Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp
35271 views
1
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass transforms loops by placing phi nodes at the end of the loops for
10
// all values that are live across the loop boundary. For example, it turns
11
// the left into the right code:
12
//
13
// for (...) for (...)
14
// if (c) if (c)
15
// X1 = ... X1 = ...
16
// else else
17
// X2 = ... X2 = ...
18
// X3 = phi(X1, X2) X3 = phi(X1, X2)
19
// ... = X3 + 4 X4 = phi(X3)
20
// ... = X4 + 4
21
//
22
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
23
// be trivially eliminated by InstCombine. The major benefit of this
24
// transformation is that it makes many other loop optimizations, such as
25
// LoopUnswitching, simpler.
26
//
27
//===----------------------------------------------------------------------===//
28
29
#include "llvm/Transforms/Utils/LCSSA.h"
30
#include "llvm/ADT/STLExtras.h"
31
#include "llvm/ADT/Statistic.h"
32
#include "llvm/Analysis/AliasAnalysis.h"
33
#include "llvm/Analysis/BasicAliasAnalysis.h"
34
#include "llvm/Analysis/BranchProbabilityInfo.h"
35
#include "llvm/Analysis/GlobalsModRef.h"
36
#include "llvm/Analysis/LoopInfo.h"
37
#include "llvm/Analysis/LoopPass.h"
38
#include "llvm/Analysis/MemorySSA.h"
39
#include "llvm/Analysis/ScalarEvolution.h"
40
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41
#include "llvm/IR/DebugInfo.h"
42
#include "llvm/IR/Dominators.h"
43
#include "llvm/IR/Instructions.h"
44
#include "llvm/IR/IntrinsicInst.h"
45
#include "llvm/IR/PredIteratorCache.h"
46
#include "llvm/InitializePasses.h"
47
#include "llvm/Pass.h"
48
#include "llvm/Support/CommandLine.h"
49
#include "llvm/Transforms/Utils.h"
50
#include "llvm/Transforms/Utils/LoopUtils.h"
51
#include "llvm/Transforms/Utils/SSAUpdater.h"
52
using namespace llvm;
53
54
#define DEBUG_TYPE "lcssa"
55
56
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
57
58
#ifdef EXPENSIVE_CHECKS
59
static bool VerifyLoopLCSSA = true;
60
#else
61
static bool VerifyLoopLCSSA = false;
62
#endif
63
static cl::opt<bool, true>
64
VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
65
cl::Hidden,
66
cl::desc("Verify loop lcssa form (time consuming)"));
67
68
/// Return true if the specified block is in the list.
69
static bool isExitBlock(BasicBlock *BB,
70
const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
71
return is_contained(ExitBlocks, BB);
72
}
73
74
/// For every instruction from the worklist, check to see if it has any uses
75
/// that are outside the current loop. If so, insert LCSSA PHI nodes and
76
/// rewrite the uses.
77
bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
78
const DominatorTree &DT, const LoopInfo &LI,
79
ScalarEvolution *SE,
80
SmallVectorImpl<PHINode *> *PHIsToRemove,
81
SmallVectorImpl<PHINode *> *InsertedPHIs) {
82
SmallVector<Use *, 16> UsesToRewrite;
83
SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
84
PredIteratorCache PredCache;
85
bool Changed = false;
86
87
// Cache the Loop ExitBlocks across this loop. We expect to get a lot of
88
// instructions within the same loops, computing the exit blocks is
89
// expensive, and we're not mutating the loop structure.
90
SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
91
92
while (!Worklist.empty()) {
93
UsesToRewrite.clear();
94
95
Instruction *I = Worklist.pop_back_val();
96
assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
97
BasicBlock *InstBB = I->getParent();
98
Loop *L = LI.getLoopFor(InstBB);
99
assert(L && "Instruction belongs to a BB that's not part of a loop");
100
if (!LoopExitBlocks.count(L))
101
L->getExitBlocks(LoopExitBlocks[L]);
102
assert(LoopExitBlocks.count(L));
103
const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
104
105
if (ExitBlocks.empty())
106
continue;
107
108
for (Use &U : make_early_inc_range(I->uses())) {
109
Instruction *User = cast<Instruction>(U.getUser());
110
BasicBlock *UserBB = User->getParent();
111
112
// Skip uses in unreachable blocks.
113
if (!DT.isReachableFromEntry(UserBB)) {
114
U.set(PoisonValue::get(I->getType()));
115
continue;
116
}
117
118
// For practical purposes, we consider that the use in a PHI
119
// occurs in the respective predecessor block. For more info,
120
// see the `phi` doc in LangRef and the LCSSA doc.
121
if (auto *PN = dyn_cast<PHINode>(User))
122
UserBB = PN->getIncomingBlock(U);
123
124
if (InstBB != UserBB && !L->contains(UserBB))
125
UsesToRewrite.push_back(&U);
126
}
127
128
// If there are no uses outside the loop, exit with no change.
129
if (UsesToRewrite.empty())
130
continue;
131
132
++NumLCSSA; // We are applying the transformation
133
134
// Invoke instructions are special in that their result value is not
135
// available along their unwind edge. The code below tests to see whether
136
// DomBB dominates the value, so adjust DomBB to the normal destination
137
// block, which is effectively where the value is first usable.
138
BasicBlock *DomBB = InstBB;
139
if (auto *Inv = dyn_cast<InvokeInst>(I))
140
DomBB = Inv->getNormalDest();
141
142
const DomTreeNode *DomNode = DT.getNode(DomBB);
143
144
SmallVector<PHINode *, 16> AddedPHIs;
145
SmallVector<PHINode *, 8> PostProcessPHIs;
146
147
SmallVector<PHINode *, 4> LocalInsertedPHIs;
148
SSAUpdater SSAUpdate(&LocalInsertedPHIs);
149
SSAUpdate.Initialize(I->getType(), I->getName());
150
151
// Insert the LCSSA phi's into all of the exit blocks dominated by the
152
// value, and add them to the Phi's map.
153
bool HasSCEV = SE && SE->isSCEVable(I->getType()) &&
154
SE->getExistingSCEV(I) != nullptr;
155
for (BasicBlock *ExitBB : ExitBlocks) {
156
if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
157
continue;
158
159
// If we already inserted something for this BB, don't reprocess it.
160
if (SSAUpdate.HasValueForBlock(ExitBB))
161
continue;
162
PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
163
I->getName() + ".lcssa");
164
PN->insertBefore(ExitBB->begin());
165
if (InsertedPHIs)
166
InsertedPHIs->push_back(PN);
167
// Get the debug location from the original instruction.
168
PN->setDebugLoc(I->getDebugLoc());
169
170
// Add inputs from inside the loop for this PHI. This is valid
171
// because `I` dominates `ExitBB` (checked above). This implies
172
// that every incoming block/edge is dominated by `I` as well,
173
// i.e. we can add uses of `I` to those incoming edges/append to the incoming
174
// blocks without violating the SSA dominance property.
175
for (BasicBlock *Pred : PredCache.get(ExitBB)) {
176
PN->addIncoming(I, Pred);
177
178
// If the exit block has a predecessor not within the loop, arrange for
179
// the incoming value use corresponding to that predecessor to be
180
// rewritten in terms of a different LCSSA PHI.
181
if (!L->contains(Pred))
182
UsesToRewrite.push_back(
183
&PN->getOperandUse(PN->getOperandNumForIncomingValue(
184
PN->getNumIncomingValues() - 1)));
185
}
186
187
AddedPHIs.push_back(PN);
188
189
// Remember that this phi makes the value alive in this block.
190
SSAUpdate.AddAvailableValue(ExitBB, PN);
191
192
// LoopSimplify might fail to simplify some loops (e.g. when indirect
193
// branches are involved). In such situations, it might happen that an
194
// exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
195
// create PHIs in such an exit block, we are also inserting PHIs into L2's
196
// header. This could break LCSSA form for L2 because these inserted PHIs
197
// can also have uses outside of L2. Remember all PHIs in such situation
198
// as to revisit than later on. FIXME: Remove this if indirectbr support
199
// into LoopSimplify gets improved.
200
if (auto *OtherLoop = LI.getLoopFor(ExitBB))
201
if (!L->contains(OtherLoop))
202
PostProcessPHIs.push_back(PN);
203
204
// If we have a cached SCEV for the original instruction, make sure the
205
// new LCSSA phi node is also cached. This makes sures that BECounts
206
// based on it will be invalidated when the LCSSA phi node is invalidated,
207
// which some passes rely on.
208
if (HasSCEV)
209
SE->getSCEV(PN);
210
}
211
212
// Rewrite all uses outside the loop in terms of the new PHIs we just
213
// inserted.
214
for (Use *UseToRewrite : UsesToRewrite) {
215
Instruction *User = cast<Instruction>(UseToRewrite->getUser());
216
BasicBlock *UserBB = User->getParent();
217
218
// For practical purposes, we consider that the use in a PHI
219
// occurs in the respective predecessor block. For more info,
220
// see the `phi` doc in LangRef and the LCSSA doc.
221
if (auto *PN = dyn_cast<PHINode>(User))
222
UserBB = PN->getIncomingBlock(*UseToRewrite);
223
224
// If this use is in an exit block, rewrite to use the newly inserted PHI.
225
// This is required for correctness because SSAUpdate doesn't handle uses
226
// in the same block. It assumes the PHI we inserted is at the end of the
227
// block.
228
if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
229
UseToRewrite->set(&UserBB->front());
230
continue;
231
}
232
233
// If we added a single PHI, it must dominate all uses and we can directly
234
// rename it.
235
if (AddedPHIs.size() == 1) {
236
UseToRewrite->set(AddedPHIs[0]);
237
continue;
238
}
239
240
// Otherwise, do full PHI insertion.
241
SSAUpdate.RewriteUse(*UseToRewrite);
242
}
243
244
SmallVector<DbgValueInst *, 4> DbgValues;
245
SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
246
llvm::findDbgValues(DbgValues, I, &DbgVariableRecords);
247
248
// Update pre-existing debug value uses that reside outside the loop.
249
for (auto *DVI : DbgValues) {
250
BasicBlock *UserBB = DVI->getParent();
251
if (InstBB == UserBB || L->contains(UserBB))
252
continue;
253
// We currently only handle debug values residing in blocks that were
254
// traversed while rewriting the uses. If we inserted just a single PHI,
255
// we will handle all relevant debug values.
256
Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
257
: SSAUpdate.FindValueForBlock(UserBB);
258
if (V)
259
DVI->replaceVariableLocationOp(I, V);
260
}
261
262
// RemoveDIs: copy-paste of block above, using non-instruction debug-info
263
// records.
264
for (DbgVariableRecord *DVR : DbgVariableRecords) {
265
BasicBlock *UserBB = DVR->getMarker()->getParent();
266
if (InstBB == UserBB || L->contains(UserBB))
267
continue;
268
// We currently only handle debug values residing in blocks that were
269
// traversed while rewriting the uses. If we inserted just a single PHI,
270
// we will handle all relevant debug values.
271
Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
272
: SSAUpdate.FindValueForBlock(UserBB);
273
if (V)
274
DVR->replaceVariableLocationOp(I, V);
275
}
276
277
// SSAUpdater might have inserted phi-nodes inside other loops. We'll need
278
// to post-process them to keep LCSSA form.
279
for (PHINode *InsertedPN : LocalInsertedPHIs) {
280
if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
281
if (!L->contains(OtherLoop))
282
PostProcessPHIs.push_back(InsertedPN);
283
if (InsertedPHIs)
284
InsertedPHIs->push_back(InsertedPN);
285
}
286
287
// Post process PHI instructions that were inserted into another disjoint
288
// loop and update their exits properly.
289
for (auto *PostProcessPN : PostProcessPHIs)
290
if (!PostProcessPN->use_empty())
291
Worklist.push_back(PostProcessPN);
292
293
// Keep track of PHI nodes that we want to remove because they did not have
294
// any uses rewritten.
295
for (PHINode *PN : AddedPHIs)
296
if (PN->use_empty())
297
LocalPHIsToRemove.insert(PN);
298
299
Changed = true;
300
}
301
302
// Remove PHI nodes that did not have any uses rewritten or add them to
303
// PHIsToRemove, so the caller can remove them after some additional cleanup.
304
// We need to redo the use_empty() check here, because even if the PHI node
305
// wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
306
// using it. This cleanup is not guaranteed to handle trees/cycles of PHI
307
// nodes that only are used by each other. Such situations has only been
308
// noticed when the input IR contains unreachable code, and leaving some extra
309
// redundant PHI nodes in such situations is considered a minor problem.
310
if (PHIsToRemove) {
311
PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
312
} else {
313
for (PHINode *PN : LocalPHIsToRemove)
314
if (PN->use_empty())
315
PN->eraseFromParent();
316
}
317
return Changed;
318
}
319
320
// Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
321
static void computeBlocksDominatingExits(
322
Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
323
SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
324
// We start from the exit blocks, as every block trivially dominates itself
325
// (not strictly).
326
SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
327
328
while (!BBWorklist.empty()) {
329
BasicBlock *BB = BBWorklist.pop_back_val();
330
331
// Check if this is a loop header. If this is the case, we're done.
332
if (L.getHeader() == BB)
333
continue;
334
335
// Otherwise, add its immediate predecessor in the dominator tree to the
336
// worklist, unless we visited it already.
337
BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
338
339
// Exit blocks can have an immediate dominator not belonging to the
340
// loop. For an exit block to be immediately dominated by another block
341
// outside the loop, it implies not all paths from that dominator, to the
342
// exit block, go through the loop.
343
// Example:
344
//
345
// |---- A
346
// | |
347
// | B<--
348
// | | |
349
// |---> C --
350
// |
351
// D
352
//
353
// C is the exit block of the loop and it's immediately dominated by A,
354
// which doesn't belong to the loop.
355
if (!L.contains(IDomBB))
356
continue;
357
358
if (BlocksDominatingExits.insert(IDomBB))
359
BBWorklist.push_back(IDomBB);
360
}
361
}
362
363
bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
364
ScalarEvolution *SE) {
365
bool Changed = false;
366
367
#ifdef EXPENSIVE_CHECKS
368
// Verify all sub-loops are in LCSSA form already.
369
for (Loop *SubLoop: L) {
370
(void)SubLoop; // Silence unused variable warning.
371
assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
372
}
373
#endif
374
375
SmallVector<BasicBlock *, 8> ExitBlocks;
376
L.getExitBlocks(ExitBlocks);
377
if (ExitBlocks.empty())
378
return false;
379
380
SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
381
382
// We want to avoid use-scanning leveraging dominance informations.
383
// If a block doesn't dominate any of the loop exits, the none of the values
384
// defined in the loop can be used outside.
385
// We compute the set of blocks fullfilling the conditions in advance
386
// walking the dominator tree upwards until we hit a loop header.
387
computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
388
389
SmallVector<Instruction *, 8> Worklist;
390
391
// Look at all the instructions in the loop, checking to see if they have uses
392
// outside the loop. If so, put them into the worklist to rewrite those uses.
393
for (BasicBlock *BB : BlocksDominatingExits) {
394
// Skip blocks that are part of any sub-loops, they must be in LCSSA
395
// already.
396
if (LI->getLoopFor(BB) != &L)
397
continue;
398
for (Instruction &I : *BB) {
399
// Reject two common cases fast: instructions with no uses (like stores)
400
// and instructions with one use that is in the same block as this.
401
if (I.use_empty() ||
402
(I.hasOneUse() && I.user_back()->getParent() == BB &&
403
!isa<PHINode>(I.user_back())))
404
continue;
405
406
// Tokens cannot be used in PHI nodes, so we skip over them.
407
// We can run into tokens which are live out of a loop with catchswitch
408
// instructions in Windows EH if the catchswitch has one catchpad which
409
// is inside the loop and another which is not.
410
if (I.getType()->isTokenTy())
411
continue;
412
413
Worklist.push_back(&I);
414
}
415
}
416
417
Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE);
418
419
assert(L.isLCSSAForm(DT));
420
421
return Changed;
422
}
423
424
/// Process a loop nest depth first.
425
bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
426
const LoopInfo *LI, ScalarEvolution *SE) {
427
bool Changed = false;
428
429
// Recurse depth-first through inner loops.
430
for (Loop *SubLoop : L.getSubLoops())
431
Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
432
433
Changed |= formLCSSA(L, DT, LI, SE);
434
return Changed;
435
}
436
437
/// Process all loops in the function, inner-most out.
438
static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
439
ScalarEvolution *SE) {
440
bool Changed = false;
441
for (const auto &L : *LI)
442
Changed |= formLCSSARecursively(*L, DT, LI, SE);
443
return Changed;
444
}
445
446
namespace {
447
struct LCSSAWrapperPass : public FunctionPass {
448
static char ID; // Pass identification, replacement for typeid
449
LCSSAWrapperPass() : FunctionPass(ID) {
450
initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
451
}
452
453
// Cached analysis information for the current function.
454
DominatorTree *DT;
455
LoopInfo *LI;
456
ScalarEvolution *SE;
457
458
bool runOnFunction(Function &F) override;
459
void verifyAnalysis() const override {
460
// This check is very expensive. On the loop intensive compiles it may cause
461
// up to 10x slowdown. Currently it's disabled by default. LPPassManager
462
// always does limited form of the LCSSA verification. Similar reasoning
463
// was used for the LoopInfo verifier.
464
if (VerifyLoopLCSSA) {
465
assert(all_of(*LI,
466
[&](Loop *L) {
467
return L->isRecursivelyLCSSAForm(*DT, *LI);
468
}) &&
469
"LCSSA form is broken!");
470
}
471
};
472
473
/// This transformation requires natural loop information & requires that
474
/// loop preheaders be inserted into the CFG. It maintains both of these,
475
/// as well as the CFG. It also requires dominator information.
476
void getAnalysisUsage(AnalysisUsage &AU) const override {
477
AU.setPreservesCFG();
478
479
AU.addRequired<DominatorTreeWrapperPass>();
480
AU.addRequired<LoopInfoWrapperPass>();
481
AU.addPreservedID(LoopSimplifyID);
482
AU.addPreserved<AAResultsWrapperPass>();
483
AU.addPreserved<BasicAAWrapperPass>();
484
AU.addPreserved<GlobalsAAWrapperPass>();
485
AU.addPreserved<ScalarEvolutionWrapperPass>();
486
AU.addPreserved<SCEVAAWrapperPass>();
487
AU.addPreserved<BranchProbabilityInfoWrapperPass>();
488
AU.addPreserved<MemorySSAWrapperPass>();
489
490
// This is needed to perform LCSSA verification inside LPPassManager
491
AU.addRequired<LCSSAVerificationPass>();
492
AU.addPreserved<LCSSAVerificationPass>();
493
}
494
};
495
}
496
497
char LCSSAWrapperPass::ID = 0;
498
INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
499
false, false)
500
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
501
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
502
INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
503
INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
504
false, false)
505
506
Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
507
char &llvm::LCSSAID = LCSSAWrapperPass::ID;
508
509
/// Transform \p F into loop-closed SSA form.
510
bool LCSSAWrapperPass::runOnFunction(Function &F) {
511
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
512
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
513
auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
514
SE = SEWP ? &SEWP->getSE() : nullptr;
515
516
return formLCSSAOnAllLoops(LI, *DT, SE);
517
}
518
519
PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
520
auto &LI = AM.getResult<LoopAnalysis>(F);
521
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
522
auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
523
if (!formLCSSAOnAllLoops(&LI, DT, SE))
524
return PreservedAnalyses::all();
525
526
PreservedAnalyses PA;
527
PA.preserveSet<CFGAnalyses>();
528
PA.preserve<ScalarEvolutionAnalysis>();
529
// BPI maps terminators to probabilities, since we don't modify the CFG, no
530
// updates are needed to preserve it.
531
PA.preserve<BranchProbabilityAnalysis>();
532
PA.preserve<MemorySSAAnalysis>();
533
return PA;
534
}
535
536