Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/IntegerDivision.cpp
35271 views
1
//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains an implementation of 32bit and 64bit scalar integer
10
// division for targets that don't have native support. It's largely derived
11
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
12
// but hand-tuned for targets that prefer less control flow.
13
//
14
//===----------------------------------------------------------------------===//
15
16
#include "llvm/Transforms/Utils/IntegerDivision.h"
17
#include "llvm/IR/Function.h"
18
#include "llvm/IR/IRBuilder.h"
19
#include "llvm/IR/Instructions.h"
20
#include "llvm/IR/Intrinsics.h"
21
22
using namespace llvm;
23
24
#define DEBUG_TYPE "integer-division"
25
26
/// Generate code to compute the remainder of two signed integers. Returns the
27
/// remainder, which will have the sign of the dividend. Builder's insert point
28
/// should be pointing where the caller wants code generated, e.g. at the srem
29
/// instruction. This will generate a urem in the process, and Builder's insert
30
/// point will be pointing at the uren (if present, i.e. not folded), ready to
31
/// be expanded if the user wishes
32
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
33
IRBuilder<> &Builder) {
34
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
35
ConstantInt *Shift = Builder.getIntN(BitWidth, BitWidth - 1);
36
37
// Following instructions are generated for both i32 (shift 31) and
38
// i64 (shift 63).
39
40
// ; %dividend_sgn = ashr i32 %dividend, 31
41
// ; %divisor_sgn = ashr i32 %divisor, 31
42
// ; %dvd_xor = xor i32 %dividend, %dividend_sgn
43
// ; %dvs_xor = xor i32 %divisor, %divisor_sgn
44
// ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
45
// ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
46
// ; %urem = urem i32 %dividend, %divisor
47
// ; %xored = xor i32 %urem, %dividend_sgn
48
// ; %srem = sub i32 %xored, %dividend_sgn
49
Dividend = Builder.CreateFreeze(Dividend);
50
Divisor = Builder.CreateFreeze(Divisor);
51
Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
52
Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
53
Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
54
Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
55
Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
56
Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
57
Value *URem = Builder.CreateURem(UDividend, UDivisor);
58
Value *Xored = Builder.CreateXor(URem, DividendSign);
59
Value *SRem = Builder.CreateSub(Xored, DividendSign);
60
61
if (Instruction *URemInst = dyn_cast<Instruction>(URem))
62
Builder.SetInsertPoint(URemInst);
63
64
return SRem;
65
}
66
67
68
/// Generate code to compute the remainder of two unsigned integers. Returns the
69
/// remainder. Builder's insert point should be pointing where the caller wants
70
/// code generated, e.g. at the urem instruction. This will generate a udiv in
71
/// the process, and Builder's insert point will be pointing at the udiv (if
72
/// present, i.e. not folded), ready to be expanded if the user wishes
73
static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
74
IRBuilder<> &Builder) {
75
// Remainder = Dividend - Quotient*Divisor
76
77
// Following instructions are generated for both i32 and i64
78
79
// ; %quotient = udiv i32 %dividend, %divisor
80
// ; %product = mul i32 %divisor, %quotient
81
// ; %remainder = sub i32 %dividend, %product
82
Dividend = Builder.CreateFreeze(Dividend);
83
Divisor = Builder.CreateFreeze(Divisor);
84
Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
85
Value *Product = Builder.CreateMul(Divisor, Quotient);
86
Value *Remainder = Builder.CreateSub(Dividend, Product);
87
88
if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
89
Builder.SetInsertPoint(UDiv);
90
91
return Remainder;
92
}
93
94
/// Generate code to divide two signed integers. Returns the quotient, rounded
95
/// towards 0. Builder's insert point should be pointing where the caller wants
96
/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
97
/// the process, and Builder's insert point will be pointing at the udiv (if
98
/// present, i.e. not folded), ready to be expanded if the user wishes.
99
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
100
IRBuilder<> &Builder) {
101
// Implementation taken from compiler-rt's __divsi3 and __divdi3
102
103
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
104
ConstantInt *Shift = Builder.getIntN(BitWidth, BitWidth - 1);
105
106
// Following instructions are generated for both i32 (shift 31) and
107
// i64 (shift 63).
108
109
// ; %tmp = ashr i32 %dividend, 31
110
// ; %tmp1 = ashr i32 %divisor, 31
111
// ; %tmp2 = xor i32 %tmp, %dividend
112
// ; %u_dvnd = sub nsw i32 %tmp2, %tmp
113
// ; %tmp3 = xor i32 %tmp1, %divisor
114
// ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
115
// ; %q_sgn = xor i32 %tmp1, %tmp
116
// ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
117
// ; %tmp4 = xor i32 %q_mag, %q_sgn
118
// ; %q = sub i32 %tmp4, %q_sgn
119
Dividend = Builder.CreateFreeze(Dividend);
120
Divisor = Builder.CreateFreeze(Divisor);
121
Value *Tmp = Builder.CreateAShr(Dividend, Shift);
122
Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
123
Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
124
Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
125
Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
126
Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
127
Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
128
Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
129
Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
130
Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
131
132
if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
133
Builder.SetInsertPoint(UDiv);
134
135
return Q;
136
}
137
138
/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
139
/// Returns the quotient, rounded towards 0. Builder's insert point should
140
/// point where the caller wants code generated, e.g. at the udiv instruction.
141
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
142
IRBuilder<> &Builder) {
143
// The basic algorithm can be found in the compiler-rt project's
144
// implementation of __udivsi3.c. Here, we do a lower-level IR based approach
145
// that's been hand-tuned to lessen the amount of control flow involved.
146
147
// Some helper values
148
IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
149
unsigned BitWidth = DivTy->getBitWidth();
150
151
ConstantInt *Zero = ConstantInt::get(DivTy, 0);
152
ConstantInt *One = ConstantInt::get(DivTy, 1);
153
ConstantInt *NegOne = ConstantInt::getSigned(DivTy, -1);
154
ConstantInt *MSB = ConstantInt::get(DivTy, BitWidth - 1);
155
156
ConstantInt *True = Builder.getTrue();
157
158
BasicBlock *IBB = Builder.GetInsertBlock();
159
Function *F = IBB->getParent();
160
Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
161
DivTy);
162
163
// Our CFG is going to look like:
164
// +---------------------+
165
// | special-cases |
166
// | ... |
167
// +---------------------+
168
// | |
169
// | +----------+
170
// | | bb1 |
171
// | | ... |
172
// | +----------+
173
// | | |
174
// | | +------------+
175
// | | | preheader |
176
// | | | ... |
177
// | | +------------+
178
// | | |
179
// | | | +---+
180
// | | | | |
181
// | | +------------+ |
182
// | | | do-while | |
183
// | | | ... | |
184
// | | +------------+ |
185
// | | | | |
186
// | +-----------+ +---+
187
// | | loop-exit |
188
// | | ... |
189
// | +-----------+
190
// | |
191
// +-------+
192
// | ... |
193
// | end |
194
// +-------+
195
BasicBlock *SpecialCases = Builder.GetInsertBlock();
196
SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
197
BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
198
"udiv-end");
199
BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
200
"udiv-loop-exit", F, End);
201
BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
202
"udiv-do-while", F, End);
203
BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
204
"udiv-preheader", F, End);
205
BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
206
"udiv-bb1", F, End);
207
208
// We'll be overwriting the terminator to insert our extra blocks
209
SpecialCases->getTerminator()->eraseFromParent();
210
211
// Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
212
213
// First off, check for special cases: dividend or divisor is zero, divisor
214
// is greater than dividend, and divisor is 1.
215
// ; special-cases:
216
// ; %ret0_1 = icmp eq i32 %divisor, 0
217
// ; %ret0_2 = icmp eq i32 %dividend, 0
218
// ; %ret0_3 = or i1 %ret0_1, %ret0_2
219
// ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
220
// ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
221
// ; %sr = sub nsw i32 %tmp0, %tmp1
222
// ; %ret0_4 = icmp ugt i32 %sr, 31
223
// ; %ret0 = select i1 %ret0_3, i1 true, i1 %ret0_4
224
// ; %retDividend = icmp eq i32 %sr, 31
225
// ; %retVal = select i1 %ret0, i32 0, i32 %dividend
226
// ; %earlyRet = select i1 %ret0, i1 true, %retDividend
227
// ; br i1 %earlyRet, label %end, label %bb1
228
Builder.SetInsertPoint(SpecialCases);
229
Divisor = Builder.CreateFreeze(Divisor);
230
Dividend = Builder.CreateFreeze(Dividend);
231
Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
232
Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
233
Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
234
Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
235
Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
236
Value *SR = Builder.CreateSub(Tmp0, Tmp1);
237
Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
238
Value *Ret0 = Builder.CreateLogicalOr(Ret0_3, Ret0_4);
239
Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
240
Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
241
Value *EarlyRet = Builder.CreateLogicalOr(Ret0, RetDividend);
242
Builder.CreateCondBr(EarlyRet, End, BB1);
243
244
// ; bb1: ; preds = %special-cases
245
// ; %sr_1 = add i32 %sr, 1
246
// ; %tmp2 = sub i32 31, %sr
247
// ; %q = shl i32 %dividend, %tmp2
248
// ; %skipLoop = icmp eq i32 %sr_1, 0
249
// ; br i1 %skipLoop, label %loop-exit, label %preheader
250
Builder.SetInsertPoint(BB1);
251
Value *SR_1 = Builder.CreateAdd(SR, One);
252
Value *Tmp2 = Builder.CreateSub(MSB, SR);
253
Value *Q = Builder.CreateShl(Dividend, Tmp2);
254
Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
255
Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
256
257
// ; preheader: ; preds = %bb1
258
// ; %tmp3 = lshr i32 %dividend, %sr_1
259
// ; %tmp4 = add i32 %divisor, -1
260
// ; br label %do-while
261
Builder.SetInsertPoint(Preheader);
262
Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
263
Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
264
Builder.CreateBr(DoWhile);
265
266
// ; do-while: ; preds = %do-while, %preheader
267
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
268
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
269
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
270
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
271
// ; %tmp5 = shl i32 %r_1, 1
272
// ; %tmp6 = lshr i32 %q_2, 31
273
// ; %tmp7 = or i32 %tmp5, %tmp6
274
// ; %tmp8 = shl i32 %q_2, 1
275
// ; %q_1 = or i32 %carry_1, %tmp8
276
// ; %tmp9 = sub i32 %tmp4, %tmp7
277
// ; %tmp10 = ashr i32 %tmp9, 31
278
// ; %carry = and i32 %tmp10, 1
279
// ; %tmp11 = and i32 %tmp10, %divisor
280
// ; %r = sub i32 %tmp7, %tmp11
281
// ; %sr_2 = add i32 %sr_3, -1
282
// ; %tmp12 = icmp eq i32 %sr_2, 0
283
// ; br i1 %tmp12, label %loop-exit, label %do-while
284
Builder.SetInsertPoint(DoWhile);
285
PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
286
PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
287
PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
288
PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
289
Value *Tmp5 = Builder.CreateShl(R_1, One);
290
Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
291
Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
292
Value *Tmp8 = Builder.CreateShl(Q_2, One);
293
Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
294
Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
295
Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
296
Value *Carry = Builder.CreateAnd(Tmp10, One);
297
Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
298
Value *R = Builder.CreateSub(Tmp7, Tmp11);
299
Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
300
Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
301
Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
302
303
// ; loop-exit: ; preds = %do-while, %bb1
304
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
305
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
306
// ; %tmp13 = shl i32 %q_3, 1
307
// ; %q_4 = or i32 %carry_2, %tmp13
308
// ; br label %end
309
Builder.SetInsertPoint(LoopExit);
310
PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
311
PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
312
Value *Tmp13 = Builder.CreateShl(Q_3, One);
313
Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
314
Builder.CreateBr(End);
315
316
// ; end: ; preds = %loop-exit, %special-cases
317
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
318
// ; ret i32 %q_5
319
Builder.SetInsertPoint(End, End->begin());
320
PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
321
322
// Populate the Phis, since all values have now been created. Our Phis were:
323
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
324
Carry_1->addIncoming(Zero, Preheader);
325
Carry_1->addIncoming(Carry, DoWhile);
326
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
327
SR_3->addIncoming(SR_1, Preheader);
328
SR_3->addIncoming(SR_2, DoWhile);
329
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
330
R_1->addIncoming(Tmp3, Preheader);
331
R_1->addIncoming(R, DoWhile);
332
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
333
Q_2->addIncoming(Q, Preheader);
334
Q_2->addIncoming(Q_1, DoWhile);
335
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
336
Carry_2->addIncoming(Zero, BB1);
337
Carry_2->addIncoming(Carry, DoWhile);
338
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
339
Q_3->addIncoming(Q, BB1);
340
Q_3->addIncoming(Q_1, DoWhile);
341
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
342
Q_5->addIncoming(Q_4, LoopExit);
343
Q_5->addIncoming(RetVal, SpecialCases);
344
345
return Q_5;
346
}
347
348
/// Generate code to calculate the remainder of two integers, replacing Rem with
349
/// the generated code. This currently generates code using the udiv expansion,
350
/// but future work includes generating more specialized code, e.g. when more
351
/// information about the operands are known.
352
///
353
/// Replace Rem with generated code.
354
bool llvm::expandRemainder(BinaryOperator *Rem) {
355
assert((Rem->getOpcode() == Instruction::SRem ||
356
Rem->getOpcode() == Instruction::URem) &&
357
"Trying to expand remainder from a non-remainder function");
358
359
IRBuilder<> Builder(Rem);
360
361
assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
362
363
// First prepare the sign if it's a signed remainder
364
if (Rem->getOpcode() == Instruction::SRem) {
365
Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
366
Rem->getOperand(1), Builder);
367
368
// Check whether this is the insert point while Rem is still valid.
369
bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
370
Rem->replaceAllUsesWith(Remainder);
371
Rem->dropAllReferences();
372
Rem->eraseFromParent();
373
374
// If we didn't actually generate an urem instruction, we're done
375
// This happens for example if the input were constant. In this case the
376
// Builder insertion point was unchanged
377
if (IsInsertPoint)
378
return true;
379
380
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
381
Rem = BO;
382
}
383
384
Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
385
Rem->getOperand(1),
386
Builder);
387
388
Rem->replaceAllUsesWith(Remainder);
389
Rem->dropAllReferences();
390
Rem->eraseFromParent();
391
392
// Expand the udiv
393
if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
394
assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
395
expandDivision(UDiv);
396
}
397
398
return true;
399
}
400
401
/// Generate code to divide two integers, replacing Div with the generated
402
/// code. This currently generates code similarly to compiler-rt's
403
/// implementations, but future work includes generating more specialized code
404
/// when more information about the operands are known.
405
///
406
/// Replace Div with generated code.
407
bool llvm::expandDivision(BinaryOperator *Div) {
408
assert((Div->getOpcode() == Instruction::SDiv ||
409
Div->getOpcode() == Instruction::UDiv) &&
410
"Trying to expand division from a non-division function");
411
412
IRBuilder<> Builder(Div);
413
414
assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
415
416
// First prepare the sign if it's a signed division
417
if (Div->getOpcode() == Instruction::SDiv) {
418
// Lower the code to unsigned division, and reset Div to point to the udiv.
419
Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
420
Div->getOperand(1), Builder);
421
422
// Check whether this is the insert point while Div is still valid.
423
bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
424
Div->replaceAllUsesWith(Quotient);
425
Div->dropAllReferences();
426
Div->eraseFromParent();
427
428
// If we didn't actually generate an udiv instruction, we're done
429
// This happens for example if the input were constant. In this case the
430
// Builder insertion point was unchanged
431
if (IsInsertPoint)
432
return true;
433
434
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
435
Div = BO;
436
}
437
438
// Insert the unsigned division code
439
Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
440
Div->getOperand(1),
441
Builder);
442
Div->replaceAllUsesWith(Quotient);
443
Div->dropAllReferences();
444
Div->eraseFromParent();
445
446
return true;
447
}
448
449
/// Generate code to compute the remainder of two integers of bitwidth up to
450
/// 32 bits. Uses the above routines and extends the inputs/truncates the
451
/// outputs to operate in 32 bits; that is, these routines are good for targets
452
/// that have no or very little suppport for smaller than 32 bit integer
453
/// arithmetic.
454
///
455
/// Replace Rem with emulation code.
456
bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
457
assert((Rem->getOpcode() == Instruction::SRem ||
458
Rem->getOpcode() == Instruction::URem) &&
459
"Trying to expand remainder from a non-remainder function");
460
461
Type *RemTy = Rem->getType();
462
assert(!RemTy->isVectorTy() && "Div over vectors not supported");
463
464
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
465
466
assert(RemTyBitWidth <= 32 &&
467
"Div of bitwidth greater than 32 not supported");
468
469
if (RemTyBitWidth == 32)
470
return expandRemainder(Rem);
471
472
// If bitwidth smaller than 32 extend inputs, extend output and proceed
473
// with 32 bit division.
474
IRBuilder<> Builder(Rem);
475
476
Value *ExtDividend;
477
Value *ExtDivisor;
478
Value *ExtRem;
479
Value *Trunc;
480
Type *Int32Ty = Builder.getInt32Ty();
481
482
if (Rem->getOpcode() == Instruction::SRem) {
483
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
484
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
485
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
486
} else {
487
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
488
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
489
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
490
}
491
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
492
493
Rem->replaceAllUsesWith(Trunc);
494
Rem->dropAllReferences();
495
Rem->eraseFromParent();
496
497
return expandRemainder(cast<BinaryOperator>(ExtRem));
498
}
499
500
/// Generate code to compute the remainder of two integers of bitwidth up to
501
/// 64 bits. Uses the above routines and extends the inputs/truncates the
502
/// outputs to operate in 64 bits.
503
///
504
/// Replace Rem with emulation code.
505
bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
506
assert((Rem->getOpcode() == Instruction::SRem ||
507
Rem->getOpcode() == Instruction::URem) &&
508
"Trying to expand remainder from a non-remainder function");
509
510
Type *RemTy = Rem->getType();
511
assert(!RemTy->isVectorTy() && "Div over vectors not supported");
512
513
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
514
515
if (RemTyBitWidth >= 64)
516
return expandRemainder(Rem);
517
518
// If bitwidth smaller than 64 extend inputs, extend output and proceed
519
// with 64 bit division.
520
IRBuilder<> Builder(Rem);
521
522
Value *ExtDividend;
523
Value *ExtDivisor;
524
Value *ExtRem;
525
Value *Trunc;
526
Type *Int64Ty = Builder.getInt64Ty();
527
528
if (Rem->getOpcode() == Instruction::SRem) {
529
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
530
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
531
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
532
} else {
533
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
534
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
535
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
536
}
537
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
538
539
Rem->replaceAllUsesWith(Trunc);
540
Rem->dropAllReferences();
541
Rem->eraseFromParent();
542
543
return expandRemainder(cast<BinaryOperator>(ExtRem));
544
}
545
546
/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
547
/// above routines and extends the inputs/truncates the outputs to operate
548
/// in 32 bits; that is, these routines are good for targets that have no
549
/// or very little support for smaller than 32 bit integer arithmetic.
550
///
551
/// Replace Div with emulation code.
552
bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
553
assert((Div->getOpcode() == Instruction::SDiv ||
554
Div->getOpcode() == Instruction::UDiv) &&
555
"Trying to expand division from a non-division function");
556
557
Type *DivTy = Div->getType();
558
assert(!DivTy->isVectorTy() && "Div over vectors not supported");
559
560
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
561
562
assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");
563
564
if (DivTyBitWidth == 32)
565
return expandDivision(Div);
566
567
// If bitwidth smaller than 32 extend inputs, extend output and proceed
568
// with 32 bit division.
569
IRBuilder<> Builder(Div);
570
571
Value *ExtDividend;
572
Value *ExtDivisor;
573
Value *ExtDiv;
574
Value *Trunc;
575
Type *Int32Ty = Builder.getInt32Ty();
576
577
if (Div->getOpcode() == Instruction::SDiv) {
578
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
579
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
580
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
581
} else {
582
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
583
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
584
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
585
}
586
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
587
588
Div->replaceAllUsesWith(Trunc);
589
Div->dropAllReferences();
590
Div->eraseFromParent();
591
592
return expandDivision(cast<BinaryOperator>(ExtDiv));
593
}
594
595
/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
596
/// above routines and extends the inputs/truncates the outputs to operate
597
/// in 64 bits.
598
///
599
/// Replace Div with emulation code.
600
bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
601
assert((Div->getOpcode() == Instruction::SDiv ||
602
Div->getOpcode() == Instruction::UDiv) &&
603
"Trying to expand division from a non-division function");
604
605
Type *DivTy = Div->getType();
606
assert(!DivTy->isVectorTy() && "Div over vectors not supported");
607
608
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
609
610
if (DivTyBitWidth >= 64)
611
return expandDivision(Div);
612
613
// If bitwidth smaller than 64 extend inputs, extend output and proceed
614
// with 64 bit division.
615
IRBuilder<> Builder(Div);
616
617
Value *ExtDividend;
618
Value *ExtDivisor;
619
Value *ExtDiv;
620
Value *Trunc;
621
Type *Int64Ty = Builder.getInt64Ty();
622
623
if (Div->getOpcode() == Instruction::SDiv) {
624
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
625
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
626
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
627
} else {
628
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
629
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
630
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
631
}
632
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
633
634
Div->replaceAllUsesWith(Trunc);
635
Div->dropAllReferences();
636
Div->eraseFromParent();
637
638
return expandDivision(cast<BinaryOperator>(ExtDiv));
639
}
640
641