Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/Evaluator.cpp
35271 views
1
//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Function evaluator for LLVM IR.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/Transforms/Utils/Evaluator.h"
14
#include "llvm/ADT/DenseMap.h"
15
#include "llvm/ADT/STLExtras.h"
16
#include "llvm/ADT/SmallPtrSet.h"
17
#include "llvm/ADT/SmallVector.h"
18
#include "llvm/Analysis/ConstantFolding.h"
19
#include "llvm/IR/BasicBlock.h"
20
#include "llvm/IR/Constant.h"
21
#include "llvm/IR/Constants.h"
22
#include "llvm/IR/DataLayout.h"
23
#include "llvm/IR/DerivedTypes.h"
24
#include "llvm/IR/Function.h"
25
#include "llvm/IR/GlobalAlias.h"
26
#include "llvm/IR/GlobalValue.h"
27
#include "llvm/IR/GlobalVariable.h"
28
#include "llvm/IR/InstrTypes.h"
29
#include "llvm/IR/Instruction.h"
30
#include "llvm/IR/Instructions.h"
31
#include "llvm/IR/IntrinsicInst.h"
32
#include "llvm/IR/Operator.h"
33
#include "llvm/IR/Type.h"
34
#include "llvm/IR/User.h"
35
#include "llvm/IR/Value.h"
36
#include "llvm/Support/Casting.h"
37
#include "llvm/Support/Debug.h"
38
#include "llvm/Support/raw_ostream.h"
39
40
#define DEBUG_TYPE "evaluator"
41
42
using namespace llvm;
43
44
static inline bool
45
isSimpleEnoughValueToCommit(Constant *C,
46
SmallPtrSetImpl<Constant *> &SimpleConstants,
47
const DataLayout &DL);
48
49
/// Return true if the specified constant can be handled by the code generator.
50
/// We don't want to generate something like:
51
/// void *X = &X/42;
52
/// because the code generator doesn't have a relocation that can handle that.
53
///
54
/// This function should be called if C was not found (but just got inserted)
55
/// in SimpleConstants to avoid having to rescan the same constants all the
56
/// time.
57
static bool
58
isSimpleEnoughValueToCommitHelper(Constant *C,
59
SmallPtrSetImpl<Constant *> &SimpleConstants,
60
const DataLayout &DL) {
61
// Simple global addresses are supported, do not allow dllimport or
62
// thread-local globals.
63
if (auto *GV = dyn_cast<GlobalValue>(C))
64
return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
65
66
// Simple integer, undef, constant aggregate zero, etc are all supported.
67
if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
68
return true;
69
70
// Aggregate values are safe if all their elements are.
71
if (isa<ConstantAggregate>(C)) {
72
for (Value *Op : C->operands())
73
if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
74
return false;
75
return true;
76
}
77
78
// We don't know exactly what relocations are allowed in constant expressions,
79
// so we allow &global+constantoffset, which is safe and uniformly supported
80
// across targets.
81
ConstantExpr *CE = cast<ConstantExpr>(C);
82
switch (CE->getOpcode()) {
83
case Instruction::BitCast:
84
// Bitcast is fine if the casted value is fine.
85
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
86
87
case Instruction::IntToPtr:
88
case Instruction::PtrToInt:
89
// int <=> ptr is fine if the int type is the same size as the
90
// pointer type.
91
if (DL.getTypeSizeInBits(CE->getType()) !=
92
DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
93
return false;
94
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
95
96
// GEP is fine if it is simple + constant offset.
97
case Instruction::GetElementPtr:
98
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
99
if (!isa<ConstantInt>(CE->getOperand(i)))
100
return false;
101
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
102
103
case Instruction::Add:
104
// We allow simple+cst.
105
if (!isa<ConstantInt>(CE->getOperand(1)))
106
return false;
107
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
108
}
109
return false;
110
}
111
112
static inline bool
113
isSimpleEnoughValueToCommit(Constant *C,
114
SmallPtrSetImpl<Constant *> &SimpleConstants,
115
const DataLayout &DL) {
116
// If we already checked this constant, we win.
117
if (!SimpleConstants.insert(C).second)
118
return true;
119
// Check the constant.
120
return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
121
}
122
123
void Evaluator::MutableValue::clear() {
124
if (auto *Agg = dyn_cast_if_present<MutableAggregate *>(Val))
125
delete Agg;
126
Val = nullptr;
127
}
128
129
Constant *Evaluator::MutableValue::read(Type *Ty, APInt Offset,
130
const DataLayout &DL) const {
131
TypeSize TySize = DL.getTypeStoreSize(Ty);
132
const MutableValue *V = this;
133
while (const auto *Agg = dyn_cast_if_present<MutableAggregate *>(V->Val)) {
134
Type *AggTy = Agg->Ty;
135
std::optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
136
if (!Index || Index->uge(Agg->Elements.size()) ||
137
!TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
138
return nullptr;
139
140
V = &Agg->Elements[Index->getZExtValue()];
141
}
142
143
return ConstantFoldLoadFromConst(cast<Constant *>(V->Val), Ty, Offset, DL);
144
}
145
146
bool Evaluator::MutableValue::makeMutable() {
147
Constant *C = cast<Constant *>(Val);
148
Type *Ty = C->getType();
149
unsigned NumElements;
150
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
151
NumElements = VT->getNumElements();
152
} else if (auto *AT = dyn_cast<ArrayType>(Ty))
153
NumElements = AT->getNumElements();
154
else if (auto *ST = dyn_cast<StructType>(Ty))
155
NumElements = ST->getNumElements();
156
else
157
return false;
158
159
MutableAggregate *MA = new MutableAggregate(Ty);
160
MA->Elements.reserve(NumElements);
161
for (unsigned I = 0; I < NumElements; ++I)
162
MA->Elements.push_back(C->getAggregateElement(I));
163
Val = MA;
164
return true;
165
}
166
167
bool Evaluator::MutableValue::write(Constant *V, APInt Offset,
168
const DataLayout &DL) {
169
Type *Ty = V->getType();
170
TypeSize TySize = DL.getTypeStoreSize(Ty);
171
MutableValue *MV = this;
172
while (Offset != 0 ||
173
!CastInst::isBitOrNoopPointerCastable(Ty, MV->getType(), DL)) {
174
if (isa<Constant *>(MV->Val) && !MV->makeMutable())
175
return false;
176
177
MutableAggregate *Agg = cast<MutableAggregate *>(MV->Val);
178
Type *AggTy = Agg->Ty;
179
std::optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
180
if (!Index || Index->uge(Agg->Elements.size()) ||
181
!TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
182
return false;
183
184
MV = &Agg->Elements[Index->getZExtValue()];
185
}
186
187
Type *MVType = MV->getType();
188
MV->clear();
189
if (Ty->isIntegerTy() && MVType->isPointerTy())
190
MV->Val = ConstantExpr::getIntToPtr(V, MVType);
191
else if (Ty->isPointerTy() && MVType->isIntegerTy())
192
MV->Val = ConstantExpr::getPtrToInt(V, MVType);
193
else if (Ty != MVType)
194
MV->Val = ConstantExpr::getBitCast(V, MVType);
195
else
196
MV->Val = V;
197
return true;
198
}
199
200
Constant *Evaluator::MutableAggregate::toConstant() const {
201
SmallVector<Constant *, 32> Consts;
202
for (const MutableValue &MV : Elements)
203
Consts.push_back(MV.toConstant());
204
205
if (auto *ST = dyn_cast<StructType>(Ty))
206
return ConstantStruct::get(ST, Consts);
207
if (auto *AT = dyn_cast<ArrayType>(Ty))
208
return ConstantArray::get(AT, Consts);
209
assert(isa<FixedVectorType>(Ty) && "Must be vector");
210
return ConstantVector::get(Consts);
211
}
212
213
/// Return the value that would be computed by a load from P after the stores
214
/// reflected by 'memory' have been performed. If we can't decide, return null.
215
Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) {
216
APInt Offset(DL.getIndexTypeSizeInBits(P->getType()), 0);
217
P = cast<Constant>(P->stripAndAccumulateConstantOffsets(
218
DL, Offset, /* AllowNonInbounds */ true));
219
Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(P->getType()));
220
if (auto *GV = dyn_cast<GlobalVariable>(P))
221
return ComputeLoadResult(GV, Ty, Offset);
222
return nullptr;
223
}
224
225
Constant *Evaluator::ComputeLoadResult(GlobalVariable *GV, Type *Ty,
226
const APInt &Offset) {
227
auto It = MutatedMemory.find(GV);
228
if (It != MutatedMemory.end())
229
return It->second.read(Ty, Offset, DL);
230
231
if (!GV->hasDefinitiveInitializer())
232
return nullptr;
233
return ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL);
234
}
235
236
static Function *getFunction(Constant *C) {
237
if (auto *Fn = dyn_cast<Function>(C))
238
return Fn;
239
240
if (auto *Alias = dyn_cast<GlobalAlias>(C))
241
if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
242
return Fn;
243
return nullptr;
244
}
245
246
Function *
247
Evaluator::getCalleeWithFormalArgs(CallBase &CB,
248
SmallVectorImpl<Constant *> &Formals) {
249
auto *V = CB.getCalledOperand()->stripPointerCasts();
250
if (auto *Fn = getFunction(getVal(V)))
251
return getFormalParams(CB, Fn, Formals) ? Fn : nullptr;
252
return nullptr;
253
}
254
255
bool Evaluator::getFormalParams(CallBase &CB, Function *F,
256
SmallVectorImpl<Constant *> &Formals) {
257
if (!F)
258
return false;
259
260
auto *FTy = F->getFunctionType();
261
if (FTy->getNumParams() > CB.arg_size()) {
262
LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
263
return false;
264
}
265
266
auto ArgI = CB.arg_begin();
267
for (Type *PTy : FTy->params()) {
268
auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), PTy, DL);
269
if (!ArgC) {
270
LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
271
return false;
272
}
273
Formals.push_back(ArgC);
274
++ArgI;
275
}
276
return true;
277
}
278
279
/// If call expression contains bitcast then we may need to cast
280
/// evaluated return value to a type of the call expression.
281
Constant *Evaluator::castCallResultIfNeeded(Type *ReturnType, Constant *RV) {
282
if (!RV || RV->getType() == ReturnType)
283
return RV;
284
285
RV = ConstantFoldLoadThroughBitcast(RV, ReturnType, DL);
286
if (!RV)
287
LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
288
return RV;
289
}
290
291
/// Evaluate all instructions in block BB, returning true if successful, false
292
/// if we can't evaluate it. NewBB returns the next BB that control flows into,
293
/// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if
294
/// we looked through pointer casts to evaluate something.
295
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB,
296
bool &StrippedPointerCastsForAliasAnalysis) {
297
// This is the main evaluation loop.
298
while (true) {
299
Constant *InstResult = nullptr;
300
301
LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
302
303
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
304
if (SI->isVolatile()) {
305
LLVM_DEBUG(dbgs() << "Store is volatile! Can not evaluate.\n");
306
return false; // no volatile accesses.
307
}
308
Constant *Ptr = getVal(SI->getOperand(1));
309
Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
310
if (Ptr != FoldedPtr) {
311
LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
312
Ptr = FoldedPtr;
313
LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
314
}
315
316
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
317
Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets(
318
DL, Offset, /* AllowNonInbounds */ true));
319
Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(Ptr->getType()));
320
auto *GV = dyn_cast<GlobalVariable>(Ptr);
321
if (!GV || !GV->hasUniqueInitializer()) {
322
LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: "
323
<< *Ptr << "\n");
324
return false;
325
}
326
327
// If this might be too difficult for the backend to handle (e.g. the addr
328
// of one global variable divided by another) then we can't commit it.
329
Constant *Val = getVal(SI->getOperand(0));
330
if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
331
LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
332
<< *Val << "\n");
333
return false;
334
}
335
336
auto Res = MutatedMemory.try_emplace(GV, GV->getInitializer());
337
if (!Res.first->second.write(Val, Offset, DL))
338
return false;
339
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
340
if (LI->isVolatile()) {
341
LLVM_DEBUG(
342
dbgs() << "Found a Load! Volatile load, can not evaluate.\n");
343
return false; // no volatile accesses.
344
}
345
346
Constant *Ptr = getVal(LI->getOperand(0));
347
Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
348
if (Ptr != FoldedPtr) {
349
Ptr = FoldedPtr;
350
LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
351
"folding: "
352
<< *Ptr << "\n");
353
}
354
InstResult = ComputeLoadResult(Ptr, LI->getType());
355
if (!InstResult) {
356
LLVM_DEBUG(
357
dbgs() << "Failed to compute load result. Can not evaluate load."
358
"\n");
359
return false; // Could not evaluate load.
360
}
361
362
LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
363
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
364
if (AI->isArrayAllocation()) {
365
LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
366
return false; // Cannot handle array allocs.
367
}
368
Type *Ty = AI->getAllocatedType();
369
AllocaTmps.push_back(std::make_unique<GlobalVariable>(
370
Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
371
AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
372
AI->getType()->getPointerAddressSpace()));
373
InstResult = AllocaTmps.back().get();
374
LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
375
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
376
CallBase &CB = *cast<CallBase>(&*CurInst);
377
378
// Debug info can safely be ignored here.
379
if (isa<DbgInfoIntrinsic>(CB)) {
380
LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
381
++CurInst;
382
continue;
383
}
384
385
// Cannot handle inline asm.
386
if (CB.isInlineAsm()) {
387
LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
388
return false;
389
}
390
391
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) {
392
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
393
if (MSI->isVolatile()) {
394
LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
395
<< "intrinsic.\n");
396
return false;
397
}
398
399
auto *LenC = dyn_cast<ConstantInt>(getVal(MSI->getLength()));
400
if (!LenC) {
401
LLVM_DEBUG(dbgs() << "Memset with unknown length.\n");
402
return false;
403
}
404
405
Constant *Ptr = getVal(MSI->getDest());
406
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
407
Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets(
408
DL, Offset, /* AllowNonInbounds */ true));
409
auto *GV = dyn_cast<GlobalVariable>(Ptr);
410
if (!GV) {
411
LLVM_DEBUG(dbgs() << "Memset with unknown base.\n");
412
return false;
413
}
414
415
Constant *Val = getVal(MSI->getValue());
416
// Avoid the byte-per-byte scan if we're memseting a zeroinitializer
417
// to zero.
418
if (!Val->isNullValue() || MutatedMemory.contains(GV) ||
419
!GV->hasDefinitiveInitializer() ||
420
!GV->getInitializer()->isNullValue()) {
421
APInt Len = LenC->getValue();
422
if (Len.ugt(64 * 1024)) {
423
LLVM_DEBUG(dbgs() << "Not evaluating large memset of size "
424
<< Len << "\n");
425
return false;
426
}
427
428
while (Len != 0) {
429
Constant *DestVal = ComputeLoadResult(GV, Val->getType(), Offset);
430
if (DestVal != Val) {
431
LLVM_DEBUG(dbgs() << "Memset is not a no-op at offset "
432
<< Offset << " of " << *GV << ".\n");
433
return false;
434
}
435
++Offset;
436
--Len;
437
}
438
}
439
440
LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
441
++CurInst;
442
continue;
443
}
444
445
if (II->isLifetimeStartOrEnd()) {
446
LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
447
++CurInst;
448
continue;
449
}
450
451
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
452
// We don't insert an entry into Values, as it doesn't have a
453
// meaningful return value.
454
if (!II->use_empty()) {
455
LLVM_DEBUG(dbgs()
456
<< "Found unused invariant_start. Can't evaluate.\n");
457
return false;
458
}
459
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
460
Value *PtrArg = getVal(II->getArgOperand(1));
461
Value *Ptr = PtrArg->stripPointerCasts();
462
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
463
Type *ElemTy = GV->getValueType();
464
if (!Size->isMinusOne() &&
465
Size->getValue().getLimitedValue() >=
466
DL.getTypeStoreSize(ElemTy)) {
467
Invariants.insert(GV);
468
LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
469
<< *GV << "\n");
470
} else {
471
LLVM_DEBUG(dbgs()
472
<< "Found a global var, but can not treat it as an "
473
"invariant.\n");
474
}
475
}
476
// Continue even if we do nothing.
477
++CurInst;
478
continue;
479
} else if (II->getIntrinsicID() == Intrinsic::assume) {
480
LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
481
++CurInst;
482
continue;
483
} else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
484
LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
485
++CurInst;
486
continue;
487
} else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) {
488
LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n");
489
++CurInst;
490
continue;
491
} else {
492
Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis();
493
// Only attempt to getVal() if we've actually managed to strip
494
// anything away, or else we'll call getVal() on the current
495
// instruction.
496
if (Stripped != &*CurInst) {
497
InstResult = getVal(Stripped);
498
}
499
if (InstResult) {
500
LLVM_DEBUG(dbgs()
501
<< "Stripped pointer casts for alias analysis for "
502
"intrinsic call.\n");
503
StrippedPointerCastsForAliasAnalysis = true;
504
InstResult = ConstantExpr::getBitCast(InstResult, II->getType());
505
} else {
506
LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n");
507
return false;
508
}
509
}
510
}
511
512
if (!InstResult) {
513
// Resolve function pointers.
514
SmallVector<Constant *, 8> Formals;
515
Function *Callee = getCalleeWithFormalArgs(CB, Formals);
516
if (!Callee || Callee->isInterposable()) {
517
LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
518
return false; // Cannot resolve.
519
}
520
521
if (Callee->isDeclaration()) {
522
// If this is a function we can constant fold, do it.
523
if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) {
524
InstResult = castCallResultIfNeeded(CB.getType(), C);
525
if (!InstResult)
526
return false;
527
LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
528
<< *InstResult << "\n");
529
} else {
530
LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
531
return false;
532
}
533
} else {
534
if (Callee->getFunctionType()->isVarArg()) {
535
LLVM_DEBUG(dbgs()
536
<< "Can not constant fold vararg function call.\n");
537
return false;
538
}
539
540
Constant *RetVal = nullptr;
541
// Execute the call, if successful, use the return value.
542
ValueStack.emplace_back();
543
if (!EvaluateFunction(Callee, RetVal, Formals)) {
544
LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
545
return false;
546
}
547
ValueStack.pop_back();
548
InstResult = castCallResultIfNeeded(CB.getType(), RetVal);
549
if (RetVal && !InstResult)
550
return false;
551
552
if (InstResult) {
553
LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
554
<< *InstResult << "\n\n");
555
} else {
556
LLVM_DEBUG(dbgs()
557
<< "Successfully evaluated function. Result: 0\n\n");
558
}
559
}
560
}
561
} else if (CurInst->isTerminator()) {
562
LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
563
564
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
565
if (BI->isUnconditional()) {
566
NextBB = BI->getSuccessor(0);
567
} else {
568
ConstantInt *Cond =
569
dyn_cast<ConstantInt>(getVal(BI->getCondition()));
570
if (!Cond) return false; // Cannot determine.
571
572
NextBB = BI->getSuccessor(!Cond->getZExtValue());
573
}
574
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
575
ConstantInt *Val =
576
dyn_cast<ConstantInt>(getVal(SI->getCondition()));
577
if (!Val) return false; // Cannot determine.
578
NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
579
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
580
Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
581
if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
582
NextBB = BA->getBasicBlock();
583
else
584
return false; // Cannot determine.
585
} else if (isa<ReturnInst>(CurInst)) {
586
NextBB = nullptr;
587
} else {
588
// invoke, unwind, resume, unreachable.
589
LLVM_DEBUG(dbgs() << "Can not handle terminator.");
590
return false; // Cannot handle this terminator.
591
}
592
593
// We succeeded at evaluating this block!
594
LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
595
return true;
596
} else {
597
SmallVector<Constant *> Ops;
598
for (Value *Op : CurInst->operands())
599
Ops.push_back(getVal(Op));
600
InstResult = ConstantFoldInstOperands(&*CurInst, Ops, DL, TLI);
601
if (!InstResult) {
602
LLVM_DEBUG(dbgs() << "Cannot fold instruction: " << *CurInst << "\n");
603
return false;
604
}
605
LLVM_DEBUG(dbgs() << "Folded instruction " << *CurInst << " to "
606
<< *InstResult << "\n");
607
}
608
609
if (!CurInst->use_empty()) {
610
InstResult = ConstantFoldConstant(InstResult, DL, TLI);
611
setVal(&*CurInst, InstResult);
612
}
613
614
// If we just processed an invoke, we finished evaluating the block.
615
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
616
NextBB = II->getNormalDest();
617
LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
618
return true;
619
}
620
621
// Advance program counter.
622
++CurInst;
623
}
624
}
625
626
/// Evaluate a call to function F, returning true if successful, false if we
627
/// can't evaluate it. ActualArgs contains the formal arguments for the
628
/// function.
629
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
630
const SmallVectorImpl<Constant*> &ActualArgs) {
631
assert(ActualArgs.size() == F->arg_size() && "wrong number of arguments");
632
633
// Check to see if this function is already executing (recursion). If so,
634
// bail out. TODO: we might want to accept limited recursion.
635
if (is_contained(CallStack, F))
636
return false;
637
638
CallStack.push_back(F);
639
640
// Initialize arguments to the incoming values specified.
641
for (const auto &[ArgNo, Arg] : llvm::enumerate(F->args()))
642
setVal(&Arg, ActualArgs[ArgNo]);
643
644
// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
645
// we can only evaluate any one basic block at most once. This set keeps
646
// track of what we have executed so we can detect recursive cases etc.
647
SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
648
649
// CurBB - The current basic block we're evaluating.
650
BasicBlock *CurBB = &F->front();
651
652
BasicBlock::iterator CurInst = CurBB->begin();
653
654
while (true) {
655
BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
656
LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
657
658
bool StrippedPointerCastsForAliasAnalysis = false;
659
660
if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis))
661
return false;
662
663
if (!NextBB) {
664
// Successfully running until there's no next block means that we found
665
// the return. Fill it the return value and pop the call stack.
666
ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
667
if (RI->getNumOperands()) {
668
// The Evaluator can look through pointer casts as long as alias
669
// analysis holds because it's just a simple interpreter and doesn't
670
// skip memory accesses due to invariant group metadata, but we can't
671
// let users of Evaluator use a value that's been gleaned looking
672
// through stripping pointer casts.
673
if (StrippedPointerCastsForAliasAnalysis &&
674
!RI->getReturnValue()->getType()->isVoidTy()) {
675
return false;
676
}
677
RetVal = getVal(RI->getOperand(0));
678
}
679
CallStack.pop_back();
680
return true;
681
}
682
683
// Okay, we succeeded in evaluating this control flow. See if we have
684
// executed the new block before. If so, we have a looping function,
685
// which we cannot evaluate in reasonable time.
686
if (!ExecutedBlocks.insert(NextBB).second)
687
return false; // looped!
688
689
// Okay, we have never been in this block before. Check to see if there
690
// are any PHI nodes. If so, evaluate them with information about where
691
// we came from.
692
PHINode *PN = nullptr;
693
for (CurInst = NextBB->begin();
694
(PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
695
setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
696
697
// Advance to the next block.
698
CurBB = NextBB;
699
}
700
}
701
702