Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
35271 views
1
//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This family of functions perform manipulations on basic blocks, and
10
// instructions contained within basic blocks.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
15
#include "llvm/ADT/ArrayRef.h"
16
#include "llvm/ADT/SmallPtrSet.h"
17
#include "llvm/ADT/SmallVector.h"
18
#include "llvm/ADT/Twine.h"
19
#include "llvm/Analysis/CFG.h"
20
#include "llvm/Analysis/DomTreeUpdater.h"
21
#include "llvm/Analysis/LoopInfo.h"
22
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
23
#include "llvm/Analysis/MemorySSAUpdater.h"
24
#include "llvm/IR/BasicBlock.h"
25
#include "llvm/IR/CFG.h"
26
#include "llvm/IR/Constants.h"
27
#include "llvm/IR/DebugInfo.h"
28
#include "llvm/IR/DebugInfoMetadata.h"
29
#include "llvm/IR/Dominators.h"
30
#include "llvm/IR/Function.h"
31
#include "llvm/IR/InstrTypes.h"
32
#include "llvm/IR/Instruction.h"
33
#include "llvm/IR/Instructions.h"
34
#include "llvm/IR/IntrinsicInst.h"
35
#include "llvm/IR/IRBuilder.h"
36
#include "llvm/IR/LLVMContext.h"
37
#include "llvm/IR/Type.h"
38
#include "llvm/IR/User.h"
39
#include "llvm/IR/Value.h"
40
#include "llvm/IR/ValueHandle.h"
41
#include "llvm/Support/Casting.h"
42
#include "llvm/Support/CommandLine.h"
43
#include "llvm/Support/Debug.h"
44
#include "llvm/Support/raw_ostream.h"
45
#include "llvm/Transforms/Utils/Local.h"
46
#include <cassert>
47
#include <cstdint>
48
#include <string>
49
#include <utility>
50
#include <vector>
51
52
using namespace llvm;
53
54
#define DEBUG_TYPE "basicblock-utils"
55
56
static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
57
"max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58
cl::desc("Set the maximum path length when checking whether a basic block "
59
"is followed by a block that either has a terminating "
60
"deoptimizing call or is terminated with an unreachable"));
61
62
void llvm::detachDeadBlocks(
63
ArrayRef<BasicBlock *> BBs,
64
SmallVectorImpl<DominatorTree::UpdateType> *Updates,
65
bool KeepOneInputPHIs) {
66
for (auto *BB : BBs) {
67
// Loop through all of our successors and make sure they know that one
68
// of their predecessors is going away.
69
SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
70
for (BasicBlock *Succ : successors(BB)) {
71
Succ->removePredecessor(BB, KeepOneInputPHIs);
72
if (Updates && UniqueSuccessors.insert(Succ).second)
73
Updates->push_back({DominatorTree::Delete, BB, Succ});
74
}
75
76
// Zap all the instructions in the block.
77
while (!BB->empty()) {
78
Instruction &I = BB->back();
79
// If this instruction is used, replace uses with an arbitrary value.
80
// Because control flow can't get here, we don't care what we replace the
81
// value with. Note that since this block is unreachable, and all values
82
// contained within it must dominate their uses, that all uses will
83
// eventually be removed (they are themselves dead).
84
if (!I.use_empty())
85
I.replaceAllUsesWith(PoisonValue::get(I.getType()));
86
BB->back().eraseFromParent();
87
}
88
new UnreachableInst(BB->getContext(), BB);
89
assert(BB->size() == 1 &&
90
isa<UnreachableInst>(BB->getTerminator()) &&
91
"The successor list of BB isn't empty before "
92
"applying corresponding DTU updates.");
93
}
94
}
95
96
void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
97
bool KeepOneInputPHIs) {
98
DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
99
}
100
101
void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
102
bool KeepOneInputPHIs) {
103
#ifndef NDEBUG
104
// Make sure that all predecessors of each dead block is also dead.
105
SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
106
assert(Dead.size() == BBs.size() && "Duplicating blocks?");
107
for (auto *BB : Dead)
108
for (BasicBlock *Pred : predecessors(BB))
109
assert(Dead.count(Pred) && "All predecessors must be dead!");
110
#endif
111
112
SmallVector<DominatorTree::UpdateType, 4> Updates;
113
detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
114
115
if (DTU)
116
DTU->applyUpdates(Updates);
117
118
for (BasicBlock *BB : BBs)
119
if (DTU)
120
DTU->deleteBB(BB);
121
else
122
BB->eraseFromParent();
123
}
124
125
bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
126
bool KeepOneInputPHIs) {
127
df_iterator_default_set<BasicBlock*> Reachable;
128
129
// Mark all reachable blocks.
130
for (BasicBlock *BB : depth_first_ext(&F, Reachable))
131
(void)BB/* Mark all reachable blocks */;
132
133
// Collect all dead blocks.
134
std::vector<BasicBlock*> DeadBlocks;
135
for (BasicBlock &BB : F)
136
if (!Reachable.count(&BB))
137
DeadBlocks.push_back(&BB);
138
139
// Delete the dead blocks.
140
DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
141
142
return !DeadBlocks.empty();
143
}
144
145
bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
146
MemoryDependenceResults *MemDep) {
147
if (!isa<PHINode>(BB->begin()))
148
return false;
149
150
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
151
if (PN->getIncomingValue(0) != PN)
152
PN->replaceAllUsesWith(PN->getIncomingValue(0));
153
else
154
PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
155
156
if (MemDep)
157
MemDep->removeInstruction(PN); // Memdep updates AA itself.
158
159
PN->eraseFromParent();
160
}
161
return true;
162
}
163
164
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
165
MemorySSAUpdater *MSSAU) {
166
// Recursively deleting a PHI may cause multiple PHIs to be deleted
167
// or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
168
SmallVector<WeakTrackingVH, 8> PHIs;
169
for (PHINode &PN : BB->phis())
170
PHIs.push_back(&PN);
171
172
bool Changed = false;
173
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
174
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
175
Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
176
177
return Changed;
178
}
179
180
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
181
LoopInfo *LI, MemorySSAUpdater *MSSAU,
182
MemoryDependenceResults *MemDep,
183
bool PredecessorWithTwoSuccessors,
184
DominatorTree *DT) {
185
if (BB->hasAddressTaken())
186
return false;
187
188
// Can't merge if there are multiple predecessors, or no predecessors.
189
BasicBlock *PredBB = BB->getUniquePredecessor();
190
if (!PredBB) return false;
191
192
// Don't break self-loops.
193
if (PredBB == BB) return false;
194
195
// Don't break unwinding instructions or terminators with other side-effects.
196
Instruction *PTI = PredBB->getTerminator();
197
if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
198
return false;
199
200
// Can't merge if there are multiple distinct successors.
201
if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
202
return false;
203
204
// Currently only allow PredBB to have two predecessors, one being BB.
205
// Update BI to branch to BB's only successor instead of BB.
206
BranchInst *PredBB_BI;
207
BasicBlock *NewSucc = nullptr;
208
unsigned FallThruPath;
209
if (PredecessorWithTwoSuccessors) {
210
if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
211
return false;
212
BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
213
if (!BB_JmpI || !BB_JmpI->isUnconditional())
214
return false;
215
NewSucc = BB_JmpI->getSuccessor(0);
216
FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
217
}
218
219
// Can't merge if there is PHI loop.
220
for (PHINode &PN : BB->phis())
221
if (llvm::is_contained(PN.incoming_values(), &PN))
222
return false;
223
224
LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
225
<< PredBB->getName() << "\n");
226
227
// Begin by getting rid of unneeded PHIs.
228
SmallVector<AssertingVH<Value>, 4> IncomingValues;
229
if (isa<PHINode>(BB->front())) {
230
for (PHINode &PN : BB->phis())
231
if (!isa<PHINode>(PN.getIncomingValue(0)) ||
232
cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
233
IncomingValues.push_back(PN.getIncomingValue(0));
234
FoldSingleEntryPHINodes(BB, MemDep);
235
}
236
237
if (DT) {
238
assert(!DTU && "cannot use both DT and DTU for updates");
239
DomTreeNode *PredNode = DT->getNode(PredBB);
240
DomTreeNode *BBNode = DT->getNode(BB);
241
if (PredNode) {
242
assert(BBNode && "PredNode unreachable but BBNode reachable?");
243
for (DomTreeNode *C : to_vector(BBNode->children()))
244
C->setIDom(PredNode);
245
}
246
}
247
// DTU update: Collect all the edges that exit BB.
248
// These dominator edges will be redirected from Pred.
249
std::vector<DominatorTree::UpdateType> Updates;
250
if (DTU) {
251
assert(!DT && "cannot use both DT and DTU for updates");
252
// To avoid processing the same predecessor more than once.
253
SmallPtrSet<BasicBlock *, 8> SeenSuccs;
254
SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
255
succ_end(PredBB));
256
Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
257
// Add insert edges first. Experimentally, for the particular case of two
258
// blocks that can be merged, with a single successor and single predecessor
259
// respectively, it is beneficial to have all insert updates first. Deleting
260
// edges first may lead to unreachable blocks, followed by inserting edges
261
// making the blocks reachable again. Such DT updates lead to high compile
262
// times. We add inserts before deletes here to reduce compile time.
263
for (BasicBlock *SuccOfBB : successors(BB))
264
// This successor of BB may already be a PredBB's successor.
265
if (!SuccsOfPredBB.contains(SuccOfBB))
266
if (SeenSuccs.insert(SuccOfBB).second)
267
Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
268
SeenSuccs.clear();
269
for (BasicBlock *SuccOfBB : successors(BB))
270
if (SeenSuccs.insert(SuccOfBB).second)
271
Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
272
Updates.push_back({DominatorTree::Delete, PredBB, BB});
273
}
274
275
Instruction *STI = BB->getTerminator();
276
Instruction *Start = &*BB->begin();
277
// If there's nothing to move, mark the starting instruction as the last
278
// instruction in the block. Terminator instruction is handled separately.
279
if (Start == STI)
280
Start = PTI;
281
282
// Move all definitions in the successor to the predecessor...
283
PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
284
285
if (MSSAU)
286
MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
287
288
// Make all PHI nodes that referred to BB now refer to Pred as their
289
// source...
290
BB->replaceAllUsesWith(PredBB);
291
292
if (PredecessorWithTwoSuccessors) {
293
// Delete the unconditional branch from BB.
294
BB->back().eraseFromParent();
295
296
// Update branch in the predecessor.
297
PredBB_BI->setSuccessor(FallThruPath, NewSucc);
298
} else {
299
// Delete the unconditional branch from the predecessor.
300
PredBB->back().eraseFromParent();
301
302
// Move terminator instruction.
303
BB->back().moveBeforePreserving(*PredBB, PredBB->end());
304
305
// Terminator may be a memory accessing instruction too.
306
if (MSSAU)
307
if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
308
MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
309
MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
310
}
311
// Add unreachable to now empty BB.
312
new UnreachableInst(BB->getContext(), BB);
313
314
// Inherit predecessors name if it exists.
315
if (!PredBB->hasName())
316
PredBB->takeName(BB);
317
318
if (LI)
319
LI->removeBlock(BB);
320
321
if (MemDep)
322
MemDep->invalidateCachedPredecessors();
323
324
if (DTU)
325
DTU->applyUpdates(Updates);
326
327
if (DT) {
328
assert(succ_empty(BB) &&
329
"successors should have been transferred to PredBB");
330
DT->eraseNode(BB);
331
}
332
333
// Finally, erase the old block and update dominator info.
334
DeleteDeadBlock(BB, DTU);
335
336
return true;
337
}
338
339
bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
340
SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
341
LoopInfo *LI) {
342
assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
343
344
bool BlocksHaveBeenMerged = false;
345
while (!MergeBlocks.empty()) {
346
BasicBlock *BB = *MergeBlocks.begin();
347
BasicBlock *Dest = BB->getSingleSuccessor();
348
if (Dest && (!L || L->contains(Dest))) {
349
BasicBlock *Fold = Dest->getUniquePredecessor();
350
(void)Fold;
351
if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
352
assert(Fold == BB &&
353
"Expecting BB to be unique predecessor of the Dest block");
354
MergeBlocks.erase(Dest);
355
BlocksHaveBeenMerged = true;
356
} else
357
MergeBlocks.erase(BB);
358
} else
359
MergeBlocks.erase(BB);
360
}
361
return BlocksHaveBeenMerged;
362
}
363
364
/// Remove redundant instructions within sequences of consecutive dbg.value
365
/// instructions. This is done using a backward scan to keep the last dbg.value
366
/// describing a specific variable/fragment.
367
///
368
/// BackwardScan strategy:
369
/// ----------------------
370
/// Given a sequence of consecutive DbgValueInst like this
371
///
372
/// dbg.value ..., "x", FragmentX1 (*)
373
/// dbg.value ..., "y", FragmentY1
374
/// dbg.value ..., "x", FragmentX2
375
/// dbg.value ..., "x", FragmentX1 (**)
376
///
377
/// then the instruction marked with (*) can be removed (it is guaranteed to be
378
/// obsoleted by the instruction marked with (**) as the latter instruction is
379
/// describing the same variable using the same fragment info).
380
///
381
/// Possible improvements:
382
/// - Check fully overlapping fragments and not only identical fragments.
383
/// - Support dbg.declare. dbg.label, and possibly other meta instructions being
384
/// part of the sequence of consecutive instructions.
385
static bool
386
DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
387
SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
388
SmallDenseSet<DebugVariable> VariableSet;
389
for (auto &I : reverse(*BB)) {
390
for (DbgRecord &DR : reverse(I.getDbgRecordRange())) {
391
if (isa<DbgLabelRecord>(DR)) {
392
// Emulate existing behaviour (see comment below for dbg.declares).
393
// FIXME: Don't do this.
394
VariableSet.clear();
395
continue;
396
}
397
398
DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
399
// Skip declare-type records, as the debug intrinsic method only works
400
// on dbg.value intrinsics.
401
if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
402
// The debug intrinsic method treats dbg.declares are "non-debug"
403
// instructions (i.e., a break in a consecutive range of debug
404
// intrinsics). Emulate that to create identical outputs. See
405
// "Possible improvements" above.
406
// FIXME: Delete the line below.
407
VariableSet.clear();
408
continue;
409
}
410
411
DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
412
DVR.getDebugLoc()->getInlinedAt());
413
auto R = VariableSet.insert(Key);
414
// If the same variable fragment is described more than once it is enough
415
// to keep the last one (i.e. the first found since we for reverse
416
// iteration).
417
if (R.second)
418
continue;
419
420
if (DVR.isDbgAssign()) {
421
// Don't delete dbg.assign intrinsics that are linked to instructions.
422
if (!at::getAssignmentInsts(&DVR).empty())
423
continue;
424
// Unlinked dbg.assign intrinsics can be treated like dbg.values.
425
}
426
427
ToBeRemoved.push_back(&DVR);
428
continue;
429
}
430
// Sequence with consecutive dbg.value instrs ended. Clear the map to
431
// restart identifying redundant instructions if case we find another
432
// dbg.value sequence.
433
VariableSet.clear();
434
}
435
436
for (auto &DVR : ToBeRemoved)
437
DVR->eraseFromParent();
438
439
return !ToBeRemoved.empty();
440
}
441
442
static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
443
if (BB->IsNewDbgInfoFormat)
444
return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB);
445
446
SmallVector<DbgValueInst *, 8> ToBeRemoved;
447
SmallDenseSet<DebugVariable> VariableSet;
448
for (auto &I : reverse(*BB)) {
449
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
450
DebugVariable Key(DVI->getVariable(),
451
DVI->getExpression(),
452
DVI->getDebugLoc()->getInlinedAt());
453
auto R = VariableSet.insert(Key);
454
// If the variable fragment hasn't been seen before then we don't want
455
// to remove this dbg intrinsic.
456
if (R.second)
457
continue;
458
459
if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
460
// Don't delete dbg.assign intrinsics that are linked to instructions.
461
if (!at::getAssignmentInsts(DAI).empty())
462
continue;
463
// Unlinked dbg.assign intrinsics can be treated like dbg.values.
464
}
465
466
// If the same variable fragment is described more than once it is enough
467
// to keep the last one (i.e. the first found since we for reverse
468
// iteration).
469
ToBeRemoved.push_back(DVI);
470
continue;
471
}
472
// Sequence with consecutive dbg.value instrs ended. Clear the map to
473
// restart identifying redundant instructions if case we find another
474
// dbg.value sequence.
475
VariableSet.clear();
476
}
477
478
for (auto &Instr : ToBeRemoved)
479
Instr->eraseFromParent();
480
481
return !ToBeRemoved.empty();
482
}
483
484
/// Remove redundant dbg.value instructions using a forward scan. This can
485
/// remove a dbg.value instruction that is redundant due to indicating that a
486
/// variable has the same value as already being indicated by an earlier
487
/// dbg.value.
488
///
489
/// ForwardScan strategy:
490
/// ---------------------
491
/// Given two identical dbg.value instructions, separated by a block of
492
/// instructions that isn't describing the same variable, like this
493
///
494
/// dbg.value X1, "x", FragmentX1 (**)
495
/// <block of instructions, none being "dbg.value ..., "x", ...">
496
/// dbg.value X1, "x", FragmentX1 (*)
497
///
498
/// then the instruction marked with (*) can be removed. Variable "x" is already
499
/// described as being mapped to the SSA value X1.
500
///
501
/// Possible improvements:
502
/// - Keep track of non-overlapping fragments.
503
static bool
504
DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
505
SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
506
DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
507
VariableMap;
508
for (auto &I : *BB) {
509
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
510
if (DVR.getType() == DbgVariableRecord::LocationType::Declare)
511
continue;
512
DebugVariable Key(DVR.getVariable(), std::nullopt,
513
DVR.getDebugLoc()->getInlinedAt());
514
auto VMI = VariableMap.find(Key);
515
// A dbg.assign with no linked instructions can be treated like a
516
// dbg.value (i.e. can be deleted).
517
bool IsDbgValueKind =
518
(!DVR.isDbgAssign() || at::getAssignmentInsts(&DVR).empty());
519
520
// Update the map if we found a new value/expression describing the
521
// variable, or if the variable wasn't mapped already.
522
SmallVector<Value *, 4> Values(DVR.location_ops());
523
if (VMI == VariableMap.end() || VMI->second.first != Values ||
524
VMI->second.second != DVR.getExpression()) {
525
if (IsDbgValueKind)
526
VariableMap[Key] = {Values, DVR.getExpression()};
527
else
528
VariableMap[Key] = {Values, nullptr};
529
continue;
530
}
531
// Don't delete dbg.assign intrinsics that are linked to instructions.
532
if (!IsDbgValueKind)
533
continue;
534
// Found an identical mapping. Remember the instruction for later removal.
535
ToBeRemoved.push_back(&DVR);
536
}
537
}
538
539
for (auto *DVR : ToBeRemoved)
540
DVR->eraseFromParent();
541
542
return !ToBeRemoved.empty();
543
}
544
545
static bool
546
DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
547
assert(BB->isEntryBlock() && "expected entry block");
548
SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
549
DenseSet<DebugVariable> SeenDefForAggregate;
550
// Returns the DebugVariable for DVI with no fragment info.
551
auto GetAggregateVariable = [](const DbgVariableRecord &DVR) {
552
return DebugVariable(DVR.getVariable(), std::nullopt,
553
DVR.getDebugLoc().getInlinedAt());
554
};
555
556
// Remove undef dbg.assign intrinsics that are encountered before
557
// any non-undef intrinsics from the entry block.
558
for (auto &I : *BB) {
559
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
560
if (!DVR.isDbgValue() && !DVR.isDbgAssign())
561
continue;
562
bool IsDbgValueKind =
563
(DVR.isDbgValue() || at::getAssignmentInsts(&DVR).empty());
564
DebugVariable Aggregate = GetAggregateVariable(DVR);
565
if (!SeenDefForAggregate.contains(Aggregate)) {
566
bool IsKill = DVR.isKillLocation() && IsDbgValueKind;
567
if (!IsKill) {
568
SeenDefForAggregate.insert(Aggregate);
569
} else if (DVR.isDbgAssign()) {
570
ToBeRemoved.push_back(&DVR);
571
}
572
}
573
}
574
}
575
576
for (DbgVariableRecord *DVR : ToBeRemoved)
577
DVR->eraseFromParent();
578
579
return !ToBeRemoved.empty();
580
}
581
582
static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
583
if (BB->IsNewDbgInfoFormat)
584
return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB);
585
586
SmallVector<DbgValueInst *, 8> ToBeRemoved;
587
DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
588
VariableMap;
589
for (auto &I : *BB) {
590
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
591
DebugVariable Key(DVI->getVariable(), std::nullopt,
592
DVI->getDebugLoc()->getInlinedAt());
593
auto VMI = VariableMap.find(Key);
594
auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
595
// A dbg.assign with no linked instructions can be treated like a
596
// dbg.value (i.e. can be deleted).
597
bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
598
599
// Update the map if we found a new value/expression describing the
600
// variable, or if the variable wasn't mapped already.
601
SmallVector<Value *, 4> Values(DVI->getValues());
602
if (VMI == VariableMap.end() || VMI->second.first != Values ||
603
VMI->second.second != DVI->getExpression()) {
604
// Use a sentinel value (nullptr) for the DIExpression when we see a
605
// linked dbg.assign so that the next debug intrinsic will never match
606
// it (i.e. always treat linked dbg.assigns as if they're unique).
607
if (IsDbgValueKind)
608
VariableMap[Key] = {Values, DVI->getExpression()};
609
else
610
VariableMap[Key] = {Values, nullptr};
611
continue;
612
}
613
614
// Don't delete dbg.assign intrinsics that are linked to instructions.
615
if (!IsDbgValueKind)
616
continue;
617
ToBeRemoved.push_back(DVI);
618
}
619
}
620
621
for (auto &Instr : ToBeRemoved)
622
Instr->eraseFromParent();
623
624
return !ToBeRemoved.empty();
625
}
626
627
/// Remove redundant undef dbg.assign intrinsic from an entry block using a
628
/// forward scan.
629
/// Strategy:
630
/// ---------------------
631
/// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
632
/// linked to an intrinsic, and don't share an aggregate variable with a debug
633
/// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
634
/// that come before non-undef debug intrinsics for the variable are
635
/// deleted. Given:
636
///
637
/// dbg.assign undef, "x", FragmentX1 (*)
638
/// <block of instructions, none being "dbg.value ..., "x", ...">
639
/// dbg.value %V, "x", FragmentX2
640
/// <block of instructions, none being "dbg.value ..., "x", ...">
641
/// dbg.assign undef, "x", FragmentX1
642
///
643
/// then (only) the instruction marked with (*) can be removed.
644
/// Possible improvements:
645
/// - Keep track of non-overlapping fragments.
646
static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
647
if (BB->IsNewDbgInfoFormat)
648
return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB);
649
650
assert(BB->isEntryBlock() && "expected entry block");
651
SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
652
DenseSet<DebugVariable> SeenDefForAggregate;
653
// Returns the DebugVariable for DVI with no fragment info.
654
auto GetAggregateVariable = [](DbgValueInst *DVI) {
655
return DebugVariable(DVI->getVariable(), std::nullopt,
656
DVI->getDebugLoc()->getInlinedAt());
657
};
658
659
// Remove undef dbg.assign intrinsics that are encountered before
660
// any non-undef intrinsics from the entry block.
661
for (auto &I : *BB) {
662
DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
663
if (!DVI)
664
continue;
665
auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
666
bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
667
DebugVariable Aggregate = GetAggregateVariable(DVI);
668
if (!SeenDefForAggregate.contains(Aggregate)) {
669
bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
670
if (!IsKill) {
671
SeenDefForAggregate.insert(Aggregate);
672
} else if (DAI) {
673
ToBeRemoved.push_back(DAI);
674
}
675
}
676
}
677
678
for (DbgAssignIntrinsic *DAI : ToBeRemoved)
679
DAI->eraseFromParent();
680
681
return !ToBeRemoved.empty();
682
}
683
684
bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
685
bool MadeChanges = false;
686
// By using the "backward scan" strategy before the "forward scan" strategy we
687
// can remove both dbg.value (2) and (3) in a situation like this:
688
//
689
// (1) dbg.value V1, "x", DIExpression()
690
// ...
691
// (2) dbg.value V2, "x", DIExpression()
692
// (3) dbg.value V1, "x", DIExpression()
693
//
694
// The backward scan will remove (2), it is made obsolete by (3). After
695
// getting (2) out of the way, the foward scan will remove (3) since "x"
696
// already is described as having the value V1 at (1).
697
MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
698
if (BB->isEntryBlock() &&
699
isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
700
MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB);
701
MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
702
703
if (MadeChanges)
704
LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
705
<< BB->getName() << "\n");
706
return MadeChanges;
707
}
708
709
void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
710
Instruction &I = *BI;
711
// Replaces all of the uses of the instruction with uses of the value
712
I.replaceAllUsesWith(V);
713
714
// Make sure to propagate a name if there is one already.
715
if (I.hasName() && !V->hasName())
716
V->takeName(&I);
717
718
// Delete the unnecessary instruction now...
719
BI = BI->eraseFromParent();
720
}
721
722
void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
723
Instruction *I) {
724
assert(I->getParent() == nullptr &&
725
"ReplaceInstWithInst: Instruction already inserted into basic block!");
726
727
// Copy debug location to newly added instruction, if it wasn't already set
728
// by the caller.
729
if (!I->getDebugLoc())
730
I->setDebugLoc(BI->getDebugLoc());
731
732
// Insert the new instruction into the basic block...
733
BasicBlock::iterator New = I->insertInto(BB, BI);
734
735
// Replace all uses of the old instruction, and delete it.
736
ReplaceInstWithValue(BI, I);
737
738
// Move BI back to point to the newly inserted instruction
739
BI = New;
740
}
741
742
bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
743
// Remember visited blocks to avoid infinite loop
744
SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
745
unsigned Depth = 0;
746
while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
747
VisitedBlocks.insert(BB).second) {
748
if (isa<UnreachableInst>(BB->getTerminator()) ||
749
BB->getTerminatingDeoptimizeCall())
750
return true;
751
BB = BB->getUniqueSuccessor();
752
}
753
return false;
754
}
755
756
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
757
BasicBlock::iterator BI(From);
758
ReplaceInstWithInst(From->getParent(), BI, To);
759
}
760
761
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
762
LoopInfo *LI, MemorySSAUpdater *MSSAU,
763
const Twine &BBName) {
764
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
765
766
Instruction *LatchTerm = BB->getTerminator();
767
768
CriticalEdgeSplittingOptions Options =
769
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
770
771
if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
772
// If it is a critical edge, and the succesor is an exception block, handle
773
// the split edge logic in this specific function
774
if (Succ->isEHPad())
775
return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
776
777
// If this is a critical edge, let SplitKnownCriticalEdge do it.
778
return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
779
}
780
781
// If the edge isn't critical, then BB has a single successor or Succ has a
782
// single pred. Split the block.
783
if (BasicBlock *SP = Succ->getSinglePredecessor()) {
784
// If the successor only has a single pred, split the top of the successor
785
// block.
786
assert(SP == BB && "CFG broken");
787
(void)SP;
788
return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
789
/*Before=*/true);
790
}
791
792
// Otherwise, if BB has a single successor, split it at the bottom of the
793
// block.
794
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
795
"Should have a single succ!");
796
return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
797
}
798
799
void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
800
if (auto *II = dyn_cast<InvokeInst>(TI))
801
II->setUnwindDest(Succ);
802
else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
803
CS->setUnwindDest(Succ);
804
else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
805
CR->setUnwindDest(Succ);
806
else
807
llvm_unreachable("unexpected terminator instruction");
808
}
809
810
void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
811
BasicBlock *NewPred, PHINode *Until) {
812
int BBIdx = 0;
813
for (PHINode &PN : DestBB->phis()) {
814
// We manually update the LandingPadReplacement PHINode and it is the last
815
// PHI Node. So, if we find it, we are done.
816
if (Until == &PN)
817
break;
818
819
// Reuse the previous value of BBIdx if it lines up. In cases where we
820
// have multiple phi nodes with *lots* of predecessors, this is a speed
821
// win because we don't have to scan the PHI looking for TIBB. This
822
// happens because the BB list of PHI nodes are usually in the same
823
// order.
824
if (PN.getIncomingBlock(BBIdx) != OldPred)
825
BBIdx = PN.getBasicBlockIndex(OldPred);
826
827
assert(BBIdx != -1 && "Invalid PHI Index!");
828
PN.setIncomingBlock(BBIdx, NewPred);
829
}
830
}
831
832
BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
833
LandingPadInst *OriginalPad,
834
PHINode *LandingPadReplacement,
835
const CriticalEdgeSplittingOptions &Options,
836
const Twine &BBName) {
837
838
auto *PadInst = Succ->getFirstNonPHI();
839
if (!LandingPadReplacement && !PadInst->isEHPad())
840
return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
841
842
auto *LI = Options.LI;
843
SmallVector<BasicBlock *, 4> LoopPreds;
844
// Check if extra modifications will be required to preserve loop-simplify
845
// form after splitting. If it would require splitting blocks with IndirectBr
846
// terminators, bail out if preserving loop-simplify form is requested.
847
if (Options.PreserveLoopSimplify && LI) {
848
if (Loop *BBLoop = LI->getLoopFor(BB)) {
849
850
// The only way that we can break LoopSimplify form by splitting a
851
// critical edge is when there exists some edge from BBLoop to Succ *and*
852
// the only edge into Succ from outside of BBLoop is that of NewBB after
853
// the split. If the first isn't true, then LoopSimplify still holds,
854
// NewBB is the new exit block and it has no non-loop predecessors. If the
855
// second isn't true, then Succ was not in LoopSimplify form prior to
856
// the split as it had a non-loop predecessor. In both of these cases,
857
// the predecessor must be directly in BBLoop, not in a subloop, or again
858
// LoopSimplify doesn't hold.
859
for (BasicBlock *P : predecessors(Succ)) {
860
if (P == BB)
861
continue; // The new block is known.
862
if (LI->getLoopFor(P) != BBLoop) {
863
// Loop is not in LoopSimplify form, no need to re simplify after
864
// splitting edge.
865
LoopPreds.clear();
866
break;
867
}
868
LoopPreds.push_back(P);
869
}
870
// Loop-simplify form can be preserved, if we can split all in-loop
871
// predecessors.
872
if (any_of(LoopPreds, [](BasicBlock *Pred) {
873
return isa<IndirectBrInst>(Pred->getTerminator());
874
})) {
875
return nullptr;
876
}
877
}
878
}
879
880
auto *NewBB =
881
BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
882
setUnwindEdgeTo(BB->getTerminator(), NewBB);
883
updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
884
885
if (LandingPadReplacement) {
886
auto *NewLP = OriginalPad->clone();
887
auto *Terminator = BranchInst::Create(Succ, NewBB);
888
NewLP->insertBefore(Terminator);
889
LandingPadReplacement->addIncoming(NewLP, NewBB);
890
} else {
891
Value *ParentPad = nullptr;
892
if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
893
ParentPad = FuncletPad->getParentPad();
894
else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
895
ParentPad = CatchSwitch->getParentPad();
896
else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
897
ParentPad = CleanupPad->getParentPad();
898
else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
899
ParentPad = LandingPad->getParent();
900
else
901
llvm_unreachable("handling for other EHPads not implemented yet");
902
903
auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
904
CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
905
}
906
907
auto *DT = Options.DT;
908
auto *MSSAU = Options.MSSAU;
909
if (!DT && !LI)
910
return NewBB;
911
912
if (DT) {
913
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
914
SmallVector<DominatorTree::UpdateType, 3> Updates;
915
916
Updates.push_back({DominatorTree::Insert, BB, NewBB});
917
Updates.push_back({DominatorTree::Insert, NewBB, Succ});
918
Updates.push_back({DominatorTree::Delete, BB, Succ});
919
920
DTU.applyUpdates(Updates);
921
DTU.flush();
922
923
if (MSSAU) {
924
MSSAU->applyUpdates(Updates, *DT);
925
if (VerifyMemorySSA)
926
MSSAU->getMemorySSA()->verifyMemorySSA();
927
}
928
}
929
930
if (LI) {
931
if (Loop *BBLoop = LI->getLoopFor(BB)) {
932
// If one or the other blocks were not in a loop, the new block is not
933
// either, and thus LI doesn't need to be updated.
934
if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
935
if (BBLoop == SuccLoop) {
936
// Both in the same loop, the NewBB joins loop.
937
SuccLoop->addBasicBlockToLoop(NewBB, *LI);
938
} else if (BBLoop->contains(SuccLoop)) {
939
// Edge from an outer loop to an inner loop. Add to the outer loop.
940
BBLoop->addBasicBlockToLoop(NewBB, *LI);
941
} else if (SuccLoop->contains(BBLoop)) {
942
// Edge from an inner loop to an outer loop. Add to the outer loop.
943
SuccLoop->addBasicBlockToLoop(NewBB, *LI);
944
} else {
945
// Edge from two loops with no containment relation. Because these
946
// are natural loops, we know that the destination block must be the
947
// header of its loop (adding a branch into a loop elsewhere would
948
// create an irreducible loop).
949
assert(SuccLoop->getHeader() == Succ &&
950
"Should not create irreducible loops!");
951
if (Loop *P = SuccLoop->getParentLoop())
952
P->addBasicBlockToLoop(NewBB, *LI);
953
}
954
}
955
956
// If BB is in a loop and Succ is outside of that loop, we may need to
957
// update LoopSimplify form and LCSSA form.
958
if (!BBLoop->contains(Succ)) {
959
assert(!BBLoop->contains(NewBB) &&
960
"Split point for loop exit is contained in loop!");
961
962
// Update LCSSA form in the newly created exit block.
963
if (Options.PreserveLCSSA) {
964
createPHIsForSplitLoopExit(BB, NewBB, Succ);
965
}
966
967
if (!LoopPreds.empty()) {
968
BasicBlock *NewExitBB = SplitBlockPredecessors(
969
Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
970
if (Options.PreserveLCSSA)
971
createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
972
}
973
}
974
}
975
}
976
977
return NewBB;
978
}
979
980
void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
981
BasicBlock *SplitBB, BasicBlock *DestBB) {
982
// SplitBB shouldn't have anything non-trivial in it yet.
983
assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
984
SplitBB->isLandingPad()) &&
985
"SplitBB has non-PHI nodes!");
986
987
// For each PHI in the destination block.
988
for (PHINode &PN : DestBB->phis()) {
989
int Idx = PN.getBasicBlockIndex(SplitBB);
990
assert(Idx >= 0 && "Invalid Block Index");
991
Value *V = PN.getIncomingValue(Idx);
992
993
// If the input is a PHI which already satisfies LCSSA, don't create
994
// a new one.
995
if (const PHINode *VP = dyn_cast<PHINode>(V))
996
if (VP->getParent() == SplitBB)
997
continue;
998
999
// Otherwise a new PHI is needed. Create one and populate it.
1000
PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
1001
BasicBlock::iterator InsertPos =
1002
SplitBB->isLandingPad() ? SplitBB->begin()
1003
: SplitBB->getTerminator()->getIterator();
1004
NewPN->insertBefore(InsertPos);
1005
for (BasicBlock *BB : Preds)
1006
NewPN->addIncoming(V, BB);
1007
1008
// Update the original PHI.
1009
PN.setIncomingValue(Idx, NewPN);
1010
}
1011
}
1012
1013
unsigned
1014
llvm::SplitAllCriticalEdges(Function &F,
1015
const CriticalEdgeSplittingOptions &Options) {
1016
unsigned NumBroken = 0;
1017
for (BasicBlock &BB : F) {
1018
Instruction *TI = BB.getTerminator();
1019
if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
1020
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1021
if (SplitCriticalEdge(TI, i, Options))
1022
++NumBroken;
1023
}
1024
return NumBroken;
1025
}
1026
1027
static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt,
1028
DomTreeUpdater *DTU, DominatorTree *DT,
1029
LoopInfo *LI, MemorySSAUpdater *MSSAU,
1030
const Twine &BBName, bool Before) {
1031
if (Before) {
1032
DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1033
return splitBlockBefore(Old, SplitPt,
1034
DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
1035
BBName);
1036
}
1037
BasicBlock::iterator SplitIt = SplitPt;
1038
while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
1039
++SplitIt;
1040
assert(SplitIt != SplitPt->getParent()->end());
1041
}
1042
std::string Name = BBName.str();
1043
BasicBlock *New = Old->splitBasicBlock(
1044
SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
1045
1046
// The new block lives in whichever loop the old one did. This preserves
1047
// LCSSA as well, because we force the split point to be after any PHI nodes.
1048
if (LI)
1049
if (Loop *L = LI->getLoopFor(Old))
1050
L->addBasicBlockToLoop(New, *LI);
1051
1052
if (DTU) {
1053
SmallVector<DominatorTree::UpdateType, 8> Updates;
1054
// Old dominates New. New node dominates all other nodes dominated by Old.
1055
SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
1056
Updates.push_back({DominatorTree::Insert, Old, New});
1057
Updates.reserve(Updates.size() + 2 * succ_size(New));
1058
for (BasicBlock *SuccessorOfOld : successors(New))
1059
if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
1060
Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
1061
Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
1062
}
1063
1064
DTU->applyUpdates(Updates);
1065
} else if (DT)
1066
// Old dominates New. New node dominates all other nodes dominated by Old.
1067
if (DomTreeNode *OldNode = DT->getNode(Old)) {
1068
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1069
1070
DomTreeNode *NewNode = DT->addNewBlock(New, Old);
1071
for (DomTreeNode *I : Children)
1072
DT->changeImmediateDominator(I, NewNode);
1073
}
1074
1075
// Move MemoryAccesses still tracked in Old, but part of New now.
1076
// Update accesses in successor blocks accordingly.
1077
if (MSSAU)
1078
MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
1079
1080
return New;
1081
}
1082
1083
BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1084
DominatorTree *DT, LoopInfo *LI,
1085
MemorySSAUpdater *MSSAU, const Twine &BBName,
1086
bool Before) {
1087
return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
1088
Before);
1089
}
1090
BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1091
DomTreeUpdater *DTU, LoopInfo *LI,
1092
MemorySSAUpdater *MSSAU, const Twine &BBName,
1093
bool Before) {
1094
return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
1095
Before);
1096
}
1097
1098
BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt,
1099
DomTreeUpdater *DTU, LoopInfo *LI,
1100
MemorySSAUpdater *MSSAU,
1101
const Twine &BBName) {
1102
1103
BasicBlock::iterator SplitIt = SplitPt;
1104
while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
1105
++SplitIt;
1106
std::string Name = BBName.str();
1107
BasicBlock *New = Old->splitBasicBlock(
1108
SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
1109
/* Before=*/true);
1110
1111
// The new block lives in whichever loop the old one did. This preserves
1112
// LCSSA as well, because we force the split point to be after any PHI nodes.
1113
if (LI)
1114
if (Loop *L = LI->getLoopFor(Old))
1115
L->addBasicBlockToLoop(New, *LI);
1116
1117
if (DTU) {
1118
SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
1119
// New dominates Old. The predecessor nodes of the Old node dominate
1120
// New node.
1121
SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
1122
DTUpdates.push_back({DominatorTree::Insert, New, Old});
1123
DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
1124
for (BasicBlock *PredecessorOfOld : predecessors(New))
1125
if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
1126
DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
1127
DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
1128
}
1129
1130
DTU->applyUpdates(DTUpdates);
1131
1132
// Move MemoryAccesses still tracked in Old, but part of New now.
1133
// Update accesses in successor blocks accordingly.
1134
if (MSSAU) {
1135
MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
1136
if (VerifyMemorySSA)
1137
MSSAU->getMemorySSA()->verifyMemorySSA();
1138
}
1139
}
1140
return New;
1141
}
1142
1143
/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1144
/// Invalidates DFS Numbering when DTU or DT is provided.
1145
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
1146
ArrayRef<BasicBlock *> Preds,
1147
DomTreeUpdater *DTU, DominatorTree *DT,
1148
LoopInfo *LI, MemorySSAUpdater *MSSAU,
1149
bool PreserveLCSSA, bool &HasLoopExit) {
1150
// Update dominator tree if available.
1151
if (DTU) {
1152
// Recalculation of DomTree is needed when updating a forward DomTree and
1153
// the Entry BB is replaced.
1154
if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1155
// The entry block was removed and there is no external interface for
1156
// the dominator tree to be notified of this change. In this corner-case
1157
// we recalculate the entire tree.
1158
DTU->recalculate(*NewBB->getParent());
1159
} else {
1160
// Split block expects NewBB to have a non-empty set of predecessors.
1161
SmallVector<DominatorTree::UpdateType, 8> Updates;
1162
SmallPtrSet<BasicBlock *, 8> UniquePreds;
1163
Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
1164
Updates.reserve(Updates.size() + 2 * Preds.size());
1165
for (auto *Pred : Preds)
1166
if (UniquePreds.insert(Pred).second) {
1167
Updates.push_back({DominatorTree::Insert, Pred, NewBB});
1168
Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1169
}
1170
DTU->applyUpdates(Updates);
1171
}
1172
} else if (DT) {
1173
if (OldBB == DT->getRootNode()->getBlock()) {
1174
assert(NewBB->isEntryBlock());
1175
DT->setNewRoot(NewBB);
1176
} else {
1177
// Split block expects NewBB to have a non-empty set of predecessors.
1178
DT->splitBlock(NewBB);
1179
}
1180
}
1181
1182
// Update MemoryPhis after split if MemorySSA is available
1183
if (MSSAU)
1184
MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
1185
1186
// The rest of the logic is only relevant for updating the loop structures.
1187
if (!LI)
1188
return;
1189
1190
if (DTU && DTU->hasDomTree())
1191
DT = &DTU->getDomTree();
1192
assert(DT && "DT should be available to update LoopInfo!");
1193
Loop *L = LI->getLoopFor(OldBB);
1194
1195
// If we need to preserve loop analyses, collect some information about how
1196
// this split will affect loops.
1197
bool IsLoopEntry = !!L;
1198
bool SplitMakesNewLoopHeader = false;
1199
for (BasicBlock *Pred : Preds) {
1200
// Preds that are not reachable from entry should not be used to identify if
1201
// OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
1202
// are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
1203
// as true and make the NewBB the header of some loop. This breaks LI.
1204
if (!DT->isReachableFromEntry(Pred))
1205
continue;
1206
// If we need to preserve LCSSA, determine if any of the preds is a loop
1207
// exit.
1208
if (PreserveLCSSA)
1209
if (Loop *PL = LI->getLoopFor(Pred))
1210
if (!PL->contains(OldBB))
1211
HasLoopExit = true;
1212
1213
// If we need to preserve LoopInfo, note whether any of the preds crosses
1214
// an interesting loop boundary.
1215
if (!L)
1216
continue;
1217
if (L->contains(Pred))
1218
IsLoopEntry = false;
1219
else
1220
SplitMakesNewLoopHeader = true;
1221
}
1222
1223
// Unless we have a loop for OldBB, nothing else to do here.
1224
if (!L)
1225
return;
1226
1227
if (IsLoopEntry) {
1228
// Add the new block to the nearest enclosing loop (and not an adjacent
1229
// loop). To find this, examine each of the predecessors and determine which
1230
// loops enclose them, and select the most-nested loop which contains the
1231
// loop containing the block being split.
1232
Loop *InnermostPredLoop = nullptr;
1233
for (BasicBlock *Pred : Preds) {
1234
if (Loop *PredLoop = LI->getLoopFor(Pred)) {
1235
// Seek a loop which actually contains the block being split (to avoid
1236
// adjacent loops).
1237
while (PredLoop && !PredLoop->contains(OldBB))
1238
PredLoop = PredLoop->getParentLoop();
1239
1240
// Select the most-nested of these loops which contains the block.
1241
if (PredLoop && PredLoop->contains(OldBB) &&
1242
(!InnermostPredLoop ||
1243
InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
1244
InnermostPredLoop = PredLoop;
1245
}
1246
}
1247
1248
if (InnermostPredLoop)
1249
InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1250
} else {
1251
L->addBasicBlockToLoop(NewBB, *LI);
1252
if (SplitMakesNewLoopHeader)
1253
L->moveToHeader(NewBB);
1254
}
1255
}
1256
1257
/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1258
/// This also updates AliasAnalysis, if available.
1259
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1260
ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1261
bool HasLoopExit) {
1262
// Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1263
SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1264
for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1265
PHINode *PN = cast<PHINode>(I++);
1266
1267
// Check to see if all of the values coming in are the same. If so, we
1268
// don't need to create a new PHI node, unless it's needed for LCSSA.
1269
Value *InVal = nullptr;
1270
if (!HasLoopExit) {
1271
InVal = PN->getIncomingValueForBlock(Preds[0]);
1272
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1273
if (!PredSet.count(PN->getIncomingBlock(i)))
1274
continue;
1275
if (!InVal)
1276
InVal = PN->getIncomingValue(i);
1277
else if (InVal != PN->getIncomingValue(i)) {
1278
InVal = nullptr;
1279
break;
1280
}
1281
}
1282
}
1283
1284
if (InVal) {
1285
// If all incoming values for the new PHI would be the same, just don't
1286
// make a new PHI. Instead, just remove the incoming values from the old
1287
// PHI.
1288
PN->removeIncomingValueIf(
1289
[&](unsigned Idx) {
1290
return PredSet.contains(PN->getIncomingBlock(Idx));
1291
},
1292
/* DeletePHIIfEmpty */ false);
1293
1294
// Add an incoming value to the PHI node in the loop for the preheader
1295
// edge.
1296
PN->addIncoming(InVal, NewBB);
1297
continue;
1298
}
1299
1300
// If the values coming into the block are not the same, we need a new
1301
// PHI.
1302
// Create the new PHI node, insert it into NewBB at the end of the block
1303
PHINode *NewPHI =
1304
PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator());
1305
1306
// NOTE! This loop walks backwards for a reason! First off, this minimizes
1307
// the cost of removal if we end up removing a large number of values, and
1308
// second off, this ensures that the indices for the incoming values aren't
1309
// invalidated when we remove one.
1310
for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1311
BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1312
if (PredSet.count(IncomingBB)) {
1313
Value *V = PN->removeIncomingValue(i, false);
1314
NewPHI->addIncoming(V, IncomingBB);
1315
}
1316
}
1317
1318
PN->addIncoming(NewPHI, NewBB);
1319
}
1320
}
1321
1322
static void SplitLandingPadPredecessorsImpl(
1323
BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1324
const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1325
DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1326
MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1327
1328
static BasicBlock *
1329
SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1330
const char *Suffix, DomTreeUpdater *DTU,
1331
DominatorTree *DT, LoopInfo *LI,
1332
MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1333
// Do not attempt to split that which cannot be split.
1334
if (!BB->canSplitPredecessors())
1335
return nullptr;
1336
1337
// For the landingpads we need to act a bit differently.
1338
// Delegate this work to the SplitLandingPadPredecessors.
1339
if (BB->isLandingPad()) {
1340
SmallVector<BasicBlock*, 2> NewBBs;
1341
std::string NewName = std::string(Suffix) + ".split-lp";
1342
1343
SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1344
DTU, DT, LI, MSSAU, PreserveLCSSA);
1345
return NewBBs[0];
1346
}
1347
1348
// Create new basic block, insert right before the original block.
1349
BasicBlock *NewBB = BasicBlock::Create(
1350
BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1351
1352
// The new block unconditionally branches to the old block.
1353
BranchInst *BI = BranchInst::Create(BB, NewBB);
1354
1355
Loop *L = nullptr;
1356
BasicBlock *OldLatch = nullptr;
1357
// Splitting the predecessors of a loop header creates a preheader block.
1358
if (LI && LI->isLoopHeader(BB)) {
1359
L = LI->getLoopFor(BB);
1360
// Using the loop start line number prevents debuggers stepping into the
1361
// loop body for this instruction.
1362
BI->setDebugLoc(L->getStartLoc());
1363
1364
// If BB is the header of the Loop, it is possible that the loop is
1365
// modified, such that the current latch does not remain the latch of the
1366
// loop. If that is the case, the loop metadata from the current latch needs
1367
// to be applied to the new latch.
1368
OldLatch = L->getLoopLatch();
1369
} else
1370
BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1371
1372
// Move the edges from Preds to point to NewBB instead of BB.
1373
for (BasicBlock *Pred : Preds) {
1374
// This is slightly more strict than necessary; the minimum requirement
1375
// is that there be no more than one indirectbr branching to BB. And
1376
// all BlockAddress uses would need to be updated.
1377
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1378
"Cannot split an edge from an IndirectBrInst");
1379
Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1380
}
1381
1382
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1383
// node becomes an incoming value for BB's phi node. However, if the Preds
1384
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
1385
// account for the newly created predecessor.
1386
if (Preds.empty()) {
1387
// Insert dummy values as the incoming value.
1388
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1389
cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1390
}
1391
1392
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1393
bool HasLoopExit = false;
1394
UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1395
HasLoopExit);
1396
1397
if (!Preds.empty()) {
1398
// Update the PHI nodes in BB with the values coming from NewBB.
1399
UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1400
}
1401
1402
if (OldLatch) {
1403
BasicBlock *NewLatch = L->getLoopLatch();
1404
if (NewLatch != OldLatch) {
1405
MDNode *MD = OldLatch->getTerminator()->getMetadata(LLVMContext::MD_loop);
1406
NewLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, MD);
1407
// It's still possible that OldLatch is the latch of another inner loop,
1408
// in which case we do not remove the metadata.
1409
Loop *IL = LI->getLoopFor(OldLatch);
1410
if (IL && IL->getLoopLatch() != OldLatch)
1411
OldLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, nullptr);
1412
}
1413
}
1414
1415
return NewBB;
1416
}
1417
1418
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1419
ArrayRef<BasicBlock *> Preds,
1420
const char *Suffix, DominatorTree *DT,
1421
LoopInfo *LI, MemorySSAUpdater *MSSAU,
1422
bool PreserveLCSSA) {
1423
return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1424
MSSAU, PreserveLCSSA);
1425
}
1426
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1427
ArrayRef<BasicBlock *> Preds,
1428
const char *Suffix,
1429
DomTreeUpdater *DTU, LoopInfo *LI,
1430
MemorySSAUpdater *MSSAU,
1431
bool PreserveLCSSA) {
1432
return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1433
/*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1434
}
1435
1436
static void SplitLandingPadPredecessorsImpl(
1437
BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1438
const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1439
DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1440
MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1441
assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1442
1443
// Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1444
// it right before the original block.
1445
BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1446
OrigBB->getName() + Suffix1,
1447
OrigBB->getParent(), OrigBB);
1448
NewBBs.push_back(NewBB1);
1449
1450
// The new block unconditionally branches to the old block.
1451
BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1452
BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1453
1454
// Move the edges from Preds to point to NewBB1 instead of OrigBB.
1455
for (BasicBlock *Pred : Preds) {
1456
// This is slightly more strict than necessary; the minimum requirement
1457
// is that there be no more than one indirectbr branching to BB. And
1458
// all BlockAddress uses would need to be updated.
1459
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1460
"Cannot split an edge from an IndirectBrInst");
1461
Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1462
}
1463
1464
bool HasLoopExit = false;
1465
UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1466
PreserveLCSSA, HasLoopExit);
1467
1468
// Update the PHI nodes in OrigBB with the values coming from NewBB1.
1469
UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1470
1471
// Move the remaining edges from OrigBB to point to NewBB2.
1472
SmallVector<BasicBlock*, 8> NewBB2Preds;
1473
for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1474
i != e; ) {
1475
BasicBlock *Pred = *i++;
1476
if (Pred == NewBB1) continue;
1477
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1478
"Cannot split an edge from an IndirectBrInst");
1479
NewBB2Preds.push_back(Pred);
1480
e = pred_end(OrigBB);
1481
}
1482
1483
BasicBlock *NewBB2 = nullptr;
1484
if (!NewBB2Preds.empty()) {
1485
// Create another basic block for the rest of OrigBB's predecessors.
1486
NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1487
OrigBB->getName() + Suffix2,
1488
OrigBB->getParent(), OrigBB);
1489
NewBBs.push_back(NewBB2);
1490
1491
// The new block unconditionally branches to the old block.
1492
BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1493
BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1494
1495
// Move the remaining edges from OrigBB to point to NewBB2.
1496
for (BasicBlock *NewBB2Pred : NewBB2Preds)
1497
NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1498
1499
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1500
HasLoopExit = false;
1501
UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1502
PreserveLCSSA, HasLoopExit);
1503
1504
// Update the PHI nodes in OrigBB with the values coming from NewBB2.
1505
UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1506
}
1507
1508
LandingPadInst *LPad = OrigBB->getLandingPadInst();
1509
Instruction *Clone1 = LPad->clone();
1510
Clone1->setName(Twine("lpad") + Suffix1);
1511
Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
1512
1513
if (NewBB2) {
1514
Instruction *Clone2 = LPad->clone();
1515
Clone2->setName(Twine("lpad") + Suffix2);
1516
Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
1517
1518
// Create a PHI node for the two cloned landingpad instructions only
1519
// if the original landingpad instruction has some uses.
1520
if (!LPad->use_empty()) {
1521
assert(!LPad->getType()->isTokenTy() &&
1522
"Split cannot be applied if LPad is token type. Otherwise an "
1523
"invalid PHINode of token type would be created.");
1524
PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator());
1525
PN->addIncoming(Clone1, NewBB1);
1526
PN->addIncoming(Clone2, NewBB2);
1527
LPad->replaceAllUsesWith(PN);
1528
}
1529
LPad->eraseFromParent();
1530
} else {
1531
// There is no second clone. Just replace the landing pad with the first
1532
// clone.
1533
LPad->replaceAllUsesWith(Clone1);
1534
LPad->eraseFromParent();
1535
}
1536
}
1537
1538
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1539
ArrayRef<BasicBlock *> Preds,
1540
const char *Suffix1, const char *Suffix2,
1541
SmallVectorImpl<BasicBlock *> &NewBBs,
1542
DomTreeUpdater *DTU, LoopInfo *LI,
1543
MemorySSAUpdater *MSSAU,
1544
bool PreserveLCSSA) {
1545
return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1546
NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1547
PreserveLCSSA);
1548
}
1549
1550
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1551
BasicBlock *Pred,
1552
DomTreeUpdater *DTU) {
1553
Instruction *UncondBranch = Pred->getTerminator();
1554
// Clone the return and add it to the end of the predecessor.
1555
Instruction *NewRet = RI->clone();
1556
NewRet->insertInto(Pred, Pred->end());
1557
1558
// If the return instruction returns a value, and if the value was a
1559
// PHI node in "BB", propagate the right value into the return.
1560
for (Use &Op : NewRet->operands()) {
1561
Value *V = Op;
1562
Instruction *NewBC = nullptr;
1563
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1564
// Return value might be bitcasted. Clone and insert it before the
1565
// return instruction.
1566
V = BCI->getOperand(0);
1567
NewBC = BCI->clone();
1568
NewBC->insertInto(Pred, NewRet->getIterator());
1569
Op = NewBC;
1570
}
1571
1572
Instruction *NewEV = nullptr;
1573
if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1574
V = EVI->getOperand(0);
1575
NewEV = EVI->clone();
1576
if (NewBC) {
1577
NewBC->setOperand(0, NewEV);
1578
NewEV->insertInto(Pred, NewBC->getIterator());
1579
} else {
1580
NewEV->insertInto(Pred, NewRet->getIterator());
1581
Op = NewEV;
1582
}
1583
}
1584
1585
if (PHINode *PN = dyn_cast<PHINode>(V)) {
1586
if (PN->getParent() == BB) {
1587
if (NewEV) {
1588
NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1589
} else if (NewBC)
1590
NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1591
else
1592
Op = PN->getIncomingValueForBlock(Pred);
1593
}
1594
}
1595
}
1596
1597
// Update any PHI nodes in the returning block to realize that we no
1598
// longer branch to them.
1599
BB->removePredecessor(Pred);
1600
UncondBranch->eraseFromParent();
1601
1602
if (DTU)
1603
DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1604
1605
return cast<ReturnInst>(NewRet);
1606
}
1607
1608
Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1609
BasicBlock::iterator SplitBefore,
1610
bool Unreachable,
1611
MDNode *BranchWeights,
1612
DomTreeUpdater *DTU, LoopInfo *LI,
1613
BasicBlock *ThenBlock) {
1614
SplitBlockAndInsertIfThenElse(
1615
Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
1616
/* UnreachableThen */ Unreachable,
1617
/* UnreachableElse */ false, BranchWeights, DTU, LI);
1618
return ThenBlock->getTerminator();
1619
}
1620
1621
Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond,
1622
BasicBlock::iterator SplitBefore,
1623
bool Unreachable,
1624
MDNode *BranchWeights,
1625
DomTreeUpdater *DTU, LoopInfo *LI,
1626
BasicBlock *ElseBlock) {
1627
SplitBlockAndInsertIfThenElse(
1628
Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
1629
/* UnreachableThen */ false,
1630
/* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
1631
return ElseBlock->getTerminator();
1632
}
1633
1634
void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore,
1635
Instruction **ThenTerm,
1636
Instruction **ElseTerm,
1637
MDNode *BranchWeights,
1638
DomTreeUpdater *DTU, LoopInfo *LI) {
1639
BasicBlock *ThenBlock = nullptr;
1640
BasicBlock *ElseBlock = nullptr;
1641
SplitBlockAndInsertIfThenElse(
1642
Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
1643
/* UnreachableElse */ false, BranchWeights, DTU, LI);
1644
1645
*ThenTerm = ThenBlock->getTerminator();
1646
*ElseTerm = ElseBlock->getTerminator();
1647
}
1648
1649
void llvm::SplitBlockAndInsertIfThenElse(
1650
Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock,
1651
BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
1652
MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
1653
assert((ThenBlock || ElseBlock) &&
1654
"At least one branch block must be created");
1655
assert((!UnreachableThen || !UnreachableElse) &&
1656
"Split block tail must be reachable");
1657
1658
SmallVector<DominatorTree::UpdateType, 8> Updates;
1659
SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
1660
BasicBlock *Head = SplitBefore->getParent();
1661
if (DTU) {
1662
UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
1663
Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
1664
}
1665
1666
LLVMContext &C = Head->getContext();
1667
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
1668
BasicBlock *TrueBlock = Tail;
1669
BasicBlock *FalseBlock = Tail;
1670
bool ThenToTailEdge = false;
1671
bool ElseToTailEdge = false;
1672
1673
// Encapsulate the logic around creation/insertion/etc of a new block.
1674
auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
1675
bool &ToTailEdge) {
1676
if (PBB == nullptr)
1677
return; // Do not create/insert a block.
1678
1679
if (*PBB)
1680
BB = *PBB; // Caller supplied block, use it.
1681
else {
1682
// Create a new block.
1683
BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
1684
if (Unreachable)
1685
(void)new UnreachableInst(C, BB);
1686
else {
1687
(void)BranchInst::Create(Tail, BB);
1688
ToTailEdge = true;
1689
}
1690
BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
1691
// Pass the new block back to the caller.
1692
*PBB = BB;
1693
}
1694
};
1695
1696
handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
1697
handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
1698
1699
Instruction *HeadOldTerm = Head->getTerminator();
1700
BranchInst *HeadNewTerm =
1701
BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
1702
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1703
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1704
1705
if (DTU) {
1706
Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
1707
Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
1708
if (ThenToTailEdge)
1709
Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
1710
if (ElseToTailEdge)
1711
Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
1712
for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1713
Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
1714
for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1715
Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1716
DTU->applyUpdates(Updates);
1717
}
1718
1719
if (LI) {
1720
if (Loop *L = LI->getLoopFor(Head); L) {
1721
if (ThenToTailEdge)
1722
L->addBasicBlockToLoop(TrueBlock, *LI);
1723
if (ElseToTailEdge)
1724
L->addBasicBlockToLoop(FalseBlock, *LI);
1725
L->addBasicBlockToLoop(Tail, *LI);
1726
}
1727
}
1728
}
1729
1730
std::pair<Instruction*, Value*>
1731
llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) {
1732
BasicBlock *LoopPred = SplitBefore->getParent();
1733
BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
1734
BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
1735
1736
auto *Ty = End->getType();
1737
auto &DL = SplitBefore->getDataLayout();
1738
const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
1739
1740
IRBuilder<> Builder(LoopBody->getTerminator());
1741
auto *IV = Builder.CreatePHI(Ty, 2, "iv");
1742
auto *IVNext =
1743
Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
1744
/*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
1745
auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
1746
IV->getName() + ".check");
1747
Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
1748
LoopBody->getTerminator()->eraseFromParent();
1749
1750
// Populate the IV PHI.
1751
IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
1752
IV->addIncoming(IVNext, LoopBody);
1753
1754
return std::make_pair(LoopBody->getFirstNonPHI(), IV);
1755
}
1756
1757
void llvm::SplitBlockAndInsertForEachLane(ElementCount EC,
1758
Type *IndexTy, Instruction *InsertBefore,
1759
std::function<void(IRBuilderBase&, Value*)> Func) {
1760
1761
IRBuilder<> IRB(InsertBefore);
1762
1763
if (EC.isScalable()) {
1764
Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
1765
1766
auto [BodyIP, Index] =
1767
SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
1768
1769
IRB.SetInsertPoint(BodyIP);
1770
Func(IRB, Index);
1771
return;
1772
}
1773
1774
unsigned Num = EC.getFixedValue();
1775
for (unsigned Idx = 0; Idx < Num; ++Idx) {
1776
IRB.SetInsertPoint(InsertBefore);
1777
Func(IRB, ConstantInt::get(IndexTy, Idx));
1778
}
1779
}
1780
1781
void llvm::SplitBlockAndInsertForEachLane(
1782
Value *EVL, Instruction *InsertBefore,
1783
std::function<void(IRBuilderBase &, Value *)> Func) {
1784
1785
IRBuilder<> IRB(InsertBefore);
1786
Type *Ty = EVL->getType();
1787
1788
if (!isa<ConstantInt>(EVL)) {
1789
auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
1790
IRB.SetInsertPoint(BodyIP);
1791
Func(IRB, Index);
1792
return;
1793
}
1794
1795
unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
1796
for (unsigned Idx = 0; Idx < Num; ++Idx) {
1797
IRB.SetInsertPoint(InsertBefore);
1798
Func(IRB, ConstantInt::get(Ty, Idx));
1799
}
1800
}
1801
1802
BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1803
BasicBlock *&IfFalse) {
1804
PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1805
BasicBlock *Pred1 = nullptr;
1806
BasicBlock *Pred2 = nullptr;
1807
1808
if (SomePHI) {
1809
if (SomePHI->getNumIncomingValues() != 2)
1810
return nullptr;
1811
Pred1 = SomePHI->getIncomingBlock(0);
1812
Pred2 = SomePHI->getIncomingBlock(1);
1813
} else {
1814
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1815
if (PI == PE) // No predecessor
1816
return nullptr;
1817
Pred1 = *PI++;
1818
if (PI == PE) // Only one predecessor
1819
return nullptr;
1820
Pred2 = *PI++;
1821
if (PI != PE) // More than two predecessors
1822
return nullptr;
1823
}
1824
1825
// We can only handle branches. Other control flow will be lowered to
1826
// branches if possible anyway.
1827
BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1828
BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1829
if (!Pred1Br || !Pred2Br)
1830
return nullptr;
1831
1832
// Eliminate code duplication by ensuring that Pred1Br is conditional if
1833
// either are.
1834
if (Pred2Br->isConditional()) {
1835
// If both branches are conditional, we don't have an "if statement". In
1836
// reality, we could transform this case, but since the condition will be
1837
// required anyway, we stand no chance of eliminating it, so the xform is
1838
// probably not profitable.
1839
if (Pred1Br->isConditional())
1840
return nullptr;
1841
1842
std::swap(Pred1, Pred2);
1843
std::swap(Pred1Br, Pred2Br);
1844
}
1845
1846
if (Pred1Br->isConditional()) {
1847
// The only thing we have to watch out for here is to make sure that Pred2
1848
// doesn't have incoming edges from other blocks. If it does, the condition
1849
// doesn't dominate BB.
1850
if (!Pred2->getSinglePredecessor())
1851
return nullptr;
1852
1853
// If we found a conditional branch predecessor, make sure that it branches
1854
// to BB and Pred2Br. If it doesn't, this isn't an "if statement".
1855
if (Pred1Br->getSuccessor(0) == BB &&
1856
Pred1Br->getSuccessor(1) == Pred2) {
1857
IfTrue = Pred1;
1858
IfFalse = Pred2;
1859
} else if (Pred1Br->getSuccessor(0) == Pred2 &&
1860
Pred1Br->getSuccessor(1) == BB) {
1861
IfTrue = Pred2;
1862
IfFalse = Pred1;
1863
} else {
1864
// We know that one arm of the conditional goes to BB, so the other must
1865
// go somewhere unrelated, and this must not be an "if statement".
1866
return nullptr;
1867
}
1868
1869
return Pred1Br;
1870
}
1871
1872
// Ok, if we got here, both predecessors end with an unconditional branch to
1873
// BB. Don't panic! If both blocks only have a single (identical)
1874
// predecessor, and THAT is a conditional branch, then we're all ok!
1875
BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1876
if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1877
return nullptr;
1878
1879
// Otherwise, if this is a conditional branch, then we can use it!
1880
BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1881
if (!BI) return nullptr;
1882
1883
assert(BI->isConditional() && "Two successors but not conditional?");
1884
if (BI->getSuccessor(0) == Pred1) {
1885
IfTrue = Pred1;
1886
IfFalse = Pred2;
1887
} else {
1888
IfTrue = Pred2;
1889
IfFalse = Pred1;
1890
}
1891
return BI;
1892
}
1893
1894
// After creating a control flow hub, the operands of PHINodes in an outgoing
1895
// block Out no longer match the predecessors of that block. Predecessors of Out
1896
// that are incoming blocks to the hub are now replaced by just one edge from
1897
// the hub. To match this new control flow, the corresponding values from each
1898
// PHINode must now be moved a new PHINode in the first guard block of the hub.
1899
//
1900
// This operation cannot be performed with SSAUpdater, because it involves one
1901
// new use: If the block Out is in the list of Incoming blocks, then the newly
1902
// created PHI in the Hub will use itself along that edge from Out to Hub.
1903
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1904
const SetVector<BasicBlock *> &Incoming,
1905
BasicBlock *FirstGuardBlock) {
1906
auto I = Out->begin();
1907
while (I != Out->end() && isa<PHINode>(I)) {
1908
auto Phi = cast<PHINode>(I);
1909
auto NewPhi =
1910
PHINode::Create(Phi->getType(), Incoming.size(),
1911
Phi->getName() + ".moved", FirstGuardBlock->begin());
1912
for (auto *In : Incoming) {
1913
Value *V = UndefValue::get(Phi->getType());
1914
if (In == Out) {
1915
V = NewPhi;
1916
} else if (Phi->getBasicBlockIndex(In) != -1) {
1917
V = Phi->removeIncomingValue(In, false);
1918
}
1919
NewPhi->addIncoming(V, In);
1920
}
1921
assert(NewPhi->getNumIncomingValues() == Incoming.size());
1922
if (Phi->getNumOperands() == 0) {
1923
Phi->replaceAllUsesWith(NewPhi);
1924
I = Phi->eraseFromParent();
1925
continue;
1926
}
1927
Phi->addIncoming(NewPhi, GuardBlock);
1928
++I;
1929
}
1930
}
1931
1932
using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
1933
using BBSetVector = SetVector<BasicBlock *>;
1934
1935
// Redirects the terminator of the incoming block to the first guard
1936
// block in the hub. The condition of the original terminator (if it
1937
// was conditional) and its original successors are returned as a
1938
// tuple <condition, succ0, succ1>. The function additionally filters
1939
// out successors that are not in the set of outgoing blocks.
1940
//
1941
// - condition is non-null iff the branch is conditional.
1942
// - Succ1 is non-null iff the sole/taken target is an outgoing block.
1943
// - Succ2 is non-null iff condition is non-null and the fallthrough
1944
// target is an outgoing block.
1945
static std::tuple<Value *, BasicBlock *, BasicBlock *>
1946
redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1947
const BBSetVector &Outgoing) {
1948
assert(isa<BranchInst>(BB->getTerminator()) &&
1949
"Only support branch terminator.");
1950
auto Branch = cast<BranchInst>(BB->getTerminator());
1951
auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1952
1953
BasicBlock *Succ0 = Branch->getSuccessor(0);
1954
BasicBlock *Succ1 = nullptr;
1955
Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1956
1957
if (Branch->isUnconditional()) {
1958
Branch->setSuccessor(0, FirstGuardBlock);
1959
assert(Succ0);
1960
} else {
1961
Succ1 = Branch->getSuccessor(1);
1962
Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1963
assert(Succ0 || Succ1);
1964
if (Succ0 && !Succ1) {
1965
Branch->setSuccessor(0, FirstGuardBlock);
1966
} else if (Succ1 && !Succ0) {
1967
Branch->setSuccessor(1, FirstGuardBlock);
1968
} else {
1969
Branch->eraseFromParent();
1970
BranchInst::Create(FirstGuardBlock, BB);
1971
}
1972
}
1973
1974
assert(Succ0 || Succ1);
1975
return std::make_tuple(Condition, Succ0, Succ1);
1976
}
1977
// Setup the branch instructions for guard blocks.
1978
//
1979
// Each guard block terminates in a conditional branch that transfers
1980
// control to the corresponding outgoing block or the next guard
1981
// block. The last guard block has two outgoing blocks as successors
1982
// since the condition for the final outgoing block is trivially
1983
// true. So we create one less block (including the first guard block)
1984
// than the number of outgoing blocks.
1985
static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1986
const BBSetVector &Outgoing,
1987
BBPredicates &GuardPredicates) {
1988
// To help keep the loop simple, temporarily append the last
1989
// outgoing block to the list of guard blocks.
1990
GuardBlocks.push_back(Outgoing.back());
1991
1992
for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1993
auto Out = Outgoing[i];
1994
assert(GuardPredicates.count(Out));
1995
BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1996
GuardBlocks[i]);
1997
}
1998
1999
// Remove the last block from the guard list.
2000
GuardBlocks.pop_back();
2001
}
2002
2003
/// We are using one integer to represent the block we are branching to. Then at
2004
/// each guard block, the predicate was calcuated using a simple `icmp eq`.
2005
static void calcPredicateUsingInteger(
2006
const BBSetVector &Incoming, const BBSetVector &Outgoing,
2007
SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
2008
auto &Context = Incoming.front()->getContext();
2009
auto FirstGuardBlock = GuardBlocks.front();
2010
2011
auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
2012
"merged.bb.idx", FirstGuardBlock);
2013
2014
for (auto In : Incoming) {
2015
Value *Condition;
2016
BasicBlock *Succ0;
2017
BasicBlock *Succ1;
2018
std::tie(Condition, Succ0, Succ1) =
2019
redirectToHub(In, FirstGuardBlock, Outgoing);
2020
Value *IncomingId = nullptr;
2021
if (Succ0 && Succ1) {
2022
// target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
2023
auto Succ0Iter = find(Outgoing, Succ0);
2024
auto Succ1Iter = find(Outgoing, Succ1);
2025
Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context),
2026
std::distance(Outgoing.begin(), Succ0Iter));
2027
Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context),
2028
std::distance(Outgoing.begin(), Succ1Iter));
2029
IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
2030
In->getTerminator()->getIterator());
2031
} else {
2032
// Get the index of the non-null successor.
2033
auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
2034
IncomingId = ConstantInt::get(Type::getInt32Ty(Context),
2035
std::distance(Outgoing.begin(), SuccIter));
2036
}
2037
Phi->addIncoming(IncomingId, In);
2038
}
2039
2040
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2041
auto Out = Outgoing[i];
2042
auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
2043
ConstantInt::get(Type::getInt32Ty(Context), i),
2044
Out->getName() + ".predicate", GuardBlocks[i]);
2045
GuardPredicates[Out] = Cmp;
2046
}
2047
}
2048
2049
/// We record the predicate of each outgoing block using a phi of boolean.
2050
static void calcPredicateUsingBooleans(
2051
const BBSetVector &Incoming, const BBSetVector &Outgoing,
2052
SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
2053
SmallVectorImpl<WeakVH> &DeletionCandidates) {
2054
auto &Context = Incoming.front()->getContext();
2055
auto BoolTrue = ConstantInt::getTrue(Context);
2056
auto BoolFalse = ConstantInt::getFalse(Context);
2057
auto FirstGuardBlock = GuardBlocks.front();
2058
2059
// The predicate for the last outgoing is trivially true, and so we
2060
// process only the first N-1 successors.
2061
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2062
auto Out = Outgoing[i];
2063
LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
2064
2065
auto Phi =
2066
PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
2067
StringRef("Guard.") + Out->getName(), FirstGuardBlock);
2068
GuardPredicates[Out] = Phi;
2069
}
2070
2071
for (auto *In : Incoming) {
2072
Value *Condition;
2073
BasicBlock *Succ0;
2074
BasicBlock *Succ1;
2075
std::tie(Condition, Succ0, Succ1) =
2076
redirectToHub(In, FirstGuardBlock, Outgoing);
2077
2078
// Optimization: Consider an incoming block A with both successors
2079
// Succ0 and Succ1 in the set of outgoing blocks. The predicates
2080
// for Succ0 and Succ1 complement each other. If Succ0 is visited
2081
// first in the loop below, control will branch to Succ0 using the
2082
// corresponding predicate. But if that branch is not taken, then
2083
// control must reach Succ1, which means that the incoming value of
2084
// the predicate from `In` is true for Succ1.
2085
bool OneSuccessorDone = false;
2086
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2087
auto Out = Outgoing[i];
2088
PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
2089
if (Out != Succ0 && Out != Succ1) {
2090
Phi->addIncoming(BoolFalse, In);
2091
} else if (!Succ0 || !Succ1 || OneSuccessorDone) {
2092
// Optimization: When only one successor is an outgoing block,
2093
// the incoming predicate from `In` is always true.
2094
Phi->addIncoming(BoolTrue, In);
2095
} else {
2096
assert(Succ0 && Succ1);
2097
if (Out == Succ0) {
2098
Phi->addIncoming(Condition, In);
2099
} else {
2100
auto Inverted = invertCondition(Condition);
2101
DeletionCandidates.push_back(Condition);
2102
Phi->addIncoming(Inverted, In);
2103
}
2104
OneSuccessorDone = true;
2105
}
2106
}
2107
}
2108
}
2109
2110
// Capture the existing control flow as guard predicates, and redirect
2111
// control flow from \p Incoming block through the \p GuardBlocks to the
2112
// \p Outgoing blocks.
2113
//
2114
// There is one guard predicate for each outgoing block OutBB. The
2115
// predicate represents whether the hub should transfer control flow
2116
// to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
2117
// them in the same order as the Outgoing set-vector, and control
2118
// branches to the first outgoing block whose predicate evaluates to true.
2119
static void
2120
convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks,
2121
SmallVectorImpl<WeakVH> &DeletionCandidates,
2122
const BBSetVector &Incoming,
2123
const BBSetVector &Outgoing, const StringRef Prefix,
2124
std::optional<unsigned> MaxControlFlowBooleans) {
2125
BBPredicates GuardPredicates;
2126
auto F = Incoming.front()->getParent();
2127
2128
for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
2129
GuardBlocks.push_back(
2130
BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
2131
2132
// When we are using an integer to record which target block to jump to, we
2133
// are creating less live values, actually we are using one single integer to
2134
// store the index of the target block. When we are using booleans to store
2135
// the branching information, we need (N-1) boolean values, where N is the
2136
// number of outgoing block.
2137
if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
2138
calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
2139
DeletionCandidates);
2140
else
2141
calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
2142
2143
setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
2144
}
2145
2146
BasicBlock *llvm::CreateControlFlowHub(
2147
DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
2148
const BBSetVector &Incoming, const BBSetVector &Outgoing,
2149
const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
2150
if (Outgoing.size() < 2)
2151
return Outgoing.front();
2152
2153
SmallVector<DominatorTree::UpdateType, 16> Updates;
2154
if (DTU) {
2155
for (auto *In : Incoming) {
2156
for (auto Succ : successors(In))
2157
if (Outgoing.count(Succ))
2158
Updates.push_back({DominatorTree::Delete, In, Succ});
2159
}
2160
}
2161
2162
SmallVector<WeakVH, 8> DeletionCandidates;
2163
convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
2164
Prefix, MaxControlFlowBooleans);
2165
auto FirstGuardBlock = GuardBlocks.front();
2166
2167
// Update the PHINodes in each outgoing block to match the new control flow.
2168
for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
2169
reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
2170
2171
reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
2172
2173
if (DTU) {
2174
int NumGuards = GuardBlocks.size();
2175
assert((int)Outgoing.size() == NumGuards + 1);
2176
2177
for (auto In : Incoming)
2178
Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
2179
2180
for (int i = 0; i != NumGuards - 1; ++i) {
2181
Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
2182
Updates.push_back(
2183
{DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
2184
}
2185
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2186
Outgoing[NumGuards - 1]});
2187
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2188
Outgoing[NumGuards]});
2189
DTU->applyUpdates(Updates);
2190
}
2191
2192
for (auto I : DeletionCandidates) {
2193
if (I->use_empty())
2194
if (auto Inst = dyn_cast_or_null<Instruction>(I))
2195
Inst->eraseFromParent();
2196
}
2197
2198
return FirstGuardBlock;
2199
}
2200
2201
void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) {
2202
Value *NewCond = PBI->getCondition();
2203
// If this is a "cmp" instruction, only used for branching (and nowhere
2204
// else), then we can simply invert the predicate.
2205
if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2206
CmpInst *CI = cast<CmpInst>(NewCond);
2207
CI->setPredicate(CI->getInversePredicate());
2208
} else
2209
NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
2210
2211
PBI->setCondition(NewCond);
2212
PBI->swapSuccessors();
2213
}
2214
2215
bool llvm::hasOnlySimpleTerminator(const Function &F) {
2216
for (auto &BB : F) {
2217
auto *Term = BB.getTerminator();
2218
if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
2219
isa<BranchInst>(Term)))
2220
return false;
2221
}
2222
return true;
2223
}
2224
2225
bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src,
2226
const BasicBlock &Dest) {
2227
assert(Src.getParent() == Dest.getParent());
2228
if (!Src.getParent()->isPresplitCoroutine())
2229
return false;
2230
if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator()))
2231
if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition()))
2232
return Intr->getIntrinsicID() == Intrinsic::coro_suspend &&
2233
SW->getDefaultDest() == &Dest;
2234
return false;
2235
}
2236
2237