
#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17
#include "llvm/ADT/SmallVector.h"
18
#include "llvm/ADT/Statistic.h"
19
#include "llvm/Analysis/DomTreeUpdater.h"
20
#include "llvm/Analysis/LoopInfo.h"
21
#include "llvm/Analysis/LoopIterator.h"
22
#include "llvm/Analysis/MemorySSA.h"
23
#include "llvm/Analysis/MemorySSAUpdater.h"
24
#include "llvm/Analysis/ScalarEvolution.h"
25
#include "llvm/IR/Dominators.h"
26
#include "llvm/IR/IRBuilder.h"
27
#include "llvm/Support/CommandLine.h"
28
#include "llvm/Transforms/Scalar.h"
29
#include "llvm/Transforms/Scalar/LoopPassManager.h"
30
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
31
#include "llvm/Transforms/Utils/LoopUtils.h"
32
#include <optional>
33
using namespace llvm;
34
35
#define DEBUG_TYPE "loop-simplifycfg"
36
37
static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
38
cl::init(true));
39
40
STATISTIC(NumTerminatorsFolded,
41
"Number of terminators folded to unconditional branches");
42
STATISTIC(NumLoopBlocksDeleted,
43
"Number of loop blocks deleted");
44
STATISTIC(NumLoopExitsDeleted,
45
"Number of loop exiting edges deleted");
46
47
/// If \p BB is a switch or a conditional branch, but only one of its successors
48
/// can be reached from this block in runtime, return this successor. Otherwise,
49
/// return nullptr.
50
static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
51
Instruction *TI = BB->getTerminator();
52
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
53
if (BI->isUnconditional())
54
return nullptr;
55
if (BI->getSuccessor(0) == BI->getSuccessor(1))
56
return BI->getSuccessor(0);
57
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
58
if (!Cond)
59
return nullptr;
60
return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
61
}
62
63
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
64
auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
65
if (!CI)
66
return nullptr;
67
for (auto Case : SI->cases())
68
if (Case.getCaseValue() == CI)
69
return Case.getCaseSuccessor();
70
return SI->getDefaultDest();
71
}
72
73
return nullptr;
74
}
75
76
/// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
77
static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
78
Loop *LastLoop = nullptr) {
79
assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
80
"First loop is supposed to be inside of last loop!");
81
assert(FirstLoop->contains(BB) && "Must be a loop block!");
82
for (Loop *Current = FirstLoop; Current != LastLoop;
83
Current = Current->getParentLoop())
84
Current->removeBlockFromLoop(BB);
85
}
86
87
/// Find innermost loop that contains at least one block from \p BBs and
88
/// contains the header of loop \p L.
89
static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
90
Loop &L, LoopInfo &LI) {
91
Loop *Innermost = nullptr;
92
for (BasicBlock *BB : BBs) {
93
Loop *BBL = LI.getLoopFor(BB);
94
while (BBL && !BBL->contains(L.getHeader()))
95
BBL = BBL->getParentLoop();
96
if (BBL == &L)
97
BBL = BBL->getParentLoop();
98
if (!BBL)
99
continue;
100
if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
101
Innermost = BBL;
102
}
103
return Innermost;
104
}
105
106
namespace {
107
/// Helper class that can turn branches and switches with constant conditions
108
/// into unconditional branches.
109
class ConstantTerminatorFoldingImpl {
110
private:
111
Loop &L;
112
LoopInfo &LI;
113
DominatorTree &DT;
114
ScalarEvolution &SE;
115
MemorySSAUpdater *MSSAU;
116
LoopBlocksDFS DFS;
117
DomTreeUpdater DTU;
118
SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
119
120
// Whether or not the current loop has irreducible CFG.
121
bool HasIrreducibleCFG = false;
122
// Whether or not the current loop will still exist after terminator constant
123
// folding will be done. In theory, there are two ways how it can happen:
124
// 1. Loop's latch(es) become unreachable from loop header;
125
// 2. Loop's header becomes unreachable from method entry.
126
// In practice, the second situation is impossible because we only modify the
127
// current loop and its preheader and do not affect preheader's reachibility
128
// from any other block. So this variable set to true means that loop's latch
129
// has become unreachable from loop header.
130
bool DeleteCurrentLoop = false;
131
132
// The blocks of the original loop that will still be reachable from entry
133
// after the constant folding.
134
SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
135
// The blocks of the original loop that will become unreachable from entry
136
// after the constant folding.
137
SmallVector<BasicBlock *, 8> DeadLoopBlocks;
138
// The exits of the original loop that will still be reachable from entry
139
// after the constant folding.
140
SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
141
// The exits of the original loop that will become unreachable from entry
142
// after the constant folding.
143
SmallVector<BasicBlock *, 8> DeadExitBlocks;
144
// The blocks that will still be a part of the current loop after folding.
145
SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
146
// The blocks that have terminators with constant condition that can be
147
// folded. Note: fold candidates should be in L but not in any of its
148
// subloops to avoid complex LI updates.
149
SmallVector<BasicBlock *, 8> FoldCandidates;
150
151
void dump() const {
152
dbgs() << "Constant terminator folding for loop " << L << "\n";
153
dbgs() << "After terminator constant-folding, the loop will";
154
if (!DeleteCurrentLoop)
155
dbgs() << " not";
156
dbgs() << " be destroyed\n";
157
auto PrintOutVector = [&](const char *Message,
158
const SmallVectorImpl<BasicBlock *> &S) {
159
dbgs() << Message << "\n";
160
for (const BasicBlock *BB : S)
161
dbgs() << "\t" << BB->getName() << "\n";
162
};
163
auto PrintOutSet = [&](const char *Message,
164
const SmallPtrSetImpl<BasicBlock *> &S) {
165
dbgs() << Message << "\n";
166
for (const BasicBlock *BB : S)
167
dbgs() << "\t" << BB->getName() << "\n";
168
};
169
PrintOutVector("Blocks in which we can constant-fold terminator:",
170
FoldCandidates);
171
PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
172
PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
173
PrintOutSet("Live exit blocks:", LiveExitBlocks);
174
PrintOutVector("Dead exit blocks:", DeadExitBlocks);
175
if (!DeleteCurrentLoop)
176
PrintOutSet("The following blocks will still be part of the loop:",
177
BlocksInLoopAfterFolding);
178
}
179
180
/// Whether or not the current loop has irreducible CFG.
181
bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
182
assert(DFS.isComplete() && "DFS is expected to be finished");
183
// Index of a basic block in RPO traversal.
184
DenseMap<const BasicBlock *, unsigned> RPO;
185
unsigned Current = 0;
186
for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
187
RPO[*I] = Current++;
188
189
for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
190
BasicBlock *BB = *I;
191
for (auto *Succ : successors(BB))
192
if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
193
// If an edge goes from a block with greater order number into a block
194
// with lesses number, and it is not a loop backedge, then it can only
195
// be a part of irreducible non-loop cycle.
196
return true;
197
}
198
return false;
199
}
200
201
/// Fill all information about status of blocks and exits of the current loop
202
/// if constant folding of all branches will be done.
203
void analyze() {
204
DFS.perform(&LI);
205
assert(DFS.isComplete() && "DFS is expected to be finished");
206
207
// TODO: The algorithm below relies on both RPO and Postorder traversals.
208
// When the loop has only reducible CFG inside, then the invariant "all
209
// predecessors of X are processed before X in RPO" is preserved. However
210
// an irreducible loop can break this invariant (e.g. latch does not have to
211
// be the last block in the traversal in this case, and the algorithm relies
212
// on this). We can later decide to support such cases by altering the
213
// algorithms, but so far we just give up analyzing them.
214
if (hasIrreducibleCFG(DFS)) {
215
HasIrreducibleCFG = true;
216
return;
217
}
218
219
// Collect live and dead loop blocks and exits.
220
LiveLoopBlocks.insert(L.getHeader());
221
for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
222
BasicBlock *BB = *I;
223
224
// If a loop block wasn't marked as live so far, then it's dead.
225
if (!LiveLoopBlocks.count(BB)) {
226
DeadLoopBlocks.push_back(BB);
227
continue;
228
}
229
230
BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
231
232
// If a block has only one live successor, it's a candidate on constant
233
// folding. Only handle blocks from current loop: branches in child loops
234
// are skipped because if they can be folded, they should be folded during
235
// the processing of child loops.
236
bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
237
if (TakeFoldCandidate)
238
FoldCandidates.push_back(BB);
239
240
// Handle successors.
241
for (BasicBlock *Succ : successors(BB))
242
if (!TakeFoldCandidate || TheOnlySucc == Succ) {
243
if (L.contains(Succ))
244
LiveLoopBlocks.insert(Succ);
245
else
246
LiveExitBlocks.insert(Succ);
247
}
248
}
249
250
// Amount of dead and live loop blocks should match the total number of
251
// blocks in loop.
252
assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
253
"Malformed block sets?");
254
255
// Now, all exit blocks that are not marked as live are dead, if all their
256
// predecessors are in the loop. This may not be the case, as the input loop
257
// may not by in loop-simplify/canonical form.
258
SmallVector<BasicBlock *, 8> ExitBlocks;
259
L.getExitBlocks(ExitBlocks);
260
SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
261
for (auto *ExitBlock : ExitBlocks)
262
if (!LiveExitBlocks.count(ExitBlock) &&
263
UniqueDeadExits.insert(ExitBlock).second &&
264
all_of(predecessors(ExitBlock),
265
[this](BasicBlock *Pred) { return L.contains(Pred); }))
266
DeadExitBlocks.push_back(ExitBlock);
267
268
// Whether or not the edge From->To will still be present in graph after the
269
// folding.
270
auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
271
if (!LiveLoopBlocks.count(From))
272
return false;
273
BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
274
return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
275
};
276
277
// The loop will not be destroyed if its latch is live.
278
DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
279
280
// If we are going to delete the current loop completely, no extra analysis
281
// is needed.
282
if (DeleteCurrentLoop)
283
return;
284
285
// Otherwise, we should check which blocks will still be a part of the
286
// current loop after the transform.
287
BlocksInLoopAfterFolding.insert(L.getLoopLatch());
288
// If the loop is live, then we should compute what blocks are still in
289
// loop after all branch folding has been done. A block is in loop if
290
// it has a live edge to another block that is in the loop; by definition,
291
// latch is in the loop.
292
auto BlockIsInLoop = [&](BasicBlock *BB) {
293
return any_of(successors(BB), [&](BasicBlock *Succ) {
294
return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
295
});
296
};
297
for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
298
BasicBlock *BB = *I;
299
if (BlockIsInLoop(BB))
300
BlocksInLoopAfterFolding.insert(BB);
301
}
302
303
assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
304
"Header not in loop?");
305
assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
306
"All blocks that stay in loop should be live!");
307
}
308
309
/// We need to preserve static reachibility of all loop exit blocks (this is)
310
/// required by loop pass manager. In order to do it, we make the following
311
/// trick:
312
///
313
/// preheader:
314
/// <preheader code>
315
/// br label %loop_header
316
///
317
/// loop_header:
318
/// ...
319
/// br i1 false, label %dead_exit, label %loop_block
320
/// ...
321
///
322
/// We cannot simply remove edge from the loop to dead exit because in this
323
/// case dead_exit (and its successors) may become unreachable. To avoid that,
324
/// we insert the following fictive preheader:
325
///
326
/// preheader:
327
/// <preheader code>
328
/// switch i32 0, label %preheader-split,
329
/// [i32 1, label %dead_exit_1],
330
/// [i32 2, label %dead_exit_2],
331
/// ...
332
/// [i32 N, label %dead_exit_N],
333
///
334
/// preheader-split:
335
/// br label %loop_header
336
///
337
/// loop_header:
338
/// ...
339
/// br i1 false, label %dead_exit_N, label %loop_block
340
/// ...
341
///
342
/// Doing so, we preserve static reachibility of all dead exits and can later
343
/// remove edges from the loop to these blocks.
344
void handleDeadExits() {
345
// If no dead exits, nothing to do.
346
if (DeadExitBlocks.empty())
347
return;
348
349
// Construct split preheader and the dummy switch to thread edges from it to
350
// dead exits.
351
BasicBlock *Preheader = L.getLoopPreheader();
352
BasicBlock *NewPreheader = llvm::SplitBlock(
353
Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
354
355
IRBuilder<> Builder(Preheader->getTerminator());
356
SwitchInst *DummySwitch =
357
Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
358
Preheader->getTerminator()->eraseFromParent();
359
360
unsigned DummyIdx = 1;
361
for (BasicBlock *BB : DeadExitBlocks) {
362
// Eliminate all Phis and LandingPads from dead exits.
363
// TODO: Consider removing all instructions in this dead block.
364
SmallVector<Instruction *, 4> DeadInstructions;
365
for (auto &PN : BB->phis())
366
DeadInstructions.push_back(&PN);
367
368
if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
369
DeadInstructions.emplace_back(LandingPad);
370
371
for (Instruction *I : DeadInstructions) {
372
SE.forgetBlockAndLoopDispositions(I);
373
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
374
I->eraseFromParent();
375
}
376
377
assert(DummyIdx != 0 && "Too many dead exits!");
378
DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
379
DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
380
++NumLoopExitsDeleted;
381
}
382
383
assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
384
if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
385
// When we break dead edges, the outer loop may become unreachable from
386
// the current loop. We need to fix loop info accordingly. For this, we
387
// find the most nested loop that still contains L and remove L from all
388
// loops that are inside of it.
389
Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
390
391
// Okay, our loop is no longer in the outer loop (and maybe not in some of
392
// its parents as well). Make the fixup.
393
if (StillReachable != OuterLoop) {
394
LI.changeLoopFor(NewPreheader, StillReachable);
395
removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
396
for (auto *BB : L.blocks())
397
removeBlockFromLoops(BB, OuterLoop, StillReachable);
398
OuterLoop->removeChildLoop(&L);
399
if (StillReachable)
400
StillReachable->addChildLoop(&L);
401
else
402
LI.addTopLevelLoop(&L);
403
404
// Some values from loops in [OuterLoop, StillReachable) could be used
405
// in the current loop. Now it is not their child anymore, so such uses
406
// require LCSSA Phis.
407
Loop *FixLCSSALoop = OuterLoop;
408
while (FixLCSSALoop->getParentLoop() != StillReachable)
409
FixLCSSALoop = FixLCSSALoop->getParentLoop();
410
assert(FixLCSSALoop && "Should be a loop!");
411
// We need all DT updates to be done before forming LCSSA.
412
if (MSSAU)
413
MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
414
else
415
DTU.applyUpdates(DTUpdates);
416
DTUpdates.clear();
417
formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
418
SE.forgetBlockAndLoopDispositions();
419
}
420
}
421
422
if (MSSAU) {
423
// Clear all updates now. Facilitates deletes that follow.
424
MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
425
DTUpdates.clear();
426
if (VerifyMemorySSA)
427
MSSAU->getMemorySSA()->verifyMemorySSA();
428
}
429
}
430
431
/// Delete loop blocks that have become unreachable after folding. Make all
432
/// relevant updates to DT and LI.
433
void deleteDeadLoopBlocks() {
434
if (MSSAU) {
435
SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
436
DeadLoopBlocks.end());
437
MSSAU->removeBlocks(DeadLoopBlocksSet);
438
}
439
440
// The function LI.erase has some invariants that need to be preserved when
441
// it tries to remove a loop which is not the top-level loop. In particular,
442
// it requires loop's preheader to be strictly in loop's parent. We cannot
443
// just remove blocks one by one, because after removal of preheader we may
444
// break this invariant for the dead loop. So we detatch and erase all dead
445
// loops beforehand.
446
for (auto *BB : DeadLoopBlocks)
447
if (LI.isLoopHeader(BB)) {
448
assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
449
Loop *DL = LI.getLoopFor(BB);
450
if (!DL->isOutermost()) {
451
for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
452
for (auto *BB : DL->getBlocks())
453
PL->removeBlockFromLoop(BB);
454
DL->getParentLoop()->removeChildLoop(DL);
455
LI.addTopLevelLoop(DL);
456
}
457
LI.erase(DL);
458
}
459
460
for (auto *BB : DeadLoopBlocks) {
461
assert(BB != L.getHeader() &&
462
"Header of the current loop cannot be dead!");
463
LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
464
<< "\n");
465
LI.removeBlock(BB);
466
}
467
468
detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
469
DTU.applyUpdates(DTUpdates);
470
DTUpdates.clear();
471
for (auto *BB : DeadLoopBlocks)
472
DTU.deleteBB(BB);
473
474
NumLoopBlocksDeleted += DeadLoopBlocks.size();
475
}
476
477
/// Constant-fold terminators of blocks accumulated in FoldCandidates into the
478
/// unconditional branches.
479
void foldTerminators() {
480
for (BasicBlock *BB : FoldCandidates) {
481
assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
482
BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
483
assert(TheOnlySucc && "Should have one live successor!");
484
485
LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
486
<< " with an unconditional branch to the block "
487
<< TheOnlySucc->getName() << "\n");
488
489
SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
490
// Remove all BB's successors except for the live one.
491
unsigned TheOnlySuccDuplicates = 0;
492
for (auto *Succ : successors(BB))
493
if (Succ != TheOnlySucc) {
494
DeadSuccessors.insert(Succ);
495
// If our successor lies in a different loop, we don't want to remove
496
// the one-input Phi because it is a LCSSA Phi.
497
bool PreserveLCSSAPhi = !L.contains(Succ);
498
Succ->removePredecessor(BB, PreserveLCSSAPhi);
499
if (MSSAU)
500
MSSAU->removeEdge(BB, Succ);
501
} else
502
++TheOnlySuccDuplicates;
503
504
assert(TheOnlySuccDuplicates > 0 && "Should be!");
505
// If TheOnlySucc was BB's successor more than once, after transform it
506
// will be its successor only once. Remove redundant inputs from
507
// TheOnlySucc's Phis.
508
bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
509
for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
510
TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
511
if (MSSAU && TheOnlySuccDuplicates > 1)
512
MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
513
514
IRBuilder<> Builder(BB->getContext());
515
Instruction *Term = BB->getTerminator();
516
Builder.SetInsertPoint(Term);
517
Builder.CreateBr(TheOnlySucc);
518
Term->eraseFromParent();
519
520
for (auto *DeadSucc : DeadSuccessors)
521
DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
522
523
++NumTerminatorsFolded;
524
}
525
}
526
527
public:
528
ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
529
ScalarEvolution &SE,
530
MemorySSAUpdater *MSSAU)
531
: L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
532
DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
533
bool run() {
534
assert(L.getLoopLatch() && "Should be single latch!");
535
536
// Collect all available information about status of blocks after constant
537
// folding.
538
analyze();
539
BasicBlock *Header = L.getHeader();
540
(void)Header;
541
542
LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
543
<< ": ");
544
545
if (HasIrreducibleCFG) {
546
LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
547
return false;
548
}
549
550
// Nothing to constant-fold.
551
if (FoldCandidates.empty()) {
552
LLVM_DEBUG(
553
dbgs() << "No constant terminator folding candidates found in loop "
554
<< Header->getName() << "\n");
555
return false;
556
}
557
558
// TODO: Support deletion of the current loop.
559
if (DeleteCurrentLoop) {
560
LLVM_DEBUG(
561
dbgs()
562
<< "Give up constant terminator folding in loop " << Header->getName()
563
<< ": we don't currently support deletion of the current loop.\n");
564
return false;
565
}
566
567
// TODO: Support blocks that are not dead, but also not in loop after the
568
// folding.
569
if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
570
L.getNumBlocks()) {
571
LLVM_DEBUG(
572
dbgs() << "Give up constant terminator folding in loop "
573
<< Header->getName() << ": we don't currently"
574
" support blocks that are not dead, but will stop "
575
"being a part of the loop after constant-folding.\n");
576
return false;
577
}
578
579
// TODO: Tokens may breach LCSSA form by default. However, the transform for
580
// dead exit blocks requires LCSSA form to be maintained for all values,
581
// tokens included, otherwise it may break use-def dominance (see PR56243).
582
if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) {
583
assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) &&
584
"LCSSA broken not by tokens?");
585
LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
586
<< Header->getName()
587
<< ": tokens uses potentially break LCSSA form.\n");
588
return false;
589
}
590
591
SE.forgetTopmostLoop(&L);
592
// Dump analysis results.
593
LLVM_DEBUG(dump());
594
595
LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
596
<< " terminators in loop " << Header->getName() << "\n");
597
598
if (!DeadLoopBlocks.empty())
599
SE.forgetBlockAndLoopDispositions();
600
601
// Make the actual transforms.
602
handleDeadExits();
603
foldTerminators();
604
605
if (!DeadLoopBlocks.empty()) {
606
LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
607
<< " dead blocks in loop " << Header->getName() << "\n");
608
deleteDeadLoopBlocks();
609
} else {
610
// If we didn't do updates inside deleteDeadLoopBlocks, do them here.
611
DTU.applyUpdates(DTUpdates);
612
DTUpdates.clear();
613
}
614
615
if (MSSAU && VerifyMemorySSA)
616
MSSAU->getMemorySSA()->verifyMemorySSA();
617
618
#ifndef NDEBUG
619
// Make sure that we have preserved all data structures after the transform.
620
#if defined(EXPENSIVE_CHECKS)
621
assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
622
"DT broken after transform!");
623
#else
624
assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
625
"DT broken after transform!");
626
#endif
627
assert(DT.isReachableFromEntry(Header));
628
LI.verify(DT);
629
#endif
630
631
return true;
632
}
633
634
bool foldingBreaksCurrentLoop() const {
635
return DeleteCurrentLoop;
636
}
637
};
638
} // namespace
639
640
/// Turn branches and switches with known constant conditions into unconditional
641
/// branches.
642
static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
643
ScalarEvolution &SE,
644
MemorySSAUpdater *MSSAU,
645
bool &IsLoopDeleted) {
646
if (!EnableTermFolding)
647
return false;
648
649
// To keep things simple, only process loops with single latch. We
650
// canonicalize most loops to this form. We can support multi-latch if needed.
651
if (!L.getLoopLatch())
652
return false;
653
654
ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
655
bool Changed = BranchFolder.run();
656
IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
657
return Changed;
658
}
659
660
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
661
LoopInfo &LI, MemorySSAUpdater *MSSAU,
662
ScalarEvolution &SE) {
663
bool Changed = false;
664
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
665
// Copy blocks into a temporary array to avoid iterator invalidation issues
666
// as we remove them.
667
SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
668
669
for (auto &Block : Blocks) {
670
// Attempt to merge blocks in the trivial case. Don't modify blocks which
671
// belong to other loops.
672
BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
673
if (!Succ)
674
continue;
675
676
BasicBlock *Pred = Succ->getSinglePredecessor();
677
if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
678
continue;
679
680
// Merge Succ into Pred and delete it.
681
MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
682
683
if (MSSAU && VerifyMemorySSA)
684
MSSAU->getMemorySSA()->verifyMemorySSA();
685
686
Changed = true;
687
}
688
689
if (Changed)
690
SE.forgetBlockAndLoopDispositions();
691
692
return Changed;
693
}
694
695
static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
696
ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
697
bool &IsLoopDeleted) {
698
bool Changed = false;
699
700
// Constant-fold terminators with known constant conditions.
701
Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
702
703
if (IsLoopDeleted)
704
return true;
705
706
// Eliminate unconditional branches by merging blocks into their predecessors.
707
Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE);
708
709
if (Changed)
710
SE.forgetTopmostLoop(&L);
711
712
return Changed;
713
}
714
715
PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
716
LoopStandardAnalysisResults &AR,
717
LPMUpdater &LPMU) {
718
std::optional<MemorySSAUpdater> MSSAU;
719
if (AR.MSSA)
720
MSSAU = MemorySSAUpdater(AR.MSSA);
721
bool DeleteCurrentLoop = false;
722
if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr,
723
DeleteCurrentLoop))
724
return PreservedAnalyses::all();
725
726
if (DeleteCurrentLoop)
727
LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
728
729
auto PA = getLoopPassPreservedAnalyses();
730
if (AR.MSSA)
731
PA.preserve<MemorySSAAnalysis>();
732
return PA;
733
}
734
735