Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
35271 views
1
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10
// inserting a dummy basic block. This pass may be "required" by passes that
11
// cannot deal with critical edges. For this usage, the structure type is
12
// forward declared. This pass obviously invalidates the CFG, but can update
13
// dominator trees.
14
//
15
//===----------------------------------------------------------------------===//
16
17
#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18
#include "llvm/ADT/SetVector.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/Statistic.h"
21
#include "llvm/Analysis/BlockFrequencyInfo.h"
22
#include "llvm/Analysis/BranchProbabilityInfo.h"
23
#include "llvm/Analysis/CFG.h"
24
#include "llvm/Analysis/LoopInfo.h"
25
#include "llvm/Analysis/MemorySSAUpdater.h"
26
#include "llvm/Analysis/PostDominators.h"
27
#include "llvm/IR/CFG.h"
28
#include "llvm/IR/Dominators.h"
29
#include "llvm/IR/Instructions.h"
30
#include "llvm/InitializePasses.h"
31
#include "llvm/Transforms/Utils.h"
32
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
33
#include "llvm/Transforms/Utils/Cloning.h"
34
#include "llvm/Transforms/Utils/ValueMapper.h"
35
using namespace llvm;
36
37
#define DEBUG_TYPE "break-crit-edges"
38
39
STATISTIC(NumBroken, "Number of blocks inserted");
40
41
namespace {
42
struct BreakCriticalEdges : public FunctionPass {
43
static char ID; // Pass identification, replacement for typeid
44
BreakCriticalEdges() : FunctionPass(ID) {
45
initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
46
}
47
48
bool runOnFunction(Function &F) override {
49
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
50
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
51
52
auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
53
auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
54
55
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
56
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
57
unsigned N =
58
SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
59
NumBroken += N;
60
return N > 0;
61
}
62
63
void getAnalysisUsage(AnalysisUsage &AU) const override {
64
AU.addPreserved<DominatorTreeWrapperPass>();
65
AU.addPreserved<LoopInfoWrapperPass>();
66
67
// No loop canonicalization guarantees are broken by this pass.
68
AU.addPreservedID(LoopSimplifyID);
69
}
70
};
71
}
72
73
char BreakCriticalEdges::ID = 0;
74
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
75
"Break critical edges in CFG", false, false)
76
77
// Publicly exposed interface to pass...
78
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
79
FunctionPass *llvm::createBreakCriticalEdgesPass() {
80
return new BreakCriticalEdges();
81
}
82
83
PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
84
FunctionAnalysisManager &AM) {
85
auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
86
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
87
unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
88
NumBroken += N;
89
if (N == 0)
90
return PreservedAnalyses::all();
91
PreservedAnalyses PA;
92
PA.preserve<DominatorTreeAnalysis>();
93
PA.preserve<LoopAnalysis>();
94
return PA;
95
}
96
97
//===----------------------------------------------------------------------===//
98
// Implementation of the external critical edge manipulation functions
99
//===----------------------------------------------------------------------===//
100
101
BasicBlock *llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
102
const CriticalEdgeSplittingOptions &Options,
103
const Twine &BBName) {
104
if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
105
return nullptr;
106
107
return SplitKnownCriticalEdge(TI, SuccNum, Options, BBName);
108
}
109
110
BasicBlock *
111
llvm::SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum,
112
const CriticalEdgeSplittingOptions &Options,
113
const Twine &BBName) {
114
assert(!isa<IndirectBrInst>(TI) &&
115
"Cannot split critical edge from IndirectBrInst");
116
117
BasicBlock *TIBB = TI->getParent();
118
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
119
120
// Splitting the critical edge to a pad block is non-trivial. Don't do
121
// it in this generic function.
122
if (DestBB->isEHPad()) return nullptr;
123
124
if (Options.IgnoreUnreachableDests &&
125
isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
126
return nullptr;
127
128
auto *LI = Options.LI;
129
SmallVector<BasicBlock *, 4> LoopPreds;
130
// Check if extra modifications will be required to preserve loop-simplify
131
// form after splitting. If it would require splitting blocks with IndirectBr
132
// terminators, bail out if preserving loop-simplify form is requested.
133
if (LI) {
134
if (Loop *TIL = LI->getLoopFor(TIBB)) {
135
136
// The only way that we can break LoopSimplify form by splitting a
137
// critical edge is if after the split there exists some edge from TIL to
138
// DestBB *and* the only edge into DestBB from outside of TIL is that of
139
// NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
140
// is the new exit block and it has no non-loop predecessors. If the
141
// second isn't true, then DestBB was not in LoopSimplify form prior to
142
// the split as it had a non-loop predecessor. In both of these cases,
143
// the predecessor must be directly in TIL, not in a subloop, or again
144
// LoopSimplify doesn't hold.
145
for (BasicBlock *P : predecessors(DestBB)) {
146
if (P == TIBB)
147
continue; // The new block is known.
148
if (LI->getLoopFor(P) != TIL) {
149
// No need to re-simplify, it wasn't to start with.
150
LoopPreds.clear();
151
break;
152
}
153
LoopPreds.push_back(P);
154
}
155
// Loop-simplify form can be preserved, if we can split all in-loop
156
// predecessors.
157
if (any_of(LoopPreds, [](BasicBlock *Pred) {
158
return isa<IndirectBrInst>(Pred->getTerminator());
159
})) {
160
if (Options.PreserveLoopSimplify)
161
return nullptr;
162
LoopPreds.clear();
163
}
164
}
165
}
166
167
// Create a new basic block, linking it into the CFG.
168
BasicBlock *NewBB = nullptr;
169
if (BBName.str() != "")
170
NewBB = BasicBlock::Create(TI->getContext(), BBName);
171
else
172
NewBB = BasicBlock::Create(TI->getContext(), TIBB->getName() + "." +
173
DestBB->getName() +
174
"_crit_edge");
175
// Create our unconditional branch.
176
BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
177
NewBI->setDebugLoc(TI->getDebugLoc());
178
179
// Insert the block into the function... right after the block TI lives in.
180
Function &F = *TIBB->getParent();
181
Function::iterator FBBI = TIBB->getIterator();
182
F.insert(++FBBI, NewBB);
183
184
// Branch to the new block, breaking the edge.
185
TI->setSuccessor(SuccNum, NewBB);
186
187
// If there are any PHI nodes in DestBB, we need to update them so that they
188
// merge incoming values from NewBB instead of from TIBB.
189
{
190
unsigned BBIdx = 0;
191
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
192
// We no longer enter through TIBB, now we come in through NewBB.
193
// Revector exactly one entry in the PHI node that used to come from
194
// TIBB to come from NewBB.
195
PHINode *PN = cast<PHINode>(I);
196
197
// Reuse the previous value of BBIdx if it lines up. In cases where we
198
// have multiple phi nodes with *lots* of predecessors, this is a speed
199
// win because we don't have to scan the PHI looking for TIBB. This
200
// happens because the BB list of PHI nodes are usually in the same
201
// order.
202
if (PN->getIncomingBlock(BBIdx) != TIBB)
203
BBIdx = PN->getBasicBlockIndex(TIBB);
204
PN->setIncomingBlock(BBIdx, NewBB);
205
}
206
}
207
208
// If there are any other edges from TIBB to DestBB, update those to go
209
// through the split block, making those edges non-critical as well (and
210
// reducing the number of phi entries in the DestBB if relevant).
211
if (Options.MergeIdenticalEdges) {
212
for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
213
if (TI->getSuccessor(i) != DestBB) continue;
214
215
// Remove an entry for TIBB from DestBB phi nodes.
216
DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
217
218
// We found another edge to DestBB, go to NewBB instead.
219
TI->setSuccessor(i, NewBB);
220
}
221
}
222
223
// If we have nothing to update, just return.
224
auto *DT = Options.DT;
225
auto *PDT = Options.PDT;
226
auto *MSSAU = Options.MSSAU;
227
if (MSSAU)
228
MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
229
DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
230
231
if (!DT && !PDT && !LI)
232
return NewBB;
233
234
if (DT || PDT) {
235
// Update the DominatorTree.
236
// ---> NewBB -----\
237
// / V
238
// TIBB -------\\------> DestBB
239
//
240
// First, inform the DT about the new path from TIBB to DestBB via NewBB,
241
// then delete the old edge from TIBB to DestBB. By doing this in that order
242
// DestBB stays reachable in the DT the whole time and its subtree doesn't
243
// get disconnected.
244
SmallVector<DominatorTree::UpdateType, 3> Updates;
245
Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
246
Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
247
if (!llvm::is_contained(successors(TIBB), DestBB))
248
Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
249
250
if (DT)
251
DT->applyUpdates(Updates);
252
if (PDT)
253
PDT->applyUpdates(Updates);
254
}
255
256
// Update LoopInfo if it is around.
257
if (LI) {
258
if (Loop *TIL = LI->getLoopFor(TIBB)) {
259
// If one or the other blocks were not in a loop, the new block is not
260
// either, and thus LI doesn't need to be updated.
261
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
262
if (TIL == DestLoop) {
263
// Both in the same loop, the NewBB joins loop.
264
DestLoop->addBasicBlockToLoop(NewBB, *LI);
265
} else if (TIL->contains(DestLoop)) {
266
// Edge from an outer loop to an inner loop. Add to the outer loop.
267
TIL->addBasicBlockToLoop(NewBB, *LI);
268
} else if (DestLoop->contains(TIL)) {
269
// Edge from an inner loop to an outer loop. Add to the outer loop.
270
DestLoop->addBasicBlockToLoop(NewBB, *LI);
271
} else {
272
// Edge from two loops with no containment relation. Because these
273
// are natural loops, we know that the destination block must be the
274
// header of its loop (adding a branch into a loop elsewhere would
275
// create an irreducible loop).
276
assert(DestLoop->getHeader() == DestBB &&
277
"Should not create irreducible loops!");
278
if (Loop *P = DestLoop->getParentLoop())
279
P->addBasicBlockToLoop(NewBB, *LI);
280
}
281
}
282
283
// If TIBB is in a loop and DestBB is outside of that loop, we may need
284
// to update LoopSimplify form and LCSSA form.
285
if (!TIL->contains(DestBB)) {
286
assert(!TIL->contains(NewBB) &&
287
"Split point for loop exit is contained in loop!");
288
289
// Update LCSSA form in the newly created exit block.
290
if (Options.PreserveLCSSA) {
291
createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
292
}
293
294
if (!LoopPreds.empty()) {
295
assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
296
BasicBlock *NewExitBB = SplitBlockPredecessors(
297
DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
298
if (Options.PreserveLCSSA)
299
createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
300
}
301
}
302
}
303
}
304
305
return NewBB;
306
}
307
308
// Return the unique indirectbr predecessor of a block. This may return null
309
// even if such a predecessor exists, if it's not useful for splitting.
310
// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
311
// predecessors of BB.
312
static BasicBlock *
313
findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
314
// Verify we have exactly one IBR predecessor.
315
// Conservatively bail out if one of the other predecessors is not a "regular"
316
// terminator (that is, not a switch or a br).
317
BasicBlock *IBB = nullptr;
318
for (BasicBlock *PredBB : predecessors(BB)) {
319
Instruction *PredTerm = PredBB->getTerminator();
320
switch (PredTerm->getOpcode()) {
321
case Instruction::IndirectBr:
322
if (IBB)
323
return nullptr;
324
IBB = PredBB;
325
break;
326
case Instruction::Br:
327
case Instruction::Switch:
328
OtherPreds.push_back(PredBB);
329
continue;
330
default:
331
return nullptr;
332
}
333
}
334
335
return IBB;
336
}
337
338
bool llvm::SplitIndirectBrCriticalEdges(Function &F,
339
bool IgnoreBlocksWithoutPHI,
340
BranchProbabilityInfo *BPI,
341
BlockFrequencyInfo *BFI) {
342
// Check whether the function has any indirectbrs, and collect which blocks
343
// they may jump to. Since most functions don't have indirect branches,
344
// this lowers the common case's overhead to O(Blocks) instead of O(Edges).
345
SmallSetVector<BasicBlock *, 16> Targets;
346
for (auto &BB : F) {
347
if (isa<IndirectBrInst>(BB.getTerminator()))
348
for (BasicBlock *Succ : successors(&BB))
349
Targets.insert(Succ);
350
}
351
352
if (Targets.empty())
353
return false;
354
355
bool ShouldUpdateAnalysis = BPI && BFI;
356
bool Changed = false;
357
for (BasicBlock *Target : Targets) {
358
if (IgnoreBlocksWithoutPHI && Target->phis().empty())
359
continue;
360
361
SmallVector<BasicBlock *, 16> OtherPreds;
362
BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
363
// If we did not found an indirectbr, or the indirectbr is the only
364
// incoming edge, this isn't the kind of edge we're looking for.
365
if (!IBRPred || OtherPreds.empty())
366
continue;
367
368
// Don't even think about ehpads/landingpads.
369
Instruction *FirstNonPHI = Target->getFirstNonPHI();
370
if (FirstNonPHI->isEHPad() || Target->isLandingPad())
371
continue;
372
373
// Remember edge probabilities if needed.
374
SmallVector<BranchProbability, 4> EdgeProbabilities;
375
if (ShouldUpdateAnalysis) {
376
EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
377
for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
378
I < E; ++I)
379
EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
380
BPI->eraseBlock(Target);
381
}
382
383
BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
384
if (ShouldUpdateAnalysis) {
385
// Copy the BFI/BPI from Target to BodyBlock.
386
BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
387
BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target));
388
}
389
// It's possible Target was its own successor through an indirectbr.
390
// In this case, the indirectbr now comes from BodyBlock.
391
if (IBRPred == Target)
392
IBRPred = BodyBlock;
393
394
// At this point Target only has PHIs, and BodyBlock has the rest of the
395
// block's body. Create a copy of Target that will be used by the "direct"
396
// preds.
397
ValueToValueMapTy VMap;
398
BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
399
400
BlockFrequency BlockFreqForDirectSucc;
401
for (BasicBlock *Pred : OtherPreds) {
402
// If the target is a loop to itself, then the terminator of the split
403
// block (BodyBlock) needs to be updated.
404
BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
405
Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
406
if (ShouldUpdateAnalysis)
407
BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
408
BPI->getEdgeProbability(Src, DirectSucc);
409
}
410
if (ShouldUpdateAnalysis) {
411
BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc);
412
BlockFrequency NewBlockFreqForTarget =
413
BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
414
BFI->setBlockFreq(Target, NewBlockFreqForTarget);
415
}
416
417
// Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
418
// they are clones, so the number of PHIs are the same.
419
// (a) Remove the edge coming from IBRPred from the "Direct" PHI
420
// (b) Leave that as the only edge in the "Indirect" PHI.
421
// (c) Merge the two in the body block.
422
BasicBlock::iterator Indirect = Target->begin(),
423
End = Target->getFirstNonPHIIt();
424
BasicBlock::iterator Direct = DirectSucc->begin();
425
BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
426
427
assert(&*End == Target->getTerminator() &&
428
"Block was expected to only contain PHIs");
429
430
while (Indirect != End) {
431
PHINode *DirPHI = cast<PHINode>(Direct);
432
PHINode *IndPHI = cast<PHINode>(Indirect);
433
BasicBlock::iterator InsertPt = Indirect;
434
435
// Now, clean up - the direct block shouldn't get the indirect value,
436
// and vice versa.
437
DirPHI->removeIncomingValue(IBRPred);
438
Direct++;
439
440
// Advance the pointer here, to avoid invalidation issues when the old
441
// PHI is erased.
442
Indirect++;
443
444
PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", InsertPt);
445
NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
446
IBRPred);
447
448
// Create a PHI in the body block, to merge the direct and indirect
449
// predecessors.
450
PHINode *MergePHI = PHINode::Create(IndPHI->getType(), 2, "merge");
451
MergePHI->insertBefore(MergeInsert);
452
MergePHI->addIncoming(NewIndPHI, Target);
453
MergePHI->addIncoming(DirPHI, DirectSucc);
454
455
IndPHI->replaceAllUsesWith(MergePHI);
456
IndPHI->eraseFromParent();
457
}
458
459
Changed = true;
460
}
461
462
return Changed;
463
}
464
465