Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeMoverUtils.cpp
35271 views
1
//===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This family of functions perform movements on basic blocks, and instructions
10
// contained within a function.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Transforms/Utils/CodeMoverUtils.h"
15
#include "llvm/ADT/Statistic.h"
16
#include "llvm/Analysis/DependenceAnalysis.h"
17
#include "llvm/Analysis/PostDominators.h"
18
#include "llvm/Analysis/ValueTracking.h"
19
#include "llvm/IR/Dominators.h"
20
21
using namespace llvm;
22
23
#define DEBUG_TYPE "codemover-utils"
24
25
STATISTIC(HasDependences,
26
"Cannot move across instructions that has memory dependences");
27
STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
28
STATISTIC(NotControlFlowEquivalent,
29
"Instructions are not control flow equivalent");
30
STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
31
STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");
32
33
namespace {
34
/// Represent a control condition. A control condition is a condition of a
35
/// terminator to decide which successors to execute. The pointer field
36
/// represents the address of the condition of the terminator. The integer field
37
/// is a bool, it is true when the basic block is executed when V is true. For
38
/// example, `br %cond, bb0, bb1` %cond is a control condition of bb0 with the
39
/// integer field equals to true, while %cond is a control condition of bb1 with
40
/// the integer field equals to false.
41
using ControlCondition = PointerIntPair<Value *, 1, bool>;
42
#ifndef NDEBUG
43
raw_ostream &operator<<(raw_ostream &OS, const ControlCondition &C) {
44
OS << "[" << *C.getPointer() << ", " << (C.getInt() ? "true" : "false")
45
<< "]";
46
return OS;
47
}
48
#endif
49
50
/// Represent a set of control conditions required to execute ToBB from FromBB.
51
class ControlConditions {
52
using ConditionVectorTy = SmallVector<ControlCondition, 6>;
53
54
/// A SmallVector of control conditions.
55
ConditionVectorTy Conditions;
56
57
public:
58
/// Return a ControlConditions which stores all conditions required to execute
59
/// \p BB from \p Dominator. If \p MaxLookup is non-zero, it limits the
60
/// number of conditions to collect. Return std::nullopt if not all conditions
61
/// are collected successfully, or we hit the limit.
62
static const std::optional<ControlConditions>
63
collectControlConditions(const BasicBlock &BB, const BasicBlock &Dominator,
64
const DominatorTree &DT,
65
const PostDominatorTree &PDT,
66
unsigned MaxLookup = 6);
67
68
/// Return true if there exists no control conditions required to execute ToBB
69
/// from FromBB.
70
bool isUnconditional() const { return Conditions.empty(); }
71
72
/// Return a constant reference of Conditions.
73
const ConditionVectorTy &getControlConditions() const { return Conditions; }
74
75
/// Add \p V as one of the ControlCondition in Condition with IsTrueCondition
76
/// equals to \p True. Return true if inserted successfully.
77
bool addControlCondition(ControlCondition C);
78
79
/// Return true if for all control conditions in Conditions, there exists an
80
/// equivalent control condition in \p Other.Conditions.
81
bool isEquivalent(const ControlConditions &Other) const;
82
83
/// Return true if \p C1 and \p C2 are equivalent.
84
static bool isEquivalent(const ControlCondition &C1,
85
const ControlCondition &C2);
86
87
private:
88
ControlConditions() = default;
89
90
static bool isEquivalent(const Value &V1, const Value &V2);
91
static bool isInverse(const Value &V1, const Value &V2);
92
};
93
} // namespace
94
95
static bool domTreeLevelBefore(DominatorTree *DT, const Instruction *InstA,
96
const Instruction *InstB) {
97
// Use ordered basic block in case the 2 instructions are in the same
98
// block.
99
if (InstA->getParent() == InstB->getParent())
100
return InstA->comesBefore(InstB);
101
102
DomTreeNode *DA = DT->getNode(InstA->getParent());
103
DomTreeNode *DB = DT->getNode(InstB->getParent());
104
return DA->getLevel() < DB->getLevel();
105
}
106
107
const std::optional<ControlConditions>
108
ControlConditions::collectControlConditions(const BasicBlock &BB,
109
const BasicBlock &Dominator,
110
const DominatorTree &DT,
111
const PostDominatorTree &PDT,
112
unsigned MaxLookup) {
113
assert(DT.dominates(&Dominator, &BB) && "Expecting Dominator to dominate BB");
114
115
ControlConditions Conditions;
116
unsigned NumConditions = 0;
117
118
// BB is executed unconditional from itself.
119
if (&Dominator == &BB)
120
return Conditions;
121
122
const BasicBlock *CurBlock = &BB;
123
// Walk up the dominator tree from the associated DT node for BB to the
124
// associated DT node for Dominator.
125
do {
126
assert(DT.getNode(CurBlock) && "Expecting a valid DT node for CurBlock");
127
BasicBlock *IDom = DT.getNode(CurBlock)->getIDom()->getBlock();
128
assert(DT.dominates(&Dominator, IDom) &&
129
"Expecting Dominator to dominate IDom");
130
131
// Limitation: can only handle branch instruction currently.
132
const BranchInst *BI = dyn_cast<BranchInst>(IDom->getTerminator());
133
if (!BI)
134
return std::nullopt;
135
136
bool Inserted = false;
137
if (PDT.dominates(CurBlock, IDom)) {
138
LLVM_DEBUG(dbgs() << CurBlock->getName()
139
<< " is executed unconditionally from "
140
<< IDom->getName() << "\n");
141
} else if (PDT.dominates(CurBlock, BI->getSuccessor(0))) {
142
LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
143
<< *BI->getCondition() << "\" is true from "
144
<< IDom->getName() << "\n");
145
Inserted = Conditions.addControlCondition(
146
ControlCondition(BI->getCondition(), true));
147
} else if (PDT.dominates(CurBlock, BI->getSuccessor(1))) {
148
LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
149
<< *BI->getCondition() << "\" is false from "
150
<< IDom->getName() << "\n");
151
Inserted = Conditions.addControlCondition(
152
ControlCondition(BI->getCondition(), false));
153
} else
154
return std::nullopt;
155
156
if (Inserted)
157
++NumConditions;
158
159
if (MaxLookup != 0 && NumConditions > MaxLookup)
160
return std::nullopt;
161
162
CurBlock = IDom;
163
} while (CurBlock != &Dominator);
164
165
return Conditions;
166
}
167
168
bool ControlConditions::addControlCondition(ControlCondition C) {
169
bool Inserted = false;
170
if (none_of(Conditions, [&](ControlCondition &Exists) {
171
return ControlConditions::isEquivalent(C, Exists);
172
})) {
173
Conditions.push_back(C);
174
Inserted = true;
175
}
176
177
LLVM_DEBUG(dbgs() << (Inserted ? "Inserted " : "Not inserted ") << C << "\n");
178
return Inserted;
179
}
180
181
bool ControlConditions::isEquivalent(const ControlConditions &Other) const {
182
if (Conditions.empty() && Other.Conditions.empty())
183
return true;
184
185
if (Conditions.size() != Other.Conditions.size())
186
return false;
187
188
return all_of(Conditions, [&](const ControlCondition &C) {
189
return any_of(Other.Conditions, [&](const ControlCondition &OtherC) {
190
return ControlConditions::isEquivalent(C, OtherC);
191
});
192
});
193
}
194
195
bool ControlConditions::isEquivalent(const ControlCondition &C1,
196
const ControlCondition &C2) {
197
if (C1.getInt() == C2.getInt()) {
198
if (isEquivalent(*C1.getPointer(), *C2.getPointer()))
199
return true;
200
} else if (isInverse(*C1.getPointer(), *C2.getPointer()))
201
return true;
202
203
return false;
204
}
205
206
// FIXME: Use SCEV and reuse GVN/CSE logic to check for equivalence between
207
// Values.
208
// Currently, isEquivalent rely on other passes to ensure equivalent conditions
209
// have the same value, e.g. GVN.
210
bool ControlConditions::isEquivalent(const Value &V1, const Value &V2) {
211
return &V1 == &V2;
212
}
213
214
bool ControlConditions::isInverse(const Value &V1, const Value &V2) {
215
if (const CmpInst *Cmp1 = dyn_cast<CmpInst>(&V1))
216
if (const CmpInst *Cmp2 = dyn_cast<CmpInst>(&V2)) {
217
if (Cmp1->getPredicate() == Cmp2->getInversePredicate() &&
218
Cmp1->getOperand(0) == Cmp2->getOperand(0) &&
219
Cmp1->getOperand(1) == Cmp2->getOperand(1))
220
return true;
221
222
if (Cmp1->getPredicate() ==
223
CmpInst::getSwappedPredicate(Cmp2->getInversePredicate()) &&
224
Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
225
Cmp1->getOperand(1) == Cmp2->getOperand(0))
226
return true;
227
}
228
return false;
229
}
230
231
bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
232
const DominatorTree &DT,
233
const PostDominatorTree &PDT) {
234
return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
235
}
236
237
bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
238
const DominatorTree &DT,
239
const PostDominatorTree &PDT) {
240
if (&BB0 == &BB1)
241
return true;
242
243
if ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
244
(PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)))
245
return true;
246
247
// If the set of conditions required to execute BB0 and BB1 from their common
248
// dominator are the same, then BB0 and BB1 are control flow equivalent.
249
const BasicBlock *CommonDominator = DT.findNearestCommonDominator(&BB0, &BB1);
250
LLVM_DEBUG(dbgs() << "The nearest common dominator of " << BB0.getName()
251
<< " and " << BB1.getName() << " is "
252
<< CommonDominator->getName() << "\n");
253
254
const std::optional<ControlConditions> BB0Conditions =
255
ControlConditions::collectControlConditions(BB0, *CommonDominator, DT,
256
PDT);
257
if (BB0Conditions == std::nullopt)
258
return false;
259
260
const std::optional<ControlConditions> BB1Conditions =
261
ControlConditions::collectControlConditions(BB1, *CommonDominator, DT,
262
PDT);
263
if (BB1Conditions == std::nullopt)
264
return false;
265
266
return BB0Conditions->isEquivalent(*BB1Conditions);
267
}
268
269
static bool reportInvalidCandidate(const Instruction &I,
270
llvm::Statistic &Stat) {
271
++Stat;
272
LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
273
<< Stat.getDesc());
274
return false;
275
}
276
277
/// Collect all instructions in between \p StartInst and \p EndInst, and store
278
/// them in \p InBetweenInsts.
279
static void
280
collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
281
SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
282
assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");
283
284
/// Get the next instructions of \p I, and push them to \p WorkList.
285
auto getNextInsts = [](Instruction &I,
286
SmallPtrSetImpl<Instruction *> &WorkList) {
287
if (Instruction *NextInst = I.getNextNode())
288
WorkList.insert(NextInst);
289
else {
290
assert(I.isTerminator() && "Expecting a terminator instruction");
291
for (BasicBlock *Succ : successors(&I))
292
WorkList.insert(&Succ->front());
293
}
294
};
295
296
SmallPtrSet<Instruction *, 10> WorkList;
297
getNextInsts(StartInst, WorkList);
298
while (!WorkList.empty()) {
299
Instruction *CurInst = *WorkList.begin();
300
WorkList.erase(CurInst);
301
302
if (CurInst == &EndInst)
303
continue;
304
305
if (!InBetweenInsts.insert(CurInst).second)
306
continue;
307
308
getNextInsts(*CurInst, WorkList);
309
}
310
}
311
312
bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
313
DominatorTree &DT, const PostDominatorTree *PDT,
314
DependenceInfo *DI, bool CheckForEntireBlock) {
315
// Skip tests when we don't have PDT or DI
316
if (!PDT || !DI)
317
return false;
318
319
// Cannot move itself before itself.
320
if (&I == &InsertPoint)
321
return false;
322
323
// Not moved.
324
if (I.getNextNode() == &InsertPoint)
325
return true;
326
327
if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
328
return reportInvalidCandidate(I, NotMovedPHINode);
329
330
if (I.isTerminator())
331
return reportInvalidCandidate(I, NotMovedTerminator);
332
333
// TODO remove this limitation.
334
if (!isControlFlowEquivalent(I, InsertPoint, DT, *PDT))
335
return reportInvalidCandidate(I, NotControlFlowEquivalent);
336
337
if (isReachedBefore(&I, &InsertPoint, &DT, PDT))
338
for (const Use &U : I.uses())
339
if (auto *UserInst = dyn_cast<Instruction>(U.getUser())) {
340
// If InsertPoint is in a BB that comes after I, then we cannot move if
341
// I is used in the terminator of the current BB.
342
if (I.getParent() == InsertPoint.getParent() &&
343
UserInst == I.getParent()->getTerminator())
344
return false;
345
if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U)) {
346
// If UserInst is an instruction that appears later in the same BB as
347
// I, then it is okay to move since I will still be available when
348
// UserInst is executed.
349
if (CheckForEntireBlock && I.getParent() == UserInst->getParent() &&
350
DT.dominates(&I, UserInst))
351
continue;
352
return false;
353
}
354
}
355
if (isReachedBefore(&InsertPoint, &I, &DT, PDT))
356
for (const Value *Op : I.operands())
357
if (auto *OpInst = dyn_cast<Instruction>(Op)) {
358
if (&InsertPoint == OpInst)
359
return false;
360
// If OpInst is an instruction that appears earlier in the same BB as
361
// I, then it is okay to move since OpInst will still be available.
362
if (CheckForEntireBlock && I.getParent() == OpInst->getParent() &&
363
DT.dominates(OpInst, &I))
364
continue;
365
if (!DT.dominates(OpInst, &InsertPoint))
366
return false;
367
}
368
369
DT.updateDFSNumbers();
370
const bool MoveForward = domTreeLevelBefore(&DT, &I, &InsertPoint);
371
Instruction &StartInst = (MoveForward ? I : InsertPoint);
372
Instruction &EndInst = (MoveForward ? InsertPoint : I);
373
SmallPtrSet<Instruction *, 10> InstsToCheck;
374
collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
375
if (!MoveForward)
376
InstsToCheck.insert(&InsertPoint);
377
378
// Check if there exists instructions which may throw, may synchonize, or may
379
// never return, from I to InsertPoint.
380
if (!isSafeToSpeculativelyExecute(&I))
381
if (llvm::any_of(InstsToCheck, [](Instruction *I) {
382
if (I->mayThrow())
383
return true;
384
385
const CallBase *CB = dyn_cast<CallBase>(I);
386
if (!CB)
387
return false;
388
if (!CB->hasFnAttr(Attribute::WillReturn))
389
return true;
390
if (!CB->hasFnAttr(Attribute::NoSync))
391
return true;
392
393
return false;
394
})) {
395
return reportInvalidCandidate(I, MayThrowException);
396
}
397
398
// Check if I has any output/flow/anti dependences with instructions from \p
399
// StartInst to \p EndInst.
400
if (llvm::any_of(InstsToCheck, [&DI, &I](Instruction *CurInst) {
401
auto DepResult = DI->depends(&I, CurInst, true);
402
if (DepResult && (DepResult->isOutput() || DepResult->isFlow() ||
403
DepResult->isAnti()))
404
return true;
405
return false;
406
}))
407
return reportInvalidCandidate(I, HasDependences);
408
409
return true;
410
}
411
412
bool llvm::isSafeToMoveBefore(BasicBlock &BB, Instruction &InsertPoint,
413
DominatorTree &DT, const PostDominatorTree *PDT,
414
DependenceInfo *DI) {
415
return llvm::all_of(BB, [&](Instruction &I) {
416
if (BB.getTerminator() == &I)
417
return true;
418
419
return isSafeToMoveBefore(I, InsertPoint, DT, PDT, DI,
420
/*CheckForEntireBlock=*/true);
421
});
422
}
423
424
void llvm::moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB,
425
DominatorTree &DT,
426
const PostDominatorTree &PDT,
427
DependenceInfo &DI) {
428
for (Instruction &I :
429
llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(FromBB)))) {
430
Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();
431
432
if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
433
I.moveBeforePreserving(MovePos);
434
}
435
}
436
437
void llvm::moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB,
438
DominatorTree &DT,
439
const PostDominatorTree &PDT,
440
DependenceInfo &DI) {
441
Instruction *MovePos = ToBB.getTerminator();
442
while (FromBB.size() > 1) {
443
Instruction &I = FromBB.front();
444
if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
445
I.moveBeforePreserving(MovePos);
446
}
447
}
448
449
bool llvm::nonStrictlyPostDominate(const BasicBlock *ThisBlock,
450
const BasicBlock *OtherBlock,
451
const DominatorTree *DT,
452
const PostDominatorTree *PDT) {
453
assert(isControlFlowEquivalent(*ThisBlock, *OtherBlock, *DT, *PDT) &&
454
"ThisBlock and OtherBlock must be CFG equivalent!");
455
const BasicBlock *CommonDominator =
456
DT->findNearestCommonDominator(ThisBlock, OtherBlock);
457
if (CommonDominator == nullptr)
458
return false;
459
460
/// Recursively check the predecessors of \p ThisBlock up to
461
/// their common dominator, and see if any of them post-dominates
462
/// \p OtherBlock.
463
SmallVector<const BasicBlock *, 8> WorkList;
464
SmallPtrSet<const BasicBlock *, 8> Visited;
465
WorkList.push_back(ThisBlock);
466
while (!WorkList.empty()) {
467
const BasicBlock *CurBlock = WorkList.back();
468
WorkList.pop_back();
469
Visited.insert(CurBlock);
470
if (PDT->dominates(CurBlock, OtherBlock))
471
return true;
472
473
for (const auto *Pred : predecessors(CurBlock)) {
474
if (Pred == CommonDominator || Visited.count(Pred))
475
continue;
476
WorkList.push_back(Pred);
477
}
478
}
479
return false;
480
}
481
482
bool llvm::isReachedBefore(const Instruction *I0, const Instruction *I1,
483
const DominatorTree *DT,
484
const PostDominatorTree *PDT) {
485
const BasicBlock *BB0 = I0->getParent();
486
const BasicBlock *BB1 = I1->getParent();
487
if (BB0 == BB1)
488
return DT->dominates(I0, I1);
489
490
return nonStrictlyPostDominate(BB1, BB0, DT, PDT);
491
}
492
493