Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
35266 views
1
//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This transformation analyzes and transforms the induction variables (and
10
// computations derived from them) into forms suitable for efficient execution
11
// on the target.
12
//
13
// This pass performs a strength reduction on array references inside loops that
14
// have as one or more of their components the loop induction variable, it
15
// rewrites expressions to take advantage of scaled-index addressing modes
16
// available on the target, and it performs a variety of other optimizations
17
// related to loop induction variables.
18
//
19
// Terminology note: this code has a lot of handling for "post-increment" or
20
// "post-inc" users. This is not talking about post-increment addressing modes;
21
// it is instead talking about code like this:
22
//
23
// %i = phi [ 0, %entry ], [ %i.next, %latch ]
24
// ...
25
// %i.next = add %i, 1
26
// %c = icmp eq %i.next, %n
27
//
28
// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29
// it's useful to think about these as the same register, with some uses using
30
// the value of the register before the add and some using it after. In this
31
// example, the icmp is a post-increment user, since it uses %i.next, which is
32
// the value of the induction variable after the increment. The other common
33
// case of post-increment users is users outside the loop.
34
//
35
// TODO: More sophistication in the way Formulae are generated and filtered.
36
//
37
// TODO: Handle multiple loops at a time.
38
//
39
// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40
// of a GlobalValue?
41
//
42
// TODO: When truncation is free, truncate ICmp users' operands to make it a
43
// smaller encoding (on x86 at least).
44
//
45
// TODO: When a negated register is used by an add (such as in a list of
46
// multiple base registers, or as the increment expression in an addrec),
47
// we may not actually need both reg and (-1 * reg) in registers; the
48
// negation can be implemented by using a sub instead of an add. The
49
// lack of support for taking this into consideration when making
50
// register pressure decisions is partly worked around by the "Special"
51
// use kind.
52
//
53
//===----------------------------------------------------------------------===//
54
55
#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56
#include "llvm/ADT/APInt.h"
57
#include "llvm/ADT/DenseMap.h"
58
#include "llvm/ADT/DenseSet.h"
59
#include "llvm/ADT/Hashing.h"
60
#include "llvm/ADT/PointerIntPair.h"
61
#include "llvm/ADT/STLExtras.h"
62
#include "llvm/ADT/SetVector.h"
63
#include "llvm/ADT/SmallBitVector.h"
64
#include "llvm/ADT/SmallPtrSet.h"
65
#include "llvm/ADT/SmallSet.h"
66
#include "llvm/ADT/SmallVector.h"
67
#include "llvm/ADT/Statistic.h"
68
#include "llvm/ADT/iterator_range.h"
69
#include "llvm/Analysis/AssumptionCache.h"
70
#include "llvm/Analysis/DomTreeUpdater.h"
71
#include "llvm/Analysis/IVUsers.h"
72
#include "llvm/Analysis/LoopAnalysisManager.h"
73
#include "llvm/Analysis/LoopInfo.h"
74
#include "llvm/Analysis/LoopPass.h"
75
#include "llvm/Analysis/MemorySSA.h"
76
#include "llvm/Analysis/MemorySSAUpdater.h"
77
#include "llvm/Analysis/ScalarEvolution.h"
78
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
79
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
80
#include "llvm/Analysis/TargetLibraryInfo.h"
81
#include "llvm/Analysis/TargetTransformInfo.h"
82
#include "llvm/Analysis/ValueTracking.h"
83
#include "llvm/BinaryFormat/Dwarf.h"
84
#include "llvm/Config/llvm-config.h"
85
#include "llvm/IR/BasicBlock.h"
86
#include "llvm/IR/Constant.h"
87
#include "llvm/IR/Constants.h"
88
#include "llvm/IR/DebugInfoMetadata.h"
89
#include "llvm/IR/DerivedTypes.h"
90
#include "llvm/IR/Dominators.h"
91
#include "llvm/IR/GlobalValue.h"
92
#include "llvm/IR/IRBuilder.h"
93
#include "llvm/IR/InstrTypes.h"
94
#include "llvm/IR/Instruction.h"
95
#include "llvm/IR/Instructions.h"
96
#include "llvm/IR/IntrinsicInst.h"
97
#include "llvm/IR/Module.h"
98
#include "llvm/IR/Operator.h"
99
#include "llvm/IR/PassManager.h"
100
#include "llvm/IR/Type.h"
101
#include "llvm/IR/Use.h"
102
#include "llvm/IR/User.h"
103
#include "llvm/IR/Value.h"
104
#include "llvm/IR/ValueHandle.h"
105
#include "llvm/InitializePasses.h"
106
#include "llvm/Pass.h"
107
#include "llvm/Support/Casting.h"
108
#include "llvm/Support/CommandLine.h"
109
#include "llvm/Support/Compiler.h"
110
#include "llvm/Support/Debug.h"
111
#include "llvm/Support/ErrorHandling.h"
112
#include "llvm/Support/MathExtras.h"
113
#include "llvm/Support/raw_ostream.h"
114
#include "llvm/Transforms/Scalar.h"
115
#include "llvm/Transforms/Utils.h"
116
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
117
#include "llvm/Transforms/Utils/Local.h"
118
#include "llvm/Transforms/Utils/LoopUtils.h"
119
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
120
#include <algorithm>
121
#include <cassert>
122
#include <cstddef>
123
#include <cstdint>
124
#include <iterator>
125
#include <limits>
126
#include <map>
127
#include <numeric>
128
#include <optional>
129
#include <utility>
130
131
using namespace llvm;
132
133
#define DEBUG_TYPE "loop-reduce"
134
135
/// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
136
/// bail out. This threshold is far beyond the number of users that LSR can
137
/// conceivably solve, so it should not affect generated code, but catches the
138
/// worst cases before LSR burns too much compile time and stack space.
139
static const unsigned MaxIVUsers = 200;
140
141
/// Limit the size of expression that SCEV-based salvaging will attempt to
142
/// translate into a DIExpression.
143
/// Choose a maximum size such that debuginfo is not excessively increased and
144
/// the salvaging is not too expensive for the compiler.
145
static const unsigned MaxSCEVSalvageExpressionSize = 64;
146
147
// Cleanup congruent phis after LSR phi expansion.
148
static cl::opt<bool> EnablePhiElim(
149
"enable-lsr-phielim", cl::Hidden, cl::init(true),
150
cl::desc("Enable LSR phi elimination"));
151
152
// The flag adds instruction count to solutions cost comparison.
153
static cl::opt<bool> InsnsCost(
154
"lsr-insns-cost", cl::Hidden, cl::init(true),
155
cl::desc("Add instruction count to a LSR cost model"));
156
157
// Flag to choose how to narrow complex lsr solution
158
static cl::opt<bool> LSRExpNarrow(
159
"lsr-exp-narrow", cl::Hidden, cl::init(false),
160
cl::desc("Narrow LSR complex solution using"
161
" expectation of registers number"));
162
163
// Flag to narrow search space by filtering non-optimal formulae with
164
// the same ScaledReg and Scale.
165
static cl::opt<bool> FilterSameScaledReg(
166
"lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
167
cl::desc("Narrow LSR search space by filtering non-optimal formulae"
168
" with the same ScaledReg and Scale"));
169
170
static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
171
"lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
172
cl::desc("A flag that overrides the target's preferred addressing mode."),
173
cl::values(clEnumValN(TTI::AMK_None,
174
"none",
175
"Don't prefer any addressing mode"),
176
clEnumValN(TTI::AMK_PreIndexed,
177
"preindexed",
178
"Prefer pre-indexed addressing mode"),
179
clEnumValN(TTI::AMK_PostIndexed,
180
"postindexed",
181
"Prefer post-indexed addressing mode")));
182
183
static cl::opt<unsigned> ComplexityLimit(
184
"lsr-complexity-limit", cl::Hidden,
185
cl::init(std::numeric_limits<uint16_t>::max()),
186
cl::desc("LSR search space complexity limit"));
187
188
static cl::opt<unsigned> SetupCostDepthLimit(
189
"lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
190
cl::desc("The limit on recursion depth for LSRs setup cost"));
191
192
static cl::opt<cl::boolOrDefault> AllowTerminatingConditionFoldingAfterLSR(
193
"lsr-term-fold", cl::Hidden,
194
cl::desc("Attempt to replace primary IV with other IV."));
195
196
static cl::opt<cl::boolOrDefault> AllowDropSolutionIfLessProfitable(
197
"lsr-drop-solution", cl::Hidden,
198
cl::desc("Attempt to drop solution if it is less profitable"));
199
200
static cl::opt<bool> EnableVScaleImmediates(
201
"lsr-enable-vscale-immediates", cl::Hidden, cl::init(true),
202
cl::desc("Enable analysis of vscale-relative immediates in LSR"));
203
204
static cl::opt<bool> DropScaledForVScale(
205
"lsr-drop-scaled-reg-for-vscale", cl::Hidden, cl::init(true),
206
cl::desc("Avoid using scaled registers with vscale-relative addressing"));
207
208
STATISTIC(NumTermFold,
209
"Number of terminating condition fold recognized and performed");
210
211
#ifndef NDEBUG
212
// Stress test IV chain generation.
213
static cl::opt<bool> StressIVChain(
214
"stress-ivchain", cl::Hidden, cl::init(false),
215
cl::desc("Stress test LSR IV chains"));
216
#else
217
static bool StressIVChain = false;
218
#endif
219
220
namespace {
221
222
struct MemAccessTy {
223
/// Used in situations where the accessed memory type is unknown.
224
static const unsigned UnknownAddressSpace =
225
std::numeric_limits<unsigned>::max();
226
227
Type *MemTy = nullptr;
228
unsigned AddrSpace = UnknownAddressSpace;
229
230
MemAccessTy() = default;
231
MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
232
233
bool operator==(MemAccessTy Other) const {
234
return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
235
}
236
237
bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
238
239
static MemAccessTy getUnknown(LLVMContext &Ctx,
240
unsigned AS = UnknownAddressSpace) {
241
return MemAccessTy(Type::getVoidTy(Ctx), AS);
242
}
243
244
Type *getType() { return MemTy; }
245
};
246
247
/// This class holds data which is used to order reuse candidates.
248
class RegSortData {
249
public:
250
/// This represents the set of LSRUse indices which reference
251
/// a particular register.
252
SmallBitVector UsedByIndices;
253
254
void print(raw_ostream &OS) const;
255
void dump() const;
256
};
257
258
// An offset from an address that is either scalable or fixed. Used for
259
// per-target optimizations of addressing modes.
260
class Immediate : public details::FixedOrScalableQuantity<Immediate, int64_t> {
261
constexpr Immediate(ScalarTy MinVal, bool Scalable)
262
: FixedOrScalableQuantity(MinVal, Scalable) {}
263
264
constexpr Immediate(const FixedOrScalableQuantity<Immediate, int64_t> &V)
265
: FixedOrScalableQuantity(V) {}
266
267
public:
268
constexpr Immediate() = delete;
269
270
static constexpr Immediate getFixed(ScalarTy MinVal) {
271
return {MinVal, false};
272
}
273
static constexpr Immediate getScalable(ScalarTy MinVal) {
274
return {MinVal, true};
275
}
276
static constexpr Immediate get(ScalarTy MinVal, bool Scalable) {
277
return {MinVal, Scalable};
278
}
279
static constexpr Immediate getZero() { return {0, false}; }
280
static constexpr Immediate getFixedMin() {
281
return {std::numeric_limits<int64_t>::min(), false};
282
}
283
static constexpr Immediate getFixedMax() {
284
return {std::numeric_limits<int64_t>::max(), false};
285
}
286
static constexpr Immediate getScalableMin() {
287
return {std::numeric_limits<int64_t>::min(), true};
288
}
289
static constexpr Immediate getScalableMax() {
290
return {std::numeric_limits<int64_t>::max(), true};
291
}
292
293
constexpr bool isLessThanZero() const { return Quantity < 0; }
294
295
constexpr bool isGreaterThanZero() const { return Quantity > 0; }
296
297
constexpr bool isCompatibleImmediate(const Immediate &Imm) const {
298
return isZero() || Imm.isZero() || Imm.Scalable == Scalable;
299
}
300
301
constexpr bool isMin() const {
302
return Quantity == std::numeric_limits<ScalarTy>::min();
303
}
304
305
constexpr bool isMax() const {
306
return Quantity == std::numeric_limits<ScalarTy>::max();
307
}
308
309
// Arithmetic 'operators' that cast to unsigned types first.
310
constexpr Immediate addUnsigned(const Immediate &RHS) const {
311
assert(isCompatibleImmediate(RHS) && "Incompatible Immediates");
312
ScalarTy Value = (uint64_t)Quantity + RHS.getKnownMinValue();
313
return {Value, Scalable || RHS.isScalable()};
314
}
315
316
constexpr Immediate subUnsigned(const Immediate &RHS) const {
317
assert(isCompatibleImmediate(RHS) && "Incompatible Immediates");
318
ScalarTy Value = (uint64_t)Quantity - RHS.getKnownMinValue();
319
return {Value, Scalable || RHS.isScalable()};
320
}
321
322
// Scale the quantity by a constant without caring about runtime scalability.
323
constexpr Immediate mulUnsigned(const ScalarTy RHS) const {
324
ScalarTy Value = (uint64_t)Quantity * RHS;
325
return {Value, Scalable};
326
}
327
328
// Helpers for generating SCEVs with vscale terms where needed.
329
const SCEV *getSCEV(ScalarEvolution &SE, Type *Ty) const {
330
const SCEV *S = SE.getConstant(Ty, Quantity);
331
if (Scalable)
332
S = SE.getMulExpr(S, SE.getVScale(S->getType()));
333
return S;
334
}
335
336
const SCEV *getNegativeSCEV(ScalarEvolution &SE, Type *Ty) const {
337
const SCEV *NegS = SE.getConstant(Ty, -(uint64_t)Quantity);
338
if (Scalable)
339
NegS = SE.getMulExpr(NegS, SE.getVScale(NegS->getType()));
340
return NegS;
341
}
342
343
const SCEV *getUnknownSCEV(ScalarEvolution &SE, Type *Ty) const {
344
const SCEV *SU = SE.getUnknown(ConstantInt::getSigned(Ty, Quantity));
345
if (Scalable)
346
SU = SE.getMulExpr(SU, SE.getVScale(SU->getType()));
347
return SU;
348
}
349
};
350
351
// This is needed for the Compare type of std::map when Immediate is used
352
// as a key. We don't need it to be fully correct against any value of vscale,
353
// just to make sure that vscale-related terms in the map are considered against
354
// each other rather than being mixed up and potentially missing opportunities.
355
struct KeyOrderTargetImmediate {
356
bool operator()(const Immediate &LHS, const Immediate &RHS) const {
357
if (LHS.isScalable() && !RHS.isScalable())
358
return false;
359
if (!LHS.isScalable() && RHS.isScalable())
360
return true;
361
return LHS.getKnownMinValue() < RHS.getKnownMinValue();
362
}
363
};
364
365
// This would be nicer if we could be generic instead of directly using size_t,
366
// but there doesn't seem to be a type trait for is_orderable or
367
// is_lessthan_comparable or similar.
368
struct KeyOrderSizeTAndImmediate {
369
bool operator()(const std::pair<size_t, Immediate> &LHS,
370
const std::pair<size_t, Immediate> &RHS) const {
371
size_t LSize = LHS.first;
372
size_t RSize = RHS.first;
373
if (LSize != RSize)
374
return LSize < RSize;
375
return KeyOrderTargetImmediate()(LHS.second, RHS.second);
376
}
377
};
378
} // end anonymous namespace
379
380
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
381
void RegSortData::print(raw_ostream &OS) const {
382
OS << "[NumUses=" << UsedByIndices.count() << ']';
383
}
384
385
LLVM_DUMP_METHOD void RegSortData::dump() const {
386
print(errs()); errs() << '\n';
387
}
388
#endif
389
390
namespace {
391
392
/// Map register candidates to information about how they are used.
393
class RegUseTracker {
394
using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
395
396
RegUsesTy RegUsesMap;
397
SmallVector<const SCEV *, 16> RegSequence;
398
399
public:
400
void countRegister(const SCEV *Reg, size_t LUIdx);
401
void dropRegister(const SCEV *Reg, size_t LUIdx);
402
void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
403
404
bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
405
406
const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
407
408
void clear();
409
410
using iterator = SmallVectorImpl<const SCEV *>::iterator;
411
using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
412
413
iterator begin() { return RegSequence.begin(); }
414
iterator end() { return RegSequence.end(); }
415
const_iterator begin() const { return RegSequence.begin(); }
416
const_iterator end() const { return RegSequence.end(); }
417
};
418
419
} // end anonymous namespace
420
421
void
422
RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
423
std::pair<RegUsesTy::iterator, bool> Pair =
424
RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
425
RegSortData &RSD = Pair.first->second;
426
if (Pair.second)
427
RegSequence.push_back(Reg);
428
RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
429
RSD.UsedByIndices.set(LUIdx);
430
}
431
432
void
433
RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
434
RegUsesTy::iterator It = RegUsesMap.find(Reg);
435
assert(It != RegUsesMap.end());
436
RegSortData &RSD = It->second;
437
assert(RSD.UsedByIndices.size() > LUIdx);
438
RSD.UsedByIndices.reset(LUIdx);
439
}
440
441
void
442
RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
443
assert(LUIdx <= LastLUIdx);
444
445
// Update RegUses. The data structure is not optimized for this purpose;
446
// we must iterate through it and update each of the bit vectors.
447
for (auto &Pair : RegUsesMap) {
448
SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
449
if (LUIdx < UsedByIndices.size())
450
UsedByIndices[LUIdx] =
451
LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
452
UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
453
}
454
}
455
456
bool
457
RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
458
RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
459
if (I == RegUsesMap.end())
460
return false;
461
const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
462
int i = UsedByIndices.find_first();
463
if (i == -1) return false;
464
if ((size_t)i != LUIdx) return true;
465
return UsedByIndices.find_next(i) != -1;
466
}
467
468
const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
469
RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
470
assert(I != RegUsesMap.end() && "Unknown register!");
471
return I->second.UsedByIndices;
472
}
473
474
void RegUseTracker::clear() {
475
RegUsesMap.clear();
476
RegSequence.clear();
477
}
478
479
namespace {
480
481
/// This class holds information that describes a formula for computing
482
/// satisfying a use. It may include broken-out immediates and scaled registers.
483
struct Formula {
484
/// Global base address used for complex addressing.
485
GlobalValue *BaseGV = nullptr;
486
487
/// Base offset for complex addressing.
488
Immediate BaseOffset = Immediate::getZero();
489
490
/// Whether any complex addressing has a base register.
491
bool HasBaseReg = false;
492
493
/// The scale of any complex addressing.
494
int64_t Scale = 0;
495
496
/// The list of "base" registers for this use. When this is non-empty. The
497
/// canonical representation of a formula is
498
/// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
499
/// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
500
/// 3. The reg containing recurrent expr related with currect loop in the
501
/// formula should be put in the ScaledReg.
502
/// #1 enforces that the scaled register is always used when at least two
503
/// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
504
/// #2 enforces that 1 * reg is reg.
505
/// #3 ensures invariant regs with respect to current loop can be combined
506
/// together in LSR codegen.
507
/// This invariant can be temporarily broken while building a formula.
508
/// However, every formula inserted into the LSRInstance must be in canonical
509
/// form.
510
SmallVector<const SCEV *, 4> BaseRegs;
511
512
/// The 'scaled' register for this use. This should be non-null when Scale is
513
/// not zero.
514
const SCEV *ScaledReg = nullptr;
515
516
/// An additional constant offset which added near the use. This requires a
517
/// temporary register, but the offset itself can live in an add immediate
518
/// field rather than a register.
519
Immediate UnfoldedOffset = Immediate::getZero();
520
521
Formula() = default;
522
523
void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
524
525
bool isCanonical(const Loop &L) const;
526
527
void canonicalize(const Loop &L);
528
529
bool unscale();
530
531
bool hasZeroEnd() const;
532
533
size_t getNumRegs() const;
534
Type *getType() const;
535
536
void deleteBaseReg(const SCEV *&S);
537
538
bool referencesReg(const SCEV *S) const;
539
bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
540
const RegUseTracker &RegUses) const;
541
542
void print(raw_ostream &OS) const;
543
void dump() const;
544
};
545
546
} // end anonymous namespace
547
548
/// Recursion helper for initialMatch.
549
static void DoInitialMatch(const SCEV *S, Loop *L,
550
SmallVectorImpl<const SCEV *> &Good,
551
SmallVectorImpl<const SCEV *> &Bad,
552
ScalarEvolution &SE) {
553
// Collect expressions which properly dominate the loop header.
554
if (SE.properlyDominates(S, L->getHeader())) {
555
Good.push_back(S);
556
return;
557
}
558
559
// Look at add operands.
560
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
561
for (const SCEV *S : Add->operands())
562
DoInitialMatch(S, L, Good, Bad, SE);
563
return;
564
}
565
566
// Look at addrec operands.
567
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
568
if (!AR->getStart()->isZero() && AR->isAffine()) {
569
DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
570
DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
571
AR->getStepRecurrence(SE),
572
// FIXME: AR->getNoWrapFlags()
573
AR->getLoop(), SCEV::FlagAnyWrap),
574
L, Good, Bad, SE);
575
return;
576
}
577
578
// Handle a multiplication by -1 (negation) if it didn't fold.
579
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
580
if (Mul->getOperand(0)->isAllOnesValue()) {
581
SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
582
const SCEV *NewMul = SE.getMulExpr(Ops);
583
584
SmallVector<const SCEV *, 4> MyGood;
585
SmallVector<const SCEV *, 4> MyBad;
586
DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
587
const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
588
SE.getEffectiveSCEVType(NewMul->getType())));
589
for (const SCEV *S : MyGood)
590
Good.push_back(SE.getMulExpr(NegOne, S));
591
for (const SCEV *S : MyBad)
592
Bad.push_back(SE.getMulExpr(NegOne, S));
593
return;
594
}
595
596
// Ok, we can't do anything interesting. Just stuff the whole thing into a
597
// register and hope for the best.
598
Bad.push_back(S);
599
}
600
601
/// Incorporate loop-variant parts of S into this Formula, attempting to keep
602
/// all loop-invariant and loop-computable values in a single base register.
603
void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
604
SmallVector<const SCEV *, 4> Good;
605
SmallVector<const SCEV *, 4> Bad;
606
DoInitialMatch(S, L, Good, Bad, SE);
607
if (!Good.empty()) {
608
const SCEV *Sum = SE.getAddExpr(Good);
609
if (!Sum->isZero())
610
BaseRegs.push_back(Sum);
611
HasBaseReg = true;
612
}
613
if (!Bad.empty()) {
614
const SCEV *Sum = SE.getAddExpr(Bad);
615
if (!Sum->isZero())
616
BaseRegs.push_back(Sum);
617
HasBaseReg = true;
618
}
619
canonicalize(*L);
620
}
621
622
static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
623
return SCEVExprContains(S, [&L](const SCEV *S) {
624
return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
625
});
626
}
627
628
/// Check whether or not this formula satisfies the canonical
629
/// representation.
630
/// \see Formula::BaseRegs.
631
bool Formula::isCanonical(const Loop &L) const {
632
if (!ScaledReg)
633
return BaseRegs.size() <= 1;
634
635
if (Scale != 1)
636
return true;
637
638
if (Scale == 1 && BaseRegs.empty())
639
return false;
640
641
if (containsAddRecDependentOnLoop(ScaledReg, L))
642
return true;
643
644
// If ScaledReg is not a recurrent expr, or it is but its loop is not current
645
// loop, meanwhile BaseRegs contains a recurrent expr reg related with current
646
// loop, we want to swap the reg in BaseRegs with ScaledReg.
647
return none_of(BaseRegs, [&L](const SCEV *S) {
648
return containsAddRecDependentOnLoop(S, L);
649
});
650
}
651
652
/// Helper method to morph a formula into its canonical representation.
653
/// \see Formula::BaseRegs.
654
/// Every formula having more than one base register, must use the ScaledReg
655
/// field. Otherwise, we would have to do special cases everywhere in LSR
656
/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
657
/// On the other hand, 1*reg should be canonicalized into reg.
658
void Formula::canonicalize(const Loop &L) {
659
if (isCanonical(L))
660
return;
661
662
if (BaseRegs.empty()) {
663
// No base reg? Use scale reg with scale = 1 as such.
664
assert(ScaledReg && "Expected 1*reg => reg");
665
assert(Scale == 1 && "Expected 1*reg => reg");
666
BaseRegs.push_back(ScaledReg);
667
Scale = 0;
668
ScaledReg = nullptr;
669
return;
670
}
671
672
// Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
673
if (!ScaledReg) {
674
ScaledReg = BaseRegs.pop_back_val();
675
Scale = 1;
676
}
677
678
// If ScaledReg is an invariant with respect to L, find the reg from
679
// BaseRegs containing the recurrent expr related with Loop L. Swap the
680
// reg with ScaledReg.
681
if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
682
auto I = find_if(BaseRegs, [&L](const SCEV *S) {
683
return containsAddRecDependentOnLoop(S, L);
684
});
685
if (I != BaseRegs.end())
686
std::swap(ScaledReg, *I);
687
}
688
assert(isCanonical(L) && "Failed to canonicalize?");
689
}
690
691
/// Get rid of the scale in the formula.
692
/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
693
/// \return true if it was possible to get rid of the scale, false otherwise.
694
/// \note After this operation the formula may not be in the canonical form.
695
bool Formula::unscale() {
696
if (Scale != 1)
697
return false;
698
Scale = 0;
699
BaseRegs.push_back(ScaledReg);
700
ScaledReg = nullptr;
701
return true;
702
}
703
704
bool Formula::hasZeroEnd() const {
705
if (UnfoldedOffset || BaseOffset)
706
return false;
707
if (BaseRegs.size() != 1 || ScaledReg)
708
return false;
709
return true;
710
}
711
712
/// Return the total number of register operands used by this formula. This does
713
/// not include register uses implied by non-constant addrec strides.
714
size_t Formula::getNumRegs() const {
715
return !!ScaledReg + BaseRegs.size();
716
}
717
718
/// Return the type of this formula, if it has one, or null otherwise. This type
719
/// is meaningless except for the bit size.
720
Type *Formula::getType() const {
721
return !BaseRegs.empty() ? BaseRegs.front()->getType() :
722
ScaledReg ? ScaledReg->getType() :
723
BaseGV ? BaseGV->getType() :
724
nullptr;
725
}
726
727
/// Delete the given base reg from the BaseRegs list.
728
void Formula::deleteBaseReg(const SCEV *&S) {
729
if (&S != &BaseRegs.back())
730
std::swap(S, BaseRegs.back());
731
BaseRegs.pop_back();
732
}
733
734
/// Test if this formula references the given register.
735
bool Formula::referencesReg(const SCEV *S) const {
736
return S == ScaledReg || is_contained(BaseRegs, S);
737
}
738
739
/// Test whether this formula uses registers which are used by uses other than
740
/// the use with the given index.
741
bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
742
const RegUseTracker &RegUses) const {
743
if (ScaledReg)
744
if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
745
return true;
746
for (const SCEV *BaseReg : BaseRegs)
747
if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
748
return true;
749
return false;
750
}
751
752
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
753
void Formula::print(raw_ostream &OS) const {
754
bool First = true;
755
if (BaseGV) {
756
if (!First) OS << " + "; else First = false;
757
BaseGV->printAsOperand(OS, /*PrintType=*/false);
758
}
759
if (BaseOffset.isNonZero()) {
760
if (!First) OS << " + "; else First = false;
761
OS << BaseOffset;
762
}
763
for (const SCEV *BaseReg : BaseRegs) {
764
if (!First) OS << " + "; else First = false;
765
OS << "reg(" << *BaseReg << ')';
766
}
767
if (HasBaseReg && BaseRegs.empty()) {
768
if (!First) OS << " + "; else First = false;
769
OS << "**error: HasBaseReg**";
770
} else if (!HasBaseReg && !BaseRegs.empty()) {
771
if (!First) OS << " + "; else First = false;
772
OS << "**error: !HasBaseReg**";
773
}
774
if (Scale != 0) {
775
if (!First) OS << " + "; else First = false;
776
OS << Scale << "*reg(";
777
if (ScaledReg)
778
OS << *ScaledReg;
779
else
780
OS << "<unknown>";
781
OS << ')';
782
}
783
if (UnfoldedOffset.isNonZero()) {
784
if (!First) OS << " + ";
785
OS << "imm(" << UnfoldedOffset << ')';
786
}
787
}
788
789
LLVM_DUMP_METHOD void Formula::dump() const {
790
print(errs()); errs() << '\n';
791
}
792
#endif
793
794
/// Return true if the given addrec can be sign-extended without changing its
795
/// value.
796
static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
797
Type *WideTy =
798
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
799
return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
800
}
801
802
/// Return true if the given add can be sign-extended without changing its
803
/// value.
804
static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
805
Type *WideTy =
806
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
807
return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
808
}
809
810
/// Return true if the given mul can be sign-extended without changing its
811
/// value.
812
static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
813
Type *WideTy =
814
IntegerType::get(SE.getContext(),
815
SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
816
return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
817
}
818
819
/// Return an expression for LHS /s RHS, if it can be determined and if the
820
/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
821
/// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
822
/// the multiplication may overflow, which is useful when the result will be
823
/// used in a context where the most significant bits are ignored.
824
static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
825
ScalarEvolution &SE,
826
bool IgnoreSignificantBits = false) {
827
// Handle the trivial case, which works for any SCEV type.
828
if (LHS == RHS)
829
return SE.getConstant(LHS->getType(), 1);
830
831
// Handle a few RHS special cases.
832
const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
833
if (RC) {
834
const APInt &RA = RC->getAPInt();
835
// Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
836
// some folding.
837
if (RA.isAllOnes()) {
838
if (LHS->getType()->isPointerTy())
839
return nullptr;
840
return SE.getMulExpr(LHS, RC);
841
}
842
// Handle x /s 1 as x.
843
if (RA == 1)
844
return LHS;
845
}
846
847
// Check for a division of a constant by a constant.
848
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
849
if (!RC)
850
return nullptr;
851
const APInt &LA = C->getAPInt();
852
const APInt &RA = RC->getAPInt();
853
if (LA.srem(RA) != 0)
854
return nullptr;
855
return SE.getConstant(LA.sdiv(RA));
856
}
857
858
// Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
859
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
860
if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
861
const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
862
IgnoreSignificantBits);
863
if (!Step) return nullptr;
864
const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
865
IgnoreSignificantBits);
866
if (!Start) return nullptr;
867
// FlagNW is independent of the start value, step direction, and is
868
// preserved with smaller magnitude steps.
869
// FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
870
return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
871
}
872
return nullptr;
873
}
874
875
// Distribute the sdiv over add operands, if the add doesn't overflow.
876
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
877
if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
878
SmallVector<const SCEV *, 8> Ops;
879
for (const SCEV *S : Add->operands()) {
880
const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
881
if (!Op) return nullptr;
882
Ops.push_back(Op);
883
}
884
return SE.getAddExpr(Ops);
885
}
886
return nullptr;
887
}
888
889
// Check for a multiply operand that we can pull RHS out of.
890
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
891
if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
892
// Handle special case C1*X*Y /s C2*X*Y.
893
if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
894
if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
895
const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
896
const SCEVConstant *RC =
897
dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
898
if (LC && RC) {
899
SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
900
SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
901
if (LOps == ROps)
902
return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
903
}
904
}
905
}
906
907
SmallVector<const SCEV *, 4> Ops;
908
bool Found = false;
909
for (const SCEV *S : Mul->operands()) {
910
if (!Found)
911
if (const SCEV *Q = getExactSDiv(S, RHS, SE,
912
IgnoreSignificantBits)) {
913
S = Q;
914
Found = true;
915
}
916
Ops.push_back(S);
917
}
918
return Found ? SE.getMulExpr(Ops) : nullptr;
919
}
920
return nullptr;
921
}
922
923
// Otherwise we don't know.
924
return nullptr;
925
}
926
927
/// If S involves the addition of a constant integer value, return that integer
928
/// value, and mutate S to point to a new SCEV with that value excluded.
929
static Immediate ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
930
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
931
if (C->getAPInt().getSignificantBits() <= 64) {
932
S = SE.getConstant(C->getType(), 0);
933
return Immediate::getFixed(C->getValue()->getSExtValue());
934
}
935
} else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
936
SmallVector<const SCEV *, 8> NewOps(Add->operands());
937
Immediate Result = ExtractImmediate(NewOps.front(), SE);
938
if (Result.isNonZero())
939
S = SE.getAddExpr(NewOps);
940
return Result;
941
} else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
942
SmallVector<const SCEV *, 8> NewOps(AR->operands());
943
Immediate Result = ExtractImmediate(NewOps.front(), SE);
944
if (Result.isNonZero())
945
S = SE.getAddRecExpr(NewOps, AR->getLoop(),
946
// FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
947
SCEV::FlagAnyWrap);
948
return Result;
949
} else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
950
if (EnableVScaleImmediates && M->getNumOperands() == 2) {
951
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
952
if (isa<SCEVVScale>(M->getOperand(1))) {
953
S = SE.getConstant(M->getType(), 0);
954
return Immediate::getScalable(C->getValue()->getSExtValue());
955
}
956
}
957
}
958
return Immediate::getZero();
959
}
960
961
/// If S involves the addition of a GlobalValue address, return that symbol, and
962
/// mutate S to point to a new SCEV with that value excluded.
963
static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
964
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
965
if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
966
S = SE.getConstant(GV->getType(), 0);
967
return GV;
968
}
969
} else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
970
SmallVector<const SCEV *, 8> NewOps(Add->operands());
971
GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
972
if (Result)
973
S = SE.getAddExpr(NewOps);
974
return Result;
975
} else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
976
SmallVector<const SCEV *, 8> NewOps(AR->operands());
977
GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
978
if (Result)
979
S = SE.getAddRecExpr(NewOps, AR->getLoop(),
980
// FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
981
SCEV::FlagAnyWrap);
982
return Result;
983
}
984
return nullptr;
985
}
986
987
/// Returns true if the specified instruction is using the specified value as an
988
/// address.
989
static bool isAddressUse(const TargetTransformInfo &TTI,
990
Instruction *Inst, Value *OperandVal) {
991
bool isAddress = isa<LoadInst>(Inst);
992
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
993
if (SI->getPointerOperand() == OperandVal)
994
isAddress = true;
995
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
996
// Addressing modes can also be folded into prefetches and a variety
997
// of intrinsics.
998
switch (II->getIntrinsicID()) {
999
case Intrinsic::memset:
1000
case Intrinsic::prefetch:
1001
case Intrinsic::masked_load:
1002
if (II->getArgOperand(0) == OperandVal)
1003
isAddress = true;
1004
break;
1005
case Intrinsic::masked_store:
1006
if (II->getArgOperand(1) == OperandVal)
1007
isAddress = true;
1008
break;
1009
case Intrinsic::memmove:
1010
case Intrinsic::memcpy:
1011
if (II->getArgOperand(0) == OperandVal ||
1012
II->getArgOperand(1) == OperandVal)
1013
isAddress = true;
1014
break;
1015
default: {
1016
MemIntrinsicInfo IntrInfo;
1017
if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
1018
if (IntrInfo.PtrVal == OperandVal)
1019
isAddress = true;
1020
}
1021
}
1022
}
1023
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
1024
if (RMW->getPointerOperand() == OperandVal)
1025
isAddress = true;
1026
} else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
1027
if (CmpX->getPointerOperand() == OperandVal)
1028
isAddress = true;
1029
}
1030
return isAddress;
1031
}
1032
1033
/// Return the type of the memory being accessed.
1034
static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
1035
Instruction *Inst, Value *OperandVal) {
1036
MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext());
1037
1038
// First get the type of memory being accessed.
1039
if (Type *Ty = Inst->getAccessType())
1040
AccessTy.MemTy = Ty;
1041
1042
// Then get the pointer address space.
1043
if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1044
AccessTy.AddrSpace = SI->getPointerAddressSpace();
1045
} else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1046
AccessTy.AddrSpace = LI->getPointerAddressSpace();
1047
} else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
1048
AccessTy.AddrSpace = RMW->getPointerAddressSpace();
1049
} else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
1050
AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
1051
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1052
switch (II->getIntrinsicID()) {
1053
case Intrinsic::prefetch:
1054
case Intrinsic::memset:
1055
AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
1056
AccessTy.MemTy = OperandVal->getType();
1057
break;
1058
case Intrinsic::memmove:
1059
case Intrinsic::memcpy:
1060
AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
1061
AccessTy.MemTy = OperandVal->getType();
1062
break;
1063
case Intrinsic::masked_load:
1064
AccessTy.AddrSpace =
1065
II->getArgOperand(0)->getType()->getPointerAddressSpace();
1066
break;
1067
case Intrinsic::masked_store:
1068
AccessTy.AddrSpace =
1069
II->getArgOperand(1)->getType()->getPointerAddressSpace();
1070
break;
1071
default: {
1072
MemIntrinsicInfo IntrInfo;
1073
if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
1074
AccessTy.AddrSpace
1075
= IntrInfo.PtrVal->getType()->getPointerAddressSpace();
1076
}
1077
1078
break;
1079
}
1080
}
1081
}
1082
1083
return AccessTy;
1084
}
1085
1086
/// Return true if this AddRec is already a phi in its loop.
1087
static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
1088
for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
1089
if (SE.isSCEVable(PN.getType()) &&
1090
(SE.getEffectiveSCEVType(PN.getType()) ==
1091
SE.getEffectiveSCEVType(AR->getType())) &&
1092
SE.getSCEV(&PN) == AR)
1093
return true;
1094
}
1095
return false;
1096
}
1097
1098
/// Check if expanding this expression is likely to incur significant cost. This
1099
/// is tricky because SCEV doesn't track which expressions are actually computed
1100
/// by the current IR.
1101
///
1102
/// We currently allow expansion of IV increments that involve adds,
1103
/// multiplication by constants, and AddRecs from existing phis.
1104
///
1105
/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
1106
/// obvious multiple of the UDivExpr.
1107
static bool isHighCostExpansion(const SCEV *S,
1108
SmallPtrSetImpl<const SCEV*> &Processed,
1109
ScalarEvolution &SE) {
1110
// Zero/One operand expressions
1111
switch (S->getSCEVType()) {
1112
case scUnknown:
1113
case scConstant:
1114
case scVScale:
1115
return false;
1116
case scTruncate:
1117
return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
1118
Processed, SE);
1119
case scZeroExtend:
1120
return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
1121
Processed, SE);
1122
case scSignExtend:
1123
return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
1124
Processed, SE);
1125
default:
1126
break;
1127
}
1128
1129
if (!Processed.insert(S).second)
1130
return false;
1131
1132
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1133
for (const SCEV *S : Add->operands()) {
1134
if (isHighCostExpansion(S, Processed, SE))
1135
return true;
1136
}
1137
return false;
1138
}
1139
1140
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1141
if (Mul->getNumOperands() == 2) {
1142
// Multiplication by a constant is ok
1143
if (isa<SCEVConstant>(Mul->getOperand(0)))
1144
return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
1145
1146
// If we have the value of one operand, check if an existing
1147
// multiplication already generates this expression.
1148
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1149
Value *UVal = U->getValue();
1150
for (User *UR : UVal->users()) {
1151
// If U is a constant, it may be used by a ConstantExpr.
1152
Instruction *UI = dyn_cast<Instruction>(UR);
1153
if (UI && UI->getOpcode() == Instruction::Mul &&
1154
SE.isSCEVable(UI->getType())) {
1155
return SE.getSCEV(UI) == Mul;
1156
}
1157
}
1158
}
1159
}
1160
}
1161
1162
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1163
if (isExistingPhi(AR, SE))
1164
return false;
1165
}
1166
1167
// Fow now, consider any other type of expression (div/mul/min/max) high cost.
1168
return true;
1169
}
1170
1171
namespace {
1172
1173
class LSRUse;
1174
1175
} // end anonymous namespace
1176
1177
/// Check if the addressing mode defined by \p F is completely
1178
/// folded in \p LU at isel time.
1179
/// This includes address-mode folding and special icmp tricks.
1180
/// This function returns true if \p LU can accommodate what \p F
1181
/// defines and up to 1 base + 1 scaled + offset.
1182
/// In other words, if \p F has several base registers, this function may
1183
/// still return true. Therefore, users still need to account for
1184
/// additional base registers and/or unfolded offsets to derive an
1185
/// accurate cost model.
1186
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1187
const LSRUse &LU, const Formula &F);
1188
1189
// Get the cost of the scaling factor used in F for LU.
1190
static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1191
const LSRUse &LU, const Formula &F,
1192
const Loop &L);
1193
1194
namespace {
1195
1196
/// This class is used to measure and compare candidate formulae.
1197
class Cost {
1198
const Loop *L = nullptr;
1199
ScalarEvolution *SE = nullptr;
1200
const TargetTransformInfo *TTI = nullptr;
1201
TargetTransformInfo::LSRCost C;
1202
TTI::AddressingModeKind AMK = TTI::AMK_None;
1203
1204
public:
1205
Cost() = delete;
1206
Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1207
TTI::AddressingModeKind AMK) :
1208
L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1209
C.Insns = 0;
1210
C.NumRegs = 0;
1211
C.AddRecCost = 0;
1212
C.NumIVMuls = 0;
1213
C.NumBaseAdds = 0;
1214
C.ImmCost = 0;
1215
C.SetupCost = 0;
1216
C.ScaleCost = 0;
1217
}
1218
1219
bool isLess(const Cost &Other) const;
1220
1221
void Lose();
1222
1223
#ifndef NDEBUG
1224
// Once any of the metrics loses, they must all remain losers.
1225
bool isValid() {
1226
return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1227
| C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1228
|| ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1229
& C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1230
}
1231
#endif
1232
1233
bool isLoser() {
1234
assert(isValid() && "invalid cost");
1235
return C.NumRegs == ~0u;
1236
}
1237
1238
void RateFormula(const Formula &F,
1239
SmallPtrSetImpl<const SCEV *> &Regs,
1240
const DenseSet<const SCEV *> &VisitedRegs,
1241
const LSRUse &LU,
1242
SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1243
1244
void print(raw_ostream &OS) const;
1245
void dump() const;
1246
1247
private:
1248
void RateRegister(const Formula &F, const SCEV *Reg,
1249
SmallPtrSetImpl<const SCEV *> &Regs);
1250
void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1251
SmallPtrSetImpl<const SCEV *> &Regs,
1252
SmallPtrSetImpl<const SCEV *> *LoserRegs);
1253
};
1254
1255
/// An operand value in an instruction which is to be replaced with some
1256
/// equivalent, possibly strength-reduced, replacement.
1257
struct LSRFixup {
1258
/// The instruction which will be updated.
1259
Instruction *UserInst = nullptr;
1260
1261
/// The operand of the instruction which will be replaced. The operand may be
1262
/// used more than once; every instance will be replaced.
1263
Value *OperandValToReplace = nullptr;
1264
1265
/// If this user is to use the post-incremented value of an induction
1266
/// variable, this set is non-empty and holds the loops associated with the
1267
/// induction variable.
1268
PostIncLoopSet PostIncLoops;
1269
1270
/// A constant offset to be added to the LSRUse expression. This allows
1271
/// multiple fixups to share the same LSRUse with different offsets, for
1272
/// example in an unrolled loop.
1273
Immediate Offset = Immediate::getZero();
1274
1275
LSRFixup() = default;
1276
1277
bool isUseFullyOutsideLoop(const Loop *L) const;
1278
1279
void print(raw_ostream &OS) const;
1280
void dump() const;
1281
};
1282
1283
/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1284
/// SmallVectors of const SCEV*.
1285
struct UniquifierDenseMapInfo {
1286
static SmallVector<const SCEV *, 4> getEmptyKey() {
1287
SmallVector<const SCEV *, 4> V;
1288
V.push_back(reinterpret_cast<const SCEV *>(-1));
1289
return V;
1290
}
1291
1292
static SmallVector<const SCEV *, 4> getTombstoneKey() {
1293
SmallVector<const SCEV *, 4> V;
1294
V.push_back(reinterpret_cast<const SCEV *>(-2));
1295
return V;
1296
}
1297
1298
static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1299
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1300
}
1301
1302
static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1303
const SmallVector<const SCEV *, 4> &RHS) {
1304
return LHS == RHS;
1305
}
1306
};
1307
1308
/// This class holds the state that LSR keeps for each use in IVUsers, as well
1309
/// as uses invented by LSR itself. It includes information about what kinds of
1310
/// things can be folded into the user, information about the user itself, and
1311
/// information about how the use may be satisfied. TODO: Represent multiple
1312
/// users of the same expression in common?
1313
class LSRUse {
1314
DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1315
1316
public:
1317
/// An enum for a kind of use, indicating what types of scaled and immediate
1318
/// operands it might support.
1319
enum KindType {
1320
Basic, ///< A normal use, with no folding.
1321
Special, ///< A special case of basic, allowing -1 scales.
1322
Address, ///< An address use; folding according to TargetLowering
1323
ICmpZero ///< An equality icmp with both operands folded into one.
1324
// TODO: Add a generic icmp too?
1325
};
1326
1327
using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1328
1329
KindType Kind;
1330
MemAccessTy AccessTy;
1331
1332
/// The list of operands which are to be replaced.
1333
SmallVector<LSRFixup, 8> Fixups;
1334
1335
/// Keep track of the min and max offsets of the fixups.
1336
Immediate MinOffset = Immediate::getFixedMax();
1337
Immediate MaxOffset = Immediate::getFixedMin();
1338
1339
/// This records whether all of the fixups using this LSRUse are outside of
1340
/// the loop, in which case some special-case heuristics may be used.
1341
bool AllFixupsOutsideLoop = true;
1342
1343
/// RigidFormula is set to true to guarantee that this use will be associated
1344
/// with a single formula--the one that initially matched. Some SCEV
1345
/// expressions cannot be expanded. This allows LSR to consider the registers
1346
/// used by those expressions without the need to expand them later after
1347
/// changing the formula.
1348
bool RigidFormula = false;
1349
1350
/// This records the widest use type for any fixup using this
1351
/// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1352
/// fixup widths to be equivalent, because the narrower one may be relying on
1353
/// the implicit truncation to truncate away bogus bits.
1354
Type *WidestFixupType = nullptr;
1355
1356
/// A list of ways to build a value that can satisfy this user. After the
1357
/// list is populated, one of these is selected heuristically and used to
1358
/// formulate a replacement for OperandValToReplace in UserInst.
1359
SmallVector<Formula, 12> Formulae;
1360
1361
/// The set of register candidates used by all formulae in this LSRUse.
1362
SmallPtrSet<const SCEV *, 4> Regs;
1363
1364
LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1365
1366
LSRFixup &getNewFixup() {
1367
Fixups.push_back(LSRFixup());
1368
return Fixups.back();
1369
}
1370
1371
void pushFixup(LSRFixup &f) {
1372
Fixups.push_back(f);
1373
if (Immediate::isKnownGT(f.Offset, MaxOffset))
1374
MaxOffset = f.Offset;
1375
if (Immediate::isKnownLT(f.Offset, MinOffset))
1376
MinOffset = f.Offset;
1377
}
1378
1379
bool HasFormulaWithSameRegs(const Formula &F) const;
1380
float getNotSelectedProbability(const SCEV *Reg) const;
1381
bool InsertFormula(const Formula &F, const Loop &L);
1382
void DeleteFormula(Formula &F);
1383
void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1384
1385
void print(raw_ostream &OS) const;
1386
void dump() const;
1387
};
1388
1389
} // end anonymous namespace
1390
1391
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1392
LSRUse::KindType Kind, MemAccessTy AccessTy,
1393
GlobalValue *BaseGV, Immediate BaseOffset,
1394
bool HasBaseReg, int64_t Scale,
1395
Instruction *Fixup = nullptr);
1396
1397
static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1398
if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1399
return 1;
1400
if (Depth == 0)
1401
return 0;
1402
if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1403
return getSetupCost(S->getStart(), Depth - 1);
1404
if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1405
return getSetupCost(S->getOperand(), Depth - 1);
1406
if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1407
return std::accumulate(S->operands().begin(), S->operands().end(), 0,
1408
[&](unsigned i, const SCEV *Reg) {
1409
return i + getSetupCost(Reg, Depth - 1);
1410
});
1411
if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1412
return getSetupCost(S->getLHS(), Depth - 1) +
1413
getSetupCost(S->getRHS(), Depth - 1);
1414
return 0;
1415
}
1416
1417
/// Tally up interesting quantities from the given register.
1418
void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1419
SmallPtrSetImpl<const SCEV *> &Regs) {
1420
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1421
// If this is an addrec for another loop, it should be an invariant
1422
// with respect to L since L is the innermost loop (at least
1423
// for now LSR only handles innermost loops).
1424
if (AR->getLoop() != L) {
1425
// If the AddRec exists, consider it's register free and leave it alone.
1426
if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1427
return;
1428
1429
// It is bad to allow LSR for current loop to add induction variables
1430
// for its sibling loops.
1431
if (!AR->getLoop()->contains(L)) {
1432
Lose();
1433
return;
1434
}
1435
1436
// Otherwise, it will be an invariant with respect to Loop L.
1437
++C.NumRegs;
1438
return;
1439
}
1440
1441
unsigned LoopCost = 1;
1442
if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1443
TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1444
1445
// If the step size matches the base offset, we could use pre-indexed
1446
// addressing.
1447
if (AMK == TTI::AMK_PreIndexed && F.BaseOffset.isFixed()) {
1448
if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1449
if (Step->getAPInt() == F.BaseOffset.getFixedValue())
1450
LoopCost = 0;
1451
} else if (AMK == TTI::AMK_PostIndexed) {
1452
const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1453
if (isa<SCEVConstant>(LoopStep)) {
1454
const SCEV *LoopStart = AR->getStart();
1455
if (!isa<SCEVConstant>(LoopStart) &&
1456
SE->isLoopInvariant(LoopStart, L))
1457
LoopCost = 0;
1458
}
1459
}
1460
}
1461
C.AddRecCost += LoopCost;
1462
1463
// Add the step value register, if it needs one.
1464
// TODO: The non-affine case isn't precisely modeled here.
1465
if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1466
if (!Regs.count(AR->getOperand(1))) {
1467
RateRegister(F, AR->getOperand(1), Regs);
1468
if (isLoser())
1469
return;
1470
}
1471
}
1472
}
1473
++C.NumRegs;
1474
1475
// Rough heuristic; favor registers which don't require extra setup
1476
// instructions in the preheader.
1477
C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1478
// Ensure we don't, even with the recusion limit, produce invalid costs.
1479
C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1480
1481
C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1482
SE->hasComputableLoopEvolution(Reg, L);
1483
}
1484
1485
/// Record this register in the set. If we haven't seen it before, rate
1486
/// it. Optional LoserRegs provides a way to declare any formula that refers to
1487
/// one of those regs an instant loser.
1488
void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1489
SmallPtrSetImpl<const SCEV *> &Regs,
1490
SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1491
if (LoserRegs && LoserRegs->count(Reg)) {
1492
Lose();
1493
return;
1494
}
1495
if (Regs.insert(Reg).second) {
1496
RateRegister(F, Reg, Regs);
1497
if (LoserRegs && isLoser())
1498
LoserRegs->insert(Reg);
1499
}
1500
}
1501
1502
void Cost::RateFormula(const Formula &F,
1503
SmallPtrSetImpl<const SCEV *> &Regs,
1504
const DenseSet<const SCEV *> &VisitedRegs,
1505
const LSRUse &LU,
1506
SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1507
if (isLoser())
1508
return;
1509
assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1510
// Tally up the registers.
1511
unsigned PrevAddRecCost = C.AddRecCost;
1512
unsigned PrevNumRegs = C.NumRegs;
1513
unsigned PrevNumBaseAdds = C.NumBaseAdds;
1514
if (const SCEV *ScaledReg = F.ScaledReg) {
1515
if (VisitedRegs.count(ScaledReg)) {
1516
Lose();
1517
return;
1518
}
1519
RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1520
if (isLoser())
1521
return;
1522
}
1523
for (const SCEV *BaseReg : F.BaseRegs) {
1524
if (VisitedRegs.count(BaseReg)) {
1525
Lose();
1526
return;
1527
}
1528
RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1529
if (isLoser())
1530
return;
1531
}
1532
1533
// Determine how many (unfolded) adds we'll need inside the loop.
1534
size_t NumBaseParts = F.getNumRegs();
1535
if (NumBaseParts > 1)
1536
// Do not count the base and a possible second register if the target
1537
// allows to fold 2 registers.
1538
C.NumBaseAdds +=
1539
NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1540
C.NumBaseAdds += (F.UnfoldedOffset.isNonZero());
1541
1542
// Accumulate non-free scaling amounts.
1543
C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1544
1545
// Tally up the non-zero immediates.
1546
for (const LSRFixup &Fixup : LU.Fixups) {
1547
if (Fixup.Offset.isCompatibleImmediate(F.BaseOffset)) {
1548
Immediate Offset = Fixup.Offset.addUnsigned(F.BaseOffset);
1549
if (F.BaseGV)
1550
C.ImmCost += 64; // Handle symbolic values conservatively.
1551
// TODO: This should probably be the pointer size.
1552
else if (Offset.isNonZero())
1553
C.ImmCost +=
1554
APInt(64, Offset.getKnownMinValue(), true).getSignificantBits();
1555
1556
// Check with target if this offset with this instruction is
1557
// specifically not supported.
1558
if (LU.Kind == LSRUse::Address && Offset.isNonZero() &&
1559
!isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1560
Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1561
C.NumBaseAdds++;
1562
} else {
1563
// Incompatible immediate type, increase cost to avoid using
1564
C.ImmCost += 2048;
1565
}
1566
}
1567
1568
// If we don't count instruction cost exit here.
1569
if (!InsnsCost) {
1570
assert(isValid() && "invalid cost");
1571
return;
1572
}
1573
1574
// Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1575
// additional instruction (at least fill).
1576
// TODO: Need distinguish register class?
1577
unsigned TTIRegNum = TTI->getNumberOfRegisters(
1578
TTI->getRegisterClassForType(false, F.getType())) - 1;
1579
if (C.NumRegs > TTIRegNum) {
1580
// Cost already exceeded TTIRegNum, then only newly added register can add
1581
// new instructions.
1582
if (PrevNumRegs > TTIRegNum)
1583
C.Insns += (C.NumRegs - PrevNumRegs);
1584
else
1585
C.Insns += (C.NumRegs - TTIRegNum);
1586
}
1587
1588
// If ICmpZero formula ends with not 0, it could not be replaced by
1589
// just add or sub. We'll need to compare final result of AddRec.
1590
// That means we'll need an additional instruction. But if the target can
1591
// macro-fuse a compare with a branch, don't count this extra instruction.
1592
// For -10 + {0, +, 1}:
1593
// i = i + 1;
1594
// cmp i, 10
1595
//
1596
// For {-10, +, 1}:
1597
// i = i + 1;
1598
if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1599
!TTI->canMacroFuseCmp())
1600
C.Insns++;
1601
// Each new AddRec adds 1 instruction to calculation.
1602
C.Insns += (C.AddRecCost - PrevAddRecCost);
1603
1604
// BaseAdds adds instructions for unfolded registers.
1605
if (LU.Kind != LSRUse::ICmpZero)
1606
C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1607
assert(isValid() && "invalid cost");
1608
}
1609
1610
/// Set this cost to a losing value.
1611
void Cost::Lose() {
1612
C.Insns = std::numeric_limits<unsigned>::max();
1613
C.NumRegs = std::numeric_limits<unsigned>::max();
1614
C.AddRecCost = std::numeric_limits<unsigned>::max();
1615
C.NumIVMuls = std::numeric_limits<unsigned>::max();
1616
C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1617
C.ImmCost = std::numeric_limits<unsigned>::max();
1618
C.SetupCost = std::numeric_limits<unsigned>::max();
1619
C.ScaleCost = std::numeric_limits<unsigned>::max();
1620
}
1621
1622
/// Choose the lower cost.
1623
bool Cost::isLess(const Cost &Other) const {
1624
if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1625
C.Insns != Other.C.Insns)
1626
return C.Insns < Other.C.Insns;
1627
return TTI->isLSRCostLess(C, Other.C);
1628
}
1629
1630
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1631
void Cost::print(raw_ostream &OS) const {
1632
if (InsnsCost)
1633
OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1634
OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1635
if (C.AddRecCost != 0)
1636
OS << ", with addrec cost " << C.AddRecCost;
1637
if (C.NumIVMuls != 0)
1638
OS << ", plus " << C.NumIVMuls << " IV mul"
1639
<< (C.NumIVMuls == 1 ? "" : "s");
1640
if (C.NumBaseAdds != 0)
1641
OS << ", plus " << C.NumBaseAdds << " base add"
1642
<< (C.NumBaseAdds == 1 ? "" : "s");
1643
if (C.ScaleCost != 0)
1644
OS << ", plus " << C.ScaleCost << " scale cost";
1645
if (C.ImmCost != 0)
1646
OS << ", plus " << C.ImmCost << " imm cost";
1647
if (C.SetupCost != 0)
1648
OS << ", plus " << C.SetupCost << " setup cost";
1649
}
1650
1651
LLVM_DUMP_METHOD void Cost::dump() const {
1652
print(errs()); errs() << '\n';
1653
}
1654
#endif
1655
1656
/// Test whether this fixup always uses its value outside of the given loop.
1657
bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1658
// PHI nodes use their value in their incoming blocks.
1659
if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1660
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1661
if (PN->getIncomingValue(i) == OperandValToReplace &&
1662
L->contains(PN->getIncomingBlock(i)))
1663
return false;
1664
return true;
1665
}
1666
1667
return !L->contains(UserInst);
1668
}
1669
1670
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1671
void LSRFixup::print(raw_ostream &OS) const {
1672
OS << "UserInst=";
1673
// Store is common and interesting enough to be worth special-casing.
1674
if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1675
OS << "store ";
1676
Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1677
} else if (UserInst->getType()->isVoidTy())
1678
OS << UserInst->getOpcodeName();
1679
else
1680
UserInst->printAsOperand(OS, /*PrintType=*/false);
1681
1682
OS << ", OperandValToReplace=";
1683
OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1684
1685
for (const Loop *PIL : PostIncLoops) {
1686
OS << ", PostIncLoop=";
1687
PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1688
}
1689
1690
if (Offset.isNonZero())
1691
OS << ", Offset=" << Offset;
1692
}
1693
1694
LLVM_DUMP_METHOD void LSRFixup::dump() const {
1695
print(errs()); errs() << '\n';
1696
}
1697
#endif
1698
1699
/// Test whether this use as a formula which has the same registers as the given
1700
/// formula.
1701
bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1702
SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1703
if (F.ScaledReg) Key.push_back(F.ScaledReg);
1704
// Unstable sort by host order ok, because this is only used for uniquifying.
1705
llvm::sort(Key);
1706
return Uniquifier.count(Key);
1707
}
1708
1709
/// The function returns a probability of selecting formula without Reg.
1710
float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1711
unsigned FNum = 0;
1712
for (const Formula &F : Formulae)
1713
if (F.referencesReg(Reg))
1714
FNum++;
1715
return ((float)(Formulae.size() - FNum)) / Formulae.size();
1716
}
1717
1718
/// If the given formula has not yet been inserted, add it to the list, and
1719
/// return true. Return false otherwise. The formula must be in canonical form.
1720
bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1721
assert(F.isCanonical(L) && "Invalid canonical representation");
1722
1723
if (!Formulae.empty() && RigidFormula)
1724
return false;
1725
1726
SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1727
if (F.ScaledReg) Key.push_back(F.ScaledReg);
1728
// Unstable sort by host order ok, because this is only used for uniquifying.
1729
llvm::sort(Key);
1730
1731
if (!Uniquifier.insert(Key).second)
1732
return false;
1733
1734
// Using a register to hold the value of 0 is not profitable.
1735
assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1736
"Zero allocated in a scaled register!");
1737
#ifndef NDEBUG
1738
for (const SCEV *BaseReg : F.BaseRegs)
1739
assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1740
#endif
1741
1742
// Add the formula to the list.
1743
Formulae.push_back(F);
1744
1745
// Record registers now being used by this use.
1746
Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1747
if (F.ScaledReg)
1748
Regs.insert(F.ScaledReg);
1749
1750
return true;
1751
}
1752
1753
/// Remove the given formula from this use's list.
1754
void LSRUse::DeleteFormula(Formula &F) {
1755
if (&F != &Formulae.back())
1756
std::swap(F, Formulae.back());
1757
Formulae.pop_back();
1758
}
1759
1760
/// Recompute the Regs field, and update RegUses.
1761
void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1762
// Now that we've filtered out some formulae, recompute the Regs set.
1763
SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1764
Regs.clear();
1765
for (const Formula &F : Formulae) {
1766
if (F.ScaledReg) Regs.insert(F.ScaledReg);
1767
Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1768
}
1769
1770
// Update the RegTracker.
1771
for (const SCEV *S : OldRegs)
1772
if (!Regs.count(S))
1773
RegUses.dropRegister(S, LUIdx);
1774
}
1775
1776
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1777
void LSRUse::print(raw_ostream &OS) const {
1778
OS << "LSR Use: Kind=";
1779
switch (Kind) {
1780
case Basic: OS << "Basic"; break;
1781
case Special: OS << "Special"; break;
1782
case ICmpZero: OS << "ICmpZero"; break;
1783
case Address:
1784
OS << "Address of ";
1785
if (AccessTy.MemTy->isPointerTy())
1786
OS << "pointer"; // the full pointer type could be really verbose
1787
else {
1788
OS << *AccessTy.MemTy;
1789
}
1790
1791
OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1792
}
1793
1794
OS << ", Offsets={";
1795
bool NeedComma = false;
1796
for (const LSRFixup &Fixup : Fixups) {
1797
if (NeedComma) OS << ',';
1798
OS << Fixup.Offset;
1799
NeedComma = true;
1800
}
1801
OS << '}';
1802
1803
if (AllFixupsOutsideLoop)
1804
OS << ", all-fixups-outside-loop";
1805
1806
if (WidestFixupType)
1807
OS << ", widest fixup type: " << *WidestFixupType;
1808
}
1809
1810
LLVM_DUMP_METHOD void LSRUse::dump() const {
1811
print(errs()); errs() << '\n';
1812
}
1813
#endif
1814
1815
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1816
LSRUse::KindType Kind, MemAccessTy AccessTy,
1817
GlobalValue *BaseGV, Immediate BaseOffset,
1818
bool HasBaseReg, int64_t Scale,
1819
Instruction *Fixup /* = nullptr */) {
1820
switch (Kind) {
1821
case LSRUse::Address: {
1822
int64_t FixedOffset =
1823
BaseOffset.isScalable() ? 0 : BaseOffset.getFixedValue();
1824
int64_t ScalableOffset =
1825
BaseOffset.isScalable() ? BaseOffset.getKnownMinValue() : 0;
1826
return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, FixedOffset,
1827
HasBaseReg, Scale, AccessTy.AddrSpace,
1828
Fixup, ScalableOffset);
1829
}
1830
case LSRUse::ICmpZero:
1831
// There's not even a target hook for querying whether it would be legal to
1832
// fold a GV into an ICmp.
1833
if (BaseGV)
1834
return false;
1835
1836
// ICmp only has two operands; don't allow more than two non-trivial parts.
1837
if (Scale != 0 && HasBaseReg && BaseOffset.isNonZero())
1838
return false;
1839
1840
// ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1841
// putting the scaled register in the other operand of the icmp.
1842
if (Scale != 0 && Scale != -1)
1843
return false;
1844
1845
// If we have low-level target information, ask the target if it can fold an
1846
// integer immediate on an icmp.
1847
if (BaseOffset.isNonZero()) {
1848
// We don't have an interface to query whether the target supports
1849
// icmpzero against scalable quantities yet.
1850
if (BaseOffset.isScalable())
1851
return false;
1852
1853
// We have one of:
1854
// ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1855
// ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1856
// Offs is the ICmp immediate.
1857
if (Scale == 0)
1858
// The cast does the right thing with
1859
// std::numeric_limits<int64_t>::min().
1860
BaseOffset = BaseOffset.getFixed(-(uint64_t)BaseOffset.getFixedValue());
1861
return TTI.isLegalICmpImmediate(BaseOffset.getFixedValue());
1862
}
1863
1864
// ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1865
return true;
1866
1867
case LSRUse::Basic:
1868
// Only handle single-register values.
1869
return !BaseGV && Scale == 0 && BaseOffset.isZero();
1870
1871
case LSRUse::Special:
1872
// Special case Basic to handle -1 scales.
1873
return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset.isZero();
1874
}
1875
1876
llvm_unreachable("Invalid LSRUse Kind!");
1877
}
1878
1879
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1880
Immediate MinOffset, Immediate MaxOffset,
1881
LSRUse::KindType Kind, MemAccessTy AccessTy,
1882
GlobalValue *BaseGV, Immediate BaseOffset,
1883
bool HasBaseReg, int64_t Scale) {
1884
if (BaseOffset.isNonZero() &&
1885
(BaseOffset.isScalable() != MinOffset.isScalable() ||
1886
BaseOffset.isScalable() != MaxOffset.isScalable()))
1887
return false;
1888
// Check for overflow.
1889
int64_t Base = BaseOffset.getKnownMinValue();
1890
int64_t Min = MinOffset.getKnownMinValue();
1891
int64_t Max = MaxOffset.getKnownMinValue();
1892
if (((int64_t)((uint64_t)Base + Min) > Base) != (Min > 0))
1893
return false;
1894
MinOffset = Immediate::get((uint64_t)Base + Min, MinOffset.isScalable());
1895
if (((int64_t)((uint64_t)Base + Max) > Base) != (Max > 0))
1896
return false;
1897
MaxOffset = Immediate::get((uint64_t)Base + Max, MaxOffset.isScalable());
1898
1899
return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1900
HasBaseReg, Scale) &&
1901
isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1902
HasBaseReg, Scale);
1903
}
1904
1905
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1906
Immediate MinOffset, Immediate MaxOffset,
1907
LSRUse::KindType Kind, MemAccessTy AccessTy,
1908
const Formula &F, const Loop &L) {
1909
// For the purpose of isAMCompletelyFolded either having a canonical formula
1910
// or a scale not equal to zero is correct.
1911
// Problems may arise from non canonical formulae having a scale == 0.
1912
// Strictly speaking it would best to just rely on canonical formulae.
1913
// However, when we generate the scaled formulae, we first check that the
1914
// scaling factor is profitable before computing the actual ScaledReg for
1915
// compile time sake.
1916
assert((F.isCanonical(L) || F.Scale != 0));
1917
return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1918
F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1919
}
1920
1921
/// Test whether we know how to expand the current formula.
1922
static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset,
1923
Immediate MaxOffset, LSRUse::KindType Kind,
1924
MemAccessTy AccessTy, GlobalValue *BaseGV,
1925
Immediate BaseOffset, bool HasBaseReg, int64_t Scale) {
1926
// We know how to expand completely foldable formulae.
1927
return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1928
BaseOffset, HasBaseReg, Scale) ||
1929
// Or formulae that use a base register produced by a sum of base
1930
// registers.
1931
(Scale == 1 &&
1932
isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1933
BaseGV, BaseOffset, true, 0));
1934
}
1935
1936
static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset,
1937
Immediate MaxOffset, LSRUse::KindType Kind,
1938
MemAccessTy AccessTy, const Formula &F) {
1939
return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1940
F.BaseOffset, F.HasBaseReg, F.Scale);
1941
}
1942
1943
static bool isLegalAddImmediate(const TargetTransformInfo &TTI,
1944
Immediate Offset) {
1945
if (Offset.isScalable())
1946
return TTI.isLegalAddScalableImmediate(Offset.getKnownMinValue());
1947
1948
return TTI.isLegalAddImmediate(Offset.getFixedValue());
1949
}
1950
1951
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1952
const LSRUse &LU, const Formula &F) {
1953
// Target may want to look at the user instructions.
1954
if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1955
for (const LSRFixup &Fixup : LU.Fixups)
1956
if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1957
(F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1958
F.Scale, Fixup.UserInst))
1959
return false;
1960
return true;
1961
}
1962
1963
return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1964
LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1965
F.Scale);
1966
}
1967
1968
static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1969
const LSRUse &LU, const Formula &F,
1970
const Loop &L) {
1971
if (!F.Scale)
1972
return 0;
1973
1974
// If the use is not completely folded in that instruction, we will have to
1975
// pay an extra cost only for scale != 1.
1976
if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1977
LU.AccessTy, F, L))
1978
return F.Scale != 1;
1979
1980
switch (LU.Kind) {
1981
case LSRUse::Address: {
1982
// Check the scaling factor cost with both the min and max offsets.
1983
int64_t ScalableMin = 0, ScalableMax = 0, FixedMin = 0, FixedMax = 0;
1984
if (F.BaseOffset.isScalable()) {
1985
ScalableMin = (F.BaseOffset + LU.MinOffset).getKnownMinValue();
1986
ScalableMax = (F.BaseOffset + LU.MaxOffset).getKnownMinValue();
1987
} else {
1988
FixedMin = (F.BaseOffset + LU.MinOffset).getFixedValue();
1989
FixedMax = (F.BaseOffset + LU.MaxOffset).getFixedValue();
1990
}
1991
InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1992
LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMin, ScalableMin),
1993
F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace);
1994
InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1995
LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMax, ScalableMax),
1996
F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace);
1997
1998
assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1999
"Legal addressing mode has an illegal cost!");
2000
return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
2001
}
2002
case LSRUse::ICmpZero:
2003
case LSRUse::Basic:
2004
case LSRUse::Special:
2005
// The use is completely folded, i.e., everything is folded into the
2006
// instruction.
2007
return 0;
2008
}
2009
2010
llvm_unreachable("Invalid LSRUse Kind!");
2011
}
2012
2013
static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
2014
LSRUse::KindType Kind, MemAccessTy AccessTy,
2015
GlobalValue *BaseGV, Immediate BaseOffset,
2016
bool HasBaseReg) {
2017
// Fast-path: zero is always foldable.
2018
if (BaseOffset.isZero() && !BaseGV)
2019
return true;
2020
2021
// Conservatively, create an address with an immediate and a
2022
// base and a scale.
2023
int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
2024
2025
// Canonicalize a scale of 1 to a base register if the formula doesn't
2026
// already have a base register.
2027
if (!HasBaseReg && Scale == 1) {
2028
Scale = 0;
2029
HasBaseReg = true;
2030
}
2031
2032
// FIXME: Try with + without a scale? Maybe based on TTI?
2033
// I think basereg + scaledreg + immediateoffset isn't a good 'conservative'
2034
// default for many architectures, not just AArch64 SVE. More investigation
2035
// needed later to determine if this should be used more widely than just
2036
// on scalable types.
2037
if (HasBaseReg && BaseOffset.isNonZero() && Kind != LSRUse::ICmpZero &&
2038
AccessTy.MemTy && AccessTy.MemTy->isScalableTy() && DropScaledForVScale)
2039
Scale = 0;
2040
2041
return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
2042
HasBaseReg, Scale);
2043
}
2044
2045
static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
2046
ScalarEvolution &SE, Immediate MinOffset,
2047
Immediate MaxOffset, LSRUse::KindType Kind,
2048
MemAccessTy AccessTy, const SCEV *S,
2049
bool HasBaseReg) {
2050
// Fast-path: zero is always foldable.
2051
if (S->isZero()) return true;
2052
2053
// Conservatively, create an address with an immediate and a
2054
// base and a scale.
2055
Immediate BaseOffset = ExtractImmediate(S, SE);
2056
GlobalValue *BaseGV = ExtractSymbol(S, SE);
2057
2058
// If there's anything else involved, it's not foldable.
2059
if (!S->isZero()) return false;
2060
2061
// Fast-path: zero is always foldable.
2062
if (BaseOffset.isZero() && !BaseGV)
2063
return true;
2064
2065
if (BaseOffset.isScalable())
2066
return false;
2067
2068
// Conservatively, create an address with an immediate and a
2069
// base and a scale.
2070
int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
2071
2072
return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
2073
BaseOffset, HasBaseReg, Scale);
2074
}
2075
2076
namespace {
2077
2078
/// An individual increment in a Chain of IV increments. Relate an IV user to
2079
/// an expression that computes the IV it uses from the IV used by the previous
2080
/// link in the Chain.
2081
///
2082
/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
2083
/// original IVOperand. The head of the chain's IVOperand is only valid during
2084
/// chain collection, before LSR replaces IV users. During chain generation,
2085
/// IncExpr can be used to find the new IVOperand that computes the same
2086
/// expression.
2087
struct IVInc {
2088
Instruction *UserInst;
2089
Value* IVOperand;
2090
const SCEV *IncExpr;
2091
2092
IVInc(Instruction *U, Value *O, const SCEV *E)
2093
: UserInst(U), IVOperand(O), IncExpr(E) {}
2094
};
2095
2096
// The list of IV increments in program order. We typically add the head of a
2097
// chain without finding subsequent links.
2098
struct IVChain {
2099
SmallVector<IVInc, 1> Incs;
2100
const SCEV *ExprBase = nullptr;
2101
2102
IVChain() = default;
2103
IVChain(const IVInc &Head, const SCEV *Base)
2104
: Incs(1, Head), ExprBase(Base) {}
2105
2106
using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
2107
2108
// Return the first increment in the chain.
2109
const_iterator begin() const {
2110
assert(!Incs.empty());
2111
return std::next(Incs.begin());
2112
}
2113
const_iterator end() const {
2114
return Incs.end();
2115
}
2116
2117
// Returns true if this chain contains any increments.
2118
bool hasIncs() const { return Incs.size() >= 2; }
2119
2120
// Add an IVInc to the end of this chain.
2121
void add(const IVInc &X) { Incs.push_back(X); }
2122
2123
// Returns the last UserInst in the chain.
2124
Instruction *tailUserInst() const { return Incs.back().UserInst; }
2125
2126
// Returns true if IncExpr can be profitably added to this chain.
2127
bool isProfitableIncrement(const SCEV *OperExpr,
2128
const SCEV *IncExpr,
2129
ScalarEvolution&);
2130
};
2131
2132
/// Helper for CollectChains to track multiple IV increment uses. Distinguish
2133
/// between FarUsers that definitely cross IV increments and NearUsers that may
2134
/// be used between IV increments.
2135
struct ChainUsers {
2136
SmallPtrSet<Instruction*, 4> FarUsers;
2137
SmallPtrSet<Instruction*, 4> NearUsers;
2138
};
2139
2140
/// This class holds state for the main loop strength reduction logic.
2141
class LSRInstance {
2142
IVUsers &IU;
2143
ScalarEvolution &SE;
2144
DominatorTree &DT;
2145
LoopInfo &LI;
2146
AssumptionCache &AC;
2147
TargetLibraryInfo &TLI;
2148
const TargetTransformInfo &TTI;
2149
Loop *const L;
2150
MemorySSAUpdater *MSSAU;
2151
TTI::AddressingModeKind AMK;
2152
mutable SCEVExpander Rewriter;
2153
bool Changed = false;
2154
2155
/// This is the insert position that the current loop's induction variable
2156
/// increment should be placed. In simple loops, this is the latch block's
2157
/// terminator. But in more complicated cases, this is a position which will
2158
/// dominate all the in-loop post-increment users.
2159
Instruction *IVIncInsertPos = nullptr;
2160
2161
/// Interesting factors between use strides.
2162
///
2163
/// We explicitly use a SetVector which contains a SmallSet, instead of the
2164
/// default, a SmallDenseSet, because we need to use the full range of
2165
/// int64_ts, and there's currently no good way of doing that with
2166
/// SmallDenseSet.
2167
SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
2168
2169
/// The cost of the current SCEV, the best solution by LSR will be dropped if
2170
/// the solution is not profitable.
2171
Cost BaselineCost;
2172
2173
/// Interesting use types, to facilitate truncation reuse.
2174
SmallSetVector<Type *, 4> Types;
2175
2176
/// The list of interesting uses.
2177
mutable SmallVector<LSRUse, 16> Uses;
2178
2179
/// Track which uses use which register candidates.
2180
RegUseTracker RegUses;
2181
2182
// Limit the number of chains to avoid quadratic behavior. We don't expect to
2183
// have more than a few IV increment chains in a loop. Missing a Chain falls
2184
// back to normal LSR behavior for those uses.
2185
static const unsigned MaxChains = 8;
2186
2187
/// IV users can form a chain of IV increments.
2188
SmallVector<IVChain, MaxChains> IVChainVec;
2189
2190
/// IV users that belong to profitable IVChains.
2191
SmallPtrSet<Use*, MaxChains> IVIncSet;
2192
2193
/// Induction variables that were generated and inserted by the SCEV Expander.
2194
SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
2195
2196
void OptimizeShadowIV();
2197
bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
2198
ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
2199
void OptimizeLoopTermCond();
2200
2201
void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2202
SmallVectorImpl<ChainUsers> &ChainUsersVec);
2203
void FinalizeChain(IVChain &Chain);
2204
void CollectChains();
2205
void GenerateIVChain(const IVChain &Chain,
2206
SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2207
2208
void CollectInterestingTypesAndFactors();
2209
void CollectFixupsAndInitialFormulae();
2210
2211
// Support for sharing of LSRUses between LSRFixups.
2212
using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2213
UseMapTy UseMap;
2214
2215
bool reconcileNewOffset(LSRUse &LU, Immediate NewOffset, bool HasBaseReg,
2216
LSRUse::KindType Kind, MemAccessTy AccessTy);
2217
2218
std::pair<size_t, Immediate> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2219
MemAccessTy AccessTy);
2220
2221
void DeleteUse(LSRUse &LU, size_t LUIdx);
2222
2223
LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2224
2225
void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2226
void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2227
void CountRegisters(const Formula &F, size_t LUIdx);
2228
bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2229
2230
void CollectLoopInvariantFixupsAndFormulae();
2231
2232
void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2233
unsigned Depth = 0);
2234
2235
void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2236
const Formula &Base, unsigned Depth,
2237
size_t Idx, bool IsScaledReg = false);
2238
void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2239
void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2240
const Formula &Base, size_t Idx,
2241
bool IsScaledReg = false);
2242
void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2243
void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2244
const Formula &Base,
2245
const SmallVectorImpl<Immediate> &Worklist,
2246
size_t Idx, bool IsScaledReg = false);
2247
void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2248
void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2249
void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2250
void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2251
void GenerateCrossUseConstantOffsets();
2252
void GenerateAllReuseFormulae();
2253
2254
void FilterOutUndesirableDedicatedRegisters();
2255
2256
size_t EstimateSearchSpaceComplexity() const;
2257
void NarrowSearchSpaceByDetectingSupersets();
2258
void NarrowSearchSpaceByCollapsingUnrolledCode();
2259
void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2260
void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2261
void NarrowSearchSpaceByFilterPostInc();
2262
void NarrowSearchSpaceByDeletingCostlyFormulas();
2263
void NarrowSearchSpaceByPickingWinnerRegs();
2264
void NarrowSearchSpaceUsingHeuristics();
2265
2266
void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2267
Cost &SolutionCost,
2268
SmallVectorImpl<const Formula *> &Workspace,
2269
const Cost &CurCost,
2270
const SmallPtrSet<const SCEV *, 16> &CurRegs,
2271
DenseSet<const SCEV *> &VisitedRegs) const;
2272
void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2273
2274
BasicBlock::iterator
2275
HoistInsertPosition(BasicBlock::iterator IP,
2276
const SmallVectorImpl<Instruction *> &Inputs) const;
2277
BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2278
const LSRFixup &LF,
2279
const LSRUse &LU) const;
2280
2281
Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2282
BasicBlock::iterator IP,
2283
SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2284
void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2285
const Formula &F,
2286
SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2287
void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2288
SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2289
void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2290
2291
public:
2292
LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2293
LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2294
TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2295
2296
bool getChanged() const { return Changed; }
2297
const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2298
return ScalarEvolutionIVs;
2299
}
2300
2301
void print_factors_and_types(raw_ostream &OS) const;
2302
void print_fixups(raw_ostream &OS) const;
2303
void print_uses(raw_ostream &OS) const;
2304
void print(raw_ostream &OS) const;
2305
void dump() const;
2306
};
2307
2308
} // end anonymous namespace
2309
2310
/// If IV is used in a int-to-float cast inside the loop then try to eliminate
2311
/// the cast operation.
2312
void LSRInstance::OptimizeShadowIV() {
2313
const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2314
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2315
return;
2316
2317
for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2318
UI != E; /* empty */) {
2319
IVUsers::const_iterator CandidateUI = UI;
2320
++UI;
2321
Instruction *ShadowUse = CandidateUI->getUser();
2322
Type *DestTy = nullptr;
2323
bool IsSigned = false;
2324
2325
/* If shadow use is a int->float cast then insert a second IV
2326
to eliminate this cast.
2327
2328
for (unsigned i = 0; i < n; ++i)
2329
foo((double)i);
2330
2331
is transformed into
2332
2333
double d = 0.0;
2334
for (unsigned i = 0; i < n; ++i, ++d)
2335
foo(d);
2336
*/
2337
if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2338
IsSigned = false;
2339
DestTy = UCast->getDestTy();
2340
}
2341
else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2342
IsSigned = true;
2343
DestTy = SCast->getDestTy();
2344
}
2345
if (!DestTy) continue;
2346
2347
// If target does not support DestTy natively then do not apply
2348
// this transformation.
2349
if (!TTI.isTypeLegal(DestTy)) continue;
2350
2351
PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2352
if (!PH) continue;
2353
if (PH->getNumIncomingValues() != 2) continue;
2354
2355
// If the calculation in integers overflows, the result in FP type will
2356
// differ. So we only can do this transformation if we are guaranteed to not
2357
// deal with overflowing values
2358
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2359
if (!AR) continue;
2360
if (IsSigned && !AR->hasNoSignedWrap()) continue;
2361
if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2362
2363
Type *SrcTy = PH->getType();
2364
int Mantissa = DestTy->getFPMantissaWidth();
2365
if (Mantissa == -1) continue;
2366
if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2367
continue;
2368
2369
unsigned Entry, Latch;
2370
if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2371
Entry = 0;
2372
Latch = 1;
2373
} else {
2374
Entry = 1;
2375
Latch = 0;
2376
}
2377
2378
ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2379
if (!Init) continue;
2380
Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2381
(double)Init->getSExtValue() :
2382
(double)Init->getZExtValue());
2383
2384
BinaryOperator *Incr =
2385
dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2386
if (!Incr) continue;
2387
if (Incr->getOpcode() != Instruction::Add
2388
&& Incr->getOpcode() != Instruction::Sub)
2389
continue;
2390
2391
/* Initialize new IV, double d = 0.0 in above example. */
2392
ConstantInt *C = nullptr;
2393
if (Incr->getOperand(0) == PH)
2394
C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2395
else if (Incr->getOperand(1) == PH)
2396
C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2397
else
2398
continue;
2399
2400
if (!C) continue;
2401
2402
// Ignore negative constants, as the code below doesn't handle them
2403
// correctly. TODO: Remove this restriction.
2404
if (!C->getValue().isStrictlyPositive())
2405
continue;
2406
2407
/* Add new PHINode. */
2408
PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH->getIterator());
2409
NewPH->setDebugLoc(PH->getDebugLoc());
2410
2411
/* create new increment. '++d' in above example. */
2412
Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2413
BinaryOperator *NewIncr = BinaryOperator::Create(
2414
Incr->getOpcode() == Instruction::Add ? Instruction::FAdd
2415
: Instruction::FSub,
2416
NewPH, CFP, "IV.S.next.", Incr->getIterator());
2417
NewIncr->setDebugLoc(Incr->getDebugLoc());
2418
2419
NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2420
NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2421
2422
/* Remove cast operation */
2423
ShadowUse->replaceAllUsesWith(NewPH);
2424
ShadowUse->eraseFromParent();
2425
Changed = true;
2426
break;
2427
}
2428
}
2429
2430
/// If Cond has an operand that is an expression of an IV, set the IV user and
2431
/// stride information and return true, otherwise return false.
2432
bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2433
for (IVStrideUse &U : IU)
2434
if (U.getUser() == Cond) {
2435
// NOTE: we could handle setcc instructions with multiple uses here, but
2436
// InstCombine does it as well for simple uses, it's not clear that it
2437
// occurs enough in real life to handle.
2438
CondUse = &U;
2439
return true;
2440
}
2441
return false;
2442
}
2443
2444
/// Rewrite the loop's terminating condition if it uses a max computation.
2445
///
2446
/// This is a narrow solution to a specific, but acute, problem. For loops
2447
/// like this:
2448
///
2449
/// i = 0;
2450
/// do {
2451
/// p[i] = 0.0;
2452
/// } while (++i < n);
2453
///
2454
/// the trip count isn't just 'n', because 'n' might not be positive. And
2455
/// unfortunately this can come up even for loops where the user didn't use
2456
/// a C do-while loop. For example, seemingly well-behaved top-test loops
2457
/// will commonly be lowered like this:
2458
///
2459
/// if (n > 0) {
2460
/// i = 0;
2461
/// do {
2462
/// p[i] = 0.0;
2463
/// } while (++i < n);
2464
/// }
2465
///
2466
/// and then it's possible for subsequent optimization to obscure the if
2467
/// test in such a way that indvars can't find it.
2468
///
2469
/// When indvars can't find the if test in loops like this, it creates a
2470
/// max expression, which allows it to give the loop a canonical
2471
/// induction variable:
2472
///
2473
/// i = 0;
2474
/// max = n < 1 ? 1 : n;
2475
/// do {
2476
/// p[i] = 0.0;
2477
/// } while (++i != max);
2478
///
2479
/// Canonical induction variables are necessary because the loop passes
2480
/// are designed around them. The most obvious example of this is the
2481
/// LoopInfo analysis, which doesn't remember trip count values. It
2482
/// expects to be able to rediscover the trip count each time it is
2483
/// needed, and it does this using a simple analysis that only succeeds if
2484
/// the loop has a canonical induction variable.
2485
///
2486
/// However, when it comes time to generate code, the maximum operation
2487
/// can be quite costly, especially if it's inside of an outer loop.
2488
///
2489
/// This function solves this problem by detecting this type of loop and
2490
/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2491
/// the instructions for the maximum computation.
2492
ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2493
// Check that the loop matches the pattern we're looking for.
2494
if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2495
Cond->getPredicate() != CmpInst::ICMP_NE)
2496
return Cond;
2497
2498
SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2499
if (!Sel || !Sel->hasOneUse()) return Cond;
2500
2501
const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2502
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2503
return Cond;
2504
const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2505
2506
// Add one to the backedge-taken count to get the trip count.
2507
const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2508
if (IterationCount != SE.getSCEV(Sel)) return Cond;
2509
2510
// Check for a max calculation that matches the pattern. There's no check
2511
// for ICMP_ULE here because the comparison would be with zero, which
2512
// isn't interesting.
2513
CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2514
const SCEVNAryExpr *Max = nullptr;
2515
if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2516
Pred = ICmpInst::ICMP_SLE;
2517
Max = S;
2518
} else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2519
Pred = ICmpInst::ICMP_SLT;
2520
Max = S;
2521
} else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2522
Pred = ICmpInst::ICMP_ULT;
2523
Max = U;
2524
} else {
2525
// No match; bail.
2526
return Cond;
2527
}
2528
2529
// To handle a max with more than two operands, this optimization would
2530
// require additional checking and setup.
2531
if (Max->getNumOperands() != 2)
2532
return Cond;
2533
2534
const SCEV *MaxLHS = Max->getOperand(0);
2535
const SCEV *MaxRHS = Max->getOperand(1);
2536
2537
// ScalarEvolution canonicalizes constants to the left. For < and >, look
2538
// for a comparison with 1. For <= and >=, a comparison with zero.
2539
if (!MaxLHS ||
2540
(ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2541
return Cond;
2542
2543
// Check the relevant induction variable for conformance to
2544
// the pattern.
2545
const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2546
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2547
if (!AR || !AR->isAffine() ||
2548
AR->getStart() != One ||
2549
AR->getStepRecurrence(SE) != One)
2550
return Cond;
2551
2552
assert(AR->getLoop() == L &&
2553
"Loop condition operand is an addrec in a different loop!");
2554
2555
// Check the right operand of the select, and remember it, as it will
2556
// be used in the new comparison instruction.
2557
Value *NewRHS = nullptr;
2558
if (ICmpInst::isTrueWhenEqual(Pred)) {
2559
// Look for n+1, and grab n.
2560
if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2561
if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2562
if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2563
NewRHS = BO->getOperand(0);
2564
if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2565
if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2566
if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2567
NewRHS = BO->getOperand(0);
2568
if (!NewRHS)
2569
return Cond;
2570
} else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2571
NewRHS = Sel->getOperand(1);
2572
else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2573
NewRHS = Sel->getOperand(2);
2574
else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2575
NewRHS = SU->getValue();
2576
else
2577
// Max doesn't match expected pattern.
2578
return Cond;
2579
2580
// Determine the new comparison opcode. It may be signed or unsigned,
2581
// and the original comparison may be either equality or inequality.
2582
if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2583
Pred = CmpInst::getInversePredicate(Pred);
2584
2585
// Ok, everything looks ok to change the condition into an SLT or SGE and
2586
// delete the max calculation.
2587
ICmpInst *NewCond = new ICmpInst(Cond->getIterator(), Pred,
2588
Cond->getOperand(0), NewRHS, "scmp");
2589
2590
// Delete the max calculation instructions.
2591
NewCond->setDebugLoc(Cond->getDebugLoc());
2592
Cond->replaceAllUsesWith(NewCond);
2593
CondUse->setUser(NewCond);
2594
Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2595
Cond->eraseFromParent();
2596
Sel->eraseFromParent();
2597
if (Cmp->use_empty())
2598
Cmp->eraseFromParent();
2599
return NewCond;
2600
}
2601
2602
/// Change loop terminating condition to use the postinc iv when possible.
2603
void
2604
LSRInstance::OptimizeLoopTermCond() {
2605
SmallPtrSet<Instruction *, 4> PostIncs;
2606
2607
// We need a different set of heuristics for rotated and non-rotated loops.
2608
// If a loop is rotated then the latch is also the backedge, so inserting
2609
// post-inc expressions just before the latch is ideal. To reduce live ranges
2610
// it also makes sense to rewrite terminating conditions to use post-inc
2611
// expressions.
2612
//
2613
// If the loop is not rotated then the latch is not a backedge; the latch
2614
// check is done in the loop head. Adding post-inc expressions before the
2615
// latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2616
// in the loop body. In this case we do *not* want to use post-inc expressions
2617
// in the latch check, and we want to insert post-inc expressions before
2618
// the backedge.
2619
BasicBlock *LatchBlock = L->getLoopLatch();
2620
SmallVector<BasicBlock*, 8> ExitingBlocks;
2621
L->getExitingBlocks(ExitingBlocks);
2622
if (!llvm::is_contained(ExitingBlocks, LatchBlock)) {
2623
// The backedge doesn't exit the loop; treat this as a head-tested loop.
2624
IVIncInsertPos = LatchBlock->getTerminator();
2625
return;
2626
}
2627
2628
// Otherwise treat this as a rotated loop.
2629
for (BasicBlock *ExitingBlock : ExitingBlocks) {
2630
// Get the terminating condition for the loop if possible. If we
2631
// can, we want to change it to use a post-incremented version of its
2632
// induction variable, to allow coalescing the live ranges for the IV into
2633
// one register value.
2634
2635
BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2636
if (!TermBr)
2637
continue;
2638
// FIXME: Overly conservative, termination condition could be an 'or' etc..
2639
if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2640
continue;
2641
2642
// Search IVUsesByStride to find Cond's IVUse if there is one.
2643
IVStrideUse *CondUse = nullptr;
2644
ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2645
if (!FindIVUserForCond(Cond, CondUse))
2646
continue;
2647
2648
// If the trip count is computed in terms of a max (due to ScalarEvolution
2649
// being unable to find a sufficient guard, for example), change the loop
2650
// comparison to use SLT or ULT instead of NE.
2651
// One consequence of doing this now is that it disrupts the count-down
2652
// optimization. That's not always a bad thing though, because in such
2653
// cases it may still be worthwhile to avoid a max.
2654
Cond = OptimizeMax(Cond, CondUse);
2655
2656
// If this exiting block dominates the latch block, it may also use
2657
// the post-inc value if it won't be shared with other uses.
2658
// Check for dominance.
2659
if (!DT.dominates(ExitingBlock, LatchBlock))
2660
continue;
2661
2662
// Conservatively avoid trying to use the post-inc value in non-latch
2663
// exits if there may be pre-inc users in intervening blocks.
2664
if (LatchBlock != ExitingBlock)
2665
for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2666
// Test if the use is reachable from the exiting block. This dominator
2667
// query is a conservative approximation of reachability.
2668
if (&*UI != CondUse &&
2669
!DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2670
// Conservatively assume there may be reuse if the quotient of their
2671
// strides could be a legal scale.
2672
const SCEV *A = IU.getStride(*CondUse, L);
2673
const SCEV *B = IU.getStride(*UI, L);
2674
if (!A || !B) continue;
2675
if (SE.getTypeSizeInBits(A->getType()) !=
2676
SE.getTypeSizeInBits(B->getType())) {
2677
if (SE.getTypeSizeInBits(A->getType()) >
2678
SE.getTypeSizeInBits(B->getType()))
2679
B = SE.getSignExtendExpr(B, A->getType());
2680
else
2681
A = SE.getSignExtendExpr(A, B->getType());
2682
}
2683
if (const SCEVConstant *D =
2684
dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2685
const ConstantInt *C = D->getValue();
2686
// Stride of one or negative one can have reuse with non-addresses.
2687
if (C->isOne() || C->isMinusOne())
2688
goto decline_post_inc;
2689
// Avoid weird situations.
2690
if (C->getValue().getSignificantBits() >= 64 ||
2691
C->getValue().isMinSignedValue())
2692
goto decline_post_inc;
2693
// Check for possible scaled-address reuse.
2694
if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2695
MemAccessTy AccessTy = getAccessType(
2696
TTI, UI->getUser(), UI->getOperandValToReplace());
2697
int64_t Scale = C->getSExtValue();
2698
if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2699
/*BaseOffset=*/0,
2700
/*HasBaseReg=*/true, Scale,
2701
AccessTy.AddrSpace))
2702
goto decline_post_inc;
2703
Scale = -Scale;
2704
if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2705
/*BaseOffset=*/0,
2706
/*HasBaseReg=*/true, Scale,
2707
AccessTy.AddrSpace))
2708
goto decline_post_inc;
2709
}
2710
}
2711
}
2712
2713
LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2714
<< *Cond << '\n');
2715
2716
// It's possible for the setcc instruction to be anywhere in the loop, and
2717
// possible for it to have multiple users. If it is not immediately before
2718
// the exiting block branch, move it.
2719
if (Cond->getNextNonDebugInstruction() != TermBr) {
2720
if (Cond->hasOneUse()) {
2721
Cond->moveBefore(TermBr);
2722
} else {
2723
// Clone the terminating condition and insert into the loopend.
2724
ICmpInst *OldCond = Cond;
2725
Cond = cast<ICmpInst>(Cond->clone());
2726
Cond->setName(L->getHeader()->getName() + ".termcond");
2727
Cond->insertInto(ExitingBlock, TermBr->getIterator());
2728
2729
// Clone the IVUse, as the old use still exists!
2730
CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2731
TermBr->replaceUsesOfWith(OldCond, Cond);
2732
}
2733
}
2734
2735
// If we get to here, we know that we can transform the setcc instruction to
2736
// use the post-incremented version of the IV, allowing us to coalesce the
2737
// live ranges for the IV correctly.
2738
CondUse->transformToPostInc(L);
2739
Changed = true;
2740
2741
PostIncs.insert(Cond);
2742
decline_post_inc:;
2743
}
2744
2745
// Determine an insertion point for the loop induction variable increment. It
2746
// must dominate all the post-inc comparisons we just set up, and it must
2747
// dominate the loop latch edge.
2748
IVIncInsertPos = L->getLoopLatch()->getTerminator();
2749
for (Instruction *Inst : PostIncs)
2750
IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst);
2751
}
2752
2753
/// Determine if the given use can accommodate a fixup at the given offset and
2754
/// other details. If so, update the use and return true.
2755
bool LSRInstance::reconcileNewOffset(LSRUse &LU, Immediate NewOffset,
2756
bool HasBaseReg, LSRUse::KindType Kind,
2757
MemAccessTy AccessTy) {
2758
Immediate NewMinOffset = LU.MinOffset;
2759
Immediate NewMaxOffset = LU.MaxOffset;
2760
MemAccessTy NewAccessTy = AccessTy;
2761
2762
// Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2763
// something conservative, however this can pessimize in the case that one of
2764
// the uses will have all its uses outside the loop, for example.
2765
if (LU.Kind != Kind)
2766
return false;
2767
2768
// Check for a mismatched access type, and fall back conservatively as needed.
2769
// TODO: Be less conservative when the type is similar and can use the same
2770
// addressing modes.
2771
if (Kind == LSRUse::Address) {
2772
if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2773
NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2774
AccessTy.AddrSpace);
2775
}
2776
}
2777
2778
// Conservatively assume HasBaseReg is true for now.
2779
if (Immediate::isKnownLT(NewOffset, LU.MinOffset)) {
2780
if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2781
LU.MaxOffset - NewOffset, HasBaseReg))
2782
return false;
2783
NewMinOffset = NewOffset;
2784
} else if (Immediate::isKnownGT(NewOffset, LU.MaxOffset)) {
2785
if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2786
NewOffset - LU.MinOffset, HasBaseReg))
2787
return false;
2788
NewMaxOffset = NewOffset;
2789
}
2790
2791
// FIXME: We should be able to handle some level of scalable offset support
2792
// for 'void', but in order to get basic support up and running this is
2793
// being left out.
2794
if (NewAccessTy.MemTy && NewAccessTy.MemTy->isVoidTy() &&
2795
(NewMinOffset.isScalable() || NewMaxOffset.isScalable()))
2796
return false;
2797
2798
// Update the use.
2799
LU.MinOffset = NewMinOffset;
2800
LU.MaxOffset = NewMaxOffset;
2801
LU.AccessTy = NewAccessTy;
2802
return true;
2803
}
2804
2805
/// Return an LSRUse index and an offset value for a fixup which needs the given
2806
/// expression, with the given kind and optional access type. Either reuse an
2807
/// existing use or create a new one, as needed.
2808
std::pair<size_t, Immediate> LSRInstance::getUse(const SCEV *&Expr,
2809
LSRUse::KindType Kind,
2810
MemAccessTy AccessTy) {
2811
const SCEV *Copy = Expr;
2812
Immediate Offset = ExtractImmediate(Expr, SE);
2813
2814
// Basic uses can't accept any offset, for example.
2815
if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2816
Offset, /*HasBaseReg=*/ true)) {
2817
Expr = Copy;
2818
Offset = Immediate::getFixed(0);
2819
}
2820
2821
std::pair<UseMapTy::iterator, bool> P =
2822
UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2823
if (!P.second) {
2824
// A use already existed with this base.
2825
size_t LUIdx = P.first->second;
2826
LSRUse &LU = Uses[LUIdx];
2827
if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2828
// Reuse this use.
2829
return std::make_pair(LUIdx, Offset);
2830
}
2831
2832
// Create a new use.
2833
size_t LUIdx = Uses.size();
2834
P.first->second = LUIdx;
2835
Uses.push_back(LSRUse(Kind, AccessTy));
2836
LSRUse &LU = Uses[LUIdx];
2837
2838
LU.MinOffset = Offset;
2839
LU.MaxOffset = Offset;
2840
return std::make_pair(LUIdx, Offset);
2841
}
2842
2843
/// Delete the given use from the Uses list.
2844
void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2845
if (&LU != &Uses.back())
2846
std::swap(LU, Uses.back());
2847
Uses.pop_back();
2848
2849
// Update RegUses.
2850
RegUses.swapAndDropUse(LUIdx, Uses.size());
2851
}
2852
2853
/// Look for a use distinct from OrigLU which is has a formula that has the same
2854
/// registers as the given formula.
2855
LSRUse *
2856
LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2857
const LSRUse &OrigLU) {
2858
// Search all uses for the formula. This could be more clever.
2859
for (LSRUse &LU : Uses) {
2860
// Check whether this use is close enough to OrigLU, to see whether it's
2861
// worthwhile looking through its formulae.
2862
// Ignore ICmpZero uses because they may contain formulae generated by
2863
// GenerateICmpZeroScales, in which case adding fixup offsets may
2864
// be invalid.
2865
if (&LU != &OrigLU &&
2866
LU.Kind != LSRUse::ICmpZero &&
2867
LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2868
LU.WidestFixupType == OrigLU.WidestFixupType &&
2869
LU.HasFormulaWithSameRegs(OrigF)) {
2870
// Scan through this use's formulae.
2871
for (const Formula &F : LU.Formulae) {
2872
// Check to see if this formula has the same registers and symbols
2873
// as OrigF.
2874
if (F.BaseRegs == OrigF.BaseRegs &&
2875
F.ScaledReg == OrigF.ScaledReg &&
2876
F.BaseGV == OrigF.BaseGV &&
2877
F.Scale == OrigF.Scale &&
2878
F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2879
if (F.BaseOffset.isZero())
2880
return &LU;
2881
// This is the formula where all the registers and symbols matched;
2882
// there aren't going to be any others. Since we declined it, we
2883
// can skip the rest of the formulae and proceed to the next LSRUse.
2884
break;
2885
}
2886
}
2887
}
2888
}
2889
2890
// Nothing looked good.
2891
return nullptr;
2892
}
2893
2894
void LSRInstance::CollectInterestingTypesAndFactors() {
2895
SmallSetVector<const SCEV *, 4> Strides;
2896
2897
// Collect interesting types and strides.
2898
SmallVector<const SCEV *, 4> Worklist;
2899
for (const IVStrideUse &U : IU) {
2900
const SCEV *Expr = IU.getExpr(U);
2901
if (!Expr)
2902
continue;
2903
2904
// Collect interesting types.
2905
Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2906
2907
// Add strides for mentioned loops.
2908
Worklist.push_back(Expr);
2909
do {
2910
const SCEV *S = Worklist.pop_back_val();
2911
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2912
if (AR->getLoop() == L)
2913
Strides.insert(AR->getStepRecurrence(SE));
2914
Worklist.push_back(AR->getStart());
2915
} else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2916
append_range(Worklist, Add->operands());
2917
}
2918
} while (!Worklist.empty());
2919
}
2920
2921
// Compute interesting factors from the set of interesting strides.
2922
for (SmallSetVector<const SCEV *, 4>::const_iterator
2923
I = Strides.begin(), E = Strides.end(); I != E; ++I)
2924
for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2925
std::next(I); NewStrideIter != E; ++NewStrideIter) {
2926
const SCEV *OldStride = *I;
2927
const SCEV *NewStride = *NewStrideIter;
2928
2929
if (SE.getTypeSizeInBits(OldStride->getType()) !=
2930
SE.getTypeSizeInBits(NewStride->getType())) {
2931
if (SE.getTypeSizeInBits(OldStride->getType()) >
2932
SE.getTypeSizeInBits(NewStride->getType()))
2933
NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2934
else
2935
OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2936
}
2937
if (const SCEVConstant *Factor =
2938
dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2939
SE, true))) {
2940
if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2941
Factors.insert(Factor->getAPInt().getSExtValue());
2942
} else if (const SCEVConstant *Factor =
2943
dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2944
NewStride,
2945
SE, true))) {
2946
if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2947
Factors.insert(Factor->getAPInt().getSExtValue());
2948
}
2949
}
2950
2951
// If all uses use the same type, don't bother looking for truncation-based
2952
// reuse.
2953
if (Types.size() == 1)
2954
Types.clear();
2955
2956
LLVM_DEBUG(print_factors_and_types(dbgs()));
2957
}
2958
2959
/// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2960
/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2961
/// IVStrideUses, we could partially skip this.
2962
static User::op_iterator
2963
findIVOperand(User::op_iterator OI, User::op_iterator OE,
2964
Loop *L, ScalarEvolution &SE) {
2965
for(; OI != OE; ++OI) {
2966
if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2967
if (!SE.isSCEVable(Oper->getType()))
2968
continue;
2969
2970
if (const SCEVAddRecExpr *AR =
2971
dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2972
if (AR->getLoop() == L)
2973
break;
2974
}
2975
}
2976
}
2977
return OI;
2978
}
2979
2980
/// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2981
/// a convenient helper.
2982
static Value *getWideOperand(Value *Oper) {
2983
if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2984
return Trunc->getOperand(0);
2985
return Oper;
2986
}
2987
2988
/// Return an approximation of this SCEV expression's "base", or NULL for any
2989
/// constant. Returning the expression itself is conservative. Returning a
2990
/// deeper subexpression is more precise and valid as long as it isn't less
2991
/// complex than another subexpression. For expressions involving multiple
2992
/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2993
/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2994
/// IVInc==b-a.
2995
///
2996
/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2997
/// SCEVUnknown, we simply return the rightmost SCEV operand.
2998
static const SCEV *getExprBase(const SCEV *S) {
2999
switch (S->getSCEVType()) {
3000
default: // including scUnknown.
3001
return S;
3002
case scConstant:
3003
case scVScale:
3004
return nullptr;
3005
case scTruncate:
3006
return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
3007
case scZeroExtend:
3008
return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
3009
case scSignExtend:
3010
return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
3011
case scAddExpr: {
3012
// Skip over scaled operands (scMulExpr) to follow add operands as long as
3013
// there's nothing more complex.
3014
// FIXME: not sure if we want to recognize negation.
3015
const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
3016
for (const SCEV *SubExpr : reverse(Add->operands())) {
3017
if (SubExpr->getSCEVType() == scAddExpr)
3018
return getExprBase(SubExpr);
3019
3020
if (SubExpr->getSCEVType() != scMulExpr)
3021
return SubExpr;
3022
}
3023
return S; // all operands are scaled, be conservative.
3024
}
3025
case scAddRecExpr:
3026
return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
3027
}
3028
llvm_unreachable("Unknown SCEV kind!");
3029
}
3030
3031
/// Return true if the chain increment is profitable to expand into a loop
3032
/// invariant value, which may require its own register. A profitable chain
3033
/// increment will be an offset relative to the same base. We allow such offsets
3034
/// to potentially be used as chain increment as long as it's not obviously
3035
/// expensive to expand using real instructions.
3036
bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
3037
const SCEV *IncExpr,
3038
ScalarEvolution &SE) {
3039
// Aggressively form chains when -stress-ivchain.
3040
if (StressIVChain)
3041
return true;
3042
3043
// Do not replace a constant offset from IV head with a nonconstant IV
3044
// increment.
3045
if (!isa<SCEVConstant>(IncExpr)) {
3046
const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
3047
if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
3048
return false;
3049
}
3050
3051
SmallPtrSet<const SCEV*, 8> Processed;
3052
return !isHighCostExpansion(IncExpr, Processed, SE);
3053
}
3054
3055
/// Return true if the number of registers needed for the chain is estimated to
3056
/// be less than the number required for the individual IV users. First prohibit
3057
/// any IV users that keep the IV live across increments (the Users set should
3058
/// be empty). Next count the number and type of increments in the chain.
3059
///
3060
/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
3061
/// effectively use postinc addressing modes. Only consider it profitable it the
3062
/// increments can be computed in fewer registers when chained.
3063
///
3064
/// TODO: Consider IVInc free if it's already used in another chains.
3065
static bool isProfitableChain(IVChain &Chain,
3066
SmallPtrSetImpl<Instruction *> &Users,
3067
ScalarEvolution &SE,
3068
const TargetTransformInfo &TTI) {
3069
if (StressIVChain)
3070
return true;
3071
3072
if (!Chain.hasIncs())
3073
return false;
3074
3075
if (!Users.empty()) {
3076
LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
3077
for (Instruction *Inst
3078
: Users) { dbgs() << " " << *Inst << "\n"; });
3079
return false;
3080
}
3081
assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3082
3083
// The chain itself may require a register, so intialize cost to 1.
3084
int cost = 1;
3085
3086
// A complete chain likely eliminates the need for keeping the original IV in
3087
// a register. LSR does not currently know how to form a complete chain unless
3088
// the header phi already exists.
3089
if (isa<PHINode>(Chain.tailUserInst())
3090
&& SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
3091
--cost;
3092
}
3093
const SCEV *LastIncExpr = nullptr;
3094
unsigned NumConstIncrements = 0;
3095
unsigned NumVarIncrements = 0;
3096
unsigned NumReusedIncrements = 0;
3097
3098
if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
3099
return true;
3100
3101
for (const IVInc &Inc : Chain) {
3102
if (TTI.isProfitableLSRChainElement(Inc.UserInst))
3103
return true;
3104
if (Inc.IncExpr->isZero())
3105
continue;
3106
3107
// Incrementing by zero or some constant is neutral. We assume constants can
3108
// be folded into an addressing mode or an add's immediate operand.
3109
if (isa<SCEVConstant>(Inc.IncExpr)) {
3110
++NumConstIncrements;
3111
continue;
3112
}
3113
3114
if (Inc.IncExpr == LastIncExpr)
3115
++NumReusedIncrements;
3116
else
3117
++NumVarIncrements;
3118
3119
LastIncExpr = Inc.IncExpr;
3120
}
3121
// An IV chain with a single increment is handled by LSR's postinc
3122
// uses. However, a chain with multiple increments requires keeping the IV's
3123
// value live longer than it needs to be if chained.
3124
if (NumConstIncrements > 1)
3125
--cost;
3126
3127
// Materializing increment expressions in the preheader that didn't exist in
3128
// the original code may cost a register. For example, sign-extended array
3129
// indices can produce ridiculous increments like this:
3130
// IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
3131
cost += NumVarIncrements;
3132
3133
// Reusing variable increments likely saves a register to hold the multiple of
3134
// the stride.
3135
cost -= NumReusedIncrements;
3136
3137
LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
3138
<< "\n");
3139
3140
return cost < 0;
3141
}
3142
3143
/// Add this IV user to an existing chain or make it the head of a new chain.
3144
void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
3145
SmallVectorImpl<ChainUsers> &ChainUsersVec) {
3146
// When IVs are used as types of varying widths, they are generally converted
3147
// to a wider type with some uses remaining narrow under a (free) trunc.
3148
Value *const NextIV = getWideOperand(IVOper);
3149
const SCEV *const OperExpr = SE.getSCEV(NextIV);
3150
const SCEV *const OperExprBase = getExprBase(OperExpr);
3151
3152
// Visit all existing chains. Check if its IVOper can be computed as a
3153
// profitable loop invariant increment from the last link in the Chain.
3154
unsigned ChainIdx = 0, NChains = IVChainVec.size();
3155
const SCEV *LastIncExpr = nullptr;
3156
for (; ChainIdx < NChains; ++ChainIdx) {
3157
IVChain &Chain = IVChainVec[ChainIdx];
3158
3159
// Prune the solution space aggressively by checking that both IV operands
3160
// are expressions that operate on the same unscaled SCEVUnknown. This
3161
// "base" will be canceled by the subsequent getMinusSCEV call. Checking
3162
// first avoids creating extra SCEV expressions.
3163
if (!StressIVChain && Chain.ExprBase != OperExprBase)
3164
continue;
3165
3166
Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
3167
if (PrevIV->getType() != NextIV->getType())
3168
continue;
3169
3170
// A phi node terminates a chain.
3171
if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
3172
continue;
3173
3174
// The increment must be loop-invariant so it can be kept in a register.
3175
const SCEV *PrevExpr = SE.getSCEV(PrevIV);
3176
const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
3177
if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
3178
continue;
3179
3180
if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
3181
LastIncExpr = IncExpr;
3182
break;
3183
}
3184
}
3185
// If we haven't found a chain, create a new one, unless we hit the max. Don't
3186
// bother for phi nodes, because they must be last in the chain.
3187
if (ChainIdx == NChains) {
3188
if (isa<PHINode>(UserInst))
3189
return;
3190
if (NChains >= MaxChains && !StressIVChain) {
3191
LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
3192
return;
3193
}
3194
LastIncExpr = OperExpr;
3195
// IVUsers may have skipped over sign/zero extensions. We don't currently
3196
// attempt to form chains involving extensions unless they can be hoisted
3197
// into this loop's AddRec.
3198
if (!isa<SCEVAddRecExpr>(LastIncExpr))
3199
return;
3200
++NChains;
3201
IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3202
OperExprBase));
3203
ChainUsersVec.resize(NChains);
3204
LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3205
<< ") IV=" << *LastIncExpr << "\n");
3206
} else {
3207
LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
3208
<< ") IV+" << *LastIncExpr << "\n");
3209
// Add this IV user to the end of the chain.
3210
IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3211
}
3212
IVChain &Chain = IVChainVec[ChainIdx];
3213
3214
SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3215
// This chain's NearUsers become FarUsers.
3216
if (!LastIncExpr->isZero()) {
3217
ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3218
NearUsers.end());
3219
NearUsers.clear();
3220
}
3221
3222
// All other uses of IVOperand become near uses of the chain.
3223
// We currently ignore intermediate values within SCEV expressions, assuming
3224
// they will eventually be used be the current chain, or can be computed
3225
// from one of the chain increments. To be more precise we could
3226
// transitively follow its user and only add leaf IV users to the set.
3227
for (User *U : IVOper->users()) {
3228
Instruction *OtherUse = dyn_cast<Instruction>(U);
3229
if (!OtherUse)
3230
continue;
3231
// Uses in the chain will no longer be uses if the chain is formed.
3232
// Include the head of the chain in this iteration (not Chain.begin()).
3233
IVChain::const_iterator IncIter = Chain.Incs.begin();
3234
IVChain::const_iterator IncEnd = Chain.Incs.end();
3235
for( ; IncIter != IncEnd; ++IncIter) {
3236
if (IncIter->UserInst == OtherUse)
3237
break;
3238
}
3239
if (IncIter != IncEnd)
3240
continue;
3241
3242
if (SE.isSCEVable(OtherUse->getType())
3243
&& !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3244
&& IU.isIVUserOrOperand(OtherUse)) {
3245
continue;
3246
}
3247
NearUsers.insert(OtherUse);
3248
}
3249
3250
// Since this user is part of the chain, it's no longer considered a use
3251
// of the chain.
3252
ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3253
}
3254
3255
/// Populate the vector of Chains.
3256
///
3257
/// This decreases ILP at the architecture level. Targets with ample registers,
3258
/// multiple memory ports, and no register renaming probably don't want
3259
/// this. However, such targets should probably disable LSR altogether.
3260
///
3261
/// The job of LSR is to make a reasonable choice of induction variables across
3262
/// the loop. Subsequent passes can easily "unchain" computation exposing more
3263
/// ILP *within the loop* if the target wants it.
3264
///
3265
/// Finding the best IV chain is potentially a scheduling problem. Since LSR
3266
/// will not reorder memory operations, it will recognize this as a chain, but
3267
/// will generate redundant IV increments. Ideally this would be corrected later
3268
/// by a smart scheduler:
3269
/// = A[i]
3270
/// = A[i+x]
3271
/// A[i] =
3272
/// A[i+x] =
3273
///
3274
/// TODO: Walk the entire domtree within this loop, not just the path to the
3275
/// loop latch. This will discover chains on side paths, but requires
3276
/// maintaining multiple copies of the Chains state.
3277
void LSRInstance::CollectChains() {
3278
LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3279
SmallVector<ChainUsers, 8> ChainUsersVec;
3280
3281
SmallVector<BasicBlock *,8> LatchPath;
3282
BasicBlock *LoopHeader = L->getHeader();
3283
for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3284
Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3285
LatchPath.push_back(Rung->getBlock());
3286
}
3287
LatchPath.push_back(LoopHeader);
3288
3289
// Walk the instruction stream from the loop header to the loop latch.
3290
for (BasicBlock *BB : reverse(LatchPath)) {
3291
for (Instruction &I : *BB) {
3292
// Skip instructions that weren't seen by IVUsers analysis.
3293
if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3294
continue;
3295
3296
// Ignore users that are part of a SCEV expression. This way we only
3297
// consider leaf IV Users. This effectively rediscovers a portion of
3298
// IVUsers analysis but in program order this time.
3299
if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3300
continue;
3301
3302
// Remove this instruction from any NearUsers set it may be in.
3303
for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3304
ChainIdx < NChains; ++ChainIdx) {
3305
ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3306
}
3307
// Search for operands that can be chained.
3308
SmallPtrSet<Instruction*, 4> UniqueOperands;
3309
User::op_iterator IVOpEnd = I.op_end();
3310
User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3311
while (IVOpIter != IVOpEnd) {
3312
Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3313
if (UniqueOperands.insert(IVOpInst).second)
3314
ChainInstruction(&I, IVOpInst, ChainUsersVec);
3315
IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3316
}
3317
} // Continue walking down the instructions.
3318
} // Continue walking down the domtree.
3319
// Visit phi backedges to determine if the chain can generate the IV postinc.
3320
for (PHINode &PN : L->getHeader()->phis()) {
3321
if (!SE.isSCEVable(PN.getType()))
3322
continue;
3323
3324
Instruction *IncV =
3325
dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3326
if (IncV)
3327
ChainInstruction(&PN, IncV, ChainUsersVec);
3328
}
3329
// Remove any unprofitable chains.
3330
unsigned ChainIdx = 0;
3331
for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3332
UsersIdx < NChains; ++UsersIdx) {
3333
if (!isProfitableChain(IVChainVec[UsersIdx],
3334
ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3335
continue;
3336
// Preserve the chain at UsesIdx.
3337
if (ChainIdx != UsersIdx)
3338
IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3339
FinalizeChain(IVChainVec[ChainIdx]);
3340
++ChainIdx;
3341
}
3342
IVChainVec.resize(ChainIdx);
3343
}
3344
3345
void LSRInstance::FinalizeChain(IVChain &Chain) {
3346
assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3347
LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3348
3349
for (const IVInc &Inc : Chain) {
3350
LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n");
3351
auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3352
assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3353
IVIncSet.insert(UseI);
3354
}
3355
}
3356
3357
/// Return true if the IVInc can be folded into an addressing mode.
3358
static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3359
Value *Operand, const TargetTransformInfo &TTI) {
3360
const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3361
Immediate IncOffset = Immediate::getZero();
3362
if (IncConst) {
3363
if (IncConst && IncConst->getAPInt().getSignificantBits() > 64)
3364
return false;
3365
IncOffset = Immediate::getFixed(IncConst->getValue()->getSExtValue());
3366
} else {
3367
// Look for mul(vscale, constant), to detect a scalable offset.
3368
auto *IncVScale = dyn_cast<SCEVMulExpr>(IncExpr);
3369
if (!IncVScale || IncVScale->getNumOperands() != 2 ||
3370
!isa<SCEVVScale>(IncVScale->getOperand(1)))
3371
return false;
3372
auto *Scale = dyn_cast<SCEVConstant>(IncVScale->getOperand(0));
3373
if (!Scale || Scale->getType()->getScalarSizeInBits() > 64)
3374
return false;
3375
IncOffset = Immediate::getScalable(Scale->getValue()->getSExtValue());
3376
}
3377
3378
if (!isAddressUse(TTI, UserInst, Operand))
3379
return false;
3380
3381
MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3382
if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3383
IncOffset, /*HasBaseReg=*/false))
3384
return false;
3385
3386
return true;
3387
}
3388
3389
/// Generate an add or subtract for each IVInc in a chain to materialize the IV
3390
/// user's operand from the previous IV user's operand.
3391
void LSRInstance::GenerateIVChain(const IVChain &Chain,
3392
SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3393
// Find the new IVOperand for the head of the chain. It may have been replaced
3394
// by LSR.
3395
const IVInc &Head = Chain.Incs[0];
3396
User::op_iterator IVOpEnd = Head.UserInst->op_end();
3397
// findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3398
User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3399
IVOpEnd, L, SE);
3400
Value *IVSrc = nullptr;
3401
while (IVOpIter != IVOpEnd) {
3402
IVSrc = getWideOperand(*IVOpIter);
3403
3404
// If this operand computes the expression that the chain needs, we may use
3405
// it. (Check this after setting IVSrc which is used below.)
3406
//
3407
// Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3408
// narrow for the chain, so we can no longer use it. We do allow using a
3409
// wider phi, assuming the LSR checked for free truncation. In that case we
3410
// should already have a truncate on this operand such that
3411
// getSCEV(IVSrc) == IncExpr.
3412
if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3413
|| SE.getSCEV(IVSrc) == Head.IncExpr) {
3414
break;
3415
}
3416
IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3417
}
3418
if (IVOpIter == IVOpEnd) {
3419
// Gracefully give up on this chain.
3420
LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3421
return;
3422
}
3423
assert(IVSrc && "Failed to find IV chain source");
3424
3425
LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3426
Type *IVTy = IVSrc->getType();
3427
Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3428
const SCEV *LeftOverExpr = nullptr;
3429
const SCEV *Accum = SE.getZero(IntTy);
3430
SmallVector<std::pair<const SCEV *, Value *>> Bases;
3431
Bases.emplace_back(Accum, IVSrc);
3432
3433
for (const IVInc &Inc : Chain) {
3434
Instruction *InsertPt = Inc.UserInst;
3435
if (isa<PHINode>(InsertPt))
3436
InsertPt = L->getLoopLatch()->getTerminator();
3437
3438
// IVOper will replace the current IV User's operand. IVSrc is the IV
3439
// value currently held in a register.
3440
Value *IVOper = IVSrc;
3441
if (!Inc.IncExpr->isZero()) {
3442
// IncExpr was the result of subtraction of two narrow values, so must
3443
// be signed.
3444
const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3445
Accum = SE.getAddExpr(Accum, IncExpr);
3446
LeftOverExpr = LeftOverExpr ?
3447
SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3448
}
3449
3450
// Look through each base to see if any can produce a nice addressing mode.
3451
bool FoundBase = false;
3452
for (auto [MapScev, MapIVOper] : reverse(Bases)) {
3453
const SCEV *Remainder = SE.getMinusSCEV(Accum, MapScev);
3454
if (canFoldIVIncExpr(Remainder, Inc.UserInst, Inc.IVOperand, TTI)) {
3455
if (!Remainder->isZero()) {
3456
Rewriter.clearPostInc();
3457
Value *IncV = Rewriter.expandCodeFor(Remainder, IntTy, InsertPt);
3458
const SCEV *IVOperExpr =
3459
SE.getAddExpr(SE.getUnknown(MapIVOper), SE.getUnknown(IncV));
3460
IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3461
} else {
3462
IVOper = MapIVOper;
3463
}
3464
3465
FoundBase = true;
3466
break;
3467
}
3468
}
3469
if (!FoundBase && LeftOverExpr && !LeftOverExpr->isZero()) {
3470
// Expand the IV increment.
3471
Rewriter.clearPostInc();
3472
Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3473
const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3474
SE.getUnknown(IncV));
3475
IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3476
3477
// If an IV increment can't be folded, use it as the next IV value.
3478
if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3479
assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3480
Bases.emplace_back(Accum, IVOper);
3481
IVSrc = IVOper;
3482
LeftOverExpr = nullptr;
3483
}
3484
}
3485
Type *OperTy = Inc.IVOperand->getType();
3486
if (IVTy != OperTy) {
3487
assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3488
"cannot extend a chained IV");
3489
IRBuilder<> Builder(InsertPt);
3490
IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3491
}
3492
Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3493
if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3494
DeadInsts.emplace_back(OperandIsInstr);
3495
}
3496
// If LSR created a new, wider phi, we may also replace its postinc. We only
3497
// do this if we also found a wide value for the head of the chain.
3498
if (isa<PHINode>(Chain.tailUserInst())) {
3499
for (PHINode &Phi : L->getHeader()->phis()) {
3500
if (Phi.getType() != IVSrc->getType())
3501
continue;
3502
Instruction *PostIncV = dyn_cast<Instruction>(
3503
Phi.getIncomingValueForBlock(L->getLoopLatch()));
3504
if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3505
continue;
3506
Value *IVOper = IVSrc;
3507
Type *PostIncTy = PostIncV->getType();
3508
if (IVTy != PostIncTy) {
3509
assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3510
IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3511
Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3512
IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3513
}
3514
Phi.replaceUsesOfWith(PostIncV, IVOper);
3515
DeadInsts.emplace_back(PostIncV);
3516
}
3517
}
3518
}
3519
3520
void LSRInstance::CollectFixupsAndInitialFormulae() {
3521
BranchInst *ExitBranch = nullptr;
3522
bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3523
3524
// For calculating baseline cost
3525
SmallPtrSet<const SCEV *, 16> Regs;
3526
DenseSet<const SCEV *> VisitedRegs;
3527
DenseSet<size_t> VisitedLSRUse;
3528
3529
for (const IVStrideUse &U : IU) {
3530
Instruction *UserInst = U.getUser();
3531
// Skip IV users that are part of profitable IV Chains.
3532
User::op_iterator UseI =
3533
find(UserInst->operands(), U.getOperandValToReplace());
3534
assert(UseI != UserInst->op_end() && "cannot find IV operand");
3535
if (IVIncSet.count(UseI)) {
3536
LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3537
continue;
3538
}
3539
3540
LSRUse::KindType Kind = LSRUse::Basic;
3541
MemAccessTy AccessTy;
3542
if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3543
Kind = LSRUse::Address;
3544
AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3545
}
3546
3547
const SCEV *S = IU.getExpr(U);
3548
if (!S)
3549
continue;
3550
PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3551
3552
// Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3553
// (N - i == 0), and this allows (N - i) to be the expression that we work
3554
// with rather than just N or i, so we can consider the register
3555
// requirements for both N and i at the same time. Limiting this code to
3556
// equality icmps is not a problem because all interesting loops use
3557
// equality icmps, thanks to IndVarSimplify.
3558
if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3559
// If CI can be saved in some target, like replaced inside hardware loop
3560
// in PowerPC, no need to generate initial formulae for it.
3561
if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3562
continue;
3563
if (CI->isEquality()) {
3564
// Swap the operands if needed to put the OperandValToReplace on the
3565
// left, for consistency.
3566
Value *NV = CI->getOperand(1);
3567
if (NV == U.getOperandValToReplace()) {
3568
CI->setOperand(1, CI->getOperand(0));
3569
CI->setOperand(0, NV);
3570
NV = CI->getOperand(1);
3571
Changed = true;
3572
}
3573
3574
// x == y --> x - y == 0
3575
const SCEV *N = SE.getSCEV(NV);
3576
if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3577
(!NV->getType()->isPointerTy() ||
3578
SE.getPointerBase(N) == SE.getPointerBase(S))) {
3579
// S is normalized, so normalize N before folding it into S
3580
// to keep the result normalized.
3581
N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3582
if (!N)
3583
continue;
3584
Kind = LSRUse::ICmpZero;
3585
S = SE.getMinusSCEV(N, S);
3586
} else if (L->isLoopInvariant(NV) &&
3587
(!isa<Instruction>(NV) ||
3588
DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3589
!NV->getType()->isPointerTy()) {
3590
// If we can't generally expand the expression (e.g. it contains
3591
// a divide), but it is already at a loop invariant point before the
3592
// loop, wrap it in an unknown (to prevent the expander from trying
3593
// to re-expand in a potentially unsafe way.) The restriction to
3594
// integer types is required because the unknown hides the base, and
3595
// SCEV can't compute the difference of two unknown pointers.
3596
N = SE.getUnknown(NV);
3597
N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3598
if (!N)
3599
continue;
3600
Kind = LSRUse::ICmpZero;
3601
S = SE.getMinusSCEV(N, S);
3602
assert(!isa<SCEVCouldNotCompute>(S));
3603
}
3604
3605
// -1 and the negations of all interesting strides (except the negation
3606
// of -1) are now also interesting.
3607
for (size_t i = 0, e = Factors.size(); i != e; ++i)
3608
if (Factors[i] != -1)
3609
Factors.insert(-(uint64_t)Factors[i]);
3610
Factors.insert(-1);
3611
}
3612
}
3613
3614
// Get or create an LSRUse.
3615
std::pair<size_t, Immediate> P = getUse(S, Kind, AccessTy);
3616
size_t LUIdx = P.first;
3617
Immediate Offset = P.second;
3618
LSRUse &LU = Uses[LUIdx];
3619
3620
// Record the fixup.
3621
LSRFixup &LF = LU.getNewFixup();
3622
LF.UserInst = UserInst;
3623
LF.OperandValToReplace = U.getOperandValToReplace();
3624
LF.PostIncLoops = TmpPostIncLoops;
3625
LF.Offset = Offset;
3626
LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3627
3628
// Create SCEV as Formula for calculating baseline cost
3629
if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) {
3630
Formula F;
3631
F.initialMatch(S, L, SE);
3632
BaselineCost.RateFormula(F, Regs, VisitedRegs, LU);
3633
VisitedLSRUse.insert(LUIdx);
3634
}
3635
3636
if (!LU.WidestFixupType ||
3637
SE.getTypeSizeInBits(LU.WidestFixupType) <
3638
SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3639
LU.WidestFixupType = LF.OperandValToReplace->getType();
3640
3641
// If this is the first use of this LSRUse, give it a formula.
3642
if (LU.Formulae.empty()) {
3643
InsertInitialFormula(S, LU, LUIdx);
3644
CountRegisters(LU.Formulae.back(), LUIdx);
3645
}
3646
}
3647
3648
LLVM_DEBUG(print_fixups(dbgs()));
3649
}
3650
3651
/// Insert a formula for the given expression into the given use, separating out
3652
/// loop-variant portions from loop-invariant and loop-computable portions.
3653
void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3654
size_t LUIdx) {
3655
// Mark uses whose expressions cannot be expanded.
3656
if (!Rewriter.isSafeToExpand(S))
3657
LU.RigidFormula = true;
3658
3659
Formula F;
3660
F.initialMatch(S, L, SE);
3661
bool Inserted = InsertFormula(LU, LUIdx, F);
3662
assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3663
}
3664
3665
/// Insert a simple single-register formula for the given expression into the
3666
/// given use.
3667
void
3668
LSRInstance::InsertSupplementalFormula(const SCEV *S,
3669
LSRUse &LU, size_t LUIdx) {
3670
Formula F;
3671
F.BaseRegs.push_back(S);
3672
F.HasBaseReg = true;
3673
bool Inserted = InsertFormula(LU, LUIdx, F);
3674
assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3675
}
3676
3677
/// Note which registers are used by the given formula, updating RegUses.
3678
void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3679
if (F.ScaledReg)
3680
RegUses.countRegister(F.ScaledReg, LUIdx);
3681
for (const SCEV *BaseReg : F.BaseRegs)
3682
RegUses.countRegister(BaseReg, LUIdx);
3683
}
3684
3685
/// If the given formula has not yet been inserted, add it to the list, and
3686
/// return true. Return false otherwise.
3687
bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3688
// Do not insert formula that we will not be able to expand.
3689
assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3690
"Formula is illegal");
3691
3692
if (!LU.InsertFormula(F, *L))
3693
return false;
3694
3695
CountRegisters(F, LUIdx);
3696
return true;
3697
}
3698
3699
/// Check for other uses of loop-invariant values which we're tracking. These
3700
/// other uses will pin these values in registers, making them less profitable
3701
/// for elimination.
3702
/// TODO: This currently misses non-constant addrec step registers.
3703
/// TODO: Should this give more weight to users inside the loop?
3704
void
3705
LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3706
SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3707
SmallPtrSet<const SCEV *, 32> Visited;
3708
3709
// Don't collect outside uses if we are favoring postinc - the instructions in
3710
// the loop are more important than the ones outside of it.
3711
if (AMK == TTI::AMK_PostIndexed)
3712
return;
3713
3714
while (!Worklist.empty()) {
3715
const SCEV *S = Worklist.pop_back_val();
3716
3717
// Don't process the same SCEV twice
3718
if (!Visited.insert(S).second)
3719
continue;
3720
3721
if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3722
append_range(Worklist, N->operands());
3723
else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3724
Worklist.push_back(C->getOperand());
3725
else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3726
Worklist.push_back(D->getLHS());
3727
Worklist.push_back(D->getRHS());
3728
} else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3729
const Value *V = US->getValue();
3730
if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3731
// Look for instructions defined outside the loop.
3732
if (L->contains(Inst)) continue;
3733
} else if (isa<Constant>(V))
3734
// Constants can be re-materialized.
3735
continue;
3736
for (const Use &U : V->uses()) {
3737
const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3738
// Ignore non-instructions.
3739
if (!UserInst)
3740
continue;
3741
// Don't bother if the instruction is an EHPad.
3742
if (UserInst->isEHPad())
3743
continue;
3744
// Ignore instructions in other functions (as can happen with
3745
// Constants).
3746
if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3747
continue;
3748
// Ignore instructions not dominated by the loop.
3749
const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3750
UserInst->getParent() :
3751
cast<PHINode>(UserInst)->getIncomingBlock(
3752
PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3753
if (!DT.dominates(L->getHeader(), UseBB))
3754
continue;
3755
// Don't bother if the instruction is in a BB which ends in an EHPad.
3756
if (UseBB->getTerminator()->isEHPad())
3757
continue;
3758
3759
// Ignore cases in which the currently-examined value could come from
3760
// a basic block terminated with an EHPad. This checks all incoming
3761
// blocks of the phi node since it is possible that the same incoming
3762
// value comes from multiple basic blocks, only some of which may end
3763
// in an EHPad. If any of them do, a subsequent rewrite attempt by this
3764
// pass would try to insert instructions into an EHPad, hitting an
3765
// assertion.
3766
if (isa<PHINode>(UserInst)) {
3767
const auto *PhiNode = cast<PHINode>(UserInst);
3768
bool HasIncompatibleEHPTerminatedBlock = false;
3769
llvm::Value *ExpectedValue = U;
3770
for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3771
if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3772
if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3773
HasIncompatibleEHPTerminatedBlock = true;
3774
break;
3775
}
3776
}
3777
}
3778
if (HasIncompatibleEHPTerminatedBlock) {
3779
continue;
3780
}
3781
}
3782
3783
// Don't bother rewriting PHIs in catchswitch blocks.
3784
if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3785
continue;
3786
// Ignore uses which are part of other SCEV expressions, to avoid
3787
// analyzing them multiple times.
3788
if (SE.isSCEVable(UserInst->getType())) {
3789
const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3790
// If the user is a no-op, look through to its uses.
3791
if (!isa<SCEVUnknown>(UserS))
3792
continue;
3793
if (UserS == US) {
3794
Worklist.push_back(
3795
SE.getUnknown(const_cast<Instruction *>(UserInst)));
3796
continue;
3797
}
3798
}
3799
// Ignore icmp instructions which are already being analyzed.
3800
if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3801
unsigned OtherIdx = !U.getOperandNo();
3802
Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3803
if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3804
continue;
3805
}
3806
3807
std::pair<size_t, Immediate> P =
3808
getUse(S, LSRUse::Basic, MemAccessTy());
3809
size_t LUIdx = P.first;
3810
Immediate Offset = P.second;
3811
LSRUse &LU = Uses[LUIdx];
3812
LSRFixup &LF = LU.getNewFixup();
3813
LF.UserInst = const_cast<Instruction *>(UserInst);
3814
LF.OperandValToReplace = U;
3815
LF.Offset = Offset;
3816
LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3817
if (!LU.WidestFixupType ||
3818
SE.getTypeSizeInBits(LU.WidestFixupType) <
3819
SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3820
LU.WidestFixupType = LF.OperandValToReplace->getType();
3821
InsertSupplementalFormula(US, LU, LUIdx);
3822
CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3823
break;
3824
}
3825
}
3826
}
3827
}
3828
3829
/// Split S into subexpressions which can be pulled out into separate
3830
/// registers. If C is non-null, multiply each subexpression by C.
3831
///
3832
/// Return remainder expression after factoring the subexpressions captured by
3833
/// Ops. If Ops is complete, return NULL.
3834
static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3835
SmallVectorImpl<const SCEV *> &Ops,
3836
const Loop *L,
3837
ScalarEvolution &SE,
3838
unsigned Depth = 0) {
3839
// Arbitrarily cap recursion to protect compile time.
3840
if (Depth >= 3)
3841
return S;
3842
3843
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3844
// Break out add operands.
3845
for (const SCEV *S : Add->operands()) {
3846
const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3847
if (Remainder)
3848
Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3849
}
3850
return nullptr;
3851
} else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3852
// Split a non-zero base out of an addrec.
3853
if (AR->getStart()->isZero() || !AR->isAffine())
3854
return S;
3855
3856
const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3857
C, Ops, L, SE, Depth+1);
3858
// Split the non-zero AddRec unless it is part of a nested recurrence that
3859
// does not pertain to this loop.
3860
if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3861
Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3862
Remainder = nullptr;
3863
}
3864
if (Remainder != AR->getStart()) {
3865
if (!Remainder)
3866
Remainder = SE.getConstant(AR->getType(), 0);
3867
return SE.getAddRecExpr(Remainder,
3868
AR->getStepRecurrence(SE),
3869
AR->getLoop(),
3870
//FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3871
SCEV::FlagAnyWrap);
3872
}
3873
} else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3874
// Break (C * (a + b + c)) into C*a + C*b + C*c.
3875
if (Mul->getNumOperands() != 2)
3876
return S;
3877
if (const SCEVConstant *Op0 =
3878
dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3879
C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3880
const SCEV *Remainder =
3881
CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3882
if (Remainder)
3883
Ops.push_back(SE.getMulExpr(C, Remainder));
3884
return nullptr;
3885
}
3886
}
3887
return S;
3888
}
3889
3890
/// Return true if the SCEV represents a value that may end up as a
3891
/// post-increment operation.
3892
static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3893
LSRUse &LU, const SCEV *S, const Loop *L,
3894
ScalarEvolution &SE) {
3895
if (LU.Kind != LSRUse::Address ||
3896
!LU.AccessTy.getType()->isIntOrIntVectorTy())
3897
return false;
3898
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3899
if (!AR)
3900
return false;
3901
const SCEV *LoopStep = AR->getStepRecurrence(SE);
3902
if (!isa<SCEVConstant>(LoopStep))
3903
return false;
3904
// Check if a post-indexed load/store can be used.
3905
if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3906
TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3907
const SCEV *LoopStart = AR->getStart();
3908
if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3909
return true;
3910
}
3911
return false;
3912
}
3913
3914
/// Helper function for LSRInstance::GenerateReassociations.
3915
void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3916
const Formula &Base,
3917
unsigned Depth, size_t Idx,
3918
bool IsScaledReg) {
3919
const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3920
// Don't generate reassociations for the base register of a value that
3921
// may generate a post-increment operator. The reason is that the
3922
// reassociations cause extra base+register formula to be created,
3923
// and possibly chosen, but the post-increment is more efficient.
3924
if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3925
return;
3926
SmallVector<const SCEV *, 8> AddOps;
3927
const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3928
if (Remainder)
3929
AddOps.push_back(Remainder);
3930
3931
if (AddOps.size() == 1)
3932
return;
3933
3934
for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3935
JE = AddOps.end();
3936
J != JE; ++J) {
3937
// Loop-variant "unknown" values are uninteresting; we won't be able to
3938
// do anything meaningful with them.
3939
if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3940
continue;
3941
3942
// Don't pull a constant into a register if the constant could be folded
3943
// into an immediate field.
3944
if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3945
LU.AccessTy, *J, Base.getNumRegs() > 1))
3946
continue;
3947
3948
// Collect all operands except *J.
3949
SmallVector<const SCEV *, 8> InnerAddOps(
3950
((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3951
InnerAddOps.append(std::next(J),
3952
((const SmallVector<const SCEV *, 8> &)AddOps).end());
3953
3954
// Don't leave just a constant behind in a register if the constant could
3955
// be folded into an immediate field.
3956
if (InnerAddOps.size() == 1 &&
3957
isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3958
LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3959
continue;
3960
3961
const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3962
if (InnerSum->isZero())
3963
continue;
3964
Formula F = Base;
3965
3966
if (F.UnfoldedOffset.isNonZero() && F.UnfoldedOffset.isScalable())
3967
continue;
3968
3969
// Add the remaining pieces of the add back into the new formula.
3970
const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3971
if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3972
TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() +
3973
InnerSumSC->getValue()->getZExtValue())) {
3974
F.UnfoldedOffset =
3975
Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() +
3976
InnerSumSC->getValue()->getZExtValue());
3977
if (IsScaledReg)
3978
F.ScaledReg = nullptr;
3979
else
3980
F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3981
} else if (IsScaledReg)
3982
F.ScaledReg = InnerSum;
3983
else
3984
F.BaseRegs[Idx] = InnerSum;
3985
3986
// Add J as its own register, or an unfolded immediate.
3987
const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3988
if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3989
TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() +
3990
SC->getValue()->getZExtValue()))
3991
F.UnfoldedOffset =
3992
Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() +
3993
SC->getValue()->getZExtValue());
3994
else
3995
F.BaseRegs.push_back(*J);
3996
// We may have changed the number of register in base regs, adjust the
3997
// formula accordingly.
3998
F.canonicalize(*L);
3999
4000
if (InsertFormula(LU, LUIdx, F))
4001
// If that formula hadn't been seen before, recurse to find more like
4002
// it.
4003
// Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
4004
// Because just Depth is not enough to bound compile time.
4005
// This means that every time AddOps.size() is greater 16^x we will add
4006
// x to Depth.
4007
GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
4008
Depth + 1 + (Log2_32(AddOps.size()) >> 2));
4009
}
4010
}
4011
4012
/// Split out subexpressions from adds and the bases of addrecs.
4013
void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
4014
Formula Base, unsigned Depth) {
4015
assert(Base.isCanonical(*L) && "Input must be in the canonical form");
4016
// Arbitrarily cap recursion to protect compile time.
4017
if (Depth >= 3)
4018
return;
4019
4020
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
4021
GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
4022
4023
if (Base.Scale == 1)
4024
GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
4025
/* Idx */ -1, /* IsScaledReg */ true);
4026
}
4027
4028
/// Generate a formula consisting of all of the loop-dominating registers added
4029
/// into a single register.
4030
void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
4031
Formula Base) {
4032
// This method is only interesting on a plurality of registers.
4033
if (Base.BaseRegs.size() + (Base.Scale == 1) +
4034
(Base.UnfoldedOffset.isNonZero()) <=
4035
1)
4036
return;
4037
4038
// Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
4039
// processing the formula.
4040
Base.unscale();
4041
SmallVector<const SCEV *, 4> Ops;
4042
Formula NewBase = Base;
4043
NewBase.BaseRegs.clear();
4044
Type *CombinedIntegerType = nullptr;
4045
for (const SCEV *BaseReg : Base.BaseRegs) {
4046
if (SE.properlyDominates(BaseReg, L->getHeader()) &&
4047
!SE.hasComputableLoopEvolution(BaseReg, L)) {
4048
if (!CombinedIntegerType)
4049
CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
4050
Ops.push_back(BaseReg);
4051
}
4052
else
4053
NewBase.BaseRegs.push_back(BaseReg);
4054
}
4055
4056
// If no register is relevant, we're done.
4057
if (Ops.size() == 0)
4058
return;
4059
4060
// Utility function for generating the required variants of the combined
4061
// registers.
4062
auto GenerateFormula = [&](const SCEV *Sum) {
4063
Formula F = NewBase;
4064
4065
// TODO: If Sum is zero, it probably means ScalarEvolution missed an
4066
// opportunity to fold something. For now, just ignore such cases
4067
// rather than proceed with zero in a register.
4068
if (Sum->isZero())
4069
return;
4070
4071
F.BaseRegs.push_back(Sum);
4072
F.canonicalize(*L);
4073
(void)InsertFormula(LU, LUIdx, F);
4074
};
4075
4076
// If we collected at least two registers, generate a formula combining them.
4077
if (Ops.size() > 1) {
4078
SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
4079
GenerateFormula(SE.getAddExpr(OpsCopy));
4080
}
4081
4082
// If we have an unfolded offset, generate a formula combining it with the
4083
// registers collected.
4084
if (NewBase.UnfoldedOffset.isNonZero() && NewBase.UnfoldedOffset.isFixed()) {
4085
assert(CombinedIntegerType && "Missing a type for the unfolded offset");
4086
Ops.push_back(SE.getConstant(CombinedIntegerType,
4087
NewBase.UnfoldedOffset.getFixedValue(), true));
4088
NewBase.UnfoldedOffset = Immediate::getFixed(0);
4089
GenerateFormula(SE.getAddExpr(Ops));
4090
}
4091
}
4092
4093
/// Helper function for LSRInstance::GenerateSymbolicOffsets.
4094
void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
4095
const Formula &Base, size_t Idx,
4096
bool IsScaledReg) {
4097
const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
4098
GlobalValue *GV = ExtractSymbol(G, SE);
4099
if (G->isZero() || !GV)
4100
return;
4101
Formula F = Base;
4102
F.BaseGV = GV;
4103
if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
4104
return;
4105
if (IsScaledReg)
4106
F.ScaledReg = G;
4107
else
4108
F.BaseRegs[Idx] = G;
4109
(void)InsertFormula(LU, LUIdx, F);
4110
}
4111
4112
/// Generate reuse formulae using symbolic offsets.
4113
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
4114
Formula Base) {
4115
// We can't add a symbolic offset if the address already contains one.
4116
if (Base.BaseGV) return;
4117
4118
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
4119
GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
4120
if (Base.Scale == 1)
4121
GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
4122
/* IsScaledReg */ true);
4123
}
4124
4125
/// Helper function for LSRInstance::GenerateConstantOffsets.
4126
void LSRInstance::GenerateConstantOffsetsImpl(
4127
LSRUse &LU, unsigned LUIdx, const Formula &Base,
4128
const SmallVectorImpl<Immediate> &Worklist, size_t Idx, bool IsScaledReg) {
4129
4130
auto GenerateOffset = [&](const SCEV *G, Immediate Offset) {
4131
Formula F = Base;
4132
if (!Base.BaseOffset.isCompatibleImmediate(Offset))
4133
return;
4134
F.BaseOffset = Base.BaseOffset.subUnsigned(Offset);
4135
4136
if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
4137
// Add the offset to the base register.
4138
const SCEV *NewOffset = Offset.getSCEV(SE, G->getType());
4139
const SCEV *NewG = SE.getAddExpr(NewOffset, G);
4140
// If it cancelled out, drop the base register, otherwise update it.
4141
if (NewG->isZero()) {
4142
if (IsScaledReg) {
4143
F.Scale = 0;
4144
F.ScaledReg = nullptr;
4145
} else
4146
F.deleteBaseReg(F.BaseRegs[Idx]);
4147
F.canonicalize(*L);
4148
} else if (IsScaledReg)
4149
F.ScaledReg = NewG;
4150
else
4151
F.BaseRegs[Idx] = NewG;
4152
4153
(void)InsertFormula(LU, LUIdx, F);
4154
}
4155
};
4156
4157
const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
4158
4159
// With constant offsets and constant steps, we can generate pre-inc
4160
// accesses by having the offset equal the step. So, for access #0 with a
4161
// step of 8, we generate a G - 8 base which would require the first access
4162
// to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
4163
// for itself and hopefully becomes the base for other accesses. This means
4164
// means that a single pre-indexed access can be generated to become the new
4165
// base pointer for each iteration of the loop, resulting in no extra add/sub
4166
// instructions for pointer updating.
4167
if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
4168
if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
4169
if (auto *StepRec =
4170
dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
4171
const APInt &StepInt = StepRec->getAPInt();
4172
int64_t Step = StepInt.isNegative() ?
4173
StepInt.getSExtValue() : StepInt.getZExtValue();
4174
4175
for (Immediate Offset : Worklist) {
4176
if (Offset.isFixed()) {
4177
Offset = Immediate::getFixed(Offset.getFixedValue() - Step);
4178
GenerateOffset(G, Offset);
4179
}
4180
}
4181
}
4182
}
4183
}
4184
for (Immediate Offset : Worklist)
4185
GenerateOffset(G, Offset);
4186
4187
Immediate Imm = ExtractImmediate(G, SE);
4188
if (G->isZero() || Imm.isZero() ||
4189
!Base.BaseOffset.isCompatibleImmediate(Imm))
4190
return;
4191
Formula F = Base;
4192
F.BaseOffset = F.BaseOffset.addUnsigned(Imm);
4193
if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
4194
return;
4195
if (IsScaledReg) {
4196
F.ScaledReg = G;
4197
} else {
4198
F.BaseRegs[Idx] = G;
4199
// We may generate non canonical Formula if G is a recurrent expr reg
4200
// related with current loop while F.ScaledReg is not.
4201
F.canonicalize(*L);
4202
}
4203
(void)InsertFormula(LU, LUIdx, F);
4204
}
4205
4206
/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
4207
void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
4208
Formula Base) {
4209
// TODO: For now, just add the min and max offset, because it usually isn't
4210
// worthwhile looking at everything inbetween.
4211
SmallVector<Immediate, 2> Worklist;
4212
Worklist.push_back(LU.MinOffset);
4213
if (LU.MaxOffset != LU.MinOffset)
4214
Worklist.push_back(LU.MaxOffset);
4215
4216
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
4217
GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
4218
if (Base.Scale == 1)
4219
GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
4220
/* IsScaledReg */ true);
4221
}
4222
4223
/// For ICmpZero, check to see if we can scale up the comparison. For example, x
4224
/// == y -> x*c == y*c.
4225
void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
4226
Formula Base) {
4227
if (LU.Kind != LSRUse::ICmpZero) return;
4228
4229
// Determine the integer type for the base formula.
4230
Type *IntTy = Base.getType();
4231
if (!IntTy) return;
4232
if (SE.getTypeSizeInBits(IntTy) > 64) return;
4233
4234
// Don't do this if there is more than one offset.
4235
if (LU.MinOffset != LU.MaxOffset) return;
4236
4237
// Check if transformation is valid. It is illegal to multiply pointer.
4238
if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4239
return;
4240
for (const SCEV *BaseReg : Base.BaseRegs)
4241
if (BaseReg->getType()->isPointerTy())
4242
return;
4243
assert(!Base.BaseGV && "ICmpZero use is not legal!");
4244
4245
// Check each interesting stride.
4246
for (int64_t Factor : Factors) {
4247
// Check that Factor can be represented by IntTy
4248
if (!ConstantInt::isValueValidForType(IntTy, Factor))
4249
continue;
4250
// Check that the multiplication doesn't overflow.
4251
if (Base.BaseOffset.isMin() && Factor == -1)
4252
continue;
4253
// Not supporting scalable immediates.
4254
if (Base.BaseOffset.isNonZero() && Base.BaseOffset.isScalable())
4255
continue;
4256
Immediate NewBaseOffset = Base.BaseOffset.mulUnsigned(Factor);
4257
assert(Factor != 0 && "Zero factor not expected!");
4258
if (NewBaseOffset.getFixedValue() / Factor !=
4259
Base.BaseOffset.getFixedValue())
4260
continue;
4261
// If the offset will be truncated at this use, check that it is in bounds.
4262
if (!IntTy->isPointerTy() &&
4263
!ConstantInt::isValueValidForType(IntTy, NewBaseOffset.getFixedValue()))
4264
continue;
4265
4266
// Check that multiplying with the use offset doesn't overflow.
4267
Immediate Offset = LU.MinOffset;
4268
if (Offset.isMin() && Factor == -1)
4269
continue;
4270
Offset = Offset.mulUnsigned(Factor);
4271
if (Offset.getFixedValue() / Factor != LU.MinOffset.getFixedValue())
4272
continue;
4273
// If the offset will be truncated at this use, check that it is in bounds.
4274
if (!IntTy->isPointerTy() &&
4275
!ConstantInt::isValueValidForType(IntTy, Offset.getFixedValue()))
4276
continue;
4277
4278
Formula F = Base;
4279
F.BaseOffset = NewBaseOffset;
4280
4281
// Check that this scale is legal.
4282
if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4283
continue;
4284
4285
// Compensate for the use having MinOffset built into it.
4286
F.BaseOffset = F.BaseOffset.addUnsigned(Offset).subUnsigned(LU.MinOffset);
4287
4288
const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4289
4290
// Check that multiplying with each base register doesn't overflow.
4291
for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4292
F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4293
if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4294
goto next;
4295
}
4296
4297
// Check that multiplying with the scaled register doesn't overflow.
4298
if (F.ScaledReg) {
4299
F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4300
if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4301
continue;
4302
}
4303
4304
// Check that multiplying with the unfolded offset doesn't overflow.
4305
if (F.UnfoldedOffset.isNonZero()) {
4306
if (F.UnfoldedOffset.isMin() && Factor == -1)
4307
continue;
4308
F.UnfoldedOffset = F.UnfoldedOffset.mulUnsigned(Factor);
4309
if (F.UnfoldedOffset.getFixedValue() / Factor !=
4310
Base.UnfoldedOffset.getFixedValue())
4311
continue;
4312
// If the offset will be truncated, check that it is in bounds.
4313
if (!IntTy->isPointerTy() && !ConstantInt::isValueValidForType(
4314
IntTy, F.UnfoldedOffset.getFixedValue()))
4315
continue;
4316
}
4317
4318
// If we make it here and it's legal, add it.
4319
(void)InsertFormula(LU, LUIdx, F);
4320
next:;
4321
}
4322
}
4323
4324
/// Generate stride factor reuse formulae by making use of scaled-offset address
4325
/// modes, for example.
4326
void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4327
// Determine the integer type for the base formula.
4328
Type *IntTy = Base.getType();
4329
if (!IntTy) return;
4330
4331
// If this Formula already has a scaled register, we can't add another one.
4332
// Try to unscale the formula to generate a better scale.
4333
if (Base.Scale != 0 && !Base.unscale())
4334
return;
4335
4336
assert(Base.Scale == 0 && "unscale did not did its job!");
4337
4338
// Check each interesting stride.
4339
for (int64_t Factor : Factors) {
4340
Base.Scale = Factor;
4341
Base.HasBaseReg = Base.BaseRegs.size() > 1;
4342
// Check whether this scale is going to be legal.
4343
if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4344
Base)) {
4345
// As a special-case, handle special out-of-loop Basic users specially.
4346
// TODO: Reconsider this special case.
4347
if (LU.Kind == LSRUse::Basic &&
4348
isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4349
LU.AccessTy, Base) &&
4350
LU.AllFixupsOutsideLoop)
4351
LU.Kind = LSRUse::Special;
4352
else
4353
continue;
4354
}
4355
// For an ICmpZero, negating a solitary base register won't lead to
4356
// new solutions.
4357
if (LU.Kind == LSRUse::ICmpZero && !Base.HasBaseReg &&
4358
Base.BaseOffset.isZero() && !Base.BaseGV)
4359
continue;
4360
// For each addrec base reg, if its loop is current loop, apply the scale.
4361
for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4362
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4363
if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4364
const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4365
if (FactorS->isZero())
4366
continue;
4367
// Divide out the factor, ignoring high bits, since we'll be
4368
// scaling the value back up in the end.
4369
if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4370
if (!Quotient->isZero()) {
4371
// TODO: This could be optimized to avoid all the copying.
4372
Formula F = Base;
4373
F.ScaledReg = Quotient;
4374
F.deleteBaseReg(F.BaseRegs[i]);
4375
// The canonical representation of 1*reg is reg, which is already in
4376
// Base. In that case, do not try to insert the formula, it will be
4377
// rejected anyway.
4378
if (F.Scale == 1 && (F.BaseRegs.empty() ||
4379
(AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4380
continue;
4381
// If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4382
// non canonical Formula with ScaledReg's loop not being L.
4383
if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4384
F.canonicalize(*L);
4385
(void)InsertFormula(LU, LUIdx, F);
4386
}
4387
}
4388
}
4389
}
4390
}
4391
4392
/// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops.
4393
/// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then
4394
/// perform the extension/truncate and normalize again, as the normalized form
4395
/// can result in folds that are not valid in the post-inc use contexts. The
4396
/// expressions for all PostIncLoopSets must match, otherwise return nullptr.
4397
static const SCEV *
4398
getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops,
4399
const SCEV *Expr, Type *ToTy,
4400
ScalarEvolution &SE) {
4401
const SCEV *Result = nullptr;
4402
for (auto &L : Loops) {
4403
auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE);
4404
const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy);
4405
const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE);
4406
if (!New || (Result && New != Result))
4407
return nullptr;
4408
Result = New;
4409
}
4410
4411
assert(Result && "failed to create expression");
4412
return Result;
4413
}
4414
4415
/// Generate reuse formulae from different IV types.
4416
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4417
// Don't bother truncating symbolic values.
4418
if (Base.BaseGV) return;
4419
4420
// Determine the integer type for the base formula.
4421
Type *DstTy = Base.getType();
4422
if (!DstTy) return;
4423
if (DstTy->isPointerTy())
4424
return;
4425
4426
// It is invalid to extend a pointer type so exit early if ScaledReg or
4427
// any of the BaseRegs are pointers.
4428
if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4429
return;
4430
if (any_of(Base.BaseRegs,
4431
[](const SCEV *S) { return S->getType()->isPointerTy(); }))
4432
return;
4433
4434
SmallVector<PostIncLoopSet> Loops;
4435
for (auto &LF : LU.Fixups)
4436
Loops.push_back(LF.PostIncLoops);
4437
4438
for (Type *SrcTy : Types) {
4439
if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4440
Formula F = Base;
4441
4442
// Sometimes SCEV is able to prove zero during ext transform. It may
4443
// happen if SCEV did not do all possible transforms while creating the
4444
// initial node (maybe due to depth limitations), but it can do them while
4445
// taking ext.
4446
if (F.ScaledReg) {
4447
const SCEV *NewScaledReg =
4448
getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE);
4449
if (!NewScaledReg || NewScaledReg->isZero())
4450
continue;
4451
F.ScaledReg = NewScaledReg;
4452
}
4453
bool HasZeroBaseReg = false;
4454
for (const SCEV *&BaseReg : F.BaseRegs) {
4455
const SCEV *NewBaseReg =
4456
getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE);
4457
if (!NewBaseReg || NewBaseReg->isZero()) {
4458
HasZeroBaseReg = true;
4459
break;
4460
}
4461
BaseReg = NewBaseReg;
4462
}
4463
if (HasZeroBaseReg)
4464
continue;
4465
4466
// TODO: This assumes we've done basic processing on all uses and
4467
// have an idea what the register usage is.
4468
if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4469
continue;
4470
4471
F.canonicalize(*L);
4472
(void)InsertFormula(LU, LUIdx, F);
4473
}
4474
}
4475
}
4476
4477
namespace {
4478
4479
/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4480
/// modifications so that the search phase doesn't have to worry about the data
4481
/// structures moving underneath it.
4482
struct WorkItem {
4483
size_t LUIdx;
4484
Immediate Imm;
4485
const SCEV *OrigReg;
4486
4487
WorkItem(size_t LI, Immediate I, const SCEV *R)
4488
: LUIdx(LI), Imm(I), OrigReg(R) {}
4489
4490
void print(raw_ostream &OS) const;
4491
void dump() const;
4492
};
4493
4494
} // end anonymous namespace
4495
4496
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4497
void WorkItem::print(raw_ostream &OS) const {
4498
OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4499
<< " , add offset " << Imm;
4500
}
4501
4502
LLVM_DUMP_METHOD void WorkItem::dump() const {
4503
print(errs()); errs() << '\n';
4504
}
4505
#endif
4506
4507
/// Look for registers which are a constant distance apart and try to form reuse
4508
/// opportunities between them.
4509
void LSRInstance::GenerateCrossUseConstantOffsets() {
4510
// Group the registers by their value without any added constant offset.
4511
using ImmMapTy = std::map<Immediate, const SCEV *, KeyOrderTargetImmediate>;
4512
4513
DenseMap<const SCEV *, ImmMapTy> Map;
4514
DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4515
SmallVector<const SCEV *, 8> Sequence;
4516
for (const SCEV *Use : RegUses) {
4517
const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4518
Immediate Imm = ExtractImmediate(Reg, SE);
4519
auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4520
if (Pair.second)
4521
Sequence.push_back(Reg);
4522
Pair.first->second.insert(std::make_pair(Imm, Use));
4523
UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4524
}
4525
4526
// Now examine each set of registers with the same base value. Build up
4527
// a list of work to do and do the work in a separate step so that we're
4528
// not adding formulae and register counts while we're searching.
4529
SmallVector<WorkItem, 32> WorkItems;
4530
SmallSet<std::pair<size_t, Immediate>, 32, KeyOrderSizeTAndImmediate>
4531
UniqueItems;
4532
for (const SCEV *Reg : Sequence) {
4533
const ImmMapTy &Imms = Map.find(Reg)->second;
4534
4535
// It's not worthwhile looking for reuse if there's only one offset.
4536
if (Imms.size() == 1)
4537
continue;
4538
4539
LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4540
for (const auto &Entry
4541
: Imms) dbgs()
4542
<< ' ' << Entry.first;
4543
dbgs() << '\n');
4544
4545
// Examine each offset.
4546
for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4547
J != JE; ++J) {
4548
const SCEV *OrigReg = J->second;
4549
4550
Immediate JImm = J->first;
4551
const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4552
4553
if (!isa<SCEVConstant>(OrigReg) &&
4554
UsedByIndicesMap[Reg].count() == 1) {
4555
LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4556
<< '\n');
4557
continue;
4558
}
4559
4560
// Conservatively examine offsets between this orig reg a few selected
4561
// other orig regs.
4562
Immediate First = Imms.begin()->first;
4563
Immediate Last = std::prev(Imms.end())->first;
4564
if (!First.isCompatibleImmediate(Last)) {
4565
LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4566
<< "\n");
4567
continue;
4568
}
4569
// Only scalable if both terms are scalable, or if one is scalable and
4570
// the other is 0.
4571
bool Scalable = First.isScalable() || Last.isScalable();
4572
int64_t FI = First.getKnownMinValue();
4573
int64_t LI = Last.getKnownMinValue();
4574
// Compute (First + Last) / 2 without overflow using the fact that
4575
// First + Last = 2 * (First + Last) + (First ^ Last).
4576
int64_t Avg = (FI & LI) + ((FI ^ LI) >> 1);
4577
// If the result is negative and FI is odd and LI even (or vice versa),
4578
// we rounded towards -inf. Add 1 in that case, to round towards 0.
4579
Avg = Avg + ((FI ^ LI) & ((uint64_t)Avg >> 63));
4580
ImmMapTy::const_iterator OtherImms[] = {
4581
Imms.begin(), std::prev(Imms.end()),
4582
Imms.lower_bound(Immediate::get(Avg, Scalable))};
4583
for (const auto &M : OtherImms) {
4584
if (M == J || M == JE) continue;
4585
if (!JImm.isCompatibleImmediate(M->first))
4586
continue;
4587
4588
// Compute the difference between the two.
4589
Immediate Imm = JImm.subUnsigned(M->first);
4590
for (unsigned LUIdx : UsedByIndices.set_bits())
4591
// Make a memo of this use, offset, and register tuple.
4592
if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4593
WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4594
}
4595
}
4596
}
4597
4598
Map.clear();
4599
Sequence.clear();
4600
UsedByIndicesMap.clear();
4601
UniqueItems.clear();
4602
4603
// Now iterate through the worklist and add new formulae.
4604
for (const WorkItem &WI : WorkItems) {
4605
size_t LUIdx = WI.LUIdx;
4606
LSRUse &LU = Uses[LUIdx];
4607
Immediate Imm = WI.Imm;
4608
const SCEV *OrigReg = WI.OrigReg;
4609
4610
Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4611
const SCEV *NegImmS = Imm.getNegativeSCEV(SE, IntTy);
4612
unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4613
4614
// TODO: Use a more targeted data structure.
4615
for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4616
Formula F = LU.Formulae[L];
4617
// FIXME: The code for the scaled and unscaled registers looks
4618
// very similar but slightly different. Investigate if they
4619
// could be merged. That way, we would not have to unscale the
4620
// Formula.
4621
F.unscale();
4622
// Use the immediate in the scaled register.
4623
if (F.ScaledReg == OrigReg) {
4624
if (!F.BaseOffset.isCompatibleImmediate(Imm))
4625
continue;
4626
Immediate Offset = F.BaseOffset.addUnsigned(Imm.mulUnsigned(F.Scale));
4627
// Don't create 50 + reg(-50).
4628
const SCEV *S = Offset.getNegativeSCEV(SE, IntTy);
4629
if (F.referencesReg(S))
4630
continue;
4631
Formula NewF = F;
4632
NewF.BaseOffset = Offset;
4633
if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4634
NewF))
4635
continue;
4636
NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4637
4638
// If the new scale is a constant in a register, and adding the constant
4639
// value to the immediate would produce a value closer to zero than the
4640
// immediate itself, then the formula isn't worthwhile.
4641
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) {
4642
// FIXME: Do we need to do something for scalable immediates here?
4643
// A scalable SCEV won't be constant, but we might still have
4644
// something in the offset? Bail out for now to be safe.
4645
if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable())
4646
continue;
4647
if (C->getValue()->isNegative() !=
4648
(NewF.BaseOffset.isLessThanZero()) &&
4649
(C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4650
.ule(std::abs(NewF.BaseOffset.getFixedValue())))
4651
continue;
4652
}
4653
4654
// OK, looks good.
4655
NewF.canonicalize(*this->L);
4656
(void)InsertFormula(LU, LUIdx, NewF);
4657
} else {
4658
// Use the immediate in a base register.
4659
for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4660
const SCEV *BaseReg = F.BaseRegs[N];
4661
if (BaseReg != OrigReg)
4662
continue;
4663
Formula NewF = F;
4664
if (!NewF.BaseOffset.isCompatibleImmediate(Imm) ||
4665
!NewF.UnfoldedOffset.isCompatibleImmediate(Imm) ||
4666
!NewF.BaseOffset.isCompatibleImmediate(NewF.UnfoldedOffset))
4667
continue;
4668
NewF.BaseOffset = NewF.BaseOffset.addUnsigned(Imm);
4669
if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4670
LU.Kind, LU.AccessTy, NewF)) {
4671
if (AMK == TTI::AMK_PostIndexed &&
4672
mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4673
continue;
4674
Immediate NewUnfoldedOffset = NewF.UnfoldedOffset.addUnsigned(Imm);
4675
if (!isLegalAddImmediate(TTI, NewUnfoldedOffset))
4676
continue;
4677
NewF = F;
4678
NewF.UnfoldedOffset = NewUnfoldedOffset;
4679
}
4680
NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4681
4682
// If the new formula has a constant in a register, and adding the
4683
// constant value to the immediate would produce a value closer to
4684
// zero than the immediate itself, then the formula isn't worthwhile.
4685
for (const SCEV *NewReg : NewF.BaseRegs)
4686
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) {
4687
if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable())
4688
goto skip_formula;
4689
if ((C->getAPInt() + NewF.BaseOffset.getFixedValue())
4690
.abs()
4691
.slt(std::abs(NewF.BaseOffset.getFixedValue())) &&
4692
(C->getAPInt() + NewF.BaseOffset.getFixedValue())
4693
.countr_zero() >=
4694
(unsigned)llvm::countr_zero<uint64_t>(
4695
NewF.BaseOffset.getFixedValue()))
4696
goto skip_formula;
4697
}
4698
4699
// Ok, looks good.
4700
NewF.canonicalize(*this->L);
4701
(void)InsertFormula(LU, LUIdx, NewF);
4702
break;
4703
skip_formula:;
4704
}
4705
}
4706
}
4707
}
4708
}
4709
4710
/// Generate formulae for each use.
4711
void
4712
LSRInstance::GenerateAllReuseFormulae() {
4713
// This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4714
// queries are more precise.
4715
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4716
LSRUse &LU = Uses[LUIdx];
4717
for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4718
GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4719
for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4720
GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4721
}
4722
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4723
LSRUse &LU = Uses[LUIdx];
4724
for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4725
GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4726
for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4727
GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4728
for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4729
GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4730
for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4731
GenerateScales(LU, LUIdx, LU.Formulae[i]);
4732
}
4733
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4734
LSRUse &LU = Uses[LUIdx];
4735
for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4736
GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4737
}
4738
4739
GenerateCrossUseConstantOffsets();
4740
4741
LLVM_DEBUG(dbgs() << "\n"
4742
"After generating reuse formulae:\n";
4743
print_uses(dbgs()));
4744
}
4745
4746
/// If there are multiple formulae with the same set of registers used
4747
/// by other uses, pick the best one and delete the others.
4748
void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4749
DenseSet<const SCEV *> VisitedRegs;
4750
SmallPtrSet<const SCEV *, 16> Regs;
4751
SmallPtrSet<const SCEV *, 16> LoserRegs;
4752
#ifndef NDEBUG
4753
bool ChangedFormulae = false;
4754
#endif
4755
4756
// Collect the best formula for each unique set of shared registers. This
4757
// is reset for each use.
4758
using BestFormulaeTy =
4759
DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4760
4761
BestFormulaeTy BestFormulae;
4762
4763
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4764
LSRUse &LU = Uses[LUIdx];
4765
LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4766
dbgs() << '\n');
4767
4768
bool Any = false;
4769
for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4770
FIdx != NumForms; ++FIdx) {
4771
Formula &F = LU.Formulae[FIdx];
4772
4773
// Some formulas are instant losers. For example, they may depend on
4774
// nonexistent AddRecs from other loops. These need to be filtered
4775
// immediately, otherwise heuristics could choose them over others leading
4776
// to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4777
// avoids the need to recompute this information across formulae using the
4778
// same bad AddRec. Passing LoserRegs is also essential unless we remove
4779
// the corresponding bad register from the Regs set.
4780
Cost CostF(L, SE, TTI, AMK);
4781
Regs.clear();
4782
CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4783
if (CostF.isLoser()) {
4784
// During initial formula generation, undesirable formulae are generated
4785
// by uses within other loops that have some non-trivial address mode or
4786
// use the postinc form of the IV. LSR needs to provide these formulae
4787
// as the basis of rediscovering the desired formula that uses an AddRec
4788
// corresponding to the existing phi. Once all formulae have been
4789
// generated, these initial losers may be pruned.
4790
LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
4791
dbgs() << "\n");
4792
}
4793
else {
4794
SmallVector<const SCEV *, 4> Key;
4795
for (const SCEV *Reg : F.BaseRegs) {
4796
if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4797
Key.push_back(Reg);
4798
}
4799
if (F.ScaledReg &&
4800
RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4801
Key.push_back(F.ScaledReg);
4802
// Unstable sort by host order ok, because this is only used for
4803
// uniquifying.
4804
llvm::sort(Key);
4805
4806
std::pair<BestFormulaeTy::const_iterator, bool> P =
4807
BestFormulae.insert(std::make_pair(Key, FIdx));
4808
if (P.second)
4809
continue;
4810
4811
Formula &Best = LU.Formulae[P.first->second];
4812
4813
Cost CostBest(L, SE, TTI, AMK);
4814
Regs.clear();
4815
CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4816
if (CostF.isLess(CostBest))
4817
std::swap(F, Best);
4818
LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4819
dbgs() << "\n"
4820
" in favor of formula ";
4821
Best.print(dbgs()); dbgs() << '\n');
4822
}
4823
#ifndef NDEBUG
4824
ChangedFormulae = true;
4825
#endif
4826
LU.DeleteFormula(F);
4827
--FIdx;
4828
--NumForms;
4829
Any = true;
4830
}
4831
4832
// Now that we've filtered out some formulae, recompute the Regs set.
4833
if (Any)
4834
LU.RecomputeRegs(LUIdx, RegUses);
4835
4836
// Reset this to prepare for the next use.
4837
BestFormulae.clear();
4838
}
4839
4840
LLVM_DEBUG(if (ChangedFormulae) {
4841
dbgs() << "\n"
4842
"After filtering out undesirable candidates:\n";
4843
print_uses(dbgs());
4844
});
4845
}
4846
4847
/// Estimate the worst-case number of solutions the solver might have to
4848
/// consider. It almost never considers this many solutions because it prune the
4849
/// search space, but the pruning isn't always sufficient.
4850
size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4851
size_t Power = 1;
4852
for (const LSRUse &LU : Uses) {
4853
size_t FSize = LU.Formulae.size();
4854
if (FSize >= ComplexityLimit) {
4855
Power = ComplexityLimit;
4856
break;
4857
}
4858
Power *= FSize;
4859
if (Power >= ComplexityLimit)
4860
break;
4861
}
4862
return Power;
4863
}
4864
4865
/// When one formula uses a superset of the registers of another formula, it
4866
/// won't help reduce register pressure (though it may not necessarily hurt
4867
/// register pressure); remove it to simplify the system.
4868
void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4869
if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4870
LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4871
4872
LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4873
"which use a superset of registers used by other "
4874
"formulae.\n");
4875
4876
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4877
LSRUse &LU = Uses[LUIdx];
4878
bool Any = false;
4879
for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4880
Formula &F = LU.Formulae[i];
4881
if (F.BaseOffset.isNonZero() && F.BaseOffset.isScalable())
4882
continue;
4883
// Look for a formula with a constant or GV in a register. If the use
4884
// also has a formula with that same value in an immediate field,
4885
// delete the one that uses a register.
4886
for (SmallVectorImpl<const SCEV *>::const_iterator
4887
I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4888
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4889
Formula NewF = F;
4890
//FIXME: Formulas should store bitwidth to do wrapping properly.
4891
// See PR41034.
4892
NewF.BaseOffset =
4893
Immediate::getFixed(NewF.BaseOffset.getFixedValue() +
4894
(uint64_t)C->getValue()->getSExtValue());
4895
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4896
(I - F.BaseRegs.begin()));
4897
if (LU.HasFormulaWithSameRegs(NewF)) {
4898
LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4899
dbgs() << '\n');
4900
LU.DeleteFormula(F);
4901
--i;
4902
--e;
4903
Any = true;
4904
break;
4905
}
4906
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4907
if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4908
if (!F.BaseGV) {
4909
Formula NewF = F;
4910
NewF.BaseGV = GV;
4911
NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4912
(I - F.BaseRegs.begin()));
4913
if (LU.HasFormulaWithSameRegs(NewF)) {
4914
LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4915
dbgs() << '\n');
4916
LU.DeleteFormula(F);
4917
--i;
4918
--e;
4919
Any = true;
4920
break;
4921
}
4922
}
4923
}
4924
}
4925
}
4926
if (Any)
4927
LU.RecomputeRegs(LUIdx, RegUses);
4928
}
4929
4930
LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4931
}
4932
}
4933
4934
/// When there are many registers for expressions like A, A+1, A+2, etc.,
4935
/// allocate a single register for them.
4936
void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4937
if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4938
return;
4939
4940
LLVM_DEBUG(
4941
dbgs() << "The search space is too complex.\n"
4942
"Narrowing the search space by assuming that uses separated "
4943
"by a constant offset will use the same registers.\n");
4944
4945
// This is especially useful for unrolled loops.
4946
4947
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4948
LSRUse &LU = Uses[LUIdx];
4949
for (const Formula &F : LU.Formulae) {
4950
if (F.BaseOffset.isZero() || (F.Scale != 0 && F.Scale != 1))
4951
continue;
4952
4953
LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4954
if (!LUThatHas)
4955
continue;
4956
4957
if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4958
LU.Kind, LU.AccessTy))
4959
continue;
4960
4961
LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4962
4963
LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4964
4965
// Transfer the fixups of LU to LUThatHas.
4966
for (LSRFixup &Fixup : LU.Fixups) {
4967
Fixup.Offset += F.BaseOffset;
4968
LUThatHas->pushFixup(Fixup);
4969
LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4970
}
4971
4972
// Delete formulae from the new use which are no longer legal.
4973
bool Any = false;
4974
for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4975
Formula &F = LUThatHas->Formulae[i];
4976
if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4977
LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4978
LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4979
LUThatHas->DeleteFormula(F);
4980
--i;
4981
--e;
4982
Any = true;
4983
}
4984
}
4985
4986
if (Any)
4987
LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4988
4989
// Delete the old use.
4990
DeleteUse(LU, LUIdx);
4991
--LUIdx;
4992
--NumUses;
4993
break;
4994
}
4995
}
4996
4997
LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4998
}
4999
5000
/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
5001
/// we've done more filtering, as it may be able to find more formulae to
5002
/// eliminate.
5003
void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
5004
if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
5005
LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5006
5007
LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
5008
"undesirable dedicated registers.\n");
5009
5010
FilterOutUndesirableDedicatedRegisters();
5011
5012
LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5013
}
5014
}
5015
5016
/// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
5017
/// Pick the best one and delete the others.
5018
/// This narrowing heuristic is to keep as many formulae with different
5019
/// Scale and ScaledReg pair as possible while narrowing the search space.
5020
/// The benefit is that it is more likely to find out a better solution
5021
/// from a formulae set with more Scale and ScaledReg variations than
5022
/// a formulae set with the same Scale and ScaledReg. The picking winner
5023
/// reg heuristic will often keep the formulae with the same Scale and
5024
/// ScaledReg and filter others, and we want to avoid that if possible.
5025
void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
5026
if (EstimateSearchSpaceComplexity() < ComplexityLimit)
5027
return;
5028
5029
LLVM_DEBUG(
5030
dbgs() << "The search space is too complex.\n"
5031
"Narrowing the search space by choosing the best Formula "
5032
"from the Formulae with the same Scale and ScaledReg.\n");
5033
5034
// Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
5035
using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
5036
5037
BestFormulaeTy BestFormulae;
5038
#ifndef NDEBUG
5039
bool ChangedFormulae = false;
5040
#endif
5041
DenseSet<const SCEV *> VisitedRegs;
5042
SmallPtrSet<const SCEV *, 16> Regs;
5043
5044
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5045
LSRUse &LU = Uses[LUIdx];
5046
LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
5047
dbgs() << '\n');
5048
5049
// Return true if Formula FA is better than Formula FB.
5050
auto IsBetterThan = [&](Formula &FA, Formula &FB) {
5051
// First we will try to choose the Formula with fewer new registers.
5052
// For a register used by current Formula, the more the register is
5053
// shared among LSRUses, the less we increase the register number
5054
// counter of the formula.
5055
size_t FARegNum = 0;
5056
for (const SCEV *Reg : FA.BaseRegs) {
5057
const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
5058
FARegNum += (NumUses - UsedByIndices.count() + 1);
5059
}
5060
size_t FBRegNum = 0;
5061
for (const SCEV *Reg : FB.BaseRegs) {
5062
const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
5063
FBRegNum += (NumUses - UsedByIndices.count() + 1);
5064
}
5065
if (FARegNum != FBRegNum)
5066
return FARegNum < FBRegNum;
5067
5068
// If the new register numbers are the same, choose the Formula with
5069
// less Cost.
5070
Cost CostFA(L, SE, TTI, AMK);
5071
Cost CostFB(L, SE, TTI, AMK);
5072
Regs.clear();
5073
CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
5074
Regs.clear();
5075
CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
5076
return CostFA.isLess(CostFB);
5077
};
5078
5079
bool Any = false;
5080
for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
5081
++FIdx) {
5082
Formula &F = LU.Formulae[FIdx];
5083
if (!F.ScaledReg)
5084
continue;
5085
auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
5086
if (P.second)
5087
continue;
5088
5089
Formula &Best = LU.Formulae[P.first->second];
5090
if (IsBetterThan(F, Best))
5091
std::swap(F, Best);
5092
LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
5093
dbgs() << "\n"
5094
" in favor of formula ";
5095
Best.print(dbgs()); dbgs() << '\n');
5096
#ifndef NDEBUG
5097
ChangedFormulae = true;
5098
#endif
5099
LU.DeleteFormula(F);
5100
--FIdx;
5101
--NumForms;
5102
Any = true;
5103
}
5104
if (Any)
5105
LU.RecomputeRegs(LUIdx, RegUses);
5106
5107
// Reset this to prepare for the next use.
5108
BestFormulae.clear();
5109
}
5110
5111
LLVM_DEBUG(if (ChangedFormulae) {
5112
dbgs() << "\n"
5113
"After filtering out undesirable candidates:\n";
5114
print_uses(dbgs());
5115
});
5116
}
5117
5118
/// If we are over the complexity limit, filter out any post-inc prefering
5119
/// variables to only post-inc values.
5120
void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
5121
if (AMK != TTI::AMK_PostIndexed)
5122
return;
5123
if (EstimateSearchSpaceComplexity() < ComplexityLimit)
5124
return;
5125
5126
LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
5127
"Narrowing the search space by choosing the lowest "
5128
"register Formula for PostInc Uses.\n");
5129
5130
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5131
LSRUse &LU = Uses[LUIdx];
5132
5133
if (LU.Kind != LSRUse::Address)
5134
continue;
5135
if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
5136
!TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
5137
continue;
5138
5139
size_t MinRegs = std::numeric_limits<size_t>::max();
5140
for (const Formula &F : LU.Formulae)
5141
MinRegs = std::min(F.getNumRegs(), MinRegs);
5142
5143
bool Any = false;
5144
for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
5145
++FIdx) {
5146
Formula &F = LU.Formulae[FIdx];
5147
if (F.getNumRegs() > MinRegs) {
5148
LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
5149
dbgs() << "\n");
5150
LU.DeleteFormula(F);
5151
--FIdx;
5152
--NumForms;
5153
Any = true;
5154
}
5155
}
5156
if (Any)
5157
LU.RecomputeRegs(LUIdx, RegUses);
5158
5159
if (EstimateSearchSpaceComplexity() < ComplexityLimit)
5160
break;
5161
}
5162
5163
LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5164
}
5165
5166
/// The function delete formulas with high registers number expectation.
5167
/// Assuming we don't know the value of each formula (already delete
5168
/// all inefficient), generate probability of not selecting for each
5169
/// register.
5170
/// For example,
5171
/// Use1:
5172
/// reg(a) + reg({0,+,1})
5173
/// reg(a) + reg({-1,+,1}) + 1
5174
/// reg({a,+,1})
5175
/// Use2:
5176
/// reg(b) + reg({0,+,1})
5177
/// reg(b) + reg({-1,+,1}) + 1
5178
/// reg({b,+,1})
5179
/// Use3:
5180
/// reg(c) + reg(b) + reg({0,+,1})
5181
/// reg(c) + reg({b,+,1})
5182
///
5183
/// Probability of not selecting
5184
/// Use1 Use2 Use3
5185
/// reg(a) (1/3) * 1 * 1
5186
/// reg(b) 1 * (1/3) * (1/2)
5187
/// reg({0,+,1}) (2/3) * (2/3) * (1/2)
5188
/// reg({-1,+,1}) (2/3) * (2/3) * 1
5189
/// reg({a,+,1}) (2/3) * 1 * 1
5190
/// reg({b,+,1}) 1 * (2/3) * (2/3)
5191
/// reg(c) 1 * 1 * 0
5192
///
5193
/// Now count registers number mathematical expectation for each formula:
5194
/// Note that for each use we exclude probability if not selecting for the use.
5195
/// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
5196
/// probabilty 1/3 of not selecting for Use1).
5197
/// Use1:
5198
/// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
5199
/// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
5200
/// reg({a,+,1}) 1
5201
/// Use2:
5202
/// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
5203
/// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
5204
/// reg({b,+,1}) 2/3
5205
/// Use3:
5206
/// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
5207
/// reg(c) + reg({b,+,1}) 1 + 2/3
5208
void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
5209
if (EstimateSearchSpaceComplexity() < ComplexityLimit)
5210
return;
5211
// Ok, we have too many of formulae on our hands to conveniently handle.
5212
// Use a rough heuristic to thin out the list.
5213
5214
// Set of Regs wich will be 100% used in final solution.
5215
// Used in each formula of a solution (in example above this is reg(c)).
5216
// We can skip them in calculations.
5217
SmallPtrSet<const SCEV *, 4> UniqRegs;
5218
LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5219
5220
// Map each register to probability of not selecting
5221
DenseMap <const SCEV *, float> RegNumMap;
5222
for (const SCEV *Reg : RegUses) {
5223
if (UniqRegs.count(Reg))
5224
continue;
5225
float PNotSel = 1;
5226
for (const LSRUse &LU : Uses) {
5227
if (!LU.Regs.count(Reg))
5228
continue;
5229
float P = LU.getNotSelectedProbability(Reg);
5230
if (P != 0.0)
5231
PNotSel *= P;
5232
else
5233
UniqRegs.insert(Reg);
5234
}
5235
RegNumMap.insert(std::make_pair(Reg, PNotSel));
5236
}
5237
5238
LLVM_DEBUG(
5239
dbgs() << "Narrowing the search space by deleting costly formulas\n");
5240
5241
// Delete formulas where registers number expectation is high.
5242
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5243
LSRUse &LU = Uses[LUIdx];
5244
// If nothing to delete - continue.
5245
if (LU.Formulae.size() < 2)
5246
continue;
5247
// This is temporary solution to test performance. Float should be
5248
// replaced with round independent type (based on integers) to avoid
5249
// different results for different target builds.
5250
float FMinRegNum = LU.Formulae[0].getNumRegs();
5251
float FMinARegNum = LU.Formulae[0].getNumRegs();
5252
size_t MinIdx = 0;
5253
for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5254
Formula &F = LU.Formulae[i];
5255
float FRegNum = 0;
5256
float FARegNum = 0;
5257
for (const SCEV *BaseReg : F.BaseRegs) {
5258
if (UniqRegs.count(BaseReg))
5259
continue;
5260
FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
5261
if (isa<SCEVAddRecExpr>(BaseReg))
5262
FARegNum +=
5263
RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
5264
}
5265
if (const SCEV *ScaledReg = F.ScaledReg) {
5266
if (!UniqRegs.count(ScaledReg)) {
5267
FRegNum +=
5268
RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
5269
if (isa<SCEVAddRecExpr>(ScaledReg))
5270
FARegNum +=
5271
RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
5272
}
5273
}
5274
if (FMinRegNum > FRegNum ||
5275
(FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
5276
FMinRegNum = FRegNum;
5277
FMinARegNum = FARegNum;
5278
MinIdx = i;
5279
}
5280
}
5281
LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs());
5282
dbgs() << " with min reg num " << FMinRegNum << '\n');
5283
if (MinIdx != 0)
5284
std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
5285
while (LU.Formulae.size() != 1) {
5286
LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs());
5287
dbgs() << '\n');
5288
LU.Formulae.pop_back();
5289
}
5290
LU.RecomputeRegs(LUIdx, RegUses);
5291
assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
5292
Formula &F = LU.Formulae[0];
5293
LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n');
5294
// When we choose the formula, the regs become unique.
5295
UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
5296
if (F.ScaledReg)
5297
UniqRegs.insert(F.ScaledReg);
5298
}
5299
LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5300
}
5301
5302
// Check if Best and Reg are SCEVs separated by a constant amount C, and if so
5303
// would the addressing offset +C would be legal where the negative offset -C is
5304
// not.
5305
static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI,
5306
ScalarEvolution &SE, const SCEV *Best,
5307
const SCEV *Reg,
5308
MemAccessTy AccessType) {
5309
if (Best->getType() != Reg->getType() ||
5310
(isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) &&
5311
cast<SCEVAddRecExpr>(Best)->getLoop() !=
5312
cast<SCEVAddRecExpr>(Reg)->getLoop()))
5313
return false;
5314
const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg));
5315
if (!Diff)
5316
return false;
5317
5318
return TTI.isLegalAddressingMode(
5319
AccessType.MemTy, /*BaseGV=*/nullptr,
5320
/*BaseOffset=*/Diff->getAPInt().getSExtValue(),
5321
/*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) &&
5322
!TTI.isLegalAddressingMode(
5323
AccessType.MemTy, /*BaseGV=*/nullptr,
5324
/*BaseOffset=*/-Diff->getAPInt().getSExtValue(),
5325
/*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace);
5326
}
5327
5328
/// Pick a register which seems likely to be profitable, and then in any use
5329
/// which has any reference to that register, delete all formulae which do not
5330
/// reference that register.
5331
void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
5332
// With all other options exhausted, loop until the system is simple
5333
// enough to handle.
5334
SmallPtrSet<const SCEV *, 4> Taken;
5335
while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
5336
// Ok, we have too many of formulae on our hands to conveniently handle.
5337
// Use a rough heuristic to thin out the list.
5338
LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5339
5340
// Pick the register which is used by the most LSRUses, which is likely
5341
// to be a good reuse register candidate.
5342
const SCEV *Best = nullptr;
5343
unsigned BestNum = 0;
5344
for (const SCEV *Reg : RegUses) {
5345
if (Taken.count(Reg))
5346
continue;
5347
if (!Best) {
5348
Best = Reg;
5349
BestNum = RegUses.getUsedByIndices(Reg).count();
5350
} else {
5351
unsigned Count = RegUses.getUsedByIndices(Reg).count();
5352
if (Count > BestNum) {
5353
Best = Reg;
5354
BestNum = Count;
5355
}
5356
5357
// If the scores are the same, but the Reg is simpler for the target
5358
// (for example {x,+,1} as opposed to {x+C,+,1}, where the target can
5359
// handle +C but not -C), opt for the simpler formula.
5360
if (Count == BestNum) {
5361
int LUIdx = RegUses.getUsedByIndices(Reg).find_first();
5362
if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address &&
5363
IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg,
5364
Uses[LUIdx].AccessTy)) {
5365
Best = Reg;
5366
BestNum = Count;
5367
}
5368
}
5369
}
5370
}
5371
assert(Best && "Failed to find best LSRUse candidate");
5372
5373
LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
5374
<< " will yield profitable reuse.\n");
5375
Taken.insert(Best);
5376
5377
// In any use with formulae which references this register, delete formulae
5378
// which don't reference it.
5379
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5380
LSRUse &LU = Uses[LUIdx];
5381
if (!LU.Regs.count(Best)) continue;
5382
5383
bool Any = false;
5384
for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5385
Formula &F = LU.Formulae[i];
5386
if (!F.referencesReg(Best)) {
5387
LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
5388
LU.DeleteFormula(F);
5389
--e;
5390
--i;
5391
Any = true;
5392
assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5393
continue;
5394
}
5395
}
5396
5397
if (Any)
5398
LU.RecomputeRegs(LUIdx, RegUses);
5399
}
5400
5401
LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5402
}
5403
}
5404
5405
/// If there are an extraordinary number of formulae to choose from, use some
5406
/// rough heuristics to prune down the number of formulae. This keeps the main
5407
/// solver from taking an extraordinary amount of time in some worst-case
5408
/// scenarios.
5409
void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5410
NarrowSearchSpaceByDetectingSupersets();
5411
NarrowSearchSpaceByCollapsingUnrolledCode();
5412
NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5413
if (FilterSameScaledReg)
5414
NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5415
NarrowSearchSpaceByFilterPostInc();
5416
if (LSRExpNarrow)
5417
NarrowSearchSpaceByDeletingCostlyFormulas();
5418
else
5419
NarrowSearchSpaceByPickingWinnerRegs();
5420
}
5421
5422
/// This is the recursive solver.
5423
void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5424
Cost &SolutionCost,
5425
SmallVectorImpl<const Formula *> &Workspace,
5426
const Cost &CurCost,
5427
const SmallPtrSet<const SCEV *, 16> &CurRegs,
5428
DenseSet<const SCEV *> &VisitedRegs) const {
5429
// Some ideas:
5430
// - prune more:
5431
// - use more aggressive filtering
5432
// - sort the formula so that the most profitable solutions are found first
5433
// - sort the uses too
5434
// - search faster:
5435
// - don't compute a cost, and then compare. compare while computing a cost
5436
// and bail early.
5437
// - track register sets with SmallBitVector
5438
5439
const LSRUse &LU = Uses[Workspace.size()];
5440
5441
// If this use references any register that's already a part of the
5442
// in-progress solution, consider it a requirement that a formula must
5443
// reference that register in order to be considered. This prunes out
5444
// unprofitable searching.
5445
SmallSetVector<const SCEV *, 4> ReqRegs;
5446
for (const SCEV *S : CurRegs)
5447
if (LU.Regs.count(S))
5448
ReqRegs.insert(S);
5449
5450
SmallPtrSet<const SCEV *, 16> NewRegs;
5451
Cost NewCost(L, SE, TTI, AMK);
5452
for (const Formula &F : LU.Formulae) {
5453
// Ignore formulae which may not be ideal in terms of register reuse of
5454
// ReqRegs. The formula should use all required registers before
5455
// introducing new ones.
5456
// This can sometimes (notably when trying to favour postinc) lead to
5457
// sub-optimial decisions. There it is best left to the cost modelling to
5458
// get correct.
5459
if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5460
int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5461
for (const SCEV *Reg : ReqRegs) {
5462
if ((F.ScaledReg && F.ScaledReg == Reg) ||
5463
is_contained(F.BaseRegs, Reg)) {
5464
--NumReqRegsToFind;
5465
if (NumReqRegsToFind == 0)
5466
break;
5467
}
5468
}
5469
if (NumReqRegsToFind != 0) {
5470
// If none of the formulae satisfied the required registers, then we could
5471
// clear ReqRegs and try again. Currently, we simply give up in this case.
5472
continue;
5473
}
5474
}
5475
5476
// Evaluate the cost of the current formula. If it's already worse than
5477
// the current best, prune the search at that point.
5478
NewCost = CurCost;
5479
NewRegs = CurRegs;
5480
NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5481
if (NewCost.isLess(SolutionCost)) {
5482
Workspace.push_back(&F);
5483
if (Workspace.size() != Uses.size()) {
5484
SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5485
NewRegs, VisitedRegs);
5486
if (F.getNumRegs() == 1 && Workspace.size() == 1)
5487
VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5488
} else {
5489
LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5490
dbgs() << ".\nRegs:\n";
5491
for (const SCEV *S : NewRegs) dbgs()
5492
<< "- " << *S << "\n";
5493
dbgs() << '\n');
5494
5495
SolutionCost = NewCost;
5496
Solution = Workspace;
5497
}
5498
Workspace.pop_back();
5499
}
5500
}
5501
}
5502
5503
/// Choose one formula from each use. Return the results in the given Solution
5504
/// vector.
5505
void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5506
SmallVector<const Formula *, 8> Workspace;
5507
Cost SolutionCost(L, SE, TTI, AMK);
5508
SolutionCost.Lose();
5509
Cost CurCost(L, SE, TTI, AMK);
5510
SmallPtrSet<const SCEV *, 16> CurRegs;
5511
DenseSet<const SCEV *> VisitedRegs;
5512
Workspace.reserve(Uses.size());
5513
5514
// SolveRecurse does all the work.
5515
SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5516
CurRegs, VisitedRegs);
5517
if (Solution.empty()) {
5518
LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5519
return;
5520
}
5521
5522
// Ok, we've now made all our decisions.
5523
LLVM_DEBUG(dbgs() << "\n"
5524
"The chosen solution requires ";
5525
SolutionCost.print(dbgs()); dbgs() << ":\n";
5526
for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5527
dbgs() << " ";
5528
Uses[i].print(dbgs());
5529
dbgs() << "\n"
5530
" ";
5531
Solution[i]->print(dbgs());
5532
dbgs() << '\n';
5533
});
5534
5535
assert(Solution.size() == Uses.size() && "Malformed solution!");
5536
5537
const bool EnableDropUnprofitableSolution = [&] {
5538
switch (AllowDropSolutionIfLessProfitable) {
5539
case cl::BOU_TRUE:
5540
return true;
5541
case cl::BOU_FALSE:
5542
return false;
5543
case cl::BOU_UNSET:
5544
return TTI.shouldDropLSRSolutionIfLessProfitable();
5545
}
5546
llvm_unreachable("Unhandled cl::boolOrDefault enum");
5547
}();
5548
5549
if (BaselineCost.isLess(SolutionCost)) {
5550
if (!EnableDropUnprofitableSolution)
5551
LLVM_DEBUG(
5552
dbgs() << "Baseline is more profitable than chosen solution, "
5553
"add option 'lsr-drop-solution' to drop LSR solution.\n");
5554
else {
5555
LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen "
5556
"solution, dropping LSR solution.\n";);
5557
Solution.clear();
5558
}
5559
}
5560
}
5561
5562
/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5563
/// we can go while still being dominated by the input positions. This helps
5564
/// canonicalize the insert position, which encourages sharing.
5565
BasicBlock::iterator
5566
LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5567
const SmallVectorImpl<Instruction *> &Inputs)
5568
const {
5569
Instruction *Tentative = &*IP;
5570
while (true) {
5571
bool AllDominate = true;
5572
Instruction *BetterPos = nullptr;
5573
// Don't bother attempting to insert before a catchswitch, their basic block
5574
// cannot have other non-PHI instructions.
5575
if (isa<CatchSwitchInst>(Tentative))
5576
return IP;
5577
5578
for (Instruction *Inst : Inputs) {
5579
if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5580
AllDominate = false;
5581
break;
5582
}
5583
// Attempt to find an insert position in the middle of the block,
5584
// instead of at the end, so that it can be used for other expansions.
5585
if (Tentative->getParent() == Inst->getParent() &&
5586
(!BetterPos || !DT.dominates(Inst, BetterPos)))
5587
BetterPos = &*std::next(BasicBlock::iterator(Inst));
5588
}
5589
if (!AllDominate)
5590
break;
5591
if (BetterPos)
5592
IP = BetterPos->getIterator();
5593
else
5594
IP = Tentative->getIterator();
5595
5596
const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5597
unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5598
5599
BasicBlock *IDom;
5600
for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5601
if (!Rung) return IP;
5602
Rung = Rung->getIDom();
5603
if (!Rung) return IP;
5604
IDom = Rung->getBlock();
5605
5606
// Don't climb into a loop though.
5607
const Loop *IDomLoop = LI.getLoopFor(IDom);
5608
unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5609
if (IDomDepth <= IPLoopDepth &&
5610
(IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5611
break;
5612
}
5613
5614
Tentative = IDom->getTerminator();
5615
}
5616
5617
return IP;
5618
}
5619
5620
/// Determine an input position which will be dominated by the operands and
5621
/// which will dominate the result.
5622
BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5623
BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5624
// Collect some instructions which must be dominated by the
5625
// expanding replacement. These must be dominated by any operands that
5626
// will be required in the expansion.
5627
SmallVector<Instruction *, 4> Inputs;
5628
if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5629
Inputs.push_back(I);
5630
if (LU.Kind == LSRUse::ICmpZero)
5631
if (Instruction *I =
5632
dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5633
Inputs.push_back(I);
5634
if (LF.PostIncLoops.count(L)) {
5635
if (LF.isUseFullyOutsideLoop(L))
5636
Inputs.push_back(L->getLoopLatch()->getTerminator());
5637
else
5638
Inputs.push_back(IVIncInsertPos);
5639
}
5640
// The expansion must also be dominated by the increment positions of any
5641
// loops it for which it is using post-inc mode.
5642
for (const Loop *PIL : LF.PostIncLoops) {
5643
if (PIL == L) continue;
5644
5645
// Be dominated by the loop exit.
5646
SmallVector<BasicBlock *, 4> ExitingBlocks;
5647
PIL->getExitingBlocks(ExitingBlocks);
5648
if (!ExitingBlocks.empty()) {
5649
BasicBlock *BB = ExitingBlocks[0];
5650
for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5651
BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5652
Inputs.push_back(BB->getTerminator());
5653
}
5654
}
5655
5656
assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5657
&& !isa<DbgInfoIntrinsic>(LowestIP) &&
5658
"Insertion point must be a normal instruction");
5659
5660
// Then, climb up the immediate dominator tree as far as we can go while
5661
// still being dominated by the input positions.
5662
BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5663
5664
// Don't insert instructions before PHI nodes.
5665
while (isa<PHINode>(IP)) ++IP;
5666
5667
// Ignore landingpad instructions.
5668
while (IP->isEHPad()) ++IP;
5669
5670
// Ignore debug intrinsics.
5671
while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5672
5673
// Set IP below instructions recently inserted by SCEVExpander. This keeps the
5674
// IP consistent across expansions and allows the previously inserted
5675
// instructions to be reused by subsequent expansion.
5676
while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5677
++IP;
5678
5679
return IP;
5680
}
5681
5682
/// Emit instructions for the leading candidate expression for this LSRUse (this
5683
/// is called "expanding").
5684
Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5685
const Formula &F, BasicBlock::iterator IP,
5686
SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5687
if (LU.RigidFormula)
5688
return LF.OperandValToReplace;
5689
5690
// Determine an input position which will be dominated by the operands and
5691
// which will dominate the result.
5692
IP = AdjustInsertPositionForExpand(IP, LF, LU);
5693
Rewriter.setInsertPoint(&*IP);
5694
5695
// Inform the Rewriter if we have a post-increment use, so that it can
5696
// perform an advantageous expansion.
5697
Rewriter.setPostInc(LF.PostIncLoops);
5698
5699
// This is the type that the user actually needs.
5700
Type *OpTy = LF.OperandValToReplace->getType();
5701
// This will be the type that we'll initially expand to.
5702
Type *Ty = F.getType();
5703
if (!Ty)
5704
// No type known; just expand directly to the ultimate type.
5705
Ty = OpTy;
5706
else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5707
// Expand directly to the ultimate type if it's the right size.
5708
Ty = OpTy;
5709
// This is the type to do integer arithmetic in.
5710
Type *IntTy = SE.getEffectiveSCEVType(Ty);
5711
5712
// Build up a list of operands to add together to form the full base.
5713
SmallVector<const SCEV *, 8> Ops;
5714
5715
// Expand the BaseRegs portion.
5716
for (const SCEV *Reg : F.BaseRegs) {
5717
assert(!Reg->isZero() && "Zero allocated in a base register!");
5718
5719
// If we're expanding for a post-inc user, make the post-inc adjustment.
5720
Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5721
Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5722
}
5723
5724
// Expand the ScaledReg portion.
5725
Value *ICmpScaledV = nullptr;
5726
if (F.Scale != 0) {
5727
const SCEV *ScaledS = F.ScaledReg;
5728
5729
// If we're expanding for a post-inc user, make the post-inc adjustment.
5730
PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5731
ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5732
5733
if (LU.Kind == LSRUse::ICmpZero) {
5734
// Expand ScaleReg as if it was part of the base regs.
5735
if (F.Scale == 1)
5736
Ops.push_back(
5737
SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5738
else {
5739
// An interesting way of "folding" with an icmp is to use a negated
5740
// scale, which we'll implement by inserting it into the other operand
5741
// of the icmp.
5742
assert(F.Scale == -1 &&
5743
"The only scale supported by ICmpZero uses is -1!");
5744
ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5745
}
5746
} else {
5747
// Otherwise just expand the scaled register and an explicit scale,
5748
// which is expected to be matched as part of the address.
5749
5750
// Flush the operand list to suppress SCEVExpander hoisting address modes.
5751
// Unless the addressing mode will not be folded.
5752
if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5753
isAMCompletelyFolded(TTI, LU, F)) {
5754
Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5755
Ops.clear();
5756
Ops.push_back(SE.getUnknown(FullV));
5757
}
5758
ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5759
if (F.Scale != 1)
5760
ScaledS =
5761
SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5762
Ops.push_back(ScaledS);
5763
}
5764
}
5765
5766
// Expand the GV portion.
5767
if (F.BaseGV) {
5768
// Flush the operand list to suppress SCEVExpander hoisting.
5769
if (!Ops.empty()) {
5770
Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5771
Ops.clear();
5772
Ops.push_back(SE.getUnknown(FullV));
5773
}
5774
Ops.push_back(SE.getUnknown(F.BaseGV));
5775
}
5776
5777
// Flush the operand list to suppress SCEVExpander hoisting of both folded and
5778
// unfolded offsets. LSR assumes they both live next to their uses.
5779
if (!Ops.empty()) {
5780
Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5781
Ops.clear();
5782
Ops.push_back(SE.getUnknown(FullV));
5783
}
5784
5785
// FIXME: Are we sure we won't get a mismatch here? Is there a way to bail
5786
// out at this point, or should we generate a SCEV adding together mixed
5787
// offsets?
5788
assert(F.BaseOffset.isCompatibleImmediate(LF.Offset) &&
5789
"Expanding mismatched offsets\n");
5790
// Expand the immediate portion.
5791
Immediate Offset = F.BaseOffset.addUnsigned(LF.Offset);
5792
if (Offset.isNonZero()) {
5793
if (LU.Kind == LSRUse::ICmpZero) {
5794
// The other interesting way of "folding" with an ICmpZero is to use a
5795
// negated immediate.
5796
if (!ICmpScaledV)
5797
ICmpScaledV =
5798
ConstantInt::get(IntTy, -(uint64_t)Offset.getFixedValue());
5799
else {
5800
Ops.push_back(SE.getUnknown(ICmpScaledV));
5801
ICmpScaledV = ConstantInt::get(IntTy, Offset.getFixedValue());
5802
}
5803
} else {
5804
// Just add the immediate values. These again are expected to be matched
5805
// as part of the address.
5806
Ops.push_back(Offset.getUnknownSCEV(SE, IntTy));
5807
}
5808
}
5809
5810
// Expand the unfolded offset portion.
5811
Immediate UnfoldedOffset = F.UnfoldedOffset;
5812
if (UnfoldedOffset.isNonZero()) {
5813
// Just add the immediate values.
5814
Ops.push_back(UnfoldedOffset.getUnknownSCEV(SE, IntTy));
5815
}
5816
5817
// Emit instructions summing all the operands.
5818
const SCEV *FullS = Ops.empty() ?
5819
SE.getConstant(IntTy, 0) :
5820
SE.getAddExpr(Ops);
5821
Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5822
5823
// We're done expanding now, so reset the rewriter.
5824
Rewriter.clearPostInc();
5825
5826
// An ICmpZero Formula represents an ICmp which we're handling as a
5827
// comparison against zero. Now that we've expanded an expression for that
5828
// form, update the ICmp's other operand.
5829
if (LU.Kind == LSRUse::ICmpZero) {
5830
ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5831
if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5832
DeadInsts.emplace_back(OperandIsInstr);
5833
assert(!F.BaseGV && "ICmp does not support folding a global value and "
5834
"a scale at the same time!");
5835
if (F.Scale == -1) {
5836
if (ICmpScaledV->getType() != OpTy) {
5837
Instruction *Cast = CastInst::Create(
5838
CastInst::getCastOpcode(ICmpScaledV, false, OpTy, false),
5839
ICmpScaledV, OpTy, "tmp", CI->getIterator());
5840
ICmpScaledV = Cast;
5841
}
5842
CI->setOperand(1, ICmpScaledV);
5843
} else {
5844
// A scale of 1 means that the scale has been expanded as part of the
5845
// base regs.
5846
assert((F.Scale == 0 || F.Scale == 1) &&
5847
"ICmp does not support folding a global value and "
5848
"a scale at the same time!");
5849
Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5850
-(uint64_t)Offset.getFixedValue());
5851
if (C->getType() != OpTy) {
5852
C = ConstantFoldCastOperand(
5853
CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy,
5854
CI->getDataLayout());
5855
assert(C && "Cast of ConstantInt should have folded");
5856
}
5857
5858
CI->setOperand(1, C);
5859
}
5860
}
5861
5862
return FullV;
5863
}
5864
5865
/// Helper for Rewrite. PHI nodes are special because the use of their operands
5866
/// effectively happens in their predecessor blocks, so the expression may need
5867
/// to be expanded in multiple places.
5868
void LSRInstance::RewriteForPHI(
5869
PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5870
SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5871
DenseMap<BasicBlock *, Value *> Inserted;
5872
5873
// Inserting instructions in the loop and using them as PHI's input could
5874
// break LCSSA in case if PHI's parent block is not a loop exit (i.e. the
5875
// corresponding incoming block is not loop exiting). So collect all such
5876
// instructions to form LCSSA for them later.
5877
SmallVector<Instruction *, 4> InsertedNonLCSSAInsts;
5878
5879
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5880
if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5881
bool needUpdateFixups = false;
5882
BasicBlock *BB = PN->getIncomingBlock(i);
5883
5884
// If this is a critical edge, split the edge so that we do not insert
5885
// the code on all predecessor/successor paths. We do this unless this
5886
// is the canonical backedge for this loop, which complicates post-inc
5887
// users.
5888
if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5889
!isa<IndirectBrInst>(BB->getTerminator()) &&
5890
!isa<CatchSwitchInst>(BB->getTerminator())) {
5891
BasicBlock *Parent = PN->getParent();
5892
Loop *PNLoop = LI.getLoopFor(Parent);
5893
if (!PNLoop || Parent != PNLoop->getHeader()) {
5894
// Split the critical edge.
5895
BasicBlock *NewBB = nullptr;
5896
if (!Parent->isLandingPad()) {
5897
NewBB =
5898
SplitCriticalEdge(BB, Parent,
5899
CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5900
.setMergeIdenticalEdges()
5901
.setKeepOneInputPHIs());
5902
} else {
5903
SmallVector<BasicBlock*, 2> NewBBs;
5904
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
5905
SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI);
5906
NewBB = NewBBs[0];
5907
}
5908
// If NewBB==NULL, then SplitCriticalEdge refused to split because all
5909
// phi predecessors are identical. The simple thing to do is skip
5910
// splitting in this case rather than complicate the API.
5911
if (NewBB) {
5912
// If PN is outside of the loop and BB is in the loop, we want to
5913
// move the block to be immediately before the PHI block, not
5914
// immediately after BB.
5915
if (L->contains(BB) && !L->contains(PN))
5916
NewBB->moveBefore(PN->getParent());
5917
5918
// Splitting the edge can reduce the number of PHI entries we have.
5919
e = PN->getNumIncomingValues();
5920
BB = NewBB;
5921
i = PN->getBasicBlockIndex(BB);
5922
5923
needUpdateFixups = true;
5924
}
5925
}
5926
}
5927
5928
std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5929
Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5930
if (!Pair.second)
5931
PN->setIncomingValue(i, Pair.first->second);
5932
else {
5933
Value *FullV =
5934
Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5935
5936
// If this is reuse-by-noop-cast, insert the noop cast.
5937
Type *OpTy = LF.OperandValToReplace->getType();
5938
if (FullV->getType() != OpTy)
5939
FullV = CastInst::Create(
5940
CastInst::getCastOpcode(FullV, false, OpTy, false), FullV,
5941
LF.OperandValToReplace->getType(), "tmp",
5942
BB->getTerminator()->getIterator());
5943
5944
// If the incoming block for this value is not in the loop, it means the
5945
// current PHI is not in a loop exit, so we must create a LCSSA PHI for
5946
// the inserted value.
5947
if (auto *I = dyn_cast<Instruction>(FullV))
5948
if (L->contains(I) && !L->contains(BB))
5949
InsertedNonLCSSAInsts.push_back(I);
5950
5951
PN->setIncomingValue(i, FullV);
5952
Pair.first->second = FullV;
5953
}
5954
5955
// If LSR splits critical edge and phi node has other pending
5956
// fixup operands, we need to update those pending fixups. Otherwise
5957
// formulae will not be implemented completely and some instructions
5958
// will not be eliminated.
5959
if (needUpdateFixups) {
5960
for (LSRUse &LU : Uses)
5961
for (LSRFixup &Fixup : LU.Fixups)
5962
// If fixup is supposed to rewrite some operand in the phi
5963
// that was just updated, it may be already moved to
5964
// another phi node. Such fixup requires update.
5965
if (Fixup.UserInst == PN) {
5966
// Check if the operand we try to replace still exists in the
5967
// original phi.
5968
bool foundInOriginalPHI = false;
5969
for (const auto &val : PN->incoming_values())
5970
if (val == Fixup.OperandValToReplace) {
5971
foundInOriginalPHI = true;
5972
break;
5973
}
5974
5975
// If fixup operand found in original PHI - nothing to do.
5976
if (foundInOriginalPHI)
5977
continue;
5978
5979
// Otherwise it might be moved to another PHI and requires update.
5980
// If fixup operand not found in any of the incoming blocks that
5981
// means we have already rewritten it - nothing to do.
5982
for (const auto &Block : PN->blocks())
5983
for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5984
++I) {
5985
PHINode *NewPN = cast<PHINode>(I);
5986
for (const auto &val : NewPN->incoming_values())
5987
if (val == Fixup.OperandValToReplace)
5988
Fixup.UserInst = NewPN;
5989
}
5990
}
5991
}
5992
}
5993
5994
formLCSSAForInstructions(InsertedNonLCSSAInsts, DT, LI, &SE);
5995
}
5996
5997
/// Emit instructions for the leading candidate expression for this LSRUse (this
5998
/// is called "expanding"), and update the UserInst to reference the newly
5999
/// expanded value.
6000
void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
6001
const Formula &F,
6002
SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
6003
// First, find an insertion point that dominates UserInst. For PHI nodes,
6004
// find the nearest block which dominates all the relevant uses.
6005
if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
6006
RewriteForPHI(PN, LU, LF, F, DeadInsts);
6007
} else {
6008
Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
6009
6010
// If this is reuse-by-noop-cast, insert the noop cast.
6011
Type *OpTy = LF.OperandValToReplace->getType();
6012
if (FullV->getType() != OpTy) {
6013
Instruction *Cast =
6014
CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
6015
FullV, OpTy, "tmp", LF.UserInst->getIterator());
6016
FullV = Cast;
6017
}
6018
6019
// Update the user. ICmpZero is handled specially here (for now) because
6020
// Expand may have updated one of the operands of the icmp already, and
6021
// its new value may happen to be equal to LF.OperandValToReplace, in
6022
// which case doing replaceUsesOfWith leads to replacing both operands
6023
// with the same value. TODO: Reorganize this.
6024
if (LU.Kind == LSRUse::ICmpZero)
6025
LF.UserInst->setOperand(0, FullV);
6026
else
6027
LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
6028
}
6029
6030
if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
6031
DeadInsts.emplace_back(OperandIsInstr);
6032
}
6033
6034
// Trying to hoist the IVInc to loop header if all IVInc users are in
6035
// the loop header. It will help backend to generate post index load/store
6036
// when the latch block is different from loop header block.
6037
static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup,
6038
const LSRUse &LU, Instruction *IVIncInsertPos,
6039
Loop *L) {
6040
if (LU.Kind != LSRUse::Address)
6041
return false;
6042
6043
// For now this code do the conservative optimization, only work for
6044
// the header block. Later we can hoist the IVInc to the block post
6045
// dominate all users.
6046
BasicBlock *LHeader = L->getHeader();
6047
if (IVIncInsertPos->getParent() == LHeader)
6048
return false;
6049
6050
if (!Fixup.OperandValToReplace ||
6051
any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) {
6052
Instruction *UI = cast<Instruction>(U);
6053
return UI->getParent() != LHeader;
6054
}))
6055
return false;
6056
6057
Instruction *I = Fixup.UserInst;
6058
Type *Ty = I->getType();
6059
return Ty->isIntegerTy() &&
6060
((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) ||
6061
(isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty)));
6062
}
6063
6064
/// Rewrite all the fixup locations with new values, following the chosen
6065
/// solution.
6066
void LSRInstance::ImplementSolution(
6067
const SmallVectorImpl<const Formula *> &Solution) {
6068
// Keep track of instructions we may have made dead, so that
6069
// we can remove them after we are done working.
6070
SmallVector<WeakTrackingVH, 16> DeadInsts;
6071
6072
// Mark phi nodes that terminate chains so the expander tries to reuse them.
6073
for (const IVChain &Chain : IVChainVec) {
6074
if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
6075
Rewriter.setChainedPhi(PN);
6076
}
6077
6078
// Expand the new value definitions and update the users.
6079
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
6080
for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
6081
Instruction *InsertPos =
6082
canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L)
6083
? L->getHeader()->getTerminator()
6084
: IVIncInsertPos;
6085
Rewriter.setIVIncInsertPos(L, InsertPos);
6086
Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
6087
Changed = true;
6088
}
6089
6090
for (const IVChain &Chain : IVChainVec) {
6091
GenerateIVChain(Chain, DeadInsts);
6092
Changed = true;
6093
}
6094
6095
for (const WeakVH &IV : Rewriter.getInsertedIVs())
6096
if (IV && dyn_cast<Instruction>(&*IV)->getParent())
6097
ScalarEvolutionIVs.push_back(IV);
6098
6099
// Clean up after ourselves. This must be done before deleting any
6100
// instructions.
6101
Rewriter.clear();
6102
6103
Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
6104
&TLI, MSSAU);
6105
6106
// In our cost analysis above, we assume that each addrec consumes exactly
6107
// one register, and arrange to have increments inserted just before the
6108
// latch to maximimize the chance this is true. However, if we reused
6109
// existing IVs, we now need to move the increments to match our
6110
// expectations. Otherwise, our cost modeling results in us having a
6111
// chosen a non-optimal result for the actual schedule. (And yes, this
6112
// scheduling decision does impact later codegen.)
6113
for (PHINode &PN : L->getHeader()->phis()) {
6114
BinaryOperator *BO = nullptr;
6115
Value *Start = nullptr, *Step = nullptr;
6116
if (!matchSimpleRecurrence(&PN, BO, Start, Step))
6117
continue;
6118
6119
switch (BO->getOpcode()) {
6120
case Instruction::Sub:
6121
if (BO->getOperand(0) != &PN)
6122
// sub is non-commutative - match handling elsewhere in LSR
6123
continue;
6124
break;
6125
case Instruction::Add:
6126
break;
6127
default:
6128
continue;
6129
};
6130
6131
if (!isa<Constant>(Step))
6132
// If not a constant step, might increase register pressure
6133
// (We assume constants have been canonicalized to RHS)
6134
continue;
6135
6136
if (BO->getParent() == IVIncInsertPos->getParent())
6137
// Only bother moving across blocks. Isel can handle block local case.
6138
continue;
6139
6140
// Can we legally schedule inc at the desired point?
6141
if (!llvm::all_of(BO->uses(),
6142
[&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
6143
continue;
6144
BO->moveBefore(IVIncInsertPos);
6145
Changed = true;
6146
}
6147
6148
6149
}
6150
6151
LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6152
DominatorTree &DT, LoopInfo &LI,
6153
const TargetTransformInfo &TTI, AssumptionCache &AC,
6154
TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
6155
: IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
6156
MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
6157
? PreferredAddresingMode
6158
: TTI.getPreferredAddressingMode(L, &SE)),
6159
Rewriter(SE, L->getHeader()->getDataLayout(), "lsr", false),
6160
BaselineCost(L, SE, TTI, AMK) {
6161
// If LoopSimplify form is not available, stay out of trouble.
6162
if (!L->isLoopSimplifyForm())
6163
return;
6164
6165
// If there's no interesting work to be done, bail early.
6166
if (IU.empty()) return;
6167
6168
// If there's too much analysis to be done, bail early. We won't be able to
6169
// model the problem anyway.
6170
unsigned NumUsers = 0;
6171
for (const IVStrideUse &U : IU) {
6172
if (++NumUsers > MaxIVUsers) {
6173
(void)U;
6174
LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
6175
<< "\n");
6176
return;
6177
}
6178
// Bail out if we have a PHI on an EHPad that gets a value from a
6179
// CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
6180
// no good place to stick any instructions.
6181
if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
6182
auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
6183
if (isa<FuncletPadInst>(FirstNonPHI) ||
6184
isa<CatchSwitchInst>(FirstNonPHI))
6185
for (BasicBlock *PredBB : PN->blocks())
6186
if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
6187
return;
6188
}
6189
}
6190
6191
LLVM_DEBUG(dbgs() << "\nLSR on loop ";
6192
L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
6193
dbgs() << ":\n");
6194
6195
// Configure SCEVExpander already now, so the correct mode is used for
6196
// isSafeToExpand() checks.
6197
#ifndef NDEBUG
6198
Rewriter.setDebugType(DEBUG_TYPE);
6199
#endif
6200
Rewriter.disableCanonicalMode();
6201
Rewriter.enableLSRMode();
6202
6203
// First, perform some low-level loop optimizations.
6204
OptimizeShadowIV();
6205
OptimizeLoopTermCond();
6206
6207
// If loop preparation eliminates all interesting IV users, bail.
6208
if (IU.empty()) return;
6209
6210
// Skip nested loops until we can model them better with formulae.
6211
if (!L->isInnermost()) {
6212
LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
6213
return;
6214
}
6215
6216
// Start collecting data and preparing for the solver.
6217
// If number of registers is not the major cost, we cannot benefit from the
6218
// current profitable chain optimization which is based on number of
6219
// registers.
6220
// FIXME: add profitable chain optimization for other kinds major cost, for
6221
// example number of instructions.
6222
if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
6223
CollectChains();
6224
CollectInterestingTypesAndFactors();
6225
CollectFixupsAndInitialFormulae();
6226
CollectLoopInvariantFixupsAndFormulae();
6227
6228
if (Uses.empty())
6229
return;
6230
6231
LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
6232
print_uses(dbgs()));
6233
LLVM_DEBUG(dbgs() << "The baseline solution requires ";
6234
BaselineCost.print(dbgs()); dbgs() << "\n");
6235
6236
// Now use the reuse data to generate a bunch of interesting ways
6237
// to formulate the values needed for the uses.
6238
GenerateAllReuseFormulae();
6239
6240
FilterOutUndesirableDedicatedRegisters();
6241
NarrowSearchSpaceUsingHeuristics();
6242
6243
SmallVector<const Formula *, 8> Solution;
6244
Solve(Solution);
6245
6246
// Release memory that is no longer needed.
6247
Factors.clear();
6248
Types.clear();
6249
RegUses.clear();
6250
6251
if (Solution.empty())
6252
return;
6253
6254
#ifndef NDEBUG
6255
// Formulae should be legal.
6256
for (const LSRUse &LU : Uses) {
6257
for (const Formula &F : LU.Formulae)
6258
assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
6259
F) && "Illegal formula generated!");
6260
};
6261
#endif
6262
6263
// Now that we've decided what we want, make it so.
6264
ImplementSolution(Solution);
6265
}
6266
6267
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
6268
void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
6269
if (Factors.empty() && Types.empty()) return;
6270
6271
OS << "LSR has identified the following interesting factors and types: ";
6272
bool First = true;
6273
6274
for (int64_t Factor : Factors) {
6275
if (!First) OS << ", ";
6276
First = false;
6277
OS << '*' << Factor;
6278
}
6279
6280
for (Type *Ty : Types) {
6281
if (!First) OS << ", ";
6282
First = false;
6283
OS << '(' << *Ty << ')';
6284
}
6285
OS << '\n';
6286
}
6287
6288
void LSRInstance::print_fixups(raw_ostream &OS) const {
6289
OS << "LSR is examining the following fixup sites:\n";
6290
for (const LSRUse &LU : Uses)
6291
for (const LSRFixup &LF : LU.Fixups) {
6292
dbgs() << " ";
6293
LF.print(OS);
6294
OS << '\n';
6295
}
6296
}
6297
6298
void LSRInstance::print_uses(raw_ostream &OS) const {
6299
OS << "LSR is examining the following uses:\n";
6300
for (const LSRUse &LU : Uses) {
6301
dbgs() << " ";
6302
LU.print(OS);
6303
OS << '\n';
6304
for (const Formula &F : LU.Formulae) {
6305
OS << " ";
6306
F.print(OS);
6307
OS << '\n';
6308
}
6309
}
6310
}
6311
6312
void LSRInstance::print(raw_ostream &OS) const {
6313
print_factors_and_types(OS);
6314
print_fixups(OS);
6315
print_uses(OS);
6316
}
6317
6318
LLVM_DUMP_METHOD void LSRInstance::dump() const {
6319
print(errs()); errs() << '\n';
6320
}
6321
#endif
6322
6323
namespace {
6324
6325
class LoopStrengthReduce : public LoopPass {
6326
public:
6327
static char ID; // Pass ID, replacement for typeid
6328
6329
LoopStrengthReduce();
6330
6331
private:
6332
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
6333
void getAnalysisUsage(AnalysisUsage &AU) const override;
6334
};
6335
6336
} // end anonymous namespace
6337
6338
LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
6339
initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
6340
}
6341
6342
void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
6343
// We split critical edges, so we change the CFG. However, we do update
6344
// many analyses if they are around.
6345
AU.addPreservedID(LoopSimplifyID);
6346
6347
AU.addRequired<LoopInfoWrapperPass>();
6348
AU.addPreserved<LoopInfoWrapperPass>();
6349
AU.addRequiredID(LoopSimplifyID);
6350
AU.addRequired<DominatorTreeWrapperPass>();
6351
AU.addPreserved<DominatorTreeWrapperPass>();
6352
AU.addRequired<ScalarEvolutionWrapperPass>();
6353
AU.addPreserved<ScalarEvolutionWrapperPass>();
6354
AU.addRequired<AssumptionCacheTracker>();
6355
AU.addRequired<TargetLibraryInfoWrapperPass>();
6356
// Requiring LoopSimplify a second time here prevents IVUsers from running
6357
// twice, since LoopSimplify was invalidated by running ScalarEvolution.
6358
AU.addRequiredID(LoopSimplifyID);
6359
AU.addRequired<IVUsersWrapperPass>();
6360
AU.addPreserved<IVUsersWrapperPass>();
6361
AU.addRequired<TargetTransformInfoWrapperPass>();
6362
AU.addPreserved<MemorySSAWrapperPass>();
6363
}
6364
6365
namespace {
6366
6367
/// Enables more convenient iteration over a DWARF expression vector.
6368
static iterator_range<llvm::DIExpression::expr_op_iterator>
6369
ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
6370
llvm::DIExpression::expr_op_iterator Begin =
6371
llvm::DIExpression::expr_op_iterator(Expr.begin());
6372
llvm::DIExpression::expr_op_iterator End =
6373
llvm::DIExpression::expr_op_iterator(Expr.end());
6374
return {Begin, End};
6375
}
6376
6377
struct SCEVDbgValueBuilder {
6378
SCEVDbgValueBuilder() = default;
6379
SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
6380
6381
void clone(const SCEVDbgValueBuilder &Base) {
6382
LocationOps = Base.LocationOps;
6383
Expr = Base.Expr;
6384
}
6385
6386
void clear() {
6387
LocationOps.clear();
6388
Expr.clear();
6389
}
6390
6391
/// The DIExpression as we translate the SCEV.
6392
SmallVector<uint64_t, 6> Expr;
6393
/// The location ops of the DIExpression.
6394
SmallVector<Value *, 2> LocationOps;
6395
6396
void pushOperator(uint64_t Op) { Expr.push_back(Op); }
6397
void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
6398
6399
/// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
6400
/// in the set of values referenced by the expression.
6401
void pushLocation(llvm::Value *V) {
6402
Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
6403
auto *It = llvm::find(LocationOps, V);
6404
unsigned ArgIndex = 0;
6405
if (It != LocationOps.end()) {
6406
ArgIndex = std::distance(LocationOps.begin(), It);
6407
} else {
6408
ArgIndex = LocationOps.size();
6409
LocationOps.push_back(V);
6410
}
6411
Expr.push_back(ArgIndex);
6412
}
6413
6414
void pushValue(const SCEVUnknown *U) {
6415
llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
6416
pushLocation(V);
6417
}
6418
6419
bool pushConst(const SCEVConstant *C) {
6420
if (C->getAPInt().getSignificantBits() > 64)
6421
return false;
6422
Expr.push_back(llvm::dwarf::DW_OP_consts);
6423
Expr.push_back(C->getAPInt().getSExtValue());
6424
return true;
6425
}
6426
6427
// Iterating the expression as DWARF ops is convenient when updating
6428
// DWARF_OP_LLVM_args.
6429
iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
6430
return ToDwarfOpIter(Expr);
6431
}
6432
6433
/// Several SCEV types are sequences of the same arithmetic operator applied
6434
/// to constants and values that may be extended or truncated.
6435
bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
6436
uint64_t DwarfOp) {
6437
assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
6438
"Expected arithmetic SCEV type");
6439
bool Success = true;
6440
unsigned EmitOperator = 0;
6441
for (const auto &Op : CommExpr->operands()) {
6442
Success &= pushSCEV(Op);
6443
6444
if (EmitOperator >= 1)
6445
pushOperator(DwarfOp);
6446
++EmitOperator;
6447
}
6448
return Success;
6449
}
6450
6451
// TODO: Identify and omit noop casts.
6452
bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
6453
const llvm::SCEV *Inner = C->getOperand(0);
6454
const llvm::Type *Type = C->getType();
6455
uint64_t ToWidth = Type->getIntegerBitWidth();
6456
bool Success = pushSCEV(Inner);
6457
uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6458
IsSigned ? llvm::dwarf::DW_ATE_signed
6459
: llvm::dwarf::DW_ATE_unsigned};
6460
for (const auto &Op : CastOps)
6461
pushOperator(Op);
6462
return Success;
6463
}
6464
6465
// TODO: MinMax - although these haven't been encountered in the test suite.
6466
bool pushSCEV(const llvm::SCEV *S) {
6467
bool Success = true;
6468
if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6469
Success &= pushConst(StartInt);
6470
6471
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6472
if (!U->getValue())
6473
return false;
6474
pushLocation(U->getValue());
6475
6476
} else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6477
Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6478
6479
} else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6480
Success &= pushSCEV(UDiv->getLHS());
6481
Success &= pushSCEV(UDiv->getRHS());
6482
pushOperator(llvm::dwarf::DW_OP_div);
6483
6484
} else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6485
// Assert if a new and unknown SCEVCastEXpr type is encountered.
6486
assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6487
isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6488
"Unexpected cast type in SCEV.");
6489
Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6490
6491
} else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6492
Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6493
6494
} else if (isa<SCEVAddRecExpr>(S)) {
6495
// Nested SCEVAddRecExpr are generated by nested loops and are currently
6496
// unsupported.
6497
return false;
6498
6499
} else {
6500
return false;
6501
}
6502
return Success;
6503
}
6504
6505
/// Return true if the combination of arithmetic operator and underlying
6506
/// SCEV constant value is an identity function.
6507
bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6508
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6509
if (C->getAPInt().getSignificantBits() > 64)
6510
return false;
6511
int64_t I = C->getAPInt().getSExtValue();
6512
switch (Op) {
6513
case llvm::dwarf::DW_OP_plus:
6514
case llvm::dwarf::DW_OP_minus:
6515
return I == 0;
6516
case llvm::dwarf::DW_OP_mul:
6517
case llvm::dwarf::DW_OP_div:
6518
return I == 1;
6519
}
6520
}
6521
return false;
6522
}
6523
6524
/// Convert a SCEV of a value to a DIExpression that is pushed onto the
6525
/// builder's expression stack. The stack should already contain an
6526
/// expression for the iteration count, so that it can be multiplied by
6527
/// the stride and added to the start.
6528
/// Components of the expression are omitted if they are an identity function.
6529
/// Chain (non-affine) SCEVs are not supported.
6530
bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6531
assert(SAR.isAffine() && "Expected affine SCEV");
6532
// TODO: Is this check needed?
6533
if (isa<SCEVAddRecExpr>(SAR.getStart()))
6534
return false;
6535
6536
const SCEV *Start = SAR.getStart();
6537
const SCEV *Stride = SAR.getStepRecurrence(SE);
6538
6539
// Skip pushing arithmetic noops.
6540
if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6541
if (!pushSCEV(Stride))
6542
return false;
6543
pushOperator(llvm::dwarf::DW_OP_mul);
6544
}
6545
if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6546
if (!pushSCEV(Start))
6547
return false;
6548
pushOperator(llvm::dwarf::DW_OP_plus);
6549
}
6550
return true;
6551
}
6552
6553
/// Create an expression that is an offset from a value (usually the IV).
6554
void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6555
pushLocation(OffsetValue);
6556
DIExpression::appendOffset(Expr, Offset);
6557
LLVM_DEBUG(
6558
dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6559
<< std::to_string(Offset) << "\n");
6560
}
6561
6562
/// Combine a translation of the SCEV and the IV to create an expression that
6563
/// recovers a location's value.
6564
/// returns true if an expression was created.
6565
bool createIterCountExpr(const SCEV *S,
6566
const SCEVDbgValueBuilder &IterationCount,
6567
ScalarEvolution &SE) {
6568
// SCEVs for SSA values are most frquently of the form
6569
// {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6570
// This is because %a is a PHI node that is not the IV. However, these
6571
// SCEVs have not been observed to result in debuginfo-lossy optimisations,
6572
// so its not expected this point will be reached.
6573
if (!isa<SCEVAddRecExpr>(S))
6574
return false;
6575
6576
LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6577
<< '\n');
6578
6579
const auto *Rec = cast<SCEVAddRecExpr>(S);
6580
if (!Rec->isAffine())
6581
return false;
6582
6583
if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6584
return false;
6585
6586
// Initialise a new builder with the iteration count expression. In
6587
// combination with the value's SCEV this enables recovery.
6588
clone(IterationCount);
6589
if (!SCEVToValueExpr(*Rec, SE))
6590
return false;
6591
6592
return true;
6593
}
6594
6595
/// Convert a SCEV of a value to a DIExpression that is pushed onto the
6596
/// builder's expression stack. The stack should already contain an
6597
/// expression for the iteration count, so that it can be multiplied by
6598
/// the stride and added to the start.
6599
/// Components of the expression are omitted if they are an identity function.
6600
bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6601
ScalarEvolution &SE) {
6602
assert(SAR.isAffine() && "Expected affine SCEV");
6603
if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6604
LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6605
<< SAR << '\n');
6606
return false;
6607
}
6608
const SCEV *Start = SAR.getStart();
6609
const SCEV *Stride = SAR.getStepRecurrence(SE);
6610
6611
// Skip pushing arithmetic noops.
6612
if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6613
if (!pushSCEV(Start))
6614
return false;
6615
pushOperator(llvm::dwarf::DW_OP_minus);
6616
}
6617
if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6618
if (!pushSCEV(Stride))
6619
return false;
6620
pushOperator(llvm::dwarf::DW_OP_div);
6621
}
6622
return true;
6623
}
6624
6625
// Append the current expression and locations to a location list and an
6626
// expression list. Modify the DW_OP_LLVM_arg indexes to account for
6627
// the locations already present in the destination list.
6628
void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6629
SmallVectorImpl<Value *> &DestLocations) {
6630
assert(!DestLocations.empty() &&
6631
"Expected the locations vector to contain the IV");
6632
// The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6633
// modified to account for the locations already in the destination vector.
6634
// All builders contain the IV as the first location op.
6635
assert(!LocationOps.empty() &&
6636
"Expected the location ops to contain the IV.");
6637
// DestIndexMap[n] contains the index in DestLocations for the nth
6638
// location in this SCEVDbgValueBuilder.
6639
SmallVector<uint64_t, 2> DestIndexMap;
6640
for (const auto &Op : LocationOps) {
6641
auto It = find(DestLocations, Op);
6642
if (It != DestLocations.end()) {
6643
// Location already exists in DestLocations, reuse existing ArgIndex.
6644
DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6645
continue;
6646
}
6647
// Location is not in DestLocations, add it.
6648
DestIndexMap.push_back(DestLocations.size());
6649
DestLocations.push_back(Op);
6650
}
6651
6652
for (const auto &Op : expr_ops()) {
6653
if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6654
Op.appendToVector(DestExpr);
6655
continue;
6656
}
6657
6658
DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6659
// `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6660
// DestIndexMap[n] contains its new index in DestLocations.
6661
uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6662
DestExpr.push_back(NewIndex);
6663
}
6664
}
6665
};
6666
6667
/// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6668
/// and DIExpression.
6669
struct DVIRecoveryRec {
6670
DVIRecoveryRec(DbgValueInst *DbgValue)
6671
: DbgRef(DbgValue), Expr(DbgValue->getExpression()),
6672
HadLocationArgList(false) {}
6673
DVIRecoveryRec(DbgVariableRecord *DVR)
6674
: DbgRef(DVR), Expr(DVR->getExpression()), HadLocationArgList(false) {}
6675
6676
PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgRef;
6677
DIExpression *Expr;
6678
bool HadLocationArgList;
6679
SmallVector<WeakVH, 2> LocationOps;
6680
SmallVector<const llvm::SCEV *, 2> SCEVs;
6681
SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6682
6683
void clear() {
6684
for (auto &RE : RecoveryExprs)
6685
RE.reset();
6686
RecoveryExprs.clear();
6687
}
6688
6689
~DVIRecoveryRec() { clear(); }
6690
};
6691
} // namespace
6692
6693
/// Returns the total number of DW_OP_llvm_arg operands in the expression.
6694
/// This helps in determining if a DIArglist is necessary or can be omitted from
6695
/// the dbg.value.
6696
static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6697
auto expr_ops = ToDwarfOpIter(Expr);
6698
unsigned Count = 0;
6699
for (auto Op : expr_ops)
6700
if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6701
Count++;
6702
return Count;
6703
}
6704
6705
/// Overwrites DVI with the location and Ops as the DIExpression. This will
6706
/// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6707
/// because a DIArglist is not created for the first argument of the dbg.value.
6708
template <typename T>
6709
static void updateDVIWithLocation(T &DbgVal, Value *Location,
6710
SmallVectorImpl<uint64_t> &Ops) {
6711
assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not "
6712
"contain any DW_OP_llvm_arg operands.");
6713
DbgVal.setRawLocation(ValueAsMetadata::get(Location));
6714
DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6715
DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6716
}
6717
6718
/// Overwrite DVI with locations placed into a DIArglist.
6719
template <typename T>
6720
static void updateDVIWithLocations(T &DbgVal,
6721
SmallVectorImpl<Value *> &Locations,
6722
SmallVectorImpl<uint64_t> &Ops) {
6723
assert(numLLVMArgOps(Ops) != 0 &&
6724
"Expected expression that references DIArglist locations using "
6725
"DW_OP_llvm_arg operands.");
6726
SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6727
for (Value *V : Locations)
6728
MetadataLocs.push_back(ValueAsMetadata::get(V));
6729
auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6730
DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef));
6731
DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6732
}
6733
6734
/// Write the new expression and new location ops for the dbg.value. If possible
6735
/// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6736
/// can be omitted if:
6737
/// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6738
/// 2. The DW_OP_LLVM_arg is the first operand in the expression.
6739
static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6740
SmallVectorImpl<Value *> &NewLocationOps,
6741
SmallVectorImpl<uint64_t> &NewExpr) {
6742
auto UpdateDbgValueInstImpl = [&](auto *DbgVal) {
6743
unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6744
if (NumLLVMArgs == 0) {
6745
// Location assumed to be on the stack.
6746
updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr);
6747
} else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6748
// There is only a single DW_OP_llvm_arg at the start of the expression,
6749
// so it can be omitted along with DIArglist.
6750
assert(NewExpr[1] == 0 &&
6751
"Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6752
llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6753
updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps);
6754
} else {
6755
// Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6756
updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr);
6757
}
6758
6759
// If the DIExpression was previously empty then add the stack terminator.
6760
// Non-empty expressions have only had elements inserted into them and so
6761
// the terminator should already be present e.g. stack_value or fragment.
6762
DIExpression *SalvageExpr = DbgVal->getExpression();
6763
if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6764
SalvageExpr =
6765
DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6766
DbgVal->setExpression(SalvageExpr);
6767
}
6768
};
6769
if (isa<DbgValueInst *>(DVIRec.DbgRef))
6770
UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6771
else
6772
UpdateDbgValueInstImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef));
6773
}
6774
6775
/// Cached location ops may be erased during LSR, in which case a poison is
6776
/// required when restoring from the cache. The type of that location is no
6777
/// longer available, so just use int8. The poison will be replaced by one or
6778
/// more locations later when a SCEVDbgValueBuilder selects alternative
6779
/// locations to use for the salvage.
6780
static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) {
6781
return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C));
6782
}
6783
6784
/// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
6785
static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6786
auto RestorePreTransformStateImpl = [&](auto *DbgVal) {
6787
LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6788
<< "scev-salvage: post-LSR: " << *DbgVal << '\n');
6789
assert(DVIRec.Expr && "Expected an expression");
6790
DbgVal->setExpression(DVIRec.Expr);
6791
6792
// Even a single location-op may be inside a DIArgList and referenced with
6793
// DW_OP_LLVM_arg, which is valid only with a DIArgList.
6794
if (!DVIRec.HadLocationArgList) {
6795
assert(DVIRec.LocationOps.size() == 1 &&
6796
"Unexpected number of location ops.");
6797
// LSR's unsuccessful salvage attempt may have added DIArgList, which in
6798
// this case was not present before, so force the location back to a
6799
// single uncontained Value.
6800
Value *CachedValue =
6801
getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext());
6802
DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue));
6803
} else {
6804
SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6805
for (WeakVH VH : DVIRec.LocationOps) {
6806
Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext());
6807
MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6808
}
6809
auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6810
DbgVal->setRawLocation(
6811
llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef));
6812
}
6813
LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n');
6814
};
6815
if (isa<DbgValueInst *>(DVIRec.DbgRef))
6816
RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6817
else
6818
RestorePreTransformStateImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef));
6819
}
6820
6821
static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6822
llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6823
const SCEV *SCEVInductionVar,
6824
SCEVDbgValueBuilder IterCountExpr) {
6825
6826
if (isa<DbgValueInst *>(DVIRec.DbgRef)
6827
? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation()
6828
: !cast<DbgVariableRecord *>(DVIRec.DbgRef)->isKillLocation())
6829
return false;
6830
6831
// LSR may have caused several changes to the dbg.value in the failed salvage
6832
// attempt. So restore the DIExpression, the location ops and also the
6833
// location ops format, which is always DIArglist for multiple ops, but only
6834
// sometimes for a single op.
6835
restorePreTransformState(DVIRec);
6836
6837
// LocationOpIndexMap[i] will store the post-LSR location index of
6838
// the non-optimised out location at pre-LSR index i.
6839
SmallVector<int64_t, 2> LocationOpIndexMap;
6840
LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6841
SmallVector<Value *, 2> NewLocationOps;
6842
NewLocationOps.push_back(LSRInductionVar);
6843
6844
for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6845
WeakVH VH = DVIRec.LocationOps[i];
6846
// Place the locations not optimised out in the list first, avoiding
6847
// inserts later. The map is used to update the DIExpression's
6848
// DW_OP_LLVM_arg arguments as the expression is updated.
6849
if (VH && !isa<UndefValue>(VH)) {
6850
NewLocationOps.push_back(VH);
6851
LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6852
LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6853
<< " now at index " << LocationOpIndexMap[i] << "\n");
6854
continue;
6855
}
6856
6857
// It's possible that a value referred to in the SCEV may have been
6858
// optimised out by LSR.
6859
if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6860
SE.containsUndefs(DVIRec.SCEVs[i])) {
6861
LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6862
<< " refers to a location that is now undef or erased. "
6863
"Salvage abandoned.\n");
6864
return false;
6865
}
6866
6867
LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6868
<< " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6869
6870
DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6871
SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6872
6873
// Create an offset-based salvage expression if possible, as it requires
6874
// less DWARF ops than an iteration count-based expression.
6875
if (std::optional<APInt> Offset =
6876
SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6877
if (Offset->getSignificantBits() <= 64)
6878
SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar);
6879
} else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6880
SE))
6881
return false;
6882
}
6883
6884
// Merge the DbgValueBuilder generated expressions and the original
6885
// DIExpression, place the result into an new vector.
6886
SmallVector<uint64_t, 3> NewExpr;
6887
if (DVIRec.Expr->getNumElements() == 0) {
6888
assert(DVIRec.RecoveryExprs.size() == 1 &&
6889
"Expected only a single recovery expression for an empty "
6890
"DIExpression.");
6891
assert(DVIRec.RecoveryExprs[0] &&
6892
"Expected a SCEVDbgSalvageBuilder for location 0");
6893
SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6894
B->appendToVectors(NewExpr, NewLocationOps);
6895
}
6896
for (const auto &Op : DVIRec.Expr->expr_ops()) {
6897
// Most Ops needn't be updated.
6898
if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6899
Op.appendToVector(NewExpr);
6900
continue;
6901
}
6902
6903
uint64_t LocationArgIndex = Op.getArg(0);
6904
SCEVDbgValueBuilder *DbgBuilder =
6905
DVIRec.RecoveryExprs[LocationArgIndex].get();
6906
// The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6907
// optimise it away. So just translate the argument to the updated
6908
// location index.
6909
if (!DbgBuilder) {
6910
NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6911
assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6912
"Expected a positive index for the location-op position.");
6913
NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6914
continue;
6915
}
6916
// The location has a recovery expression.
6917
DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6918
}
6919
6920
UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6921
if (isa<DbgValueInst *>(DVIRec.DbgRef))
6922
LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6923
<< *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n");
6924
else
6925
LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6926
<< *cast<DbgVariableRecord *>(DVIRec.DbgRef) << "\n");
6927
return true;
6928
}
6929
6930
/// Obtain an expression for the iteration count, then attempt to salvage the
6931
/// dbg.value intrinsics.
6932
static void DbgRewriteSalvageableDVIs(
6933
llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar,
6934
SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6935
if (DVIToUpdate.empty())
6936
return;
6937
6938
const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6939
assert(SCEVInductionVar &&
6940
"Anticipated a SCEV for the post-LSR induction variable");
6941
6942
if (const SCEVAddRecExpr *IVAddRec =
6943
dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6944
if (!IVAddRec->isAffine())
6945
return;
6946
6947
// Prevent translation using excessive resources.
6948
if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6949
return;
6950
6951
// The iteration count is required to recover location values.
6952
SCEVDbgValueBuilder IterCountExpr;
6953
IterCountExpr.pushLocation(LSRInductionVar);
6954
if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6955
return;
6956
6957
LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6958
<< '\n');
6959
6960
for (auto &DVIRec : DVIToUpdate) {
6961
SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6962
IterCountExpr);
6963
}
6964
}
6965
}
6966
6967
/// Identify and cache salvageable DVI locations and expressions along with the
6968
/// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6969
/// cacheing and salvaging.
6970
static void DbgGatherSalvagableDVI(
6971
Loop *L, ScalarEvolution &SE,
6972
SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6973
SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6974
for (const auto &B : L->getBlocks()) {
6975
for (auto &I : *B) {
6976
auto ProcessDbgValue = [&](auto *DbgVal) -> bool {
6977
// Ensure that if any location op is undef that the dbg.vlue is not
6978
// cached.
6979
if (DbgVal->isKillLocation())
6980
return false;
6981
6982
// Check that the location op SCEVs are suitable for translation to
6983
// DIExpression.
6984
const auto &HasTranslatableLocationOps =
6985
[&](const auto *DbgValToTranslate) -> bool {
6986
for (const auto LocOp : DbgValToTranslate->location_ops()) {
6987
if (!LocOp)
6988
return false;
6989
6990
if (!SE.isSCEVable(LocOp->getType()))
6991
return false;
6992
6993
const SCEV *S = SE.getSCEV(LocOp);
6994
if (SE.containsUndefs(S))
6995
return false;
6996
}
6997
return true;
6998
};
6999
7000
if (!HasTranslatableLocationOps(DbgVal))
7001
return false;
7002
7003
std::unique_ptr<DVIRecoveryRec> NewRec =
7004
std::make_unique<DVIRecoveryRec>(DbgVal);
7005
// Each location Op may need a SCEVDbgValueBuilder in order to recover
7006
// it. Pre-allocating a vector will enable quick lookups of the builder
7007
// later during the salvage.
7008
NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps());
7009
for (const auto LocOp : DbgVal->location_ops()) {
7010
NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
7011
NewRec->LocationOps.push_back(LocOp);
7012
NewRec->HadLocationArgList = DbgVal->hasArgList();
7013
}
7014
SalvageableDVISCEVs.push_back(std::move(NewRec));
7015
return true;
7016
};
7017
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
7018
if (DVR.isDbgValue() || DVR.isDbgAssign())
7019
ProcessDbgValue(&DVR);
7020
}
7021
auto DVI = dyn_cast<DbgValueInst>(&I);
7022
if (!DVI)
7023
continue;
7024
if (ProcessDbgValue(DVI))
7025
DVIHandles.insert(DVI);
7026
}
7027
}
7028
}
7029
7030
/// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
7031
/// any PHi from the loop header is usable, but may have less chance of
7032
/// surviving subsequent transforms.
7033
static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
7034
const LSRInstance &LSR) {
7035
7036
auto IsSuitableIV = [&](PHINode *P) {
7037
if (!SE.isSCEVable(P->getType()))
7038
return false;
7039
if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
7040
return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
7041
return false;
7042
};
7043
7044
// For now, just pick the first IV that was generated and inserted by
7045
// ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
7046
// by subsequent transforms.
7047
for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
7048
if (!IV)
7049
continue;
7050
7051
// There should only be PHI node IVs.
7052
PHINode *P = cast<PHINode>(&*IV);
7053
7054
if (IsSuitableIV(P))
7055
return P;
7056
}
7057
7058
for (PHINode &P : L.getHeader()->phis()) {
7059
if (IsSuitableIV(&P))
7060
return &P;
7061
}
7062
return nullptr;
7063
}
7064
7065
static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>>
7066
canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
7067
const LoopInfo &LI, const TargetTransformInfo &TTI) {
7068
if (!L->isInnermost()) {
7069
LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n");
7070
return std::nullopt;
7071
}
7072
// Only inspect on simple loop structure
7073
if (!L->isLoopSimplifyForm()) {
7074
LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n");
7075
return std::nullopt;
7076
}
7077
7078
if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
7079
LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n");
7080
return std::nullopt;
7081
}
7082
7083
BasicBlock *LoopLatch = L->getLoopLatch();
7084
BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
7085
if (!BI || BI->isUnconditional())
7086
return std::nullopt;
7087
auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition());
7088
if (!TermCond) {
7089
LLVM_DEBUG(
7090
dbgs() << "Cannot fold on branching condition that is not an ICmpInst");
7091
return std::nullopt;
7092
}
7093
if (!TermCond->hasOneUse()) {
7094
LLVM_DEBUG(
7095
dbgs()
7096
<< "Cannot replace terminating condition with more than one use\n");
7097
return std::nullopt;
7098
}
7099
7100
BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0));
7101
Value *RHS = TermCond->getOperand(1);
7102
if (!LHS || !L->isLoopInvariant(RHS))
7103
// We could pattern match the inverse form of the icmp, but that is
7104
// non-canonical, and this pass is running *very* late in the pipeline.
7105
return std::nullopt;
7106
7107
// Find the IV used by the current exit condition.
7108
PHINode *ToFold;
7109
Value *ToFoldStart, *ToFoldStep;
7110
if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep))
7111
return std::nullopt;
7112
7113
// Ensure the simple recurrence is a part of the current loop.
7114
if (ToFold->getParent() != L->getHeader())
7115
return std::nullopt;
7116
7117
// If that IV isn't dead after we rewrite the exit condition in terms of
7118
// another IV, there's no point in doing the transform.
7119
if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond))
7120
return std::nullopt;
7121
7122
// Inserting instructions in the preheader has a runtime cost, scale
7123
// the allowed cost with the loops trip count as best we can.
7124
const unsigned ExpansionBudget = [&]() {
7125
unsigned Budget = 2 * SCEVCheapExpansionBudget;
7126
if (unsigned SmallTC = SE.getSmallConstantMaxTripCount(L))
7127
return std::min(Budget, SmallTC);
7128
if (std::optional<unsigned> SmallTC = getLoopEstimatedTripCount(L))
7129
return std::min(Budget, *SmallTC);
7130
// Unknown trip count, assume long running by default.
7131
return Budget;
7132
}();
7133
7134
const SCEV *BECount = SE.getBackedgeTakenCount(L);
7135
const DataLayout &DL = L->getHeader()->getDataLayout();
7136
SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
7137
7138
PHINode *ToHelpFold = nullptr;
7139
const SCEV *TermValueS = nullptr;
7140
bool MustDropPoison = false;
7141
auto InsertPt = L->getLoopPreheader()->getTerminator();
7142
for (PHINode &PN : L->getHeader()->phis()) {
7143
if (ToFold == &PN)
7144
continue;
7145
7146
if (!SE.isSCEVable(PN.getType())) {
7147
LLVM_DEBUG(dbgs() << "IV of phi '" << PN
7148
<< "' is not SCEV-able, not qualified for the "
7149
"terminating condition folding.\n");
7150
continue;
7151
}
7152
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
7153
// Only speculate on affine AddRec
7154
if (!AddRec || !AddRec->isAffine()) {
7155
LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN
7156
<< "' is not an affine add recursion, not qualified "
7157
"for the terminating condition folding.\n");
7158
continue;
7159
}
7160
7161
// Check that we can compute the value of AddRec on the exiting iteration
7162
// without soundness problems. evaluateAtIteration internally needs
7163
// to multiply the stride of the iteration number - which may wrap around.
7164
// The issue here is subtle because computing the result accounting for
7165
// wrap is insufficient. In order to use the result in an exit test, we
7166
// must also know that AddRec doesn't take the same value on any previous
7167
// iteration. The simplest case to consider is a candidate IV which is
7168
// narrower than the trip count (and thus original IV), but this can
7169
// also happen due to non-unit strides on the candidate IVs.
7170
if (!AddRec->hasNoSelfWrap() ||
7171
!SE.isKnownNonZero(AddRec->getStepRecurrence(SE)))
7172
continue;
7173
7174
const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE);
7175
const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE);
7176
if (!Expander.isSafeToExpand(TermValueSLocal)) {
7177
LLVM_DEBUG(
7178
dbgs() << "Is not safe to expand terminating value for phi node" << PN
7179
<< "\n");
7180
continue;
7181
}
7182
7183
if (Expander.isHighCostExpansion(TermValueSLocal, L, ExpansionBudget,
7184
&TTI, InsertPt)) {
7185
LLVM_DEBUG(
7186
dbgs() << "Is too expensive to expand terminating value for phi node"
7187
<< PN << "\n");
7188
continue;
7189
}
7190
7191
// The candidate IV may have been otherwise dead and poison from the
7192
// very first iteration. If we can't disprove that, we can't use the IV.
7193
if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) {
7194
LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV "
7195
<< PN << "\n");
7196
continue;
7197
}
7198
7199
// The candidate IV may become poison on the last iteration. If this
7200
// value is not branched on, this is a well defined program. We're
7201
// about to add a new use to this IV, and we have to ensure we don't
7202
// insert UB which didn't previously exist.
7203
bool MustDropPoisonLocal = false;
7204
Instruction *PostIncV =
7205
cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch));
7206
if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(),
7207
&DT)) {
7208
LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use"
7209
<< PN << "\n");
7210
7211
// If this is a complex recurrance with multiple instructions computing
7212
// the backedge value, we might need to strip poison flags from all of
7213
// them.
7214
if (PostIncV->getOperand(0) != &PN)
7215
continue;
7216
7217
// In order to perform the transform, we need to drop the poison generating
7218
// flags on this instruction (if any).
7219
MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags();
7220
}
7221
7222
// We pick the last legal alternate IV. We could expore choosing an optimal
7223
// alternate IV if we had a decent heuristic to do so.
7224
ToHelpFold = &PN;
7225
TermValueS = TermValueSLocal;
7226
MustDropPoison = MustDropPoisonLocal;
7227
}
7228
7229
LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs()
7230
<< "Cannot find other AddRec IV to help folding\n";);
7231
7232
LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs()
7233
<< "\nFound loop that can fold terminating condition\n"
7234
<< " BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n"
7235
<< " TermCond: " << *TermCond << "\n"
7236
<< " BrandInst: " << *BI << "\n"
7237
<< " ToFold: " << *ToFold << "\n"
7238
<< " ToHelpFold: " << *ToHelpFold << "\n");
7239
7240
if (!ToFold || !ToHelpFold)
7241
return std::nullopt;
7242
return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison);
7243
}
7244
7245
static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
7246
DominatorTree &DT, LoopInfo &LI,
7247
const TargetTransformInfo &TTI,
7248
AssumptionCache &AC, TargetLibraryInfo &TLI,
7249
MemorySSA *MSSA) {
7250
7251
// Debug preservation - before we start removing anything identify which DVI
7252
// meet the salvageable criteria and store their DIExpression and SCEVs.
7253
SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
7254
SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
7255
DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
7256
7257
bool Changed = false;
7258
std::unique_ptr<MemorySSAUpdater> MSSAU;
7259
if (MSSA)
7260
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
7261
7262
// Run the main LSR transformation.
7263
const LSRInstance &Reducer =
7264
LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
7265
Changed |= Reducer.getChanged();
7266
7267
// Remove any extra phis created by processing inner loops.
7268
Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7269
if (EnablePhiElim && L->isLoopSimplifyForm()) {
7270
SmallVector<WeakTrackingVH, 16> DeadInsts;
7271
const DataLayout &DL = L->getHeader()->getDataLayout();
7272
SCEVExpander Rewriter(SE, DL, "lsr", false);
7273
#ifndef NDEBUG
7274
Rewriter.setDebugType(DEBUG_TYPE);
7275
#endif
7276
unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
7277
Rewriter.clear();
7278
if (numFolded) {
7279
Changed = true;
7280
RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
7281
MSSAU.get());
7282
DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7283
}
7284
}
7285
// LSR may at times remove all uses of an induction variable from a loop.
7286
// The only remaining use is the PHI in the exit block.
7287
// When this is the case, if the exit value of the IV can be calculated using
7288
// SCEV, we can replace the exit block PHI with the final value of the IV and
7289
// skip the updates in each loop iteration.
7290
if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
7291
SmallVector<WeakTrackingVH, 16> DeadInsts;
7292
const DataLayout &DL = L->getHeader()->getDataLayout();
7293
SCEVExpander Rewriter(SE, DL, "lsr", true);
7294
int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
7295
UnusedIndVarInLoop, DeadInsts);
7296
Rewriter.clear();
7297
if (Rewrites) {
7298
Changed = true;
7299
RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
7300
MSSAU.get());
7301
DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7302
}
7303
}
7304
7305
const bool EnableFormTerm = [&] {
7306
switch (AllowTerminatingConditionFoldingAfterLSR) {
7307
case cl::BOU_TRUE:
7308
return true;
7309
case cl::BOU_FALSE:
7310
return false;
7311
case cl::BOU_UNSET:
7312
return TTI.shouldFoldTerminatingConditionAfterLSR();
7313
}
7314
llvm_unreachable("Unhandled cl::boolOrDefault enum");
7315
}();
7316
7317
if (EnableFormTerm) {
7318
if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI, TTI)) {
7319
auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt;
7320
7321
Changed = true;
7322
NumTermFold++;
7323
7324
BasicBlock *LoopPreheader = L->getLoopPreheader();
7325
BasicBlock *LoopLatch = L->getLoopLatch();
7326
7327
(void)ToFold;
7328
LLVM_DEBUG(dbgs() << "To fold phi-node:\n"
7329
<< *ToFold << "\n"
7330
<< "New term-cond phi-node:\n"
7331
<< *ToHelpFold << "\n");
7332
7333
Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader);
7334
(void)StartValue;
7335
Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch);
7336
7337
// See comment in canFoldTermCondOfLoop on why this is sufficient.
7338
if (MustDrop)
7339
cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags();
7340
7341
// SCEVExpander for both use in preheader and latch
7342
const DataLayout &DL = L->getHeader()->getDataLayout();
7343
SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
7344
7345
assert(Expander.isSafeToExpand(TermValueS) &&
7346
"Terminating value was checked safe in canFoldTerminatingCondition");
7347
7348
// Create new terminating value at loop preheader
7349
Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(),
7350
LoopPreheader->getTerminator());
7351
7352
LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n"
7353
<< *StartValue << "\n"
7354
<< "Terminating value of new term-cond phi-node:\n"
7355
<< *TermValue << "\n");
7356
7357
// Create new terminating condition at loop latch
7358
BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator());
7359
ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition());
7360
IRBuilder<> LatchBuilder(LoopLatch->getTerminator());
7361
Value *NewTermCond =
7362
LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue,
7363
"lsr_fold_term_cond.replaced_term_cond");
7364
// Swap successors to exit loop body if IV equals to new TermValue
7365
if (BI->getSuccessor(0) == L->getHeader())
7366
BI->swapSuccessors();
7367
7368
LLVM_DEBUG(dbgs() << "Old term-cond:\n"
7369
<< *OldTermCond << "\n"
7370
<< "New term-cond:\n" << *NewTermCond << "\n");
7371
7372
BI->setCondition(NewTermCond);
7373
7374
Expander.clear();
7375
OldTermCond->eraseFromParent();
7376
DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7377
}
7378
}
7379
7380
if (SalvageableDVIRecords.empty())
7381
return Changed;
7382
7383
// Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
7384
// expressions composed using the derived iteration count.
7385
// TODO: Allow for multiple IV references for nested AddRecSCEVs
7386
for (const auto &L : LI) {
7387
if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
7388
DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
7389
else {
7390
LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
7391
"could not be identified.\n");
7392
}
7393
}
7394
7395
for (auto &Rec : SalvageableDVIRecords)
7396
Rec->clear();
7397
SalvageableDVIRecords.clear();
7398
DVIHandles.clear();
7399
return Changed;
7400
}
7401
7402
bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
7403
if (skipLoop(L))
7404
return false;
7405
7406
auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
7407
auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
7408
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7409
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
7410
const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
7411
*L->getHeader()->getParent());
7412
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
7413
*L->getHeader()->getParent());
7414
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
7415
*L->getHeader()->getParent());
7416
auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
7417
MemorySSA *MSSA = nullptr;
7418
if (MSSAAnalysis)
7419
MSSA = &MSSAAnalysis->getMSSA();
7420
return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
7421
}
7422
7423
PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
7424
LoopStandardAnalysisResults &AR,
7425
LPMUpdater &) {
7426
if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
7427
AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
7428
return PreservedAnalyses::all();
7429
7430
auto PA = getLoopPassPreservedAnalyses();
7431
if (AR.MSSA)
7432
PA.preserve<MemorySSAAnalysis>();
7433
return PA;
7434
}
7435
7436
char LoopStrengthReduce::ID = 0;
7437
7438
INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
7439
"Loop Strength Reduction", false, false)
7440
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7441
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7442
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7443
INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
7444
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7445
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7446
INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
7447
"Loop Strength Reduction", false, false)
7448
7449
Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
7450
7451