Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp
35271 views
1
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the interface to tear out a code region, such as an
10
// individual loop or a parallel section, into a new function, replacing it with
11
// a call to the new function.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "llvm/Transforms/Utils/CodeExtractor.h"
16
#include "llvm/ADT/ArrayRef.h"
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/STLExtras.h"
19
#include "llvm/ADT/SetVector.h"
20
#include "llvm/ADT/SmallPtrSet.h"
21
#include "llvm/ADT/SmallVector.h"
22
#include "llvm/Analysis/AssumptionCache.h"
23
#include "llvm/Analysis/BlockFrequencyInfo.h"
24
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25
#include "llvm/Analysis/BranchProbabilityInfo.h"
26
#include "llvm/Analysis/LoopInfo.h"
27
#include "llvm/IR/Argument.h"
28
#include "llvm/IR/Attributes.h"
29
#include "llvm/IR/BasicBlock.h"
30
#include "llvm/IR/CFG.h"
31
#include "llvm/IR/Constant.h"
32
#include "llvm/IR/Constants.h"
33
#include "llvm/IR/DIBuilder.h"
34
#include "llvm/IR/DataLayout.h"
35
#include "llvm/IR/DebugInfo.h"
36
#include "llvm/IR/DebugInfoMetadata.h"
37
#include "llvm/IR/DerivedTypes.h"
38
#include "llvm/IR/Dominators.h"
39
#include "llvm/IR/Function.h"
40
#include "llvm/IR/GlobalValue.h"
41
#include "llvm/IR/InstIterator.h"
42
#include "llvm/IR/InstrTypes.h"
43
#include "llvm/IR/Instruction.h"
44
#include "llvm/IR/Instructions.h"
45
#include "llvm/IR/IntrinsicInst.h"
46
#include "llvm/IR/Intrinsics.h"
47
#include "llvm/IR/LLVMContext.h"
48
#include "llvm/IR/MDBuilder.h"
49
#include "llvm/IR/Module.h"
50
#include "llvm/IR/PatternMatch.h"
51
#include "llvm/IR/Type.h"
52
#include "llvm/IR/User.h"
53
#include "llvm/IR/Value.h"
54
#include "llvm/IR/Verifier.h"
55
#include "llvm/Support/BlockFrequency.h"
56
#include "llvm/Support/BranchProbability.h"
57
#include "llvm/Support/Casting.h"
58
#include "llvm/Support/CommandLine.h"
59
#include "llvm/Support/Debug.h"
60
#include "llvm/Support/ErrorHandling.h"
61
#include "llvm/Support/raw_ostream.h"
62
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
63
#include <cassert>
64
#include <cstdint>
65
#include <iterator>
66
#include <map>
67
#include <utility>
68
#include <vector>
69
70
using namespace llvm;
71
using namespace llvm::PatternMatch;
72
using ProfileCount = Function::ProfileCount;
73
74
#define DEBUG_TYPE "code-extractor"
75
76
// Provide a command-line option to aggregate function arguments into a struct
77
// for functions produced by the code extractor. This is useful when converting
78
// extracted functions to pthread-based code, as only one argument (void*) can
79
// be passed in to pthread_create().
80
static cl::opt<bool>
81
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82
cl::desc("Aggregate arguments to code-extracted functions"));
83
84
/// Test whether a block is valid for extraction.
85
static bool isBlockValidForExtraction(const BasicBlock &BB,
86
const SetVector<BasicBlock *> &Result,
87
bool AllowVarArgs, bool AllowAlloca) {
88
// taking the address of a basic block moved to another function is illegal
89
if (BB.hasAddressTaken())
90
return false;
91
92
// don't hoist code that uses another basicblock address, as it's likely to
93
// lead to unexpected behavior, like cross-function jumps
94
SmallPtrSet<User const *, 16> Visited;
95
SmallVector<User const *, 16> ToVisit;
96
97
for (Instruction const &Inst : BB)
98
ToVisit.push_back(&Inst);
99
100
while (!ToVisit.empty()) {
101
User const *Curr = ToVisit.pop_back_val();
102
if (!Visited.insert(Curr).second)
103
continue;
104
if (isa<BlockAddress const>(Curr))
105
return false; // even a reference to self is likely to be not compatible
106
107
if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108
continue;
109
110
for (auto const &U : Curr->operands()) {
111
if (auto *UU = dyn_cast<User>(U))
112
ToVisit.push_back(UU);
113
}
114
}
115
116
// If explicitly requested, allow vastart and alloca. For invoke instructions
117
// verify that extraction is valid.
118
for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119
if (isa<AllocaInst>(I)) {
120
if (!AllowAlloca)
121
return false;
122
continue;
123
}
124
125
if (const auto *II = dyn_cast<InvokeInst>(I)) {
126
// Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127
// must be a part of the subgraph which is being extracted.
128
if (auto *UBB = II->getUnwindDest())
129
if (!Result.count(UBB))
130
return false;
131
continue;
132
}
133
134
// All catch handlers of a catchswitch instruction as well as the unwind
135
// destination must be in the subgraph.
136
if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137
if (auto *UBB = CSI->getUnwindDest())
138
if (!Result.count(UBB))
139
return false;
140
for (const auto *HBB : CSI->handlers())
141
if (!Result.count(const_cast<BasicBlock*>(HBB)))
142
return false;
143
continue;
144
}
145
146
// Make sure that entire catch handler is within subgraph. It is sufficient
147
// to check that catch return's block is in the list.
148
if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149
for (const auto *U : CPI->users())
150
if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151
if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152
return false;
153
continue;
154
}
155
156
// And do similar checks for cleanup handler - the entire handler must be
157
// in subgraph which is going to be extracted. For cleanup return should
158
// additionally check that the unwind destination is also in the subgraph.
159
if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160
for (const auto *U : CPI->users())
161
if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162
if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163
return false;
164
continue;
165
}
166
if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167
if (auto *UBB = CRI->getUnwindDest())
168
if (!Result.count(UBB))
169
return false;
170
continue;
171
}
172
173
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174
if (const Function *F = CI->getCalledFunction()) {
175
auto IID = F->getIntrinsicID();
176
if (IID == Intrinsic::vastart) {
177
if (AllowVarArgs)
178
continue;
179
else
180
return false;
181
}
182
183
// Currently, we miscompile outlined copies of eh_typid_for. There are
184
// proposals for fixing this in llvm.org/PR39545.
185
if (IID == Intrinsic::eh_typeid_for)
186
return false;
187
}
188
}
189
}
190
191
return true;
192
}
193
194
/// Build a set of blocks to extract if the input blocks are viable.
195
static SetVector<BasicBlock *>
196
buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197
bool AllowVarArgs, bool AllowAlloca) {
198
assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199
SetVector<BasicBlock *> Result;
200
201
// Loop over the blocks, adding them to our set-vector, and aborting with an
202
// empty set if we encounter invalid blocks.
203
for (BasicBlock *BB : BBs) {
204
// If this block is dead, don't process it.
205
if (DT && !DT->isReachableFromEntry(BB))
206
continue;
207
208
if (!Result.insert(BB))
209
llvm_unreachable("Repeated basic blocks in extraction input");
210
}
211
212
LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213
<< '\n');
214
215
for (auto *BB : Result) {
216
if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217
return {};
218
219
// Make sure that the first block is not a landing pad.
220
if (BB == Result.front()) {
221
if (BB->isEHPad()) {
222
LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223
return {};
224
}
225
continue;
226
}
227
228
// All blocks other than the first must not have predecessors outside of
229
// the subgraph which is being extracted.
230
for (auto *PBB : predecessors(BB))
231
if (!Result.count(PBB)) {
232
LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233
"outside the region except for the first block!\n"
234
<< "Problematic source BB: " << BB->getName() << "\n"
235
<< "Problematic destination BB: " << PBB->getName()
236
<< "\n");
237
return {};
238
}
239
}
240
241
return Result;
242
}
243
244
CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245
bool AggregateArgs, BlockFrequencyInfo *BFI,
246
BranchProbabilityInfo *BPI, AssumptionCache *AC,
247
bool AllowVarArgs, bool AllowAlloca,
248
BasicBlock *AllocationBlock, std::string Suffix,
249
bool ArgsInZeroAddressSpace)
250
: DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
251
BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
252
AllowVarArgs(AllowVarArgs),
253
Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
254
Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
255
256
CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
257
BlockFrequencyInfo *BFI,
258
BranchProbabilityInfo *BPI, AssumptionCache *AC,
259
std::string Suffix)
260
: DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
261
BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
262
Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
263
/* AllowVarArgs */ false,
264
/* AllowAlloca */ false)),
265
Suffix(Suffix) {}
266
267
/// definedInRegion - Return true if the specified value is defined in the
268
/// extracted region.
269
static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
270
if (Instruction *I = dyn_cast<Instruction>(V))
271
if (Blocks.count(I->getParent()))
272
return true;
273
return false;
274
}
275
276
/// definedInCaller - Return true if the specified value is defined in the
277
/// function being code extracted, but not in the region being extracted.
278
/// These values must be passed in as live-ins to the function.
279
static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
280
if (isa<Argument>(V)) return true;
281
if (Instruction *I = dyn_cast<Instruction>(V))
282
if (!Blocks.count(I->getParent()))
283
return true;
284
return false;
285
}
286
287
static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
288
BasicBlock *CommonExitBlock = nullptr;
289
auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
290
for (auto *Succ : successors(Block)) {
291
// Internal edges, ok.
292
if (Blocks.count(Succ))
293
continue;
294
if (!CommonExitBlock) {
295
CommonExitBlock = Succ;
296
continue;
297
}
298
if (CommonExitBlock != Succ)
299
return true;
300
}
301
return false;
302
};
303
304
if (any_of(Blocks, hasNonCommonExitSucc))
305
return nullptr;
306
307
return CommonExitBlock;
308
}
309
310
CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
311
for (BasicBlock &BB : F) {
312
for (Instruction &II : BB.instructionsWithoutDebug())
313
if (auto *AI = dyn_cast<AllocaInst>(&II))
314
Allocas.push_back(AI);
315
316
findSideEffectInfoForBlock(BB);
317
}
318
}
319
320
void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
321
for (Instruction &II : BB.instructionsWithoutDebug()) {
322
unsigned Opcode = II.getOpcode();
323
Value *MemAddr = nullptr;
324
switch (Opcode) {
325
case Instruction::Store:
326
case Instruction::Load: {
327
if (Opcode == Instruction::Store) {
328
StoreInst *SI = cast<StoreInst>(&II);
329
MemAddr = SI->getPointerOperand();
330
} else {
331
LoadInst *LI = cast<LoadInst>(&II);
332
MemAddr = LI->getPointerOperand();
333
}
334
// Global variable can not be aliased with locals.
335
if (isa<Constant>(MemAddr))
336
break;
337
Value *Base = MemAddr->stripInBoundsConstantOffsets();
338
if (!isa<AllocaInst>(Base)) {
339
SideEffectingBlocks.insert(&BB);
340
return;
341
}
342
BaseMemAddrs[&BB].insert(Base);
343
break;
344
}
345
default: {
346
IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
347
if (IntrInst) {
348
if (IntrInst->isLifetimeStartOrEnd())
349
break;
350
SideEffectingBlocks.insert(&BB);
351
return;
352
}
353
// Treat all the other cases conservatively if it has side effects.
354
if (II.mayHaveSideEffects()) {
355
SideEffectingBlocks.insert(&BB);
356
return;
357
}
358
}
359
}
360
}
361
}
362
363
bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
364
BasicBlock &BB, AllocaInst *Addr) const {
365
if (SideEffectingBlocks.count(&BB))
366
return true;
367
auto It = BaseMemAddrs.find(&BB);
368
if (It != BaseMemAddrs.end())
369
return It->second.count(Addr);
370
return false;
371
}
372
373
bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
374
const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
375
AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
376
Function *Func = (*Blocks.begin())->getParent();
377
for (BasicBlock &BB : *Func) {
378
if (Blocks.count(&BB))
379
continue;
380
if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
381
return false;
382
}
383
return true;
384
}
385
386
BasicBlock *
387
CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
388
BasicBlock *SinglePredFromOutlineRegion = nullptr;
389
assert(!Blocks.count(CommonExitBlock) &&
390
"Expect a block outside the region!");
391
for (auto *Pred : predecessors(CommonExitBlock)) {
392
if (!Blocks.count(Pred))
393
continue;
394
if (!SinglePredFromOutlineRegion) {
395
SinglePredFromOutlineRegion = Pred;
396
} else if (SinglePredFromOutlineRegion != Pred) {
397
SinglePredFromOutlineRegion = nullptr;
398
break;
399
}
400
}
401
402
if (SinglePredFromOutlineRegion)
403
return SinglePredFromOutlineRegion;
404
405
#ifndef NDEBUG
406
auto getFirstPHI = [](BasicBlock *BB) {
407
BasicBlock::iterator I = BB->begin();
408
PHINode *FirstPhi = nullptr;
409
while (I != BB->end()) {
410
PHINode *Phi = dyn_cast<PHINode>(I);
411
if (!Phi)
412
break;
413
if (!FirstPhi) {
414
FirstPhi = Phi;
415
break;
416
}
417
}
418
return FirstPhi;
419
};
420
// If there are any phi nodes, the single pred either exists or has already
421
// be created before code extraction.
422
assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
423
#endif
424
425
BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
426
CommonExitBlock->getFirstNonPHI()->getIterator());
427
428
for (BasicBlock *Pred :
429
llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
430
if (Blocks.count(Pred))
431
continue;
432
Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
433
}
434
// Now add the old exit block to the outline region.
435
Blocks.insert(CommonExitBlock);
436
OldTargets.push_back(NewExitBlock);
437
return CommonExitBlock;
438
}
439
440
// Find the pair of life time markers for address 'Addr' that are either
441
// defined inside the outline region or can legally be shrinkwrapped into the
442
// outline region. If there are not other untracked uses of the address, return
443
// the pair of markers if found; otherwise return a pair of nullptr.
444
CodeExtractor::LifetimeMarkerInfo
445
CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
446
Instruction *Addr,
447
BasicBlock *ExitBlock) const {
448
LifetimeMarkerInfo Info;
449
450
for (User *U : Addr->users()) {
451
IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
452
if (IntrInst) {
453
// We don't model addresses with multiple start/end markers, but the
454
// markers do not need to be in the region.
455
if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
456
if (Info.LifeStart)
457
return {};
458
Info.LifeStart = IntrInst;
459
continue;
460
}
461
if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
462
if (Info.LifeEnd)
463
return {};
464
Info.LifeEnd = IntrInst;
465
continue;
466
}
467
// At this point, permit debug uses outside of the region.
468
// This is fixed in a later call to fixupDebugInfoPostExtraction().
469
if (isa<DbgInfoIntrinsic>(IntrInst))
470
continue;
471
}
472
// Find untracked uses of the address, bail.
473
if (!definedInRegion(Blocks, U))
474
return {};
475
}
476
477
if (!Info.LifeStart || !Info.LifeEnd)
478
return {};
479
480
Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
481
Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
482
// Do legality check.
483
if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
484
!isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
485
return {};
486
487
// Check to see if we have a place to do hoisting, if not, bail.
488
if (Info.HoistLifeEnd && !ExitBlock)
489
return {};
490
491
return Info;
492
}
493
494
void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
495
ValueSet &SinkCands, ValueSet &HoistCands,
496
BasicBlock *&ExitBlock) const {
497
Function *Func = (*Blocks.begin())->getParent();
498
ExitBlock = getCommonExitBlock(Blocks);
499
500
auto moveOrIgnoreLifetimeMarkers =
501
[&](const LifetimeMarkerInfo &LMI) -> bool {
502
if (!LMI.LifeStart)
503
return false;
504
if (LMI.SinkLifeStart) {
505
LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
506
<< "\n");
507
SinkCands.insert(LMI.LifeStart);
508
}
509
if (LMI.HoistLifeEnd) {
510
LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
511
HoistCands.insert(LMI.LifeEnd);
512
}
513
return true;
514
};
515
516
// Look up allocas in the original function in CodeExtractorAnalysisCache, as
517
// this is much faster than walking all the instructions.
518
for (AllocaInst *AI : CEAC.getAllocas()) {
519
BasicBlock *BB = AI->getParent();
520
if (Blocks.count(BB))
521
continue;
522
523
// As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
524
// check whether it is actually still in the original function.
525
Function *AIFunc = BB->getParent();
526
if (AIFunc != Func)
527
continue;
528
529
LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
530
bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
531
if (Moved) {
532
LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
533
SinkCands.insert(AI);
534
continue;
535
}
536
537
// Find bitcasts in the outlined region that have lifetime marker users
538
// outside that region. Replace the lifetime marker use with an
539
// outside region bitcast to avoid unnecessary alloca/reload instructions
540
// and extra lifetime markers.
541
SmallVector<Instruction *, 2> LifetimeBitcastUsers;
542
for (User *U : AI->users()) {
543
if (!definedInRegion(Blocks, U))
544
continue;
545
546
if (U->stripInBoundsConstantOffsets() != AI)
547
continue;
548
549
Instruction *Bitcast = cast<Instruction>(U);
550
for (User *BU : Bitcast->users()) {
551
IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
552
if (!IntrInst)
553
continue;
554
555
if (!IntrInst->isLifetimeStartOrEnd())
556
continue;
557
558
if (definedInRegion(Blocks, IntrInst))
559
continue;
560
561
LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
562
<< *Bitcast << " in out-of-region lifetime marker "
563
<< *IntrInst << "\n");
564
LifetimeBitcastUsers.push_back(IntrInst);
565
}
566
}
567
568
for (Instruction *I : LifetimeBitcastUsers) {
569
Module *M = AIFunc->getParent();
570
LLVMContext &Ctx = M->getContext();
571
auto *Int8PtrTy = PointerType::getUnqual(Ctx);
572
CastInst *CastI =
573
CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator());
574
I->replaceUsesOfWith(I->getOperand(1), CastI);
575
}
576
577
// Follow any bitcasts.
578
SmallVector<Instruction *, 2> Bitcasts;
579
SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
580
for (User *U : AI->users()) {
581
if (U->stripInBoundsConstantOffsets() == AI) {
582
Instruction *Bitcast = cast<Instruction>(U);
583
LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
584
if (LMI.LifeStart) {
585
Bitcasts.push_back(Bitcast);
586
BitcastLifetimeInfo.push_back(LMI);
587
continue;
588
}
589
}
590
591
// Found unknown use of AI.
592
if (!definedInRegion(Blocks, U)) {
593
Bitcasts.clear();
594
break;
595
}
596
}
597
598
// Either no bitcasts reference the alloca or there are unknown uses.
599
if (Bitcasts.empty())
600
continue;
601
602
LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
603
SinkCands.insert(AI);
604
for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
605
Instruction *BitcastAddr = Bitcasts[I];
606
const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
607
assert(LMI.LifeStart &&
608
"Unsafe to sink bitcast without lifetime markers");
609
moveOrIgnoreLifetimeMarkers(LMI);
610
if (!definedInRegion(Blocks, BitcastAddr)) {
611
LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
612
<< "\n");
613
SinkCands.insert(BitcastAddr);
614
}
615
}
616
}
617
}
618
619
bool CodeExtractor::isEligible() const {
620
if (Blocks.empty())
621
return false;
622
BasicBlock *Header = *Blocks.begin();
623
Function *F = Header->getParent();
624
625
// For functions with varargs, check that varargs handling is only done in the
626
// outlined function, i.e vastart and vaend are only used in outlined blocks.
627
if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
628
auto containsVarArgIntrinsic = [](const Instruction &I) {
629
if (const CallInst *CI = dyn_cast<CallInst>(&I))
630
if (const Function *Callee = CI->getCalledFunction())
631
return Callee->getIntrinsicID() == Intrinsic::vastart ||
632
Callee->getIntrinsicID() == Intrinsic::vaend;
633
return false;
634
};
635
636
for (auto &BB : *F) {
637
if (Blocks.count(&BB))
638
continue;
639
if (llvm::any_of(BB, containsVarArgIntrinsic))
640
return false;
641
}
642
}
643
return true;
644
}
645
646
void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
647
const ValueSet &SinkCands) const {
648
for (BasicBlock *BB : Blocks) {
649
// If a used value is defined outside the region, it's an input. If an
650
// instruction is used outside the region, it's an output.
651
for (Instruction &II : *BB) {
652
for (auto &OI : II.operands()) {
653
Value *V = OI;
654
if (!SinkCands.count(V) && definedInCaller(Blocks, V))
655
Inputs.insert(V);
656
}
657
658
for (User *U : II.users())
659
if (!definedInRegion(Blocks, U)) {
660
Outputs.insert(&II);
661
break;
662
}
663
}
664
}
665
}
666
667
/// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
668
/// of the region, we need to split the entry block of the region so that the
669
/// PHI node is easier to deal with.
670
void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
671
unsigned NumPredsFromRegion = 0;
672
unsigned NumPredsOutsideRegion = 0;
673
674
if (Header != &Header->getParent()->getEntryBlock()) {
675
PHINode *PN = dyn_cast<PHINode>(Header->begin());
676
if (!PN) return; // No PHI nodes.
677
678
// If the header node contains any PHI nodes, check to see if there is more
679
// than one entry from outside the region. If so, we need to sever the
680
// header block into two.
681
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
682
if (Blocks.count(PN->getIncomingBlock(i)))
683
++NumPredsFromRegion;
684
else
685
++NumPredsOutsideRegion;
686
687
// If there is one (or fewer) predecessor from outside the region, we don't
688
// need to do anything special.
689
if (NumPredsOutsideRegion <= 1) return;
690
}
691
692
// Otherwise, we need to split the header block into two pieces: one
693
// containing PHI nodes merging values from outside of the region, and a
694
// second that contains all of the code for the block and merges back any
695
// incoming values from inside of the region.
696
BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
697
698
// We only want to code extract the second block now, and it becomes the new
699
// header of the region.
700
BasicBlock *OldPred = Header;
701
Blocks.remove(OldPred);
702
Blocks.insert(NewBB);
703
Header = NewBB;
704
705
// Okay, now we need to adjust the PHI nodes and any branches from within the
706
// region to go to the new header block instead of the old header block.
707
if (NumPredsFromRegion) {
708
PHINode *PN = cast<PHINode>(OldPred->begin());
709
// Loop over all of the predecessors of OldPred that are in the region,
710
// changing them to branch to NewBB instead.
711
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
712
if (Blocks.count(PN->getIncomingBlock(i))) {
713
Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
714
TI->replaceUsesOfWith(OldPred, NewBB);
715
}
716
717
// Okay, everything within the region is now branching to the right block, we
718
// just have to update the PHI nodes now, inserting PHI nodes into NewBB.
719
BasicBlock::iterator AfterPHIs;
720
for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
721
PHINode *PN = cast<PHINode>(AfterPHIs);
722
// Create a new PHI node in the new region, which has an incoming value
723
// from OldPred of PN.
724
PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
725
PN->getName() + ".ce");
726
NewPN->insertBefore(NewBB->begin());
727
PN->replaceAllUsesWith(NewPN);
728
NewPN->addIncoming(PN, OldPred);
729
730
// Loop over all of the incoming value in PN, moving them to NewPN if they
731
// are from the extracted region.
732
for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
733
if (Blocks.count(PN->getIncomingBlock(i))) {
734
NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
735
PN->removeIncomingValue(i);
736
--i;
737
}
738
}
739
}
740
}
741
}
742
743
/// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
744
/// outlined region, we split these PHIs on two: one with inputs from region
745
/// and other with remaining incoming blocks; then first PHIs are placed in
746
/// outlined region.
747
void CodeExtractor::severSplitPHINodesOfExits(
748
const SetVector<BasicBlock *> &Exits) {
749
for (BasicBlock *ExitBB : Exits) {
750
BasicBlock *NewBB = nullptr;
751
752
for (PHINode &PN : ExitBB->phis()) {
753
// Find all incoming values from the outlining region.
754
SmallVector<unsigned, 2> IncomingVals;
755
for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
756
if (Blocks.count(PN.getIncomingBlock(i)))
757
IncomingVals.push_back(i);
758
759
// Do not process PHI if there is one (or fewer) predecessor from region.
760
// If PHI has exactly one predecessor from region, only this one incoming
761
// will be replaced on codeRepl block, so it should be safe to skip PHI.
762
if (IncomingVals.size() <= 1)
763
continue;
764
765
// Create block for new PHIs and add it to the list of outlined if it
766
// wasn't done before.
767
if (!NewBB) {
768
NewBB = BasicBlock::Create(ExitBB->getContext(),
769
ExitBB->getName() + ".split",
770
ExitBB->getParent(), ExitBB);
771
NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
772
SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
773
for (BasicBlock *PredBB : Preds)
774
if (Blocks.count(PredBB))
775
PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
776
BranchInst::Create(ExitBB, NewBB);
777
Blocks.insert(NewBB);
778
}
779
780
// Split this PHI.
781
PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
782
PN.getName() + ".ce");
783
NewPN->insertBefore(NewBB->getFirstNonPHIIt());
784
for (unsigned i : IncomingVals)
785
NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
786
for (unsigned i : reverse(IncomingVals))
787
PN.removeIncomingValue(i, false);
788
PN.addIncoming(NewPN, NewBB);
789
}
790
}
791
}
792
793
void CodeExtractor::splitReturnBlocks() {
794
for (BasicBlock *Block : Blocks)
795
if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
796
BasicBlock *New =
797
Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
798
if (DT) {
799
// Old dominates New. New node dominates all other nodes dominated
800
// by Old.
801
DomTreeNode *OldNode = DT->getNode(Block);
802
SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
803
OldNode->end());
804
805
DomTreeNode *NewNode = DT->addNewBlock(New, Block);
806
807
for (DomTreeNode *I : Children)
808
DT->changeImmediateDominator(I, NewNode);
809
}
810
}
811
}
812
813
/// constructFunction - make a function based on inputs and outputs, as follows:
814
/// f(in0, ..., inN, out0, ..., outN)
815
Function *CodeExtractor::constructFunction(const ValueSet &inputs,
816
const ValueSet &outputs,
817
BasicBlock *header,
818
BasicBlock *newRootNode,
819
BasicBlock *newHeader,
820
Function *oldFunction,
821
Module *M) {
822
LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
823
LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
824
825
// This function returns unsigned, outputs will go back by reference.
826
switch (NumExitBlocks) {
827
case 0:
828
case 1: RetTy = Type::getVoidTy(header->getContext()); break;
829
case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
830
default: RetTy = Type::getInt16Ty(header->getContext()); break;
831
}
832
833
std::vector<Type *> ParamTy;
834
std::vector<Type *> AggParamTy;
835
ValueSet StructValues;
836
const DataLayout &DL = M->getDataLayout();
837
838
// Add the types of the input values to the function's argument list
839
for (Value *value : inputs) {
840
LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
841
if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
842
AggParamTy.push_back(value->getType());
843
StructValues.insert(value);
844
} else
845
ParamTy.push_back(value->getType());
846
}
847
848
// Add the types of the output values to the function's argument list.
849
for (Value *output : outputs) {
850
LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
851
if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
852
AggParamTy.push_back(output->getType());
853
StructValues.insert(output);
854
} else
855
ParamTy.push_back(
856
PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
857
}
858
859
assert(
860
(ParamTy.size() + AggParamTy.size()) ==
861
(inputs.size() + outputs.size()) &&
862
"Number of scalar and aggregate params does not match inputs, outputs");
863
assert((StructValues.empty() || AggregateArgs) &&
864
"Expeced StructValues only with AggregateArgs set");
865
866
// Concatenate scalar and aggregate params in ParamTy.
867
size_t NumScalarParams = ParamTy.size();
868
StructType *StructTy = nullptr;
869
if (AggregateArgs && !AggParamTy.empty()) {
870
StructTy = StructType::get(M->getContext(), AggParamTy);
871
ParamTy.push_back(PointerType::get(
872
StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
873
}
874
875
LLVM_DEBUG({
876
dbgs() << "Function type: " << *RetTy << " f(";
877
for (Type *i : ParamTy)
878
dbgs() << *i << ", ";
879
dbgs() << ")\n";
880
});
881
882
FunctionType *funcType = FunctionType::get(
883
RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
884
885
std::string SuffixToUse =
886
Suffix.empty()
887
? (header->getName().empty() ? "extracted" : header->getName().str())
888
: Suffix;
889
// Create the new function
890
Function *newFunction = Function::Create(
891
funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
892
oldFunction->getName() + "." + SuffixToUse, M);
893
newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
894
895
// Inherit all of the target dependent attributes and white-listed
896
// target independent attributes.
897
// (e.g. If the extracted region contains a call to an x86.sse
898
// instruction we need to make sure that the extracted region has the
899
// "target-features" attribute allowing it to be lowered.
900
// FIXME: This should be changed to check to see if a specific
901
// attribute can not be inherited.
902
for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
903
if (Attr.isStringAttribute()) {
904
if (Attr.getKindAsString() == "thunk")
905
continue;
906
} else
907
switch (Attr.getKindAsEnum()) {
908
// Those attributes cannot be propagated safely. Explicitly list them
909
// here so we get a warning if new attributes are added.
910
case Attribute::AllocSize:
911
case Attribute::Builtin:
912
case Attribute::Convergent:
913
case Attribute::JumpTable:
914
case Attribute::Naked:
915
case Attribute::NoBuiltin:
916
case Attribute::NoMerge:
917
case Attribute::NoReturn:
918
case Attribute::NoSync:
919
case Attribute::ReturnsTwice:
920
case Attribute::Speculatable:
921
case Attribute::StackAlignment:
922
case Attribute::WillReturn:
923
case Attribute::AllocKind:
924
case Attribute::PresplitCoroutine:
925
case Attribute::Memory:
926
case Attribute::NoFPClass:
927
case Attribute::CoroDestroyOnlyWhenComplete:
928
continue;
929
// Those attributes should be safe to propagate to the extracted function.
930
case Attribute::AlwaysInline:
931
case Attribute::Cold:
932
case Attribute::DisableSanitizerInstrumentation:
933
case Attribute::FnRetThunkExtern:
934
case Attribute::Hot:
935
case Attribute::HybridPatchable:
936
case Attribute::NoRecurse:
937
case Attribute::InlineHint:
938
case Attribute::MinSize:
939
case Attribute::NoCallback:
940
case Attribute::NoDuplicate:
941
case Attribute::NoFree:
942
case Attribute::NoImplicitFloat:
943
case Attribute::NoInline:
944
case Attribute::NonLazyBind:
945
case Attribute::NoRedZone:
946
case Attribute::NoUnwind:
947
case Attribute::NoSanitizeBounds:
948
case Attribute::NoSanitizeCoverage:
949
case Attribute::NullPointerIsValid:
950
case Attribute::OptimizeForDebugging:
951
case Attribute::OptForFuzzing:
952
case Attribute::OptimizeNone:
953
case Attribute::OptimizeForSize:
954
case Attribute::SafeStack:
955
case Attribute::ShadowCallStack:
956
case Attribute::SanitizeAddress:
957
case Attribute::SanitizeMemory:
958
case Attribute::SanitizeNumericalStability:
959
case Attribute::SanitizeThread:
960
case Attribute::SanitizeHWAddress:
961
case Attribute::SanitizeMemTag:
962
case Attribute::SpeculativeLoadHardening:
963
case Attribute::StackProtect:
964
case Attribute::StackProtectReq:
965
case Attribute::StackProtectStrong:
966
case Attribute::StrictFP:
967
case Attribute::UWTable:
968
case Attribute::VScaleRange:
969
case Attribute::NoCfCheck:
970
case Attribute::MustProgress:
971
case Attribute::NoProfile:
972
case Attribute::SkipProfile:
973
break;
974
// These attributes cannot be applied to functions.
975
case Attribute::Alignment:
976
case Attribute::AllocatedPointer:
977
case Attribute::AllocAlign:
978
case Attribute::ByVal:
979
case Attribute::Dereferenceable:
980
case Attribute::DereferenceableOrNull:
981
case Attribute::ElementType:
982
case Attribute::InAlloca:
983
case Attribute::InReg:
984
case Attribute::Nest:
985
case Attribute::NoAlias:
986
case Attribute::NoCapture:
987
case Attribute::NoUndef:
988
case Attribute::NonNull:
989
case Attribute::Preallocated:
990
case Attribute::ReadNone:
991
case Attribute::ReadOnly:
992
case Attribute::Returned:
993
case Attribute::SExt:
994
case Attribute::StructRet:
995
case Attribute::SwiftError:
996
case Attribute::SwiftSelf:
997
case Attribute::SwiftAsync:
998
case Attribute::ZExt:
999
case Attribute::ImmArg:
1000
case Attribute::ByRef:
1001
case Attribute::WriteOnly:
1002
case Attribute::Writable:
1003
case Attribute::DeadOnUnwind:
1004
case Attribute::Range:
1005
case Attribute::Initializes:
1006
// These are not really attributes.
1007
case Attribute::None:
1008
case Attribute::EndAttrKinds:
1009
case Attribute::EmptyKey:
1010
case Attribute::TombstoneKey:
1011
llvm_unreachable("Not a function attribute");
1012
}
1013
1014
newFunction->addFnAttr(Attr);
1015
}
1016
1017
if (NumExitBlocks == 0) {
1018
// Mark the new function `noreturn` if applicable. Terminators which resume
1019
// exception propagation are treated as returning instructions. This is to
1020
// avoid inserting traps after calls to outlined functions which unwind.
1021
if (none_of(Blocks, [](const BasicBlock *BB) {
1022
const Instruction *Term = BB->getTerminator();
1023
return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1024
}))
1025
newFunction->setDoesNotReturn();
1026
}
1027
1028
newFunction->insert(newFunction->end(), newRootNode);
1029
1030
// Create scalar and aggregate iterators to name all of the arguments we
1031
// inserted.
1032
Function::arg_iterator ScalarAI = newFunction->arg_begin();
1033
Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1034
1035
// Rewrite all users of the inputs in the extracted region to use the
1036
// arguments (or appropriate addressing into struct) instead.
1037
for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1038
Value *RewriteVal;
1039
if (AggregateArgs && StructValues.contains(inputs[i])) {
1040
Value *Idx[2];
1041
Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1042
Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1043
BasicBlock::iterator TI = newFunction->begin()->getTerminator()->getIterator();
1044
GetElementPtrInst *GEP = GetElementPtrInst::Create(
1045
StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1046
RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1047
"loadgep_" + inputs[i]->getName(), TI);
1048
++aggIdx;
1049
} else
1050
RewriteVal = &*ScalarAI++;
1051
1052
std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1053
for (User *use : Users)
1054
if (Instruction *inst = dyn_cast<Instruction>(use))
1055
if (Blocks.count(inst->getParent()))
1056
inst->replaceUsesOfWith(inputs[i], RewriteVal);
1057
}
1058
1059
// Set names for input and output arguments.
1060
if (NumScalarParams) {
1061
ScalarAI = newFunction->arg_begin();
1062
for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1063
if (!StructValues.contains(inputs[i]))
1064
ScalarAI->setName(inputs[i]->getName());
1065
for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1066
if (!StructValues.contains(outputs[i]))
1067
ScalarAI->setName(outputs[i]->getName() + ".out");
1068
}
1069
1070
// Rewrite branches to basic blocks outside of the loop to new dummy blocks
1071
// within the new function. This must be done before we lose track of which
1072
// blocks were originally in the code region.
1073
std::vector<User *> Users(header->user_begin(), header->user_end());
1074
for (auto &U : Users)
1075
// The BasicBlock which contains the branch is not in the region
1076
// modify the branch target to a new block
1077
if (Instruction *I = dyn_cast<Instruction>(U))
1078
if (I->isTerminator() && I->getFunction() == oldFunction &&
1079
!Blocks.count(I->getParent()))
1080
I->replaceUsesOfWith(header, newHeader);
1081
1082
return newFunction;
1083
}
1084
1085
/// Erase lifetime.start markers which reference inputs to the extraction
1086
/// region, and insert the referenced memory into \p LifetimesStart.
1087
///
1088
/// The extraction region is defined by a set of blocks (\p Blocks), and a set
1089
/// of allocas which will be moved from the caller function into the extracted
1090
/// function (\p SunkAllocas).
1091
static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1092
const SetVector<Value *> &SunkAllocas,
1093
SetVector<Value *> &LifetimesStart) {
1094
for (BasicBlock *BB : Blocks) {
1095
for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1096
auto *II = dyn_cast<IntrinsicInst>(&I);
1097
if (!II || !II->isLifetimeStartOrEnd())
1098
continue;
1099
1100
// Get the memory operand of the lifetime marker. If the underlying
1101
// object is a sunk alloca, or is otherwise defined in the extraction
1102
// region, the lifetime marker must not be erased.
1103
Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1104
if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1105
continue;
1106
1107
if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1108
LifetimesStart.insert(Mem);
1109
II->eraseFromParent();
1110
}
1111
}
1112
}
1113
1114
/// Insert lifetime start/end markers surrounding the call to the new function
1115
/// for objects defined in the caller.
1116
static void insertLifetimeMarkersSurroundingCall(
1117
Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1118
CallInst *TheCall) {
1119
LLVMContext &Ctx = M->getContext();
1120
auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1121
Instruction *Term = TheCall->getParent()->getTerminator();
1122
1123
// Emit lifetime markers for the pointers given in \p Objects. Insert the
1124
// markers before the call if \p InsertBefore, and after the call otherwise.
1125
auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1126
bool InsertBefore) {
1127
for (Value *Mem : Objects) {
1128
assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1129
TheCall->getFunction()) &&
1130
"Input memory not defined in original function");
1131
1132
Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
1133
auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1134
if (InsertBefore)
1135
Marker->insertBefore(TheCall);
1136
else
1137
Marker->insertBefore(Term);
1138
}
1139
};
1140
1141
if (!LifetimesStart.empty()) {
1142
insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1143
/*InsertBefore=*/true);
1144
}
1145
1146
if (!LifetimesEnd.empty()) {
1147
insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1148
/*InsertBefore=*/false);
1149
}
1150
}
1151
1152
/// emitCallAndSwitchStatement - This method sets up the caller side by adding
1153
/// the call instruction, splitting any PHI nodes in the header block as
1154
/// necessary.
1155
CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1156
BasicBlock *codeReplacer,
1157
ValueSet &inputs,
1158
ValueSet &outputs) {
1159
// Emit a call to the new function, passing in: *pointer to struct (if
1160
// aggregating parameters), or plan inputs and allocated memory for outputs
1161
std::vector<Value *> params, ReloadOutputs, Reloads;
1162
ValueSet StructValues;
1163
1164
Module *M = newFunction->getParent();
1165
LLVMContext &Context = M->getContext();
1166
const DataLayout &DL = M->getDataLayout();
1167
CallInst *call = nullptr;
1168
1169
// Add inputs as params, or to be filled into the struct
1170
unsigned ScalarInputArgNo = 0;
1171
SmallVector<unsigned, 1> SwiftErrorArgs;
1172
for (Value *input : inputs) {
1173
if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1174
StructValues.insert(input);
1175
else {
1176
params.push_back(input);
1177
if (input->isSwiftError())
1178
SwiftErrorArgs.push_back(ScalarInputArgNo);
1179
}
1180
++ScalarInputArgNo;
1181
}
1182
1183
// Create allocas for the outputs
1184
unsigned ScalarOutputArgNo = 0;
1185
for (Value *output : outputs) {
1186
if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1187
StructValues.insert(output);
1188
} else {
1189
AllocaInst *alloca =
1190
new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1191
nullptr, output->getName() + ".loc",
1192
codeReplacer->getParent()->front().begin());
1193
ReloadOutputs.push_back(alloca);
1194
params.push_back(alloca);
1195
++ScalarOutputArgNo;
1196
}
1197
}
1198
1199
StructType *StructArgTy = nullptr;
1200
AllocaInst *Struct = nullptr;
1201
unsigned NumAggregatedInputs = 0;
1202
if (AggregateArgs && !StructValues.empty()) {
1203
std::vector<Type *> ArgTypes;
1204
for (Value *V : StructValues)
1205
ArgTypes.push_back(V->getType());
1206
1207
// Allocate a struct at the beginning of this function
1208
StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1209
Struct = new AllocaInst(
1210
StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1211
AllocationBlock ? AllocationBlock->getFirstInsertionPt()
1212
: codeReplacer->getParent()->front().begin());
1213
1214
if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1215
auto *StructSpaceCast = new AddrSpaceCastInst(
1216
Struct, PointerType ::get(Context, 0), "structArg.ascast");
1217
StructSpaceCast->insertAfter(Struct);
1218
params.push_back(StructSpaceCast);
1219
} else {
1220
params.push_back(Struct);
1221
}
1222
// Store aggregated inputs in the struct.
1223
for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1224
if (inputs.contains(StructValues[i])) {
1225
Value *Idx[2];
1226
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1227
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1228
GetElementPtrInst *GEP = GetElementPtrInst::Create(
1229
StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1230
GEP->insertInto(codeReplacer, codeReplacer->end());
1231
new StoreInst(StructValues[i], GEP, codeReplacer);
1232
NumAggregatedInputs++;
1233
}
1234
}
1235
}
1236
1237
// Emit the call to the function
1238
call = CallInst::Create(newFunction, params,
1239
NumExitBlocks > 1 ? "targetBlock" : "");
1240
// Add debug location to the new call, if the original function has debug
1241
// info. In that case, the terminator of the entry block of the extracted
1242
// function contains the first debug location of the extracted function,
1243
// set in extractCodeRegion.
1244
if (codeReplacer->getParent()->getSubprogram()) {
1245
if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1246
call->setDebugLoc(DL);
1247
}
1248
call->insertInto(codeReplacer, codeReplacer->end());
1249
1250
// Set swifterror parameter attributes.
1251
for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1252
call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1253
newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1254
}
1255
1256
// Reload the outputs passed in by reference, use the struct if output is in
1257
// the aggregate or reload from the scalar argument.
1258
for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1259
aggIdx = NumAggregatedInputs;
1260
i != e; ++i) {
1261
Value *Output = nullptr;
1262
if (AggregateArgs && StructValues.contains(outputs[i])) {
1263
Value *Idx[2];
1264
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1265
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1266
GetElementPtrInst *GEP = GetElementPtrInst::Create(
1267
StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1268
GEP->insertInto(codeReplacer, codeReplacer->end());
1269
Output = GEP;
1270
++aggIdx;
1271
} else {
1272
Output = ReloadOutputs[scalarIdx];
1273
++scalarIdx;
1274
}
1275
LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1276
outputs[i]->getName() + ".reload",
1277
codeReplacer);
1278
Reloads.push_back(load);
1279
std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1280
for (User *U : Users) {
1281
Instruction *inst = cast<Instruction>(U);
1282
if (!Blocks.count(inst->getParent()))
1283
inst->replaceUsesOfWith(outputs[i], load);
1284
}
1285
}
1286
1287
// Now we can emit a switch statement using the call as a value.
1288
SwitchInst *TheSwitch =
1289
SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1290
codeReplacer, 0, codeReplacer);
1291
1292
// Since there may be multiple exits from the original region, make the new
1293
// function return an unsigned, switch on that number. This loop iterates
1294
// over all of the blocks in the extracted region, updating any terminator
1295
// instructions in the to-be-extracted region that branch to blocks that are
1296
// not in the region to be extracted.
1297
std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1298
1299
// Iterate over the previously collected targets, and create new blocks inside
1300
// the function to branch to.
1301
unsigned switchVal = 0;
1302
for (BasicBlock *OldTarget : OldTargets) {
1303
if (Blocks.count(OldTarget))
1304
continue;
1305
BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1306
if (NewTarget)
1307
continue;
1308
1309
// If we don't already have an exit stub for this non-extracted
1310
// destination, create one now!
1311
NewTarget = BasicBlock::Create(Context,
1312
OldTarget->getName() + ".exitStub",
1313
newFunction);
1314
unsigned SuccNum = switchVal++;
1315
1316
Value *brVal = nullptr;
1317
assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1318
switch (NumExitBlocks) {
1319
case 0:
1320
case 1: break; // No value needed.
1321
case 2: // Conditional branch, return a bool
1322
brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1323
break;
1324
default:
1325
brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1326
break;
1327
}
1328
1329
ReturnInst::Create(Context, brVal, NewTarget);
1330
1331
// Update the switch instruction.
1332
TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1333
SuccNum),
1334
OldTarget);
1335
}
1336
1337
for (BasicBlock *Block : Blocks) {
1338
Instruction *TI = Block->getTerminator();
1339
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1340
if (Blocks.count(TI->getSuccessor(i)))
1341
continue;
1342
BasicBlock *OldTarget = TI->getSuccessor(i);
1343
// add a new basic block which returns the appropriate value
1344
BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1345
assert(NewTarget && "Unknown target block!");
1346
1347
// rewrite the original branch instruction with this new target
1348
TI->setSuccessor(i, NewTarget);
1349
}
1350
}
1351
1352
// Store the arguments right after the definition of output value.
1353
// This should be proceeded after creating exit stubs to be ensure that invoke
1354
// result restore will be placed in the outlined function.
1355
Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1356
std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1357
Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1358
std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1359
1360
for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1361
++i) {
1362
auto *OutI = dyn_cast<Instruction>(outputs[i]);
1363
if (!OutI)
1364
continue;
1365
1366
// Find proper insertion point.
1367
BasicBlock::iterator InsertPt;
1368
// In case OutI is an invoke, we insert the store at the beginning in the
1369
// 'normal destination' BB. Otherwise we insert the store right after OutI.
1370
if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1371
InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1372
else if (auto *Phi = dyn_cast<PHINode>(OutI))
1373
InsertPt = Phi->getParent()->getFirstInsertionPt();
1374
else
1375
InsertPt = std::next(OutI->getIterator());
1376
1377
assert((InsertPt->getFunction() == newFunction ||
1378
Blocks.count(InsertPt->getParent())) &&
1379
"InsertPt should be in new function");
1380
if (AggregateArgs && StructValues.contains(outputs[i])) {
1381
assert(AggOutputArgBegin != newFunction->arg_end() &&
1382
"Number of aggregate output arguments should match "
1383
"the number of defined values");
1384
Value *Idx[2];
1385
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1386
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1387
GetElementPtrInst *GEP = GetElementPtrInst::Create(
1388
StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1389
InsertPt);
1390
new StoreInst(outputs[i], GEP, InsertPt);
1391
++aggIdx;
1392
// Since there should be only one struct argument aggregating
1393
// all the output values, we shouldn't increment AggOutputArgBegin, which
1394
// always points to the struct argument, in this case.
1395
} else {
1396
assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1397
"Number of scalar output arguments should match "
1398
"the number of defined values");
1399
new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertPt);
1400
++ScalarOutputArgBegin;
1401
}
1402
}
1403
1404
// Now that we've done the deed, simplify the switch instruction.
1405
Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1406
switch (NumExitBlocks) {
1407
case 0:
1408
// There are no successors (the block containing the switch itself), which
1409
// means that previously this was the last part of the function, and hence
1410
// this should be rewritten as a `ret` or `unreachable`.
1411
if (newFunction->doesNotReturn()) {
1412
// If fn is no return, end with an unreachable terminator.
1413
(void)new UnreachableInst(Context, TheSwitch->getIterator());
1414
} else if (OldFnRetTy->isVoidTy()) {
1415
// We have no return value.
1416
ReturnInst::Create(Context, nullptr,
1417
TheSwitch->getIterator()); // Return void
1418
} else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1419
// return what we have
1420
ReturnInst::Create(Context, TheSwitch->getCondition(),
1421
TheSwitch->getIterator());
1422
} else {
1423
// Otherwise we must have code extracted an unwind or something, just
1424
// return whatever we want.
1425
ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy),
1426
TheSwitch->getIterator());
1427
}
1428
1429
TheSwitch->eraseFromParent();
1430
break;
1431
case 1:
1432
// Only a single destination, change the switch into an unconditional
1433
// branch.
1434
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator());
1435
TheSwitch->eraseFromParent();
1436
break;
1437
case 2:
1438
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1439
call, TheSwitch->getIterator());
1440
TheSwitch->eraseFromParent();
1441
break;
1442
default:
1443
// Otherwise, make the default destination of the switch instruction be one
1444
// of the other successors.
1445
TheSwitch->setCondition(call);
1446
TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1447
// Remove redundant case
1448
TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1449
break;
1450
}
1451
1452
// Insert lifetime markers around the reloads of any output values. The
1453
// allocas output values are stored in are only in-use in the codeRepl block.
1454
insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1455
1456
return call;
1457
}
1458
1459
void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1460
auto newFuncIt = newFunction->front().getIterator();
1461
for (BasicBlock *Block : Blocks) {
1462
// Delete the basic block from the old function, and the list of blocks
1463
Block->removeFromParent();
1464
1465
// Insert this basic block into the new function
1466
// Insert the original blocks after the entry block created
1467
// for the new function. The entry block may be followed
1468
// by a set of exit blocks at this point, but these exit
1469
// blocks better be placed at the end of the new function.
1470
newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1471
}
1472
}
1473
1474
void CodeExtractor::calculateNewCallTerminatorWeights(
1475
BasicBlock *CodeReplacer,
1476
DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1477
BranchProbabilityInfo *BPI) {
1478
using Distribution = BlockFrequencyInfoImplBase::Distribution;
1479
using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1480
1481
// Update the branch weights for the exit block.
1482
Instruction *TI = CodeReplacer->getTerminator();
1483
SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1484
1485
// Block Frequency distribution with dummy node.
1486
Distribution BranchDist;
1487
1488
SmallVector<BranchProbability, 4> EdgeProbabilities(
1489
TI->getNumSuccessors(), BranchProbability::getUnknown());
1490
1491
// Add each of the frequencies of the successors.
1492
for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1493
BlockNode ExitNode(i);
1494
uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1495
if (ExitFreq != 0)
1496
BranchDist.addExit(ExitNode, ExitFreq);
1497
else
1498
EdgeProbabilities[i] = BranchProbability::getZero();
1499
}
1500
1501
// Check for no total weight.
1502
if (BranchDist.Total == 0) {
1503
BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1504
return;
1505
}
1506
1507
// Normalize the distribution so that they can fit in unsigned.
1508
BranchDist.normalize();
1509
1510
// Create normalized branch weights and set the metadata.
1511
for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1512
const auto &Weight = BranchDist.Weights[I];
1513
1514
// Get the weight and update the current BFI.
1515
BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1516
BranchProbability BP(Weight.Amount, BranchDist.Total);
1517
EdgeProbabilities[Weight.TargetNode.Index] = BP;
1518
}
1519
BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1520
TI->setMetadata(
1521
LLVMContext::MD_prof,
1522
MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1523
}
1524
1525
/// Erase debug info intrinsics which refer to values in \p F but aren't in
1526
/// \p F.
1527
static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1528
for (Instruction &I : instructions(F)) {
1529
SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1530
SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1531
findDbgUsers(DbgUsers, &I, &DbgVariableRecords);
1532
for (DbgVariableIntrinsic *DVI : DbgUsers)
1533
if (DVI->getFunction() != &F)
1534
DVI->eraseFromParent();
1535
for (DbgVariableRecord *DVR : DbgVariableRecords)
1536
if (DVR->getFunction() != &F)
1537
DVR->eraseFromParent();
1538
}
1539
}
1540
1541
/// Fix up the debug info in the old and new functions by pointing line
1542
/// locations and debug intrinsics to the new subprogram scope, and by deleting
1543
/// intrinsics which point to values outside of the new function.
1544
static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1545
CallInst &TheCall) {
1546
DISubprogram *OldSP = OldFunc.getSubprogram();
1547
LLVMContext &Ctx = OldFunc.getContext();
1548
1549
if (!OldSP) {
1550
// Erase any debug info the new function contains.
1551
stripDebugInfo(NewFunc);
1552
// Make sure the old function doesn't contain any non-local metadata refs.
1553
eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1554
return;
1555
}
1556
1557
// Create a subprogram for the new function. Leave out a description of the
1558
// function arguments, as the parameters don't correspond to anything at the
1559
// source level.
1560
assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1561
DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1562
OldSP->getUnit());
1563
auto SPType =
1564
DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1565
DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1566
DISubprogram::SPFlagOptimized |
1567
DISubprogram::SPFlagLocalToUnit;
1568
auto NewSP = DIB.createFunction(
1569
OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1570
/*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1571
NewFunc.setSubprogram(NewSP);
1572
1573
auto IsInvalidLocation = [&NewFunc](Value *Location) {
1574
// Location is invalid if it isn't a constant or an instruction, or is an
1575
// instruction but isn't in the new function.
1576
if (!Location ||
1577
(!isa<Constant>(Location) && !isa<Instruction>(Location)))
1578
return true;
1579
Instruction *LocationInst = dyn_cast<Instruction>(Location);
1580
return LocationInst && LocationInst->getFunction() != &NewFunc;
1581
};
1582
1583
// Debug intrinsics in the new function need to be updated in one of two
1584
// ways:
1585
// 1) They need to be deleted, because they describe a value in the old
1586
// function.
1587
// 2) They need to point to fresh metadata, e.g. because they currently
1588
// point to a variable in the wrong scope.
1589
SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1590
SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1591
SmallVector<DbgVariableRecord *, 4> DVRsToDelete;
1592
DenseMap<const MDNode *, MDNode *> Cache;
1593
1594
auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
1595
DINode *&NewVar = RemappedMetadata[OldVar];
1596
if (!NewVar) {
1597
DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1598
*OldVar->getScope(), *NewSP, Ctx, Cache);
1599
NewVar = DIB.createAutoVariable(
1600
NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1601
OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1602
OldVar->getAlignInBits());
1603
}
1604
return cast<DILocalVariable>(NewVar);
1605
};
1606
1607
auto UpdateDbgLabel = [&](auto *LabelRecord) {
1608
// Point the label record to a fresh label within the new function if
1609
// the record was not inlined from some other function.
1610
if (LabelRecord->getDebugLoc().getInlinedAt())
1611
return;
1612
DILabel *OldLabel = LabelRecord->getLabel();
1613
DINode *&NewLabel = RemappedMetadata[OldLabel];
1614
if (!NewLabel) {
1615
DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1616
*OldLabel->getScope(), *NewSP, Ctx, Cache);
1617
NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1618
OldLabel->getFile(), OldLabel->getLine());
1619
}
1620
LabelRecord->setLabel(cast<DILabel>(NewLabel));
1621
};
1622
1623
auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void {
1624
for (DbgRecord &DR : I.getDbgRecordRange()) {
1625
if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1626
UpdateDbgLabel(DLR);
1627
continue;
1628
}
1629
1630
DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1631
// Apply the two updates that dbg.values get: invalid operands, and
1632
// variable metadata fixup.
1633
if (any_of(DVR.location_ops(), IsInvalidLocation)) {
1634
DVRsToDelete.push_back(&DVR);
1635
continue;
1636
}
1637
if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) {
1638
DVRsToDelete.push_back(&DVR);
1639
continue;
1640
}
1641
if (!DVR.getDebugLoc().getInlinedAt())
1642
DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable()));
1643
}
1644
};
1645
1646
for (Instruction &I : instructions(NewFunc)) {
1647
UpdateDbgRecordsOnInst(I);
1648
1649
auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1650
if (!DII)
1651
continue;
1652
1653
// Point the intrinsic to a fresh label within the new function if the
1654
// intrinsic was not inlined from some other function.
1655
if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1656
UpdateDbgLabel(DLI);
1657
continue;
1658
}
1659
1660
auto *DVI = cast<DbgVariableIntrinsic>(DII);
1661
// If any of the used locations are invalid, delete the intrinsic.
1662
if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1663
DebugIntrinsicsToDelete.push_back(DVI);
1664
continue;
1665
}
1666
// DbgAssign intrinsics have an extra Value argument:
1667
if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1668
DAI && IsInvalidLocation(DAI->getAddress())) {
1669
DebugIntrinsicsToDelete.push_back(DVI);
1670
continue;
1671
}
1672
// If the variable was in the scope of the old function, i.e. it was not
1673
// inlined, point the intrinsic to a fresh variable within the new function.
1674
if (!DVI->getDebugLoc().getInlinedAt())
1675
DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
1676
}
1677
1678
for (auto *DII : DebugIntrinsicsToDelete)
1679
DII->eraseFromParent();
1680
for (auto *DVR : DVRsToDelete)
1681
DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR);
1682
DIB.finalizeSubprogram(NewSP);
1683
1684
// Fix up the scope information attached to the line locations and the
1685
// debug assignment metadata in the new function.
1686
DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap;
1687
for (Instruction &I : instructions(NewFunc)) {
1688
if (const DebugLoc &DL = I.getDebugLoc())
1689
I.setDebugLoc(
1690
DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1691
for (DbgRecord &DR : I.getDbgRecordRange())
1692
DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(),
1693
*NewSP, Ctx, Cache));
1694
1695
// Loop info metadata may contain line locations. Fix them up.
1696
auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1697
if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1698
return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1699
return MD;
1700
};
1701
updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1702
at::remapAssignID(AssignmentIDMap, I);
1703
}
1704
if (!TheCall.getDebugLoc())
1705
TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1706
1707
eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1708
}
1709
1710
Function *
1711
CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1712
ValueSet Inputs, Outputs;
1713
return extractCodeRegion(CEAC, Inputs, Outputs);
1714
}
1715
1716
Function *
1717
CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1718
ValueSet &inputs, ValueSet &outputs) {
1719
if (!isEligible())
1720
return nullptr;
1721
1722
// Assumption: this is a single-entry code region, and the header is the first
1723
// block in the region.
1724
BasicBlock *header = *Blocks.begin();
1725
Function *oldFunction = header->getParent();
1726
1727
// Calculate the entry frequency of the new function before we change the root
1728
// block.
1729
BlockFrequency EntryFreq;
1730
if (BFI) {
1731
assert(BPI && "Both BPI and BFI are required to preserve profile info");
1732
for (BasicBlock *Pred : predecessors(header)) {
1733
if (Blocks.count(Pred))
1734
continue;
1735
EntryFreq +=
1736
BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1737
}
1738
}
1739
1740
// Remove @llvm.assume calls that will be moved to the new function from the
1741
// old function's assumption cache.
1742
for (BasicBlock *Block : Blocks) {
1743
for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1744
if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1745
if (AC)
1746
AC->unregisterAssumption(AI);
1747
AI->eraseFromParent();
1748
}
1749
}
1750
}
1751
1752
// If we have any return instructions in the region, split those blocks so
1753
// that the return is not in the region.
1754
splitReturnBlocks();
1755
1756
// Calculate the exit blocks for the extracted region and the total exit
1757
// weights for each of those blocks.
1758
DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1759
SetVector<BasicBlock *> ExitBlocks;
1760
for (BasicBlock *Block : Blocks) {
1761
for (BasicBlock *Succ : successors(Block)) {
1762
if (!Blocks.count(Succ)) {
1763
// Update the branch weight for this successor.
1764
if (BFI) {
1765
BlockFrequency &BF = ExitWeights[Succ];
1766
BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1767
}
1768
ExitBlocks.insert(Succ);
1769
}
1770
}
1771
}
1772
NumExitBlocks = ExitBlocks.size();
1773
1774
for (BasicBlock *Block : Blocks) {
1775
for (BasicBlock *OldTarget : successors(Block))
1776
if (!Blocks.contains(OldTarget))
1777
OldTargets.push_back(OldTarget);
1778
}
1779
1780
// If we have to split PHI nodes of the entry or exit blocks, do so now.
1781
severSplitPHINodesOfEntry(header);
1782
severSplitPHINodesOfExits(ExitBlocks);
1783
1784
// This takes place of the original loop
1785
BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1786
"codeRepl", oldFunction,
1787
header);
1788
codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1789
1790
// The new function needs a root node because other nodes can branch to the
1791
// head of the region, but the entry node of a function cannot have preds.
1792
BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1793
"newFuncRoot");
1794
newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1795
1796
auto *BranchI = BranchInst::Create(header);
1797
// If the original function has debug info, we have to add a debug location
1798
// to the new branch instruction from the artificial entry block.
1799
// We use the debug location of the first instruction in the extracted
1800
// blocks, as there is no other equivalent line in the source code.
1801
if (oldFunction->getSubprogram()) {
1802
any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1803
return any_of(*BB, [&BranchI](const Instruction &I) {
1804
if (!I.getDebugLoc())
1805
return false;
1806
// Don't use source locations attached to debug-intrinsics: they could
1807
// be from completely unrelated scopes.
1808
if (isa<DbgInfoIntrinsic>(I))
1809
return false;
1810
BranchI->setDebugLoc(I.getDebugLoc());
1811
return true;
1812
});
1813
});
1814
}
1815
BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1816
1817
ValueSet SinkingCands, HoistingCands;
1818
BasicBlock *CommonExit = nullptr;
1819
findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1820
assert(HoistingCands.empty() || CommonExit);
1821
1822
// Find inputs to, outputs from the code region.
1823
findInputsOutputs(inputs, outputs, SinkingCands);
1824
1825
// Now sink all instructions which only have non-phi uses inside the region.
1826
// Group the allocas at the start of the block, so that any bitcast uses of
1827
// the allocas are well-defined.
1828
AllocaInst *FirstSunkAlloca = nullptr;
1829
for (auto *II : SinkingCands) {
1830
if (auto *AI = dyn_cast<AllocaInst>(II)) {
1831
AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1832
if (!FirstSunkAlloca)
1833
FirstSunkAlloca = AI;
1834
}
1835
}
1836
assert((SinkingCands.empty() || FirstSunkAlloca) &&
1837
"Did not expect a sink candidate without any allocas");
1838
for (auto *II : SinkingCands) {
1839
if (!isa<AllocaInst>(II)) {
1840
cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1841
}
1842
}
1843
1844
if (!HoistingCands.empty()) {
1845
auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1846
Instruction *TI = HoistToBlock->getTerminator();
1847
for (auto *II : HoistingCands)
1848
cast<Instruction>(II)->moveBefore(TI);
1849
}
1850
1851
// Collect objects which are inputs to the extraction region and also
1852
// referenced by lifetime start markers within it. The effects of these
1853
// markers must be replicated in the calling function to prevent the stack
1854
// coloring pass from merging slots which store input objects.
1855
ValueSet LifetimesStart;
1856
eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1857
1858
// Construct new function based on inputs/outputs & add allocas for all defs.
1859
Function *newFunction =
1860
constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1861
oldFunction, oldFunction->getParent());
1862
1863
// Update the entry count of the function.
1864
if (BFI) {
1865
auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1866
if (Count)
1867
newFunction->setEntryCount(
1868
ProfileCount(*Count, Function::PCT_Real)); // FIXME
1869
BFI->setBlockFreq(codeReplacer, EntryFreq);
1870
}
1871
1872
CallInst *TheCall =
1873
emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1874
1875
moveCodeToFunction(newFunction);
1876
1877
// Replicate the effects of any lifetime start/end markers which referenced
1878
// input objects in the extraction region by placing markers around the call.
1879
insertLifetimeMarkersSurroundingCall(
1880
oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1881
1882
// Propagate personality info to the new function if there is one.
1883
if (oldFunction->hasPersonalityFn())
1884
newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1885
1886
// Update the branch weights for the exit block.
1887
if (BFI && NumExitBlocks > 1)
1888
calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1889
1890
// Loop over all of the PHI nodes in the header and exit blocks, and change
1891
// any references to the old incoming edge to be the new incoming edge.
1892
for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1893
PHINode *PN = cast<PHINode>(I);
1894
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1895
if (!Blocks.count(PN->getIncomingBlock(i)))
1896
PN->setIncomingBlock(i, newFuncRoot);
1897
}
1898
1899
for (BasicBlock *ExitBB : ExitBlocks)
1900
for (PHINode &PN : ExitBB->phis()) {
1901
Value *IncomingCodeReplacerVal = nullptr;
1902
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1903
// Ignore incoming values from outside of the extracted region.
1904
if (!Blocks.count(PN.getIncomingBlock(i)))
1905
continue;
1906
1907
// Ensure that there is only one incoming value from codeReplacer.
1908
if (!IncomingCodeReplacerVal) {
1909
PN.setIncomingBlock(i, codeReplacer);
1910
IncomingCodeReplacerVal = PN.getIncomingValue(i);
1911
} else
1912
assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1913
"PHI has two incompatbile incoming values from codeRepl");
1914
}
1915
}
1916
1917
fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1918
1919
LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1920
newFunction->dump();
1921
report_fatal_error("verification of newFunction failed!");
1922
});
1923
LLVM_DEBUG(if (verifyFunction(*oldFunction))
1924
report_fatal_error("verification of oldFunction failed!"));
1925
LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1926
report_fatal_error("Stale Asumption cache for old Function!"));
1927
return newFunction;
1928
}
1929
1930
bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1931
const Function &NewFunc,
1932
AssumptionCache *AC) {
1933
for (auto AssumeVH : AC->assumptions()) {
1934
auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1935
if (!I)
1936
continue;
1937
1938
// There shouldn't be any llvm.assume intrinsics in the new function.
1939
if (I->getFunction() != &OldFunc)
1940
return true;
1941
1942
// There shouldn't be any stale affected values in the assumption cache
1943
// that were previously in the old function, but that have now been moved
1944
// to the new function.
1945
for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1946
auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1947
if (!AffectedCI)
1948
continue;
1949
if (AffectedCI->getFunction() != &OldFunc)
1950
return true;
1951
auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1952
if (AssumedInst->getFunction() != &OldFunc)
1953
return true;
1954
}
1955
}
1956
return false;
1957
}
1958
1959
void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1960
ExcludeArgsFromAggregate.insert(Arg);
1961
}
1962
1963