Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/DemoteRegToStack.cpp
35271 views
1
//===- DemoteRegToStack.cpp - Move a virtual register to the stack --------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "llvm/ADT/DenseMap.h"
10
#include "llvm/Analysis/CFG.h"
11
#include "llvm/IR/DataLayout.h"
12
#include "llvm/IR/Function.h"
13
#include "llvm/IR/Instructions.h"
14
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
15
#include "llvm/Transforms/Utils/Local.h"
16
using namespace llvm;
17
18
/// DemoteRegToStack - This function takes a virtual register computed by an
19
/// Instruction and replaces it with a slot in the stack frame, allocated via
20
/// alloca. This allows the CFG to be changed around without fear of
21
/// invalidating the SSA information for the value. It returns the pointer to
22
/// the alloca inserted to create a stack slot for I.
23
AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads,
24
std::optional<BasicBlock::iterator> AllocaPoint) {
25
if (I.use_empty()) {
26
I.eraseFromParent();
27
return nullptr;
28
}
29
30
Function *F = I.getParent()->getParent();
31
const DataLayout &DL = F->getDataLayout();
32
33
// Create a stack slot to hold the value.
34
AllocaInst *Slot;
35
if (AllocaPoint) {
36
Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr,
37
I.getName()+".reg2mem", *AllocaPoint);
38
} else {
39
Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr,
40
I.getName() + ".reg2mem", F->getEntryBlock().begin());
41
}
42
43
// We cannot demote invoke instructions to the stack if their normal edge
44
// is critical. Therefore, split the critical edge and create a basic block
45
// into which the store can be inserted.
46
if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
47
if (!II->getNormalDest()->getSinglePredecessor()) {
48
unsigned SuccNum = GetSuccessorNumber(II->getParent(), II->getNormalDest());
49
assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
50
BasicBlock *BB = SplitCriticalEdge(II, SuccNum);
51
assert(BB && "Unable to split critical edge.");
52
(void)BB;
53
}
54
} else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
55
for (unsigned i = 0; i < CBI->getNumSuccessors(); i++) {
56
auto *Succ = CBI->getSuccessor(i);
57
if (!Succ->getSinglePredecessor()) {
58
assert(isCriticalEdge(II, i) && "Expected a critical edge!");
59
[[maybe_unused]] BasicBlock *BB = SplitCriticalEdge(II, i);
60
assert(BB && "Unable to split critical edge.");
61
}
62
}
63
}
64
65
// Change all of the users of the instruction to read from the stack slot.
66
while (!I.use_empty()) {
67
Instruction *U = cast<Instruction>(I.user_back());
68
if (PHINode *PN = dyn_cast<PHINode>(U)) {
69
// If this is a PHI node, we can't insert a load of the value before the
70
// use. Instead insert the load in the predecessor block corresponding
71
// to the incoming value.
72
//
73
// Note that if there are multiple edges from a basic block to this PHI
74
// node that we cannot have multiple loads. The problem is that the
75
// resulting PHI node will have multiple values (from each load) coming in
76
// from the same block, which is illegal SSA form. For this reason, we
77
// keep track of and reuse loads we insert.
78
DenseMap<BasicBlock*, Value*> Loads;
79
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
80
if (PN->getIncomingValue(i) == &I) {
81
Value *&V = Loads[PN->getIncomingBlock(i)];
82
if (!V) {
83
// Insert the load into the predecessor block
84
V = new LoadInst(I.getType(), Slot, I.getName() + ".reload",
85
VolatileLoads,
86
PN->getIncomingBlock(i)->getTerminator()->getIterator());
87
Loads[PN->getIncomingBlock(i)] = V;
88
}
89
PN->setIncomingValue(i, V);
90
}
91
92
} else {
93
// If this is a normal instruction, just insert a load.
94
Value *V = new LoadInst(I.getType(), Slot, I.getName() + ".reload",
95
VolatileLoads, U->getIterator());
96
U->replaceUsesOfWith(&I, V);
97
}
98
}
99
100
// Insert stores of the computed value into the stack slot. We have to be
101
// careful if I is an invoke instruction, because we can't insert the store
102
// AFTER the terminator instruction.
103
BasicBlock::iterator InsertPt;
104
if (!I.isTerminator()) {
105
InsertPt = ++I.getIterator();
106
// Don't insert before PHI nodes or landingpad instrs.
107
for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
108
if (isa<CatchSwitchInst>(InsertPt))
109
break;
110
if (isa<CatchSwitchInst>(InsertPt)) {
111
for (BasicBlock *Handler : successors(&*InsertPt))
112
new StoreInst(&I, Slot, Handler->getFirstInsertionPt());
113
return Slot;
114
}
115
} else if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
116
InsertPt = II->getNormalDest()->getFirstInsertionPt();
117
} else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
118
for (BasicBlock *Succ : successors(CBI))
119
new StoreInst(CBI, Slot, Succ->getFirstInsertionPt());
120
return Slot;
121
} else {
122
llvm_unreachable("Unsupported terminator for Reg2Mem");
123
}
124
125
new StoreInst(&I, Slot, InsertPt);
126
return Slot;
127
}
128
129
/// DemotePHIToStack - This function takes a virtual register computed by a PHI
130
/// node and replaces it with a slot in the stack frame allocated via alloca.
131
/// The PHI node is deleted. It returns the pointer to the alloca inserted.
132
AllocaInst *llvm::DemotePHIToStack(PHINode *P, std::optional<BasicBlock::iterator> AllocaPoint) {
133
if (P->use_empty()) {
134
P->eraseFromParent();
135
return nullptr;
136
}
137
138
const DataLayout &DL = P->getDataLayout();
139
140
// Create a stack slot to hold the value.
141
AllocaInst *Slot;
142
if (AllocaPoint) {
143
Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr,
144
P->getName()+".reg2mem", *AllocaPoint);
145
} else {
146
Function *F = P->getParent()->getParent();
147
Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr,
148
P->getName() + ".reg2mem",
149
F->getEntryBlock().begin());
150
}
151
152
// Iterate over each operand inserting a store in each predecessor.
153
for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
154
if (InvokeInst *II = dyn_cast<InvokeInst>(P->getIncomingValue(i))) {
155
assert(II->getParent() != P->getIncomingBlock(i) &&
156
"Invoke edge not supported yet"); (void)II;
157
}
158
new StoreInst(P->getIncomingValue(i), Slot,
159
P->getIncomingBlock(i)->getTerminator()->getIterator());
160
}
161
162
// Insert a load in place of the PHI and replace all uses.
163
BasicBlock::iterator InsertPt = P->getIterator();
164
// Don't insert before PHI nodes or landingpad instrs.
165
for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
166
if (isa<CatchSwitchInst>(InsertPt))
167
break;
168
if (isa<CatchSwitchInst>(InsertPt)) {
169
// We need a separate load before each actual use of the PHI
170
SmallVector<Instruction *, 4> Users;
171
for (User *U : P->users()) {
172
Instruction *User = cast<Instruction>(U);
173
Users.push_back(User);
174
}
175
for (Instruction *User : Users) {
176
Value *V =
177
new LoadInst(P->getType(), Slot, P->getName() + ".reload", User->getIterator());
178
User->replaceUsesOfWith(P, V);
179
}
180
} else {
181
Value *V =
182
new LoadInst(P->getType(), Slot, P->getName() + ".reload", InsertPt);
183
P->replaceAllUsesWith(V);
184
}
185
// Delete PHI.
186
P->eraseFromParent();
187
return Slot;
188
}
189
190