Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp
35271 views
1
//===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// The file implements "cache-aware" layout algorithms of basic blocks and
10
// functions in a binary.
11
//
12
// The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
13
// optimizing jump locality and thus processor I-cache utilization. This is
14
// achieved via increasing the number of fall-through jumps and co-locating
15
// frequently executed nodes together. The name follows the underlying
16
// optimization problem, Extended-TSP, which is a generalization of classical
17
// (maximum) Traveling Salesmen Problem.
18
//
19
// The algorithm is a greedy heuristic that works with chains (ordered lists)
20
// of basic blocks. Initially all chains are isolated basic blocks. On every
21
// iteration, we pick a pair of chains whose merging yields the biggest increase
22
// in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
23
// A pair of chains giving the maximum gain is merged into a new chain. The
24
// procedure stops when there is only one chain left, or when merging does not
25
// increase ExtTSP. In the latter case, the remaining chains are sorted by
26
// density in the decreasing order.
27
//
28
// An important aspect is the way two chains are merged. Unlike earlier
29
// algorithms (e.g., based on the approach of Pettis-Hansen), two
30
// chains, X and Y, are first split into three, X1, X2, and Y. Then we
31
// consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
32
// X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
33
// This improves the quality of the final result (the search space is larger)
34
// while keeping the implementation sufficiently fast.
35
//
36
// Reference:
37
// * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
38
// IEEE Transactions on Computers, 2020
39
// https://arxiv.org/abs/1809.04676
40
//
41
//===----------------------------------------------------------------------===//
42
43
#include "llvm/Transforms/Utils/CodeLayout.h"
44
#include "llvm/Support/CommandLine.h"
45
#include "llvm/Support/Debug.h"
46
47
#include <cmath>
48
#include <set>
49
50
using namespace llvm;
51
using namespace llvm::codelayout;
52
53
#define DEBUG_TYPE "code-layout"
54
55
namespace llvm {
56
cl::opt<bool> EnableExtTspBlockPlacement(
57
"enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
58
cl::desc("Enable machine block placement based on the ext-tsp model, "
59
"optimizing I-cache utilization."));
60
61
cl::opt<bool> ApplyExtTspWithoutProfile(
62
"ext-tsp-apply-without-profile",
63
cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
64
cl::init(true), cl::Hidden);
65
} // namespace llvm
66
67
// Algorithm-specific params for Ext-TSP. The values are tuned for the best
68
// performance of large-scale front-end bound binaries.
69
static cl::opt<double> ForwardWeightCond(
70
"ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
71
cl::desc("The weight of conditional forward jumps for ExtTSP value"));
72
73
static cl::opt<double> ForwardWeightUncond(
74
"ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
75
cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
76
77
static cl::opt<double> BackwardWeightCond(
78
"ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
79
cl::desc("The weight of conditional backward jumps for ExtTSP value"));
80
81
static cl::opt<double> BackwardWeightUncond(
82
"ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
83
cl::desc("The weight of unconditional backward jumps for ExtTSP value"));
84
85
static cl::opt<double> FallthroughWeightCond(
86
"ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
87
cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
88
89
static cl::opt<double> FallthroughWeightUncond(
90
"ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
91
cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
92
93
static cl::opt<unsigned> ForwardDistance(
94
"ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
95
cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
96
97
static cl::opt<unsigned> BackwardDistance(
98
"ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
99
cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
100
101
// The maximum size of a chain created by the algorithm. The size is bounded
102
// so that the algorithm can efficiently process extremely large instances.
103
static cl::opt<unsigned>
104
MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(512),
105
cl::desc("The maximum size of a chain to create"));
106
107
// The maximum size of a chain for splitting. Larger values of the threshold
108
// may yield better quality at the cost of worsen run-time.
109
static cl::opt<unsigned> ChainSplitThreshold(
110
"ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
111
cl::desc("The maximum size of a chain to apply splitting"));
112
113
// The maximum ratio between densities of two chains for merging.
114
static cl::opt<double> MaxMergeDensityRatio(
115
"ext-tsp-max-merge-density-ratio", cl::ReallyHidden, cl::init(100),
116
cl::desc("The maximum ratio between densities of two chains for merging"));
117
118
// Algorithm-specific options for CDSort.
119
static cl::opt<unsigned> CacheEntries("cdsort-cache-entries", cl::ReallyHidden,
120
cl::desc("The size of the cache"));
121
122
static cl::opt<unsigned> CacheSize("cdsort-cache-size", cl::ReallyHidden,
123
cl::desc("The size of a line in the cache"));
124
125
static cl::opt<unsigned>
126
CDMaxChainSize("cdsort-max-chain-size", cl::ReallyHidden,
127
cl::desc("The maximum size of a chain to create"));
128
129
static cl::opt<double> DistancePower(
130
"cdsort-distance-power", cl::ReallyHidden,
131
cl::desc("The power exponent for the distance-based locality"));
132
133
static cl::opt<double> FrequencyScale(
134
"cdsort-frequency-scale", cl::ReallyHidden,
135
cl::desc("The scale factor for the frequency-based locality"));
136
137
namespace {
138
139
// Epsilon for comparison of doubles.
140
constexpr double EPS = 1e-8;
141
142
// Compute the Ext-TSP score for a given jump.
143
double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
144
double Weight) {
145
if (JumpDist > JumpMaxDist)
146
return 0;
147
double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
148
return Weight * Prob * Count;
149
}
150
151
// Compute the Ext-TSP score for a jump between a given pair of blocks,
152
// using their sizes, (estimated) addresses and the jump execution count.
153
double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
154
uint64_t Count, bool IsConditional) {
155
// Fallthrough
156
if (SrcAddr + SrcSize == DstAddr) {
157
return jumpExtTSPScore(0, 1, Count,
158
IsConditional ? FallthroughWeightCond
159
: FallthroughWeightUncond);
160
}
161
// Forward
162
if (SrcAddr + SrcSize < DstAddr) {
163
const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
164
return jumpExtTSPScore(Dist, ForwardDistance, Count,
165
IsConditional ? ForwardWeightCond
166
: ForwardWeightUncond);
167
}
168
// Backward
169
const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
170
return jumpExtTSPScore(Dist, BackwardDistance, Count,
171
IsConditional ? BackwardWeightCond
172
: BackwardWeightUncond);
173
}
174
175
/// A type of merging two chains, X and Y. The former chain is split into
176
/// X1 and X2 and then concatenated with Y in the order specified by the type.
177
enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };
178
179
/// The gain of merging two chains, that is, the Ext-TSP score of the merge
180
/// together with the corresponding merge 'type' and 'offset'.
181
struct MergeGainT {
182
explicit MergeGainT() = default;
183
explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
184
: Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
185
186
double score() const { return Score; }
187
188
size_t mergeOffset() const { return MergeOffset; }
189
190
MergeTypeT mergeType() const { return MergeType; }
191
192
void setMergeType(MergeTypeT Ty) { MergeType = Ty; }
193
194
// Returns 'true' iff Other is preferred over this.
195
bool operator<(const MergeGainT &Other) const {
196
return (Other.Score > EPS && Other.Score > Score + EPS);
197
}
198
199
// Update the current gain if Other is preferred over this.
200
void updateIfLessThan(const MergeGainT &Other) {
201
if (*this < Other)
202
*this = Other;
203
}
204
205
private:
206
double Score{-1.0};
207
size_t MergeOffset{0};
208
MergeTypeT MergeType{MergeTypeT::X_Y};
209
};
210
211
struct JumpT;
212
struct ChainT;
213
struct ChainEdge;
214
215
/// A node in the graph, typically corresponding to a basic block in the CFG or
216
/// a function in the call graph.
217
struct NodeT {
218
NodeT(const NodeT &) = delete;
219
NodeT(NodeT &&) = default;
220
NodeT &operator=(const NodeT &) = delete;
221
NodeT &operator=(NodeT &&) = default;
222
223
explicit NodeT(size_t Index, uint64_t Size, uint64_t Count)
224
: Index(Index), Size(Size), ExecutionCount(Count) {}
225
226
bool isEntry() const { return Index == 0; }
227
228
// Check if Other is a successor of the node.
229
bool isSuccessor(const NodeT *Other) const;
230
231
// The total execution count of outgoing jumps.
232
uint64_t outCount() const;
233
234
// The total execution count of incoming jumps.
235
uint64_t inCount() const;
236
237
// The original index of the node in graph.
238
size_t Index{0};
239
// The index of the node in the current chain.
240
size_t CurIndex{0};
241
// The size of the node in the binary.
242
uint64_t Size{0};
243
// The execution count of the node in the profile data.
244
uint64_t ExecutionCount{0};
245
// The current chain of the node.
246
ChainT *CurChain{nullptr};
247
// The offset of the node in the current chain.
248
mutable uint64_t EstimatedAddr{0};
249
// Forced successor of the node in the graph.
250
NodeT *ForcedSucc{nullptr};
251
// Forced predecessor of the node in the graph.
252
NodeT *ForcedPred{nullptr};
253
// Outgoing jumps from the node.
254
std::vector<JumpT *> OutJumps;
255
// Incoming jumps to the node.
256
std::vector<JumpT *> InJumps;
257
};
258
259
/// An arc in the graph, typically corresponding to a jump between two nodes.
260
struct JumpT {
261
JumpT(const JumpT &) = delete;
262
JumpT(JumpT &&) = default;
263
JumpT &operator=(const JumpT &) = delete;
264
JumpT &operator=(JumpT &&) = default;
265
266
explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
267
: Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
268
269
// Source node of the jump.
270
NodeT *Source;
271
// Target node of the jump.
272
NodeT *Target;
273
// Execution count of the arc in the profile data.
274
uint64_t ExecutionCount{0};
275
// Whether the jump corresponds to a conditional branch.
276
bool IsConditional{false};
277
// The offset of the jump from the source node.
278
uint64_t Offset{0};
279
};
280
281
/// A chain (ordered sequence) of nodes in the graph.
282
struct ChainT {
283
ChainT(const ChainT &) = delete;
284
ChainT(ChainT &&) = default;
285
ChainT &operator=(const ChainT &) = delete;
286
ChainT &operator=(ChainT &&) = default;
287
288
explicit ChainT(uint64_t Id, NodeT *Node)
289
: Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
290
Nodes(1, Node) {}
291
292
size_t numBlocks() const { return Nodes.size(); }
293
294
double density() const { return ExecutionCount / Size; }
295
296
bool isEntry() const { return Nodes[0]->Index == 0; }
297
298
bool isCold() const {
299
for (NodeT *Node : Nodes) {
300
if (Node->ExecutionCount > 0)
301
return false;
302
}
303
return true;
304
}
305
306
ChainEdge *getEdge(ChainT *Other) const {
307
for (const auto &[Chain, ChainEdge] : Edges) {
308
if (Chain == Other)
309
return ChainEdge;
310
}
311
return nullptr;
312
}
313
314
void removeEdge(ChainT *Other) {
315
auto It = Edges.begin();
316
while (It != Edges.end()) {
317
if (It->first == Other) {
318
Edges.erase(It);
319
return;
320
}
321
It++;
322
}
323
}
324
325
void addEdge(ChainT *Other, ChainEdge *Edge) {
326
Edges.push_back(std::make_pair(Other, Edge));
327
}
328
329
void merge(ChainT *Other, std::vector<NodeT *> MergedBlocks) {
330
Nodes = std::move(MergedBlocks);
331
// Update the chain's data.
332
ExecutionCount += Other->ExecutionCount;
333
Size += Other->Size;
334
Id = Nodes[0]->Index;
335
// Update the node's data.
336
for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
337
Nodes[Idx]->CurChain = this;
338
Nodes[Idx]->CurIndex = Idx;
339
}
340
}
341
342
void mergeEdges(ChainT *Other);
343
344
void clear() {
345
Nodes.clear();
346
Nodes.shrink_to_fit();
347
Edges.clear();
348
Edges.shrink_to_fit();
349
}
350
351
// Unique chain identifier.
352
uint64_t Id;
353
// Cached ext-tsp score for the chain.
354
double Score{0};
355
// The total execution count of the chain. Since the execution count of
356
// a basic block is uint64_t, using doubles here to avoid overflow.
357
double ExecutionCount{0};
358
// The total size of the chain.
359
uint64_t Size{0};
360
// Nodes of the chain.
361
std::vector<NodeT *> Nodes;
362
// Adjacent chains and corresponding edges (lists of jumps).
363
std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
364
};
365
366
/// An edge in the graph representing jumps between two chains.
367
/// When nodes are merged into chains, the edges are combined too so that
368
/// there is always at most one edge between a pair of chains.
369
struct ChainEdge {
370
ChainEdge(const ChainEdge &) = delete;
371
ChainEdge(ChainEdge &&) = default;
372
ChainEdge &operator=(const ChainEdge &) = delete;
373
ChainEdge &operator=(ChainEdge &&) = delete;
374
375
explicit ChainEdge(JumpT *Jump)
376
: SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
377
Jumps(1, Jump) {}
378
379
ChainT *srcChain() const { return SrcChain; }
380
381
ChainT *dstChain() const { return DstChain; }
382
383
bool isSelfEdge() const { return SrcChain == DstChain; }
384
385
const std::vector<JumpT *> &jumps() const { return Jumps; }
386
387
void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }
388
389
void moveJumps(ChainEdge *Other) {
390
Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
391
Other->Jumps.clear();
392
Other->Jumps.shrink_to_fit();
393
}
394
395
void changeEndpoint(ChainT *From, ChainT *To) {
396
if (From == SrcChain)
397
SrcChain = To;
398
if (From == DstChain)
399
DstChain = To;
400
}
401
402
bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
403
return Src == SrcChain ? CacheValidForward : CacheValidBackward;
404
}
405
406
MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
407
return Src == SrcChain ? CachedGainForward : CachedGainBackward;
408
}
409
410
void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
411
if (Src == SrcChain) {
412
CachedGainForward = MergeGain;
413
CacheValidForward = true;
414
} else {
415
CachedGainBackward = MergeGain;
416
CacheValidBackward = true;
417
}
418
}
419
420
void invalidateCache() {
421
CacheValidForward = false;
422
CacheValidBackward = false;
423
}
424
425
void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }
426
427
MergeGainT getMergeGain() const { return CachedGain; }
428
429
double gain() const { return CachedGain.score(); }
430
431
private:
432
// Source chain.
433
ChainT *SrcChain{nullptr};
434
// Destination chain.
435
ChainT *DstChain{nullptr};
436
// Original jumps in the binary with corresponding execution counts.
437
std::vector<JumpT *> Jumps;
438
// Cached gain value for merging the pair of chains.
439
MergeGainT CachedGain;
440
441
// Cached gain values for merging the pair of chains. Since the gain of
442
// merging (Src, Dst) and (Dst, Src) might be different, we store both values
443
// here and a flag indicating which of the options results in a higher gain.
444
// Cached gain values.
445
MergeGainT CachedGainForward;
446
MergeGainT CachedGainBackward;
447
// Whether the cached value must be recomputed.
448
bool CacheValidForward{false};
449
bool CacheValidBackward{false};
450
};
451
452
bool NodeT::isSuccessor(const NodeT *Other) const {
453
for (JumpT *Jump : OutJumps)
454
if (Jump->Target == Other)
455
return true;
456
return false;
457
}
458
459
uint64_t NodeT::outCount() const {
460
uint64_t Count = 0;
461
for (JumpT *Jump : OutJumps)
462
Count += Jump->ExecutionCount;
463
return Count;
464
}
465
466
uint64_t NodeT::inCount() const {
467
uint64_t Count = 0;
468
for (JumpT *Jump : InJumps)
469
Count += Jump->ExecutionCount;
470
return Count;
471
}
472
473
void ChainT::mergeEdges(ChainT *Other) {
474
// Update edges adjacent to chain Other.
475
for (const auto &[DstChain, DstEdge] : Other->Edges) {
476
ChainT *TargetChain = DstChain == Other ? this : DstChain;
477
ChainEdge *CurEdge = getEdge(TargetChain);
478
if (CurEdge == nullptr) {
479
DstEdge->changeEndpoint(Other, this);
480
this->addEdge(TargetChain, DstEdge);
481
if (DstChain != this && DstChain != Other)
482
DstChain->addEdge(this, DstEdge);
483
} else {
484
CurEdge->moveJumps(DstEdge);
485
}
486
// Cleanup leftover edge.
487
if (DstChain != Other)
488
DstChain->removeEdge(Other);
489
}
490
}
491
492
using NodeIter = std::vector<NodeT *>::const_iterator;
493
static std::vector<NodeT *> EmptyList;
494
495
/// A wrapper around three concatenated vectors (chains) of nodes; it is used
496
/// to avoid extra instantiation of the vectors.
497
struct MergedNodesT {
498
MergedNodesT(NodeIter Begin1, NodeIter End1,
499
NodeIter Begin2 = EmptyList.begin(),
500
NodeIter End2 = EmptyList.end(),
501
NodeIter Begin3 = EmptyList.begin(),
502
NodeIter End3 = EmptyList.end())
503
: Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
504
End3(End3) {}
505
506
template <typename F> void forEach(const F &Func) const {
507
for (auto It = Begin1; It != End1; It++)
508
Func(*It);
509
for (auto It = Begin2; It != End2; It++)
510
Func(*It);
511
for (auto It = Begin3; It != End3; It++)
512
Func(*It);
513
}
514
515
std::vector<NodeT *> getNodes() const {
516
std::vector<NodeT *> Result;
517
Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
518
std::distance(Begin3, End3));
519
Result.insert(Result.end(), Begin1, End1);
520
Result.insert(Result.end(), Begin2, End2);
521
Result.insert(Result.end(), Begin3, End3);
522
return Result;
523
}
524
525
const NodeT *getFirstNode() const { return *Begin1; }
526
527
private:
528
NodeIter Begin1;
529
NodeIter End1;
530
NodeIter Begin2;
531
NodeIter End2;
532
NodeIter Begin3;
533
NodeIter End3;
534
};
535
536
/// A wrapper around two concatenated vectors (chains) of jumps.
537
struct MergedJumpsT {
538
MergedJumpsT(const std::vector<JumpT *> *Jumps1,
539
const std::vector<JumpT *> *Jumps2 = nullptr) {
540
assert(!Jumps1->empty() && "cannot merge empty jump list");
541
JumpArray[0] = Jumps1;
542
JumpArray[1] = Jumps2;
543
}
544
545
template <typename F> void forEach(const F &Func) const {
546
for (auto Jumps : JumpArray)
547
if (Jumps != nullptr)
548
for (JumpT *Jump : *Jumps)
549
Func(Jump);
550
}
551
552
private:
553
std::array<const std::vector<JumpT *> *, 2> JumpArray{nullptr, nullptr};
554
};
555
556
/// Merge two chains of nodes respecting a given 'type' and 'offset'.
557
///
558
/// If MergeType == 0, then the result is a concatenation of two chains.
559
/// Otherwise, the first chain is cut into two sub-chains at the offset,
560
/// and merged using all possible ways of concatenating three chains.
561
MergedNodesT mergeNodes(const std::vector<NodeT *> &X,
562
const std::vector<NodeT *> &Y, size_t MergeOffset,
563
MergeTypeT MergeType) {
564
// Split the first chain, X, into X1 and X2.
565
NodeIter BeginX1 = X.begin();
566
NodeIter EndX1 = X.begin() + MergeOffset;
567
NodeIter BeginX2 = X.begin() + MergeOffset;
568
NodeIter EndX2 = X.end();
569
NodeIter BeginY = Y.begin();
570
NodeIter EndY = Y.end();
571
572
// Construct a new chain from the three existing ones.
573
switch (MergeType) {
574
case MergeTypeT::X_Y:
575
return MergedNodesT(BeginX1, EndX2, BeginY, EndY);
576
case MergeTypeT::Y_X:
577
return MergedNodesT(BeginY, EndY, BeginX1, EndX2);
578
case MergeTypeT::X1_Y_X2:
579
return MergedNodesT(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
580
case MergeTypeT::Y_X2_X1:
581
return MergedNodesT(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
582
case MergeTypeT::X2_X1_Y:
583
return MergedNodesT(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
584
}
585
llvm_unreachable("unexpected chain merge type");
586
}
587
588
/// The implementation of the ExtTSP algorithm.
589
class ExtTSPImpl {
590
public:
591
ExtTSPImpl(ArrayRef<uint64_t> NodeSizes, ArrayRef<uint64_t> NodeCounts,
592
ArrayRef<EdgeCount> EdgeCounts)
593
: NumNodes(NodeSizes.size()) {
594
initialize(NodeSizes, NodeCounts, EdgeCounts);
595
}
596
597
/// Run the algorithm and return an optimized ordering of nodes.
598
std::vector<uint64_t> run() {
599
// Pass 1: Merge nodes with their mutually forced successors
600
mergeForcedPairs();
601
602
// Pass 2: Merge pairs of chains while improving the ExtTSP objective
603
mergeChainPairs();
604
605
// Pass 3: Merge cold nodes to reduce code size
606
mergeColdChains();
607
608
// Collect nodes from all chains
609
return concatChains();
610
}
611
612
private:
613
/// Initialize the algorithm's data structures.
614
void initialize(const ArrayRef<uint64_t> &NodeSizes,
615
const ArrayRef<uint64_t> &NodeCounts,
616
const ArrayRef<EdgeCount> &EdgeCounts) {
617
// Initialize nodes.
618
AllNodes.reserve(NumNodes);
619
for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
620
uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
621
uint64_t ExecutionCount = NodeCounts[Idx];
622
// The execution count of the entry node is set to at least one.
623
if (Idx == 0 && ExecutionCount == 0)
624
ExecutionCount = 1;
625
AllNodes.emplace_back(Idx, Size, ExecutionCount);
626
}
627
628
// Initialize jumps between the nodes.
629
SuccNodes.resize(NumNodes);
630
PredNodes.resize(NumNodes);
631
std::vector<uint64_t> OutDegree(NumNodes, 0);
632
AllJumps.reserve(EdgeCounts.size());
633
for (auto Edge : EdgeCounts) {
634
++OutDegree[Edge.src];
635
// Ignore self-edges.
636
if (Edge.src == Edge.dst)
637
continue;
638
639
SuccNodes[Edge.src].push_back(Edge.dst);
640
PredNodes[Edge.dst].push_back(Edge.src);
641
if (Edge.count > 0) {
642
NodeT &PredNode = AllNodes[Edge.src];
643
NodeT &SuccNode = AllNodes[Edge.dst];
644
AllJumps.emplace_back(&PredNode, &SuccNode, Edge.count);
645
SuccNode.InJumps.push_back(&AllJumps.back());
646
PredNode.OutJumps.push_back(&AllJumps.back());
647
// Adjust execution counts.
648
PredNode.ExecutionCount = std::max(PredNode.ExecutionCount, Edge.count);
649
SuccNode.ExecutionCount = std::max(SuccNode.ExecutionCount, Edge.count);
650
}
651
}
652
for (JumpT &Jump : AllJumps) {
653
assert(OutDegree[Jump.Source->Index] > 0 &&
654
"incorrectly computed out-degree of the block");
655
Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
656
}
657
658
// Initialize chains.
659
AllChains.reserve(NumNodes);
660
HotChains.reserve(NumNodes);
661
for (NodeT &Node : AllNodes) {
662
// Create a chain.
663
AllChains.emplace_back(Node.Index, &Node);
664
Node.CurChain = &AllChains.back();
665
if (Node.ExecutionCount > 0)
666
HotChains.push_back(&AllChains.back());
667
}
668
669
// Initialize chain edges.
670
AllEdges.reserve(AllJumps.size());
671
for (NodeT &PredNode : AllNodes) {
672
for (JumpT *Jump : PredNode.OutJumps) {
673
assert(Jump->ExecutionCount > 0 && "incorrectly initialized jump");
674
NodeT *SuccNode = Jump->Target;
675
ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
676
// This edge is already present in the graph.
677
if (CurEdge != nullptr) {
678
assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
679
CurEdge->appendJump(Jump);
680
continue;
681
}
682
// This is a new edge.
683
AllEdges.emplace_back(Jump);
684
PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
685
SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
686
}
687
}
688
}
689
690
/// For a pair of nodes, A and B, node B is the forced successor of A,
691
/// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
692
/// to B are from A. Such nodes should be adjacent in the optimal ordering;
693
/// the method finds and merges such pairs of nodes.
694
void mergeForcedPairs() {
695
// Find forced pairs of blocks.
696
for (NodeT &Node : AllNodes) {
697
if (SuccNodes[Node.Index].size() == 1 &&
698
PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
699
SuccNodes[Node.Index][0] != 0) {
700
size_t SuccIndex = SuccNodes[Node.Index][0];
701
Node.ForcedSucc = &AllNodes[SuccIndex];
702
AllNodes[SuccIndex].ForcedPred = &Node;
703
}
704
}
705
706
// There might be 'cycles' in the forced dependencies, since profile
707
// data isn't 100% accurate. Typically this is observed in loops, when the
708
// loop edges are the hottest successors for the basic blocks of the loop.
709
// Break the cycles by choosing the node with the smallest index as the
710
// head. This helps to keep the original order of the loops, which likely
711
// have already been rotated in the optimized manner.
712
for (NodeT &Node : AllNodes) {
713
if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
714
continue;
715
716
NodeT *SuccNode = Node.ForcedSucc;
717
while (SuccNode != nullptr && SuccNode != &Node) {
718
SuccNode = SuccNode->ForcedSucc;
719
}
720
if (SuccNode == nullptr)
721
continue;
722
// Break the cycle.
723
AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
724
Node.ForcedPred = nullptr;
725
}
726
727
// Merge nodes with their fallthrough successors.
728
for (NodeT &Node : AllNodes) {
729
if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
730
const NodeT *CurBlock = &Node;
731
while (CurBlock->ForcedSucc != nullptr) {
732
const NodeT *NextBlock = CurBlock->ForcedSucc;
733
mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
734
CurBlock = NextBlock;
735
}
736
}
737
}
738
}
739
740
/// Merge pairs of chains while improving the ExtTSP objective.
741
void mergeChainPairs() {
742
/// Deterministically compare pairs of chains.
743
auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
744
const ChainT *A2, const ChainT *B2) {
745
return std::make_tuple(A1->Id, B1->Id) < std::make_tuple(A2->Id, B2->Id);
746
};
747
748
while (HotChains.size() > 1) {
749
ChainT *BestChainPred = nullptr;
750
ChainT *BestChainSucc = nullptr;
751
MergeGainT BestGain;
752
// Iterate over all pairs of chains.
753
for (ChainT *ChainPred : HotChains) {
754
// Get candidates for merging with the current chain.
755
for (const auto &[ChainSucc, Edge] : ChainPred->Edges) {
756
// Ignore loop edges.
757
if (Edge->isSelfEdge())
758
continue;
759
// Skip the merge if the combined chain violates the maximum specified
760
// size.
761
if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
762
continue;
763
// Don't merge the chains if they have vastly different densities.
764
// Skip the merge if the ratio between the densities exceeds
765
// MaxMergeDensityRatio. Smaller values of the option result in fewer
766
// merges, and hence, more chains.
767
const double ChainPredDensity = ChainPred->density();
768
const double ChainSuccDensity = ChainSucc->density();
769
assert(ChainPredDensity > 0.0 && ChainSuccDensity > 0.0 &&
770
"incorrectly computed chain densities");
771
auto [MinDensity, MaxDensity] =
772
std::minmax(ChainPredDensity, ChainSuccDensity);
773
const double Ratio = MaxDensity / MinDensity;
774
if (Ratio > MaxMergeDensityRatio)
775
continue;
776
777
// Compute the gain of merging the two chains.
778
MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
779
if (CurGain.score() <= EPS)
780
continue;
781
782
if (BestGain < CurGain ||
783
(std::abs(CurGain.score() - BestGain.score()) < EPS &&
784
compareChainPairs(ChainPred, ChainSucc, BestChainPred,
785
BestChainSucc))) {
786
BestGain = CurGain;
787
BestChainPred = ChainPred;
788
BestChainSucc = ChainSucc;
789
}
790
}
791
}
792
793
// Stop merging when there is no improvement.
794
if (BestGain.score() <= EPS)
795
break;
796
797
// Merge the best pair of chains.
798
mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
799
BestGain.mergeType());
800
}
801
}
802
803
/// Merge remaining nodes into chains w/o taking jump counts into
804
/// consideration. This allows to maintain the original node order in the
805
/// absence of profile data.
806
void mergeColdChains() {
807
for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
808
// Iterating in reverse order to make sure original fallthrough jumps are
809
// merged first; this might be beneficial for code size.
810
size_t NumSuccs = SuccNodes[SrcBB].size();
811
for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
812
size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
813
ChainT *SrcChain = AllNodes[SrcBB].CurChain;
814
ChainT *DstChain = AllNodes[DstBB].CurChain;
815
if (SrcChain != DstChain && !DstChain->isEntry() &&
816
SrcChain->Nodes.back()->Index == SrcBB &&
817
DstChain->Nodes.front()->Index == DstBB &&
818
SrcChain->isCold() == DstChain->isCold()) {
819
mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
820
}
821
}
822
}
823
}
824
825
/// Compute the Ext-TSP score for a given node order and a list of jumps.
826
double extTSPScore(const MergedNodesT &Nodes,
827
const MergedJumpsT &Jumps) const {
828
uint64_t CurAddr = 0;
829
Nodes.forEach([&](const NodeT *Node) {
830
Node->EstimatedAddr = CurAddr;
831
CurAddr += Node->Size;
832
});
833
834
double Score = 0;
835
Jumps.forEach([&](const JumpT *Jump) {
836
const NodeT *SrcBlock = Jump->Source;
837
const NodeT *DstBlock = Jump->Target;
838
Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
839
DstBlock->EstimatedAddr, Jump->ExecutionCount,
840
Jump->IsConditional);
841
});
842
return Score;
843
}
844
845
/// Compute the gain of merging two chains.
846
///
847
/// The function considers all possible ways of merging two chains and
848
/// computes the one having the largest increase in ExtTSP objective. The
849
/// result is a pair with the first element being the gain and the second
850
/// element being the corresponding merging type.
851
MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
852
ChainEdge *Edge) const {
853
if (Edge->hasCachedMergeGain(ChainPred, ChainSucc))
854
return Edge->getCachedMergeGain(ChainPred, ChainSucc);
855
856
assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
857
// Precompute jumps between ChainPred and ChainSucc.
858
ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
859
MergedJumpsT Jumps(&Edge->jumps(), EdgePP ? &EdgePP->jumps() : nullptr);
860
861
// This object holds the best chosen gain of merging two chains.
862
MergeGainT Gain = MergeGainT();
863
864
/// Given a merge offset and a list of merge types, try to merge two chains
865
/// and update Gain with a better alternative.
866
auto tryChainMerging = [&](size_t Offset,
867
const std::vector<MergeTypeT> &MergeTypes) {
868
// Skip merging corresponding to concatenation w/o splitting.
869
if (Offset == 0 || Offset == ChainPred->Nodes.size())
870
return;
871
// Skip merging if it breaks Forced successors.
872
NodeT *Node = ChainPred->Nodes[Offset - 1];
873
if (Node->ForcedSucc != nullptr)
874
return;
875
// Apply the merge, compute the corresponding gain, and update the best
876
// value, if the merge is beneficial.
877
for (const MergeTypeT &MergeType : MergeTypes) {
878
Gain.updateIfLessThan(
879
computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
880
}
881
};
882
883
// Try to concatenate two chains w/o splitting.
884
Gain.updateIfLessThan(
885
computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));
886
887
// Attach (a part of) ChainPred before the first node of ChainSucc.
888
for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
889
const NodeT *SrcBlock = Jump->Source;
890
if (SrcBlock->CurChain != ChainPred)
891
continue;
892
size_t Offset = SrcBlock->CurIndex + 1;
893
tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
894
}
895
896
// Attach (a part of) ChainPred after the last node of ChainSucc.
897
for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
898
const NodeT *DstBlock = Jump->Target;
899
if (DstBlock->CurChain != ChainPred)
900
continue;
901
size_t Offset = DstBlock->CurIndex;
902
tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
903
}
904
905
// Try to break ChainPred in various ways and concatenate with ChainSucc.
906
if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
907
for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
908
// Do not split the chain along a fall-through jump. One of the two
909
// loops above may still "break" such a jump whenever it results in a
910
// new fall-through.
911
const NodeT *BB = ChainPred->Nodes[Offset - 1];
912
const NodeT *BB2 = ChainPred->Nodes[Offset];
913
if (BB->isSuccessor(BB2))
914
continue;
915
916
// In practice, applying X2_Y_X1 merging almost never provides benefits;
917
// thus, we exclude it from consideration to reduce the search space.
918
tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
919
MergeTypeT::X2_X1_Y});
920
}
921
}
922
923
Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
924
return Gain;
925
}
926
927
/// Compute the score gain of merging two chains, respecting a given
928
/// merge 'type' and 'offset'.
929
///
930
/// The two chains are not modified in the method.
931
MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
932
const MergedJumpsT &Jumps, size_t MergeOffset,
933
MergeTypeT MergeType) const {
934
MergedNodesT MergedNodes =
935
mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
936
937
// Do not allow a merge that does not preserve the original entry point.
938
if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
939
!MergedNodes.getFirstNode()->isEntry())
940
return MergeGainT();
941
942
// The gain for the new chain.
943
double NewScore = extTSPScore(MergedNodes, Jumps);
944
double CurScore = ChainPred->Score;
945
return MergeGainT(NewScore - CurScore, MergeOffset, MergeType);
946
}
947
948
/// Merge chain From into chain Into, update the list of active chains,
949
/// adjacency information, and the corresponding cached values.
950
void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
951
MergeTypeT MergeType) {
952
assert(Into != From && "a chain cannot be merged with itself");
953
954
// Merge the nodes.
955
MergedNodesT MergedNodes =
956
mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
957
Into->merge(From, MergedNodes.getNodes());
958
959
// Merge the edges.
960
Into->mergeEdges(From);
961
From->clear();
962
963
// Update cached ext-tsp score for the new chain.
964
ChainEdge *SelfEdge = Into->getEdge(Into);
965
if (SelfEdge != nullptr) {
966
MergedNodes = MergedNodesT(Into->Nodes.begin(), Into->Nodes.end());
967
MergedJumpsT MergedJumps(&SelfEdge->jumps());
968
Into->Score = extTSPScore(MergedNodes, MergedJumps);
969
}
970
971
// Remove the chain from the list of active chains.
972
llvm::erase(HotChains, From);
973
974
// Invalidate caches.
975
for (auto EdgeIt : Into->Edges)
976
EdgeIt.second->invalidateCache();
977
}
978
979
/// Concatenate all chains into the final order.
980
std::vector<uint64_t> concatChains() {
981
// Collect non-empty chains.
982
std::vector<const ChainT *> SortedChains;
983
for (ChainT &Chain : AllChains) {
984
if (!Chain.Nodes.empty())
985
SortedChains.push_back(&Chain);
986
}
987
988
// Sorting chains by density in the decreasing order.
989
std::sort(SortedChains.begin(), SortedChains.end(),
990
[&](const ChainT *L, const ChainT *R) {
991
// Place the entry point at the beginning of the order.
992
if (L->isEntry() != R->isEntry())
993
return L->isEntry();
994
995
// Compare by density and break ties by chain identifiers.
996
return std::make_tuple(-L->density(), L->Id) <
997
std::make_tuple(-R->density(), R->Id);
998
});
999
1000
// Collect the nodes in the order specified by their chains.
1001
std::vector<uint64_t> Order;
1002
Order.reserve(NumNodes);
1003
for (const ChainT *Chain : SortedChains)
1004
for (NodeT *Node : Chain->Nodes)
1005
Order.push_back(Node->Index);
1006
return Order;
1007
}
1008
1009
private:
1010
/// The number of nodes in the graph.
1011
const size_t NumNodes;
1012
1013
/// Successors of each node.
1014
std::vector<std::vector<uint64_t>> SuccNodes;
1015
1016
/// Predecessors of each node.
1017
std::vector<std::vector<uint64_t>> PredNodes;
1018
1019
/// All nodes (basic blocks) in the graph.
1020
std::vector<NodeT> AllNodes;
1021
1022
/// All jumps between the nodes.
1023
std::vector<JumpT> AllJumps;
1024
1025
/// All chains of nodes.
1026
std::vector<ChainT> AllChains;
1027
1028
/// All edges between the chains.
1029
std::vector<ChainEdge> AllEdges;
1030
1031
/// Active chains. The vector gets updated at runtime when chains are merged.
1032
std::vector<ChainT *> HotChains;
1033
};
1034
1035
/// The implementation of the Cache-Directed Sort (CDSort) algorithm for
1036
/// ordering functions represented by a call graph.
1037
class CDSortImpl {
1038
public:
1039
CDSortImpl(const CDSortConfig &Config, ArrayRef<uint64_t> NodeSizes,
1040
ArrayRef<uint64_t> NodeCounts, ArrayRef<EdgeCount> EdgeCounts,
1041
ArrayRef<uint64_t> EdgeOffsets)
1042
: Config(Config), NumNodes(NodeSizes.size()) {
1043
initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets);
1044
}
1045
1046
/// Run the algorithm and return an ordered set of function clusters.
1047
std::vector<uint64_t> run() {
1048
// Merge pairs of chains while improving the objective.
1049
mergeChainPairs();
1050
1051
// Collect nodes from all the chains.
1052
return concatChains();
1053
}
1054
1055
private:
1056
/// Initialize the algorithm's data structures.
1057
void initialize(const ArrayRef<uint64_t> &NodeSizes,
1058
const ArrayRef<uint64_t> &NodeCounts,
1059
const ArrayRef<EdgeCount> &EdgeCounts,
1060
const ArrayRef<uint64_t> &EdgeOffsets) {
1061
// Initialize nodes.
1062
AllNodes.reserve(NumNodes);
1063
for (uint64_t Node = 0; Node < NumNodes; Node++) {
1064
uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
1065
uint64_t ExecutionCount = NodeCounts[Node];
1066
AllNodes.emplace_back(Node, Size, ExecutionCount);
1067
TotalSamples += ExecutionCount;
1068
if (ExecutionCount > 0)
1069
TotalSize += Size;
1070
}
1071
1072
// Initialize jumps between the nodes.
1073
SuccNodes.resize(NumNodes);
1074
PredNodes.resize(NumNodes);
1075
AllJumps.reserve(EdgeCounts.size());
1076
for (size_t I = 0; I < EdgeCounts.size(); I++) {
1077
auto [Pred, Succ, Count] = EdgeCounts[I];
1078
// Ignore recursive calls.
1079
if (Pred == Succ)
1080
continue;
1081
1082
SuccNodes[Pred].push_back(Succ);
1083
PredNodes[Succ].push_back(Pred);
1084
if (Count > 0) {
1085
NodeT &PredNode = AllNodes[Pred];
1086
NodeT &SuccNode = AllNodes[Succ];
1087
AllJumps.emplace_back(&PredNode, &SuccNode, Count);
1088
AllJumps.back().Offset = EdgeOffsets[I];
1089
SuccNode.InJumps.push_back(&AllJumps.back());
1090
PredNode.OutJumps.push_back(&AllJumps.back());
1091
// Adjust execution counts.
1092
PredNode.ExecutionCount = std::max(PredNode.ExecutionCount, Count);
1093
SuccNode.ExecutionCount = std::max(SuccNode.ExecutionCount, Count);
1094
}
1095
}
1096
1097
// Initialize chains.
1098
AllChains.reserve(NumNodes);
1099
for (NodeT &Node : AllNodes) {
1100
// Adjust execution counts.
1101
Node.ExecutionCount = std::max(Node.ExecutionCount, Node.inCount());
1102
Node.ExecutionCount = std::max(Node.ExecutionCount, Node.outCount());
1103
// Create chain.
1104
AllChains.emplace_back(Node.Index, &Node);
1105
Node.CurChain = &AllChains.back();
1106
}
1107
1108
// Initialize chain edges.
1109
AllEdges.reserve(AllJumps.size());
1110
for (NodeT &PredNode : AllNodes) {
1111
for (JumpT *Jump : PredNode.OutJumps) {
1112
NodeT *SuccNode = Jump->Target;
1113
ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
1114
// This edge is already present in the graph.
1115
if (CurEdge != nullptr) {
1116
assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
1117
CurEdge->appendJump(Jump);
1118
continue;
1119
}
1120
// This is a new edge.
1121
AllEdges.emplace_back(Jump);
1122
PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
1123
SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
1124
}
1125
}
1126
}
1127
1128
/// Merge pairs of chains while there is an improvement in the objective.
1129
void mergeChainPairs() {
1130
// Create a priority queue containing all edges ordered by the merge gain.
1131
auto GainComparator = [](ChainEdge *L, ChainEdge *R) {
1132
return std::make_tuple(-L->gain(), L->srcChain()->Id, L->dstChain()->Id) <
1133
std::make_tuple(-R->gain(), R->srcChain()->Id, R->dstChain()->Id);
1134
};
1135
std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator);
1136
1137
// Insert the edges into the queue.
1138
[[maybe_unused]] size_t NumActiveChains = 0;
1139
for (NodeT &Node : AllNodes) {
1140
if (Node.ExecutionCount == 0)
1141
continue;
1142
++NumActiveChains;
1143
for (const auto &[_, Edge] : Node.CurChain->Edges) {
1144
// Ignore self-edges.
1145
if (Edge->isSelfEdge())
1146
continue;
1147
// Ignore already processed edges.
1148
if (Edge->gain() != -1.0)
1149
continue;
1150
1151
// Compute the gain of merging the two chains.
1152
MergeGainT Gain = getBestMergeGain(Edge);
1153
Edge->setMergeGain(Gain);
1154
1155
if (Edge->gain() > EPS)
1156
Queue.insert(Edge);
1157
}
1158
}
1159
1160
// Merge the chains while the gain of merging is positive.
1161
while (!Queue.empty()) {
1162
// Extract the best (top) edge for merging.
1163
ChainEdge *BestEdge = *Queue.begin();
1164
Queue.erase(Queue.begin());
1165
ChainT *BestSrcChain = BestEdge->srcChain();
1166
ChainT *BestDstChain = BestEdge->dstChain();
1167
1168
// Remove outdated edges from the queue.
1169
for (const auto &[_, ChainEdge] : BestSrcChain->Edges)
1170
Queue.erase(ChainEdge);
1171
for (const auto &[_, ChainEdge] : BestDstChain->Edges)
1172
Queue.erase(ChainEdge);
1173
1174
// Merge the best pair of chains.
1175
MergeGainT BestGain = BestEdge->getMergeGain();
1176
mergeChains(BestSrcChain, BestDstChain, BestGain.mergeOffset(),
1177
BestGain.mergeType());
1178
--NumActiveChains;
1179
1180
// Insert newly created edges into the queue.
1181
for (const auto &[_, Edge] : BestSrcChain->Edges) {
1182
// Ignore loop edges.
1183
if (Edge->isSelfEdge())
1184
continue;
1185
if (Edge->srcChain()->numBlocks() + Edge->dstChain()->numBlocks() >
1186
Config.MaxChainSize)
1187
continue;
1188
1189
// Compute the gain of merging the two chains.
1190
MergeGainT Gain = getBestMergeGain(Edge);
1191
Edge->setMergeGain(Gain);
1192
1193
if (Edge->gain() > EPS)
1194
Queue.insert(Edge);
1195
}
1196
}
1197
1198
LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number"
1199
<< " of chains from " << NumNodes << " to "
1200
<< NumActiveChains << "\n");
1201
}
1202
1203
/// Compute the gain of merging two chains.
1204
///
1205
/// The function considers all possible ways of merging two chains and
1206
/// computes the one having the largest increase in ExtTSP objective. The
1207
/// result is a pair with the first element being the gain and the second
1208
/// element being the corresponding merging type.
1209
MergeGainT getBestMergeGain(ChainEdge *Edge) const {
1210
assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
1211
// Precompute jumps between ChainPred and ChainSucc.
1212
MergedJumpsT Jumps(&Edge->jumps());
1213
ChainT *SrcChain = Edge->srcChain();
1214
ChainT *DstChain = Edge->dstChain();
1215
1216
// This object holds the best currently chosen gain of merging two chains.
1217
MergeGainT Gain = MergeGainT();
1218
1219
/// Given a list of merge types, try to merge two chains and update Gain
1220
/// with a better alternative.
1221
auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) {
1222
// Apply the merge, compute the corresponding gain, and update the best
1223
// value, if the merge is beneficial.
1224
for (const MergeTypeT &MergeType : MergeTypes) {
1225
MergeGainT NewGain =
1226
computeMergeGain(SrcChain, DstChain, Jumps, MergeType);
1227
1228
// When forward and backward gains are the same, prioritize merging that
1229
// preserves the original order of the functions in the binary.
1230
if (std::abs(Gain.score() - NewGain.score()) < EPS) {
1231
if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) ||
1232
(MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) {
1233
Gain = NewGain;
1234
}
1235
} else if (NewGain.score() > Gain.score() + EPS) {
1236
Gain = NewGain;
1237
}
1238
}
1239
};
1240
1241
// Try to concatenate two chains w/o splitting.
1242
tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X});
1243
1244
return Gain;
1245
}
1246
1247
/// Compute the score gain of merging two chains, respecting a given type.
1248
///
1249
/// The two chains are not modified in the method.
1250
MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
1251
const MergedJumpsT &Jumps,
1252
MergeTypeT MergeType) const {
1253
// This doesn't depend on the ordering of the nodes
1254
double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc);
1255
1256
// Merge offset is always 0, as the chains are not split.
1257
size_t MergeOffset = 0;
1258
auto MergedBlocks =
1259
mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
1260
double DistGain = distBasedLocalityGain(MergedBlocks, Jumps);
1261
1262
double GainScore = DistGain + Config.FrequencyScale * FreqGain;
1263
// Scale the result to increase the importance of merging short chains.
1264
if (GainScore >= 0.0)
1265
GainScore /= std::min(ChainPred->Size, ChainSucc->Size);
1266
1267
return MergeGainT(GainScore, MergeOffset, MergeType);
1268
}
1269
1270
/// Compute the change of the frequency locality after merging the chains.
1271
double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const {
1272
auto missProbability = [&](double ChainDensity) {
1273
double PageSamples = ChainDensity * Config.CacheSize;
1274
if (PageSamples >= TotalSamples)
1275
return 0.0;
1276
double P = PageSamples / TotalSamples;
1277
return pow(1.0 - P, static_cast<double>(Config.CacheEntries));
1278
};
1279
1280
// Cache misses on the chains before merging.
1281
double CurScore =
1282
ChainPred->ExecutionCount * missProbability(ChainPred->density()) +
1283
ChainSucc->ExecutionCount * missProbability(ChainSucc->density());
1284
1285
// Cache misses on the merged chain
1286
double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount;
1287
double MergedSize = ChainPred->Size + ChainSucc->Size;
1288
double MergedDensity = static_cast<double>(MergedCounts) / MergedSize;
1289
double NewScore = MergedCounts * missProbability(MergedDensity);
1290
1291
return CurScore - NewScore;
1292
}
1293
1294
/// Compute the distance locality for a jump / call.
1295
double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const {
1296
uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr;
1297
double D = Dist == 0 ? 0.1 : static_cast<double>(Dist);
1298
return static_cast<double>(Count) * std::pow(D, -Config.DistancePower);
1299
}
1300
1301
/// Compute the change of the distance locality after merging the chains.
1302
double distBasedLocalityGain(const MergedNodesT &Nodes,
1303
const MergedJumpsT &Jumps) const {
1304
uint64_t CurAddr = 0;
1305
Nodes.forEach([&](const NodeT *Node) {
1306
Node->EstimatedAddr = CurAddr;
1307
CurAddr += Node->Size;
1308
});
1309
1310
double CurScore = 0;
1311
double NewScore = 0;
1312
Jumps.forEach([&](const JumpT *Jump) {
1313
uint64_t SrcAddr = Jump->Source->EstimatedAddr + Jump->Offset;
1314
uint64_t DstAddr = Jump->Target->EstimatedAddr;
1315
NewScore += distScore(SrcAddr, DstAddr, Jump->ExecutionCount);
1316
CurScore += distScore(0, TotalSize, Jump->ExecutionCount);
1317
});
1318
return NewScore - CurScore;
1319
}
1320
1321
/// Merge chain From into chain Into, update the list of active chains,
1322
/// adjacency information, and the corresponding cached values.
1323
void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
1324
MergeTypeT MergeType) {
1325
assert(Into != From && "a chain cannot be merged with itself");
1326
1327
// Merge the nodes.
1328
MergedNodesT MergedNodes =
1329
mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
1330
Into->merge(From, MergedNodes.getNodes());
1331
1332
// Merge the edges.
1333
Into->mergeEdges(From);
1334
From->clear();
1335
}
1336
1337
/// Concatenate all chains into the final order.
1338
std::vector<uint64_t> concatChains() {
1339
// Collect chains and calculate density stats for their sorting.
1340
std::vector<const ChainT *> SortedChains;
1341
DenseMap<const ChainT *, double> ChainDensity;
1342
for (ChainT &Chain : AllChains) {
1343
if (!Chain.Nodes.empty()) {
1344
SortedChains.push_back(&Chain);
1345
// Using doubles to avoid overflow of ExecutionCounts.
1346
double Size = 0;
1347
double ExecutionCount = 0;
1348
for (NodeT *Node : Chain.Nodes) {
1349
Size += static_cast<double>(Node->Size);
1350
ExecutionCount += static_cast<double>(Node->ExecutionCount);
1351
}
1352
assert(Size > 0 && "a chain of zero size");
1353
ChainDensity[&Chain] = ExecutionCount / Size;
1354
}
1355
}
1356
1357
// Sort chains by density in the decreasing order.
1358
std::sort(SortedChains.begin(), SortedChains.end(),
1359
[&](const ChainT *L, const ChainT *R) {
1360
const double DL = ChainDensity[L];
1361
const double DR = ChainDensity[R];
1362
// Compare by density and break ties by chain identifiers.
1363
return std::make_tuple(-DL, L->Id) <
1364
std::make_tuple(-DR, R->Id);
1365
});
1366
1367
// Collect the nodes in the order specified by their chains.
1368
std::vector<uint64_t> Order;
1369
Order.reserve(NumNodes);
1370
for (const ChainT *Chain : SortedChains)
1371
for (NodeT *Node : Chain->Nodes)
1372
Order.push_back(Node->Index);
1373
return Order;
1374
}
1375
1376
private:
1377
/// Config for the algorithm.
1378
const CDSortConfig Config;
1379
1380
/// The number of nodes in the graph.
1381
const size_t NumNodes;
1382
1383
/// Successors of each node.
1384
std::vector<std::vector<uint64_t>> SuccNodes;
1385
1386
/// Predecessors of each node.
1387
std::vector<std::vector<uint64_t>> PredNodes;
1388
1389
/// All nodes (functions) in the graph.
1390
std::vector<NodeT> AllNodes;
1391
1392
/// All jumps (function calls) between the nodes.
1393
std::vector<JumpT> AllJumps;
1394
1395
/// All chains of nodes.
1396
std::vector<ChainT> AllChains;
1397
1398
/// All edges between the chains.
1399
std::vector<ChainEdge> AllEdges;
1400
1401
/// The total number of samples in the graph.
1402
uint64_t TotalSamples{0};
1403
1404
/// The total size of the nodes in the graph.
1405
uint64_t TotalSize{0};
1406
};
1407
1408
} // end of anonymous namespace
1409
1410
std::vector<uint64_t>
1411
codelayout::computeExtTspLayout(ArrayRef<uint64_t> NodeSizes,
1412
ArrayRef<uint64_t> NodeCounts,
1413
ArrayRef<EdgeCount> EdgeCounts) {
1414
// Verify correctness of the input data.
1415
assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
1416
assert(NodeSizes.size() > 2 && "Incorrect input");
1417
1418
// Apply the reordering algorithm.
1419
ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
1420
std::vector<uint64_t> Result = Alg.run();
1421
1422
// Verify correctness of the output.
1423
assert(Result.front() == 0 && "Original entry point is not preserved");
1424
assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
1425
return Result;
1426
}
1427
1428
double codelayout::calcExtTspScore(ArrayRef<uint64_t> Order,
1429
ArrayRef<uint64_t> NodeSizes,
1430
ArrayRef<uint64_t> NodeCounts,
1431
ArrayRef<EdgeCount> EdgeCounts) {
1432
// Estimate addresses of the blocks in memory.
1433
std::vector<uint64_t> Addr(NodeSizes.size(), 0);
1434
for (size_t Idx = 1; Idx < Order.size(); Idx++) {
1435
Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
1436
}
1437
std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
1438
for (auto Edge : EdgeCounts)
1439
++OutDegree[Edge.src];
1440
1441
// Increase the score for each jump.
1442
double Score = 0;
1443
for (auto Edge : EdgeCounts) {
1444
bool IsConditional = OutDegree[Edge.src] > 1;
1445
Score += ::extTSPScore(Addr[Edge.src], NodeSizes[Edge.src], Addr[Edge.dst],
1446
Edge.count, IsConditional);
1447
}
1448
return Score;
1449
}
1450
1451
double codelayout::calcExtTspScore(ArrayRef<uint64_t> NodeSizes,
1452
ArrayRef<uint64_t> NodeCounts,
1453
ArrayRef<EdgeCount> EdgeCounts) {
1454
std::vector<uint64_t> Order(NodeSizes.size());
1455
for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
1456
Order[Idx] = Idx;
1457
}
1458
return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
1459
}
1460
1461
std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1462
const CDSortConfig &Config, ArrayRef<uint64_t> FuncSizes,
1463
ArrayRef<uint64_t> FuncCounts, ArrayRef<EdgeCount> CallCounts,
1464
ArrayRef<uint64_t> CallOffsets) {
1465
// Verify correctness of the input data.
1466
assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input");
1467
1468
// Apply the reordering algorithm.
1469
CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets);
1470
std::vector<uint64_t> Result = Alg.run();
1471
assert(Result.size() == FuncSizes.size() && "Incorrect size of layout");
1472
return Result;
1473
}
1474
1475
std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1476
ArrayRef<uint64_t> FuncSizes, ArrayRef<uint64_t> FuncCounts,
1477
ArrayRef<EdgeCount> CallCounts, ArrayRef<uint64_t> CallOffsets) {
1478
CDSortConfig Config;
1479
// Populate the config from the command-line options.
1480
if (CacheEntries.getNumOccurrences() > 0)
1481
Config.CacheEntries = CacheEntries;
1482
if (CacheSize.getNumOccurrences() > 0)
1483
Config.CacheSize = CacheSize;
1484
if (CDMaxChainSize.getNumOccurrences() > 0)
1485
Config.MaxChainSize = CDMaxChainSize;
1486
if (DistancePower.getNumOccurrences() > 0)
1487
Config.DistancePower = DistancePower;
1488
if (FrequencyScale.getNumOccurrences() > 0)
1489
Config.FrequencyScale = FrequencyScale;
1490
return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts,
1491
CallOffsets);
1492
}
1493
1494