Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp
35271 views
1
//===- Local.cpp - Functions to perform local transformations -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This family of functions perform various local transformations to the
10
// program.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Transforms/Utils/Local.h"
15
#include "llvm/ADT/APInt.h"
16
#include "llvm/ADT/DenseMap.h"
17
#include "llvm/ADT/DenseMapInfo.h"
18
#include "llvm/ADT/DenseSet.h"
19
#include "llvm/ADT/Hashing.h"
20
#include "llvm/ADT/STLExtras.h"
21
#include "llvm/ADT/SetVector.h"
22
#include "llvm/ADT/SmallPtrSet.h"
23
#include "llvm/ADT/SmallVector.h"
24
#include "llvm/ADT/Statistic.h"
25
#include "llvm/Analysis/AssumeBundleQueries.h"
26
#include "llvm/Analysis/ConstantFolding.h"
27
#include "llvm/Analysis/DomTreeUpdater.h"
28
#include "llvm/Analysis/InstructionSimplify.h"
29
#include "llvm/Analysis/MemoryBuiltins.h"
30
#include "llvm/Analysis/MemorySSAUpdater.h"
31
#include "llvm/Analysis/TargetLibraryInfo.h"
32
#include "llvm/Analysis/ValueTracking.h"
33
#include "llvm/Analysis/VectorUtils.h"
34
#include "llvm/BinaryFormat/Dwarf.h"
35
#include "llvm/IR/Argument.h"
36
#include "llvm/IR/Attributes.h"
37
#include "llvm/IR/BasicBlock.h"
38
#include "llvm/IR/CFG.h"
39
#include "llvm/IR/Constant.h"
40
#include "llvm/IR/ConstantRange.h"
41
#include "llvm/IR/Constants.h"
42
#include "llvm/IR/DIBuilder.h"
43
#include "llvm/IR/DataLayout.h"
44
#include "llvm/IR/DebugInfo.h"
45
#include "llvm/IR/DebugInfoMetadata.h"
46
#include "llvm/IR/DebugLoc.h"
47
#include "llvm/IR/DerivedTypes.h"
48
#include "llvm/IR/Dominators.h"
49
#include "llvm/IR/EHPersonalities.h"
50
#include "llvm/IR/Function.h"
51
#include "llvm/IR/GetElementPtrTypeIterator.h"
52
#include "llvm/IR/GlobalObject.h"
53
#include "llvm/IR/IRBuilder.h"
54
#include "llvm/IR/InstrTypes.h"
55
#include "llvm/IR/Instruction.h"
56
#include "llvm/IR/Instructions.h"
57
#include "llvm/IR/IntrinsicInst.h"
58
#include "llvm/IR/Intrinsics.h"
59
#include "llvm/IR/IntrinsicsWebAssembly.h"
60
#include "llvm/IR/LLVMContext.h"
61
#include "llvm/IR/MDBuilder.h"
62
#include "llvm/IR/MemoryModelRelaxationAnnotations.h"
63
#include "llvm/IR/Metadata.h"
64
#include "llvm/IR/Module.h"
65
#include "llvm/IR/PatternMatch.h"
66
#include "llvm/IR/ProfDataUtils.h"
67
#include "llvm/IR/Type.h"
68
#include "llvm/IR/Use.h"
69
#include "llvm/IR/User.h"
70
#include "llvm/IR/Value.h"
71
#include "llvm/IR/ValueHandle.h"
72
#include "llvm/Support/Casting.h"
73
#include "llvm/Support/CommandLine.h"
74
#include "llvm/Support/Debug.h"
75
#include "llvm/Support/ErrorHandling.h"
76
#include "llvm/Support/KnownBits.h"
77
#include "llvm/Support/raw_ostream.h"
78
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
79
#include "llvm/Transforms/Utils/ValueMapper.h"
80
#include <algorithm>
81
#include <cassert>
82
#include <cstdint>
83
#include <iterator>
84
#include <map>
85
#include <optional>
86
#include <utility>
87
88
using namespace llvm;
89
using namespace llvm::PatternMatch;
90
91
extern cl::opt<bool> UseNewDbgInfoFormat;
92
93
#define DEBUG_TYPE "local"
94
95
STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
96
STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
97
98
static cl::opt<bool> PHICSEDebugHash(
99
"phicse-debug-hash",
100
#ifdef EXPENSIVE_CHECKS
101
cl::init(true),
102
#else
103
cl::init(false),
104
#endif
105
cl::Hidden,
106
cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
107
"function is well-behaved w.r.t. its isEqual predicate"));
108
109
static cl::opt<unsigned> PHICSENumPHISmallSize(
110
"phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
111
cl::desc(
112
"When the basic block contains not more than this number of PHI nodes, "
113
"perform a (faster!) exhaustive search instead of set-driven one."));
114
115
// Max recursion depth for collectBitParts used when detecting bswap and
116
// bitreverse idioms.
117
static const unsigned BitPartRecursionMaxDepth = 48;
118
119
//===----------------------------------------------------------------------===//
120
// Local constant propagation.
121
//
122
123
/// ConstantFoldTerminator - If a terminator instruction is predicated on a
124
/// constant value, convert it into an unconditional branch to the constant
125
/// destination. This is a nontrivial operation because the successors of this
126
/// basic block must have their PHI nodes updated.
127
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
128
/// conditions and indirectbr addresses this might make dead if
129
/// DeleteDeadConditions is true.
130
bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
131
const TargetLibraryInfo *TLI,
132
DomTreeUpdater *DTU) {
133
Instruction *T = BB->getTerminator();
134
IRBuilder<> Builder(T);
135
136
// Branch - See if we are conditional jumping on constant
137
if (auto *BI = dyn_cast<BranchInst>(T)) {
138
if (BI->isUnconditional()) return false; // Can't optimize uncond branch
139
140
BasicBlock *Dest1 = BI->getSuccessor(0);
141
BasicBlock *Dest2 = BI->getSuccessor(1);
142
143
if (Dest2 == Dest1) { // Conditional branch to same location?
144
// This branch matches something like this:
145
// br bool %cond, label %Dest, label %Dest
146
// and changes it into: br label %Dest
147
148
// Let the basic block know that we are letting go of one copy of it.
149
assert(BI->getParent() && "Terminator not inserted in block!");
150
Dest1->removePredecessor(BI->getParent());
151
152
// Replace the conditional branch with an unconditional one.
153
BranchInst *NewBI = Builder.CreateBr(Dest1);
154
155
// Transfer the metadata to the new branch instruction.
156
NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
157
LLVMContext::MD_annotation});
158
159
Value *Cond = BI->getCondition();
160
BI->eraseFromParent();
161
if (DeleteDeadConditions)
162
RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
163
return true;
164
}
165
166
if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
167
// Are we branching on constant?
168
// YES. Change to unconditional branch...
169
BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
170
BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
171
172
// Let the basic block know that we are letting go of it. Based on this,
173
// it will adjust it's PHI nodes.
174
OldDest->removePredecessor(BB);
175
176
// Replace the conditional branch with an unconditional one.
177
BranchInst *NewBI = Builder.CreateBr(Destination);
178
179
// Transfer the metadata to the new branch instruction.
180
NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
181
LLVMContext::MD_annotation});
182
183
BI->eraseFromParent();
184
if (DTU)
185
DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
186
return true;
187
}
188
189
return false;
190
}
191
192
if (auto *SI = dyn_cast<SwitchInst>(T)) {
193
// If we are switching on a constant, we can convert the switch to an
194
// unconditional branch.
195
auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
196
BasicBlock *DefaultDest = SI->getDefaultDest();
197
BasicBlock *TheOnlyDest = DefaultDest;
198
199
// If the default is unreachable, ignore it when searching for TheOnlyDest.
200
if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
201
SI->getNumCases() > 0) {
202
TheOnlyDest = SI->case_begin()->getCaseSuccessor();
203
}
204
205
bool Changed = false;
206
207
// Figure out which case it goes to.
208
for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) {
209
// Found case matching a constant operand?
210
if (It->getCaseValue() == CI) {
211
TheOnlyDest = It->getCaseSuccessor();
212
break;
213
}
214
215
// Check to see if this branch is going to the same place as the default
216
// dest. If so, eliminate it as an explicit compare.
217
if (It->getCaseSuccessor() == DefaultDest) {
218
MDNode *MD = getValidBranchWeightMDNode(*SI);
219
unsigned NCases = SI->getNumCases();
220
// Fold the case metadata into the default if there will be any branches
221
// left, unless the metadata doesn't match the switch.
222
if (NCases > 1 && MD) {
223
// Collect branch weights into a vector.
224
SmallVector<uint32_t, 8> Weights;
225
extractBranchWeights(MD, Weights);
226
227
// Merge weight of this case to the default weight.
228
unsigned Idx = It->getCaseIndex();
229
// TODO: Add overflow check.
230
Weights[0] += Weights[Idx + 1];
231
// Remove weight for this case.
232
std::swap(Weights[Idx + 1], Weights.back());
233
Weights.pop_back();
234
setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD));
235
}
236
// Remove this entry.
237
BasicBlock *ParentBB = SI->getParent();
238
DefaultDest->removePredecessor(ParentBB);
239
It = SI->removeCase(It);
240
End = SI->case_end();
241
242
// Removing this case may have made the condition constant. In that
243
// case, update CI and restart iteration through the cases.
244
if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) {
245
CI = NewCI;
246
It = SI->case_begin();
247
}
248
249
Changed = true;
250
continue;
251
}
252
253
// Otherwise, check to see if the switch only branches to one destination.
254
// We do this by reseting "TheOnlyDest" to null when we find two non-equal
255
// destinations.
256
if (It->getCaseSuccessor() != TheOnlyDest)
257
TheOnlyDest = nullptr;
258
259
// Increment this iterator as we haven't removed the case.
260
++It;
261
}
262
263
if (CI && !TheOnlyDest) {
264
// Branching on a constant, but not any of the cases, go to the default
265
// successor.
266
TheOnlyDest = SI->getDefaultDest();
267
}
268
269
// If we found a single destination that we can fold the switch into, do so
270
// now.
271
if (TheOnlyDest) {
272
// Insert the new branch.
273
Builder.CreateBr(TheOnlyDest);
274
BasicBlock *BB = SI->getParent();
275
276
SmallSet<BasicBlock *, 8> RemovedSuccessors;
277
278
// Remove entries from PHI nodes which we no longer branch to...
279
BasicBlock *SuccToKeep = TheOnlyDest;
280
for (BasicBlock *Succ : successors(SI)) {
281
if (DTU && Succ != TheOnlyDest)
282
RemovedSuccessors.insert(Succ);
283
// Found case matching a constant operand?
284
if (Succ == SuccToKeep) {
285
SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
286
} else {
287
Succ->removePredecessor(BB);
288
}
289
}
290
291
// Delete the old switch.
292
Value *Cond = SI->getCondition();
293
SI->eraseFromParent();
294
if (DeleteDeadConditions)
295
RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
296
if (DTU) {
297
std::vector<DominatorTree::UpdateType> Updates;
298
Updates.reserve(RemovedSuccessors.size());
299
for (auto *RemovedSuccessor : RemovedSuccessors)
300
Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
301
DTU->applyUpdates(Updates);
302
}
303
return true;
304
}
305
306
if (SI->getNumCases() == 1) {
307
// Otherwise, we can fold this switch into a conditional branch
308
// instruction if it has only one non-default destination.
309
auto FirstCase = *SI->case_begin();
310
Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
311
FirstCase.getCaseValue(), "cond");
312
313
// Insert the new branch.
314
BranchInst *NewBr = Builder.CreateCondBr(Cond,
315
FirstCase.getCaseSuccessor(),
316
SI->getDefaultDest());
317
SmallVector<uint32_t> Weights;
318
if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) {
319
uint32_t DefWeight = Weights[0];
320
uint32_t CaseWeight = Weights[1];
321
// The TrueWeight should be the weight for the single case of SI.
322
NewBr->setMetadata(LLVMContext::MD_prof,
323
MDBuilder(BB->getContext())
324
.createBranchWeights(CaseWeight, DefWeight));
325
}
326
327
// Update make.implicit metadata to the newly-created conditional branch.
328
MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
329
if (MakeImplicitMD)
330
NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
331
332
// Delete the old switch.
333
SI->eraseFromParent();
334
return true;
335
}
336
return Changed;
337
}
338
339
if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
340
// indirectbr blockaddress(@F, @BB) -> br label @BB
341
if (auto *BA =
342
dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
343
BasicBlock *TheOnlyDest = BA->getBasicBlock();
344
SmallSet<BasicBlock *, 8> RemovedSuccessors;
345
346
// Insert the new branch.
347
Builder.CreateBr(TheOnlyDest);
348
349
BasicBlock *SuccToKeep = TheOnlyDest;
350
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
351
BasicBlock *DestBB = IBI->getDestination(i);
352
if (DTU && DestBB != TheOnlyDest)
353
RemovedSuccessors.insert(DestBB);
354
if (IBI->getDestination(i) == SuccToKeep) {
355
SuccToKeep = nullptr;
356
} else {
357
DestBB->removePredecessor(BB);
358
}
359
}
360
Value *Address = IBI->getAddress();
361
IBI->eraseFromParent();
362
if (DeleteDeadConditions)
363
// Delete pointer cast instructions.
364
RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
365
366
// Also zap the blockaddress constant if there are no users remaining,
367
// otherwise the destination is still marked as having its address taken.
368
if (BA->use_empty())
369
BA->destroyConstant();
370
371
// If we didn't find our destination in the IBI successor list, then we
372
// have undefined behavior. Replace the unconditional branch with an
373
// 'unreachable' instruction.
374
if (SuccToKeep) {
375
BB->getTerminator()->eraseFromParent();
376
new UnreachableInst(BB->getContext(), BB);
377
}
378
379
if (DTU) {
380
std::vector<DominatorTree::UpdateType> Updates;
381
Updates.reserve(RemovedSuccessors.size());
382
for (auto *RemovedSuccessor : RemovedSuccessors)
383
Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
384
DTU->applyUpdates(Updates);
385
}
386
return true;
387
}
388
}
389
390
return false;
391
}
392
393
//===----------------------------------------------------------------------===//
394
// Local dead code elimination.
395
//
396
397
/// isInstructionTriviallyDead - Return true if the result produced by the
398
/// instruction is not used, and the instruction has no side effects.
399
///
400
bool llvm::isInstructionTriviallyDead(Instruction *I,
401
const TargetLibraryInfo *TLI) {
402
if (!I->use_empty())
403
return false;
404
return wouldInstructionBeTriviallyDead(I, TLI);
405
}
406
407
bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
408
Instruction *I, const TargetLibraryInfo *TLI) {
409
// Instructions that are "markers" and have implied meaning on code around
410
// them (without explicit uses), are not dead on unused paths.
411
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
412
if (II->getIntrinsicID() == Intrinsic::stacksave ||
413
II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
414
II->isLifetimeStartOrEnd())
415
return false;
416
return wouldInstructionBeTriviallyDead(I, TLI);
417
}
418
419
bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I,
420
const TargetLibraryInfo *TLI) {
421
if (I->isTerminator())
422
return false;
423
424
// We don't want the landingpad-like instructions removed by anything this
425
// general.
426
if (I->isEHPad())
427
return false;
428
429
// We don't want debug info removed by anything this general.
430
if (isa<DbgVariableIntrinsic>(I))
431
return false;
432
433
if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
434
if (DLI->getLabel())
435
return false;
436
return true;
437
}
438
439
if (auto *CB = dyn_cast<CallBase>(I))
440
if (isRemovableAlloc(CB, TLI))
441
return true;
442
443
if (!I->willReturn()) {
444
auto *II = dyn_cast<IntrinsicInst>(I);
445
if (!II)
446
return false;
447
448
switch (II->getIntrinsicID()) {
449
case Intrinsic::experimental_guard: {
450
// Guards on true are operationally no-ops. In the future we can
451
// consider more sophisticated tradeoffs for guards considering potential
452
// for check widening, but for now we keep things simple.
453
auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0));
454
return Cond && Cond->isOne();
455
}
456
// TODO: These intrinsics are not safe to remove, because this may remove
457
// a well-defined trap.
458
case Intrinsic::wasm_trunc_signed:
459
case Intrinsic::wasm_trunc_unsigned:
460
case Intrinsic::ptrauth_auth:
461
case Intrinsic::ptrauth_resign:
462
return true;
463
default:
464
return false;
465
}
466
}
467
468
if (!I->mayHaveSideEffects())
469
return true;
470
471
// Special case intrinsics that "may have side effects" but can be deleted
472
// when dead.
473
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
474
// Safe to delete llvm.stacksave and launder.invariant.group if dead.
475
if (II->getIntrinsicID() == Intrinsic::stacksave ||
476
II->getIntrinsicID() == Intrinsic::launder_invariant_group)
477
return true;
478
479
// Intrinsics declare sideeffects to prevent them from moving, but they are
480
// nops without users.
481
if (II->getIntrinsicID() == Intrinsic::allow_runtime_check ||
482
II->getIntrinsicID() == Intrinsic::allow_ubsan_check)
483
return true;
484
485
if (II->isLifetimeStartOrEnd()) {
486
auto *Arg = II->getArgOperand(1);
487
// Lifetime intrinsics are dead when their right-hand is undef.
488
if (isa<UndefValue>(Arg))
489
return true;
490
// If the right-hand is an alloc, global, or argument and the only uses
491
// are lifetime intrinsics then the intrinsics are dead.
492
if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
493
return llvm::all_of(Arg->uses(), [](Use &Use) {
494
if (IntrinsicInst *IntrinsicUse =
495
dyn_cast<IntrinsicInst>(Use.getUser()))
496
return IntrinsicUse->isLifetimeStartOrEnd();
497
return false;
498
});
499
return false;
500
}
501
502
// Assumptions are dead if their condition is trivially true.
503
if (II->getIntrinsicID() == Intrinsic::assume &&
504
isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) {
505
if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
506
return !Cond->isZero();
507
508
return false;
509
}
510
511
if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
512
std::optional<fp::ExceptionBehavior> ExBehavior =
513
FPI->getExceptionBehavior();
514
return *ExBehavior != fp::ebStrict;
515
}
516
}
517
518
if (auto *Call = dyn_cast<CallBase>(I)) {
519
if (Value *FreedOp = getFreedOperand(Call, TLI))
520
if (Constant *C = dyn_cast<Constant>(FreedOp))
521
return C->isNullValue() || isa<UndefValue>(C);
522
if (isMathLibCallNoop(Call, TLI))
523
return true;
524
}
525
526
// Non-volatile atomic loads from constants can be removed.
527
if (auto *LI = dyn_cast<LoadInst>(I))
528
if (auto *GV = dyn_cast<GlobalVariable>(
529
LI->getPointerOperand()->stripPointerCasts()))
530
if (!LI->isVolatile() && GV->isConstant())
531
return true;
532
533
return false;
534
}
535
536
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
537
/// trivially dead instruction, delete it. If that makes any of its operands
538
/// trivially dead, delete them too, recursively. Return true if any
539
/// instructions were deleted.
540
bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
541
Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
542
std::function<void(Value *)> AboutToDeleteCallback) {
543
Instruction *I = dyn_cast<Instruction>(V);
544
if (!I || !isInstructionTriviallyDead(I, TLI))
545
return false;
546
547
SmallVector<WeakTrackingVH, 16> DeadInsts;
548
DeadInsts.push_back(I);
549
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
550
AboutToDeleteCallback);
551
552
return true;
553
}
554
555
bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
556
SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
557
MemorySSAUpdater *MSSAU,
558
std::function<void(Value *)> AboutToDeleteCallback) {
559
unsigned S = 0, E = DeadInsts.size(), Alive = 0;
560
for (; S != E; ++S) {
561
auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]);
562
if (!I || !isInstructionTriviallyDead(I)) {
563
DeadInsts[S] = nullptr;
564
++Alive;
565
}
566
}
567
if (Alive == E)
568
return false;
569
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
570
AboutToDeleteCallback);
571
return true;
572
}
573
574
void llvm::RecursivelyDeleteTriviallyDeadInstructions(
575
SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
576
MemorySSAUpdater *MSSAU,
577
std::function<void(Value *)> AboutToDeleteCallback) {
578
// Process the dead instruction list until empty.
579
while (!DeadInsts.empty()) {
580
Value *V = DeadInsts.pop_back_val();
581
Instruction *I = cast_or_null<Instruction>(V);
582
if (!I)
583
continue;
584
assert(isInstructionTriviallyDead(I, TLI) &&
585
"Live instruction found in dead worklist!");
586
assert(I->use_empty() && "Instructions with uses are not dead.");
587
588
// Don't lose the debug info while deleting the instructions.
589
salvageDebugInfo(*I);
590
591
if (AboutToDeleteCallback)
592
AboutToDeleteCallback(I);
593
594
// Null out all of the instruction's operands to see if any operand becomes
595
// dead as we go.
596
for (Use &OpU : I->operands()) {
597
Value *OpV = OpU.get();
598
OpU.set(nullptr);
599
600
if (!OpV->use_empty())
601
continue;
602
603
// If the operand is an instruction that became dead as we nulled out the
604
// operand, and if it is 'trivially' dead, delete it in a future loop
605
// iteration.
606
if (Instruction *OpI = dyn_cast<Instruction>(OpV))
607
if (isInstructionTriviallyDead(OpI, TLI))
608
DeadInsts.push_back(OpI);
609
}
610
if (MSSAU)
611
MSSAU->removeMemoryAccess(I);
612
613
I->eraseFromParent();
614
}
615
}
616
617
bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
618
SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
619
SmallVector<DbgVariableRecord *, 1> DPUsers;
620
findDbgUsers(DbgUsers, I, &DPUsers);
621
for (auto *DII : DbgUsers)
622
DII->setKillLocation();
623
for (auto *DVR : DPUsers)
624
DVR->setKillLocation();
625
return !DbgUsers.empty() || !DPUsers.empty();
626
}
627
628
/// areAllUsesEqual - Check whether the uses of a value are all the same.
629
/// This is similar to Instruction::hasOneUse() except this will also return
630
/// true when there are no uses or multiple uses that all refer to the same
631
/// value.
632
static bool areAllUsesEqual(Instruction *I) {
633
Value::user_iterator UI = I->user_begin();
634
Value::user_iterator UE = I->user_end();
635
if (UI == UE)
636
return true;
637
638
User *TheUse = *UI;
639
for (++UI; UI != UE; ++UI) {
640
if (*UI != TheUse)
641
return false;
642
}
643
return true;
644
}
645
646
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
647
/// dead PHI node, due to being a def-use chain of single-use nodes that
648
/// either forms a cycle or is terminated by a trivially dead instruction,
649
/// delete it. If that makes any of its operands trivially dead, delete them
650
/// too, recursively. Return true if a change was made.
651
bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
652
const TargetLibraryInfo *TLI,
653
llvm::MemorySSAUpdater *MSSAU) {
654
SmallPtrSet<Instruction*, 4> Visited;
655
for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
656
I = cast<Instruction>(*I->user_begin())) {
657
if (I->use_empty())
658
return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
659
660
// If we find an instruction more than once, we're on a cycle that
661
// won't prove fruitful.
662
if (!Visited.insert(I).second) {
663
// Break the cycle and delete the instruction and its operands.
664
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
665
(void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
666
return true;
667
}
668
}
669
return false;
670
}
671
672
static bool
673
simplifyAndDCEInstruction(Instruction *I,
674
SmallSetVector<Instruction *, 16> &WorkList,
675
const DataLayout &DL,
676
const TargetLibraryInfo *TLI) {
677
if (isInstructionTriviallyDead(I, TLI)) {
678
salvageDebugInfo(*I);
679
680
// Null out all of the instruction's operands to see if any operand becomes
681
// dead as we go.
682
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
683
Value *OpV = I->getOperand(i);
684
I->setOperand(i, nullptr);
685
686
if (!OpV->use_empty() || I == OpV)
687
continue;
688
689
// If the operand is an instruction that became dead as we nulled out the
690
// operand, and if it is 'trivially' dead, delete it in a future loop
691
// iteration.
692
if (Instruction *OpI = dyn_cast<Instruction>(OpV))
693
if (isInstructionTriviallyDead(OpI, TLI))
694
WorkList.insert(OpI);
695
}
696
697
I->eraseFromParent();
698
699
return true;
700
}
701
702
if (Value *SimpleV = simplifyInstruction(I, DL)) {
703
// Add the users to the worklist. CAREFUL: an instruction can use itself,
704
// in the case of a phi node.
705
for (User *U : I->users()) {
706
if (U != I) {
707
WorkList.insert(cast<Instruction>(U));
708
}
709
}
710
711
// Replace the instruction with its simplified value.
712
bool Changed = false;
713
if (!I->use_empty()) {
714
I->replaceAllUsesWith(SimpleV);
715
Changed = true;
716
}
717
if (isInstructionTriviallyDead(I, TLI)) {
718
I->eraseFromParent();
719
Changed = true;
720
}
721
return Changed;
722
}
723
return false;
724
}
725
726
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
727
/// simplify any instructions in it and recursively delete dead instructions.
728
///
729
/// This returns true if it changed the code, note that it can delete
730
/// instructions in other blocks as well in this block.
731
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
732
const TargetLibraryInfo *TLI) {
733
bool MadeChange = false;
734
const DataLayout &DL = BB->getDataLayout();
735
736
#ifndef NDEBUG
737
// In debug builds, ensure that the terminator of the block is never replaced
738
// or deleted by these simplifications. The idea of simplification is that it
739
// cannot introduce new instructions, and there is no way to replace the
740
// terminator of a block without introducing a new instruction.
741
AssertingVH<Instruction> TerminatorVH(&BB->back());
742
#endif
743
744
SmallSetVector<Instruction *, 16> WorkList;
745
// Iterate over the original function, only adding insts to the worklist
746
// if they actually need to be revisited. This avoids having to pre-init
747
// the worklist with the entire function's worth of instructions.
748
for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
749
BI != E;) {
750
assert(!BI->isTerminator());
751
Instruction *I = &*BI;
752
++BI;
753
754
// We're visiting this instruction now, so make sure it's not in the
755
// worklist from an earlier visit.
756
if (!WorkList.count(I))
757
MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
758
}
759
760
while (!WorkList.empty()) {
761
Instruction *I = WorkList.pop_back_val();
762
MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
763
}
764
return MadeChange;
765
}
766
767
//===----------------------------------------------------------------------===//
768
// Control Flow Graph Restructuring.
769
//
770
771
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
772
DomTreeUpdater *DTU) {
773
774
// If BB has single-entry PHI nodes, fold them.
775
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
776
Value *NewVal = PN->getIncomingValue(0);
777
// Replace self referencing PHI with poison, it must be dead.
778
if (NewVal == PN) NewVal = PoisonValue::get(PN->getType());
779
PN->replaceAllUsesWith(NewVal);
780
PN->eraseFromParent();
781
}
782
783
BasicBlock *PredBB = DestBB->getSinglePredecessor();
784
assert(PredBB && "Block doesn't have a single predecessor!");
785
786
bool ReplaceEntryBB = PredBB->isEntryBlock();
787
788
// DTU updates: Collect all the edges that enter
789
// PredBB. These dominator edges will be redirected to DestBB.
790
SmallVector<DominatorTree::UpdateType, 32> Updates;
791
792
if (DTU) {
793
// To avoid processing the same predecessor more than once.
794
SmallPtrSet<BasicBlock *, 2> SeenPreds;
795
Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
796
for (BasicBlock *PredOfPredBB : predecessors(PredBB))
797
// This predecessor of PredBB may already have DestBB as a successor.
798
if (PredOfPredBB != PredBB)
799
if (SeenPreds.insert(PredOfPredBB).second)
800
Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
801
SeenPreds.clear();
802
for (BasicBlock *PredOfPredBB : predecessors(PredBB))
803
if (SeenPreds.insert(PredOfPredBB).second)
804
Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
805
Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
806
}
807
808
// Zap anything that took the address of DestBB. Not doing this will give the
809
// address an invalid value.
810
if (DestBB->hasAddressTaken()) {
811
BlockAddress *BA = BlockAddress::get(DestBB);
812
Constant *Replacement =
813
ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
814
BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
815
BA->getType()));
816
BA->destroyConstant();
817
}
818
819
// Anything that branched to PredBB now branches to DestBB.
820
PredBB->replaceAllUsesWith(DestBB);
821
822
// Splice all the instructions from PredBB to DestBB.
823
PredBB->getTerminator()->eraseFromParent();
824
DestBB->splice(DestBB->begin(), PredBB);
825
new UnreachableInst(PredBB->getContext(), PredBB);
826
827
// If the PredBB is the entry block of the function, move DestBB up to
828
// become the entry block after we erase PredBB.
829
if (ReplaceEntryBB)
830
DestBB->moveAfter(PredBB);
831
832
if (DTU) {
833
assert(PredBB->size() == 1 &&
834
isa<UnreachableInst>(PredBB->getTerminator()) &&
835
"The successor list of PredBB isn't empty before "
836
"applying corresponding DTU updates.");
837
DTU->applyUpdatesPermissive(Updates);
838
DTU->deleteBB(PredBB);
839
// Recalculation of DomTree is needed when updating a forward DomTree and
840
// the Entry BB is replaced.
841
if (ReplaceEntryBB && DTU->hasDomTree()) {
842
// The entry block was removed and there is no external interface for
843
// the dominator tree to be notified of this change. In this corner-case
844
// we recalculate the entire tree.
845
DTU->recalculate(*(DestBB->getParent()));
846
}
847
}
848
849
else {
850
PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
851
}
852
}
853
854
/// Return true if we can choose one of these values to use in place of the
855
/// other. Note that we will always choose the non-undef value to keep.
856
static bool CanMergeValues(Value *First, Value *Second) {
857
return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
858
}
859
860
/// Return true if we can fold BB, an almost-empty BB ending in an unconditional
861
/// branch to Succ, into Succ.
862
///
863
/// Assumption: Succ is the single successor for BB.
864
static bool
865
CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ,
866
const SmallPtrSetImpl<BasicBlock *> &BBPreds) {
867
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
868
869
LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
870
<< Succ->getName() << "\n");
871
// Shortcut, if there is only a single predecessor it must be BB and merging
872
// is always safe
873
if (Succ->getSinglePredecessor())
874
return true;
875
876
// Look at all the phi nodes in Succ, to see if they present a conflict when
877
// merging these blocks
878
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
879
PHINode *PN = cast<PHINode>(I);
880
881
// If the incoming value from BB is again a PHINode in
882
// BB which has the same incoming value for *PI as PN does, we can
883
// merge the phi nodes and then the blocks can still be merged
884
PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
885
if (BBPN && BBPN->getParent() == BB) {
886
for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
887
BasicBlock *IBB = PN->getIncomingBlock(PI);
888
if (BBPreds.count(IBB) &&
889
!CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
890
PN->getIncomingValue(PI))) {
891
LLVM_DEBUG(dbgs()
892
<< "Can't fold, phi node " << PN->getName() << " in "
893
<< Succ->getName() << " is conflicting with "
894
<< BBPN->getName() << " with regard to common predecessor "
895
<< IBB->getName() << "\n");
896
return false;
897
}
898
}
899
} else {
900
Value* Val = PN->getIncomingValueForBlock(BB);
901
for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
902
// See if the incoming value for the common predecessor is equal to the
903
// one for BB, in which case this phi node will not prevent the merging
904
// of the block.
905
BasicBlock *IBB = PN->getIncomingBlock(PI);
906
if (BBPreds.count(IBB) &&
907
!CanMergeValues(Val, PN->getIncomingValue(PI))) {
908
LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
909
<< " in " << Succ->getName()
910
<< " is conflicting with regard to common "
911
<< "predecessor " << IBB->getName() << "\n");
912
return false;
913
}
914
}
915
}
916
}
917
918
return true;
919
}
920
921
using PredBlockVector = SmallVector<BasicBlock *, 16>;
922
using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
923
924
/// Determines the value to use as the phi node input for a block.
925
///
926
/// Select between \p OldVal any value that we know flows from \p BB
927
/// to a particular phi on the basis of which one (if either) is not
928
/// undef. Update IncomingValues based on the selected value.
929
///
930
/// \param OldVal The value we are considering selecting.
931
/// \param BB The block that the value flows in from.
932
/// \param IncomingValues A map from block-to-value for other phi inputs
933
/// that we have examined.
934
///
935
/// \returns the selected value.
936
static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
937
IncomingValueMap &IncomingValues) {
938
if (!isa<UndefValue>(OldVal)) {
939
assert((!IncomingValues.count(BB) ||
940
IncomingValues.find(BB)->second == OldVal) &&
941
"Expected OldVal to match incoming value from BB!");
942
943
IncomingValues.insert(std::make_pair(BB, OldVal));
944
return OldVal;
945
}
946
947
IncomingValueMap::const_iterator It = IncomingValues.find(BB);
948
if (It != IncomingValues.end()) return It->second;
949
950
return OldVal;
951
}
952
953
/// Create a map from block to value for the operands of a
954
/// given phi.
955
///
956
/// Create a map from block to value for each non-undef value flowing
957
/// into \p PN.
958
///
959
/// \param PN The phi we are collecting the map for.
960
/// \param IncomingValues [out] The map from block to value for this phi.
961
static void gatherIncomingValuesToPhi(PHINode *PN,
962
IncomingValueMap &IncomingValues) {
963
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
964
BasicBlock *BB = PN->getIncomingBlock(i);
965
Value *V = PN->getIncomingValue(i);
966
967
if (!isa<UndefValue>(V))
968
IncomingValues.insert(std::make_pair(BB, V));
969
}
970
}
971
972
/// Replace the incoming undef values to a phi with the values
973
/// from a block-to-value map.
974
///
975
/// \param PN The phi we are replacing the undefs in.
976
/// \param IncomingValues A map from block to value.
977
static void replaceUndefValuesInPhi(PHINode *PN,
978
const IncomingValueMap &IncomingValues) {
979
SmallVector<unsigned> TrueUndefOps;
980
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
981
Value *V = PN->getIncomingValue(i);
982
983
if (!isa<UndefValue>(V)) continue;
984
985
BasicBlock *BB = PN->getIncomingBlock(i);
986
IncomingValueMap::const_iterator It = IncomingValues.find(BB);
987
988
// Keep track of undef/poison incoming values. Those must match, so we fix
989
// them up below if needed.
990
// Note: this is conservatively correct, but we could try harder and group
991
// the undef values per incoming basic block.
992
if (It == IncomingValues.end()) {
993
TrueUndefOps.push_back(i);
994
continue;
995
}
996
997
// There is a defined value for this incoming block, so map this undef
998
// incoming value to the defined value.
999
PN->setIncomingValue(i, It->second);
1000
}
1001
1002
// If there are both undef and poison values incoming, then convert those
1003
// values to undef. It is invalid to have different values for the same
1004
// incoming block.
1005
unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
1006
return isa<PoisonValue>(PN->getIncomingValue(i));
1007
});
1008
if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
1009
for (unsigned i : TrueUndefOps)
1010
PN->setIncomingValue(i, UndefValue::get(PN->getType()));
1011
}
1012
}
1013
1014
// Only when they shares a single common predecessor, return true.
1015
// Only handles cases when BB can't be merged while its predecessors can be
1016
// redirected.
1017
static bool
1018
CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ,
1019
const SmallPtrSetImpl<BasicBlock *> &BBPreds,
1020
const SmallPtrSetImpl<BasicBlock *> &SuccPreds,
1021
BasicBlock *&CommonPred) {
1022
1023
// There must be phis in BB, otherwise BB will be merged into Succ directly
1024
if (BB->phis().empty() || Succ->phis().empty())
1025
return false;
1026
1027
// BB must have predecessors not shared that can be redirected to Succ
1028
if (!BB->hasNPredecessorsOrMore(2))
1029
return false;
1030
1031
if (any_of(BBPreds, [](const BasicBlock *Pred) {
1032
return isa<IndirectBrInst>(Pred->getTerminator());
1033
}))
1034
return false;
1035
1036
// Get the single common predecessor of both BB and Succ. Return false
1037
// when there are more than one common predecessors.
1038
for (BasicBlock *SuccPred : SuccPreds) {
1039
if (BBPreds.count(SuccPred)) {
1040
if (CommonPred)
1041
return false;
1042
CommonPred = SuccPred;
1043
}
1044
}
1045
1046
return true;
1047
}
1048
1049
/// Replace a value flowing from a block to a phi with
1050
/// potentially multiple instances of that value flowing from the
1051
/// block's predecessors to the phi.
1052
///
1053
/// \param BB The block with the value flowing into the phi.
1054
/// \param BBPreds The predecessors of BB.
1055
/// \param PN The phi that we are updating.
1056
/// \param CommonPred The common predecessor of BB and PN's BasicBlock
1057
static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
1058
const PredBlockVector &BBPreds,
1059
PHINode *PN,
1060
BasicBlock *CommonPred) {
1061
Value *OldVal = PN->removeIncomingValue(BB, false);
1062
assert(OldVal && "No entry in PHI for Pred BB!");
1063
1064
IncomingValueMap IncomingValues;
1065
1066
// We are merging two blocks - BB, and the block containing PN - and
1067
// as a result we need to redirect edges from the predecessors of BB
1068
// to go to the block containing PN, and update PN
1069
// accordingly. Since we allow merging blocks in the case where the
1070
// predecessor and successor blocks both share some predecessors,
1071
// and where some of those common predecessors might have undef
1072
// values flowing into PN, we want to rewrite those values to be
1073
// consistent with the non-undef values.
1074
1075
gatherIncomingValuesToPhi(PN, IncomingValues);
1076
1077
// If this incoming value is one of the PHI nodes in BB, the new entries
1078
// in the PHI node are the entries from the old PHI.
1079
if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
1080
PHINode *OldValPN = cast<PHINode>(OldVal);
1081
for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
1082
// Note that, since we are merging phi nodes and BB and Succ might
1083
// have common predecessors, we could end up with a phi node with
1084
// identical incoming branches. This will be cleaned up later (and
1085
// will trigger asserts if we try to clean it up now, without also
1086
// simplifying the corresponding conditional branch).
1087
BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1088
1089
if (PredBB == CommonPred)
1090
continue;
1091
1092
Value *PredVal = OldValPN->getIncomingValue(i);
1093
Value *Selected =
1094
selectIncomingValueForBlock(PredVal, PredBB, IncomingValues);
1095
1096
// And add a new incoming value for this predecessor for the
1097
// newly retargeted branch.
1098
PN->addIncoming(Selected, PredBB);
1099
}
1100
if (CommonPred)
1101
PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB);
1102
1103
} else {
1104
for (BasicBlock *PredBB : BBPreds) {
1105
// Update existing incoming values in PN for this
1106
// predecessor of BB.
1107
if (PredBB == CommonPred)
1108
continue;
1109
1110
Value *Selected =
1111
selectIncomingValueForBlock(OldVal, PredBB, IncomingValues);
1112
1113
// And add a new incoming value for this predecessor for the
1114
// newly retargeted branch.
1115
PN->addIncoming(Selected, PredBB);
1116
}
1117
if (CommonPred)
1118
PN->addIncoming(OldVal, BB);
1119
}
1120
1121
replaceUndefValuesInPhi(PN, IncomingValues);
1122
}
1123
1124
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1125
DomTreeUpdater *DTU) {
1126
assert(BB != &BB->getParent()->getEntryBlock() &&
1127
"TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1128
1129
// We can't simplify infinite loops.
1130
BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1131
if (BB == Succ)
1132
return false;
1133
1134
SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB));
1135
SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ));
1136
1137
// The single common predecessor of BB and Succ when BB cannot be killed
1138
BasicBlock *CommonPred = nullptr;
1139
1140
bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds);
1141
1142
// Even if we can not fold BB into Succ, we may be able to redirect the
1143
// predecessors of BB to Succ.
1144
bool BBPhisMergeable =
1145
BBKillable ||
1146
CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred);
1147
1148
if (!BBKillable && !BBPhisMergeable)
1149
return false;
1150
1151
// Check to see if merging these blocks/phis would cause conflicts for any of
1152
// the phi nodes in BB or Succ. If not, we can safely merge.
1153
1154
// Check for cases where Succ has multiple predecessors and a PHI node in BB
1155
// has uses which will not disappear when the PHI nodes are merged. It is
1156
// possible to handle such cases, but difficult: it requires checking whether
1157
// BB dominates Succ, which is non-trivial to calculate in the case where
1158
// Succ has multiple predecessors. Also, it requires checking whether
1159
// constructing the necessary self-referential PHI node doesn't introduce any
1160
// conflicts; this isn't too difficult, but the previous code for doing this
1161
// was incorrect.
1162
//
1163
// Note that if this check finds a live use, BB dominates Succ, so BB is
1164
// something like a loop pre-header (or rarely, a part of an irreducible CFG);
1165
// folding the branch isn't profitable in that case anyway.
1166
if (!Succ->getSinglePredecessor()) {
1167
BasicBlock::iterator BBI = BB->begin();
1168
while (isa<PHINode>(*BBI)) {
1169
for (Use &U : BBI->uses()) {
1170
if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1171
if (PN->getIncomingBlock(U) != BB)
1172
return false;
1173
} else {
1174
return false;
1175
}
1176
}
1177
++BBI;
1178
}
1179
}
1180
1181
if (BBPhisMergeable && CommonPred)
1182
LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName()
1183
<< " and " << Succ->getName() << " : "
1184
<< CommonPred->getName() << "\n");
1185
1186
// 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop
1187
// metadata.
1188
//
1189
// FIXME: This is a stop-gap solution to preserve inner-loop metadata given
1190
// current status (that loop metadata is implemented as metadata attached to
1191
// the branch instruction in the loop latch block). To quote from review
1192
// comments, "the current representation of loop metadata (using a loop latch
1193
// terminator attachment) is known to be fundamentally broken. Loop latches
1194
// are not uniquely associated with loops (both in that a latch can be part of
1195
// multiple loops and a loop may have multiple latches). Loop headers are. The
1196
// solution to this problem is also known: Add support for basic block
1197
// metadata, and attach loop metadata to the loop header."
1198
//
1199
// Why bail out:
1200
// In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is
1201
// the latch for inner-loop (see reason below), so bail out to prerserve
1202
// inner-loop metadata rather than eliminating 'BB' and attaching its metadata
1203
// to this inner-loop.
1204
// - The reason we believe 'BB' and 'BB->Pred' have different inner-most
1205
// loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L,
1206
// then 'BB' is the header and latch of 'L' and thereby 'L' must consist of
1207
// one self-looping basic block, which is contradictory with the assumption.
1208
//
1209
// To illustrate how inner-loop metadata is dropped:
1210
//
1211
// CFG Before
1212
//
1213
// BB is while.cond.exit, attached with loop metdata md2.
1214
// BB->Pred is for.body, attached with loop metadata md1.
1215
//
1216
// entry
1217
// |
1218
// v
1219
// ---> while.cond -------------> while.end
1220
// | |
1221
// | v
1222
// | while.body
1223
// | |
1224
// | v
1225
// | for.body <---- (md1)
1226
// | | |______|
1227
// | v
1228
// | while.cond.exit (md2)
1229
// | |
1230
// |_______|
1231
//
1232
// CFG After
1233
//
1234
// while.cond1 is the merge of while.cond.exit and while.cond above.
1235
// for.body is attached with md2, and md1 is dropped.
1236
// If LoopSimplify runs later (as a part of loop pass), it could create
1237
// dedicated exits for inner-loop (essentially adding `while.cond.exit`
1238
// back), but won't it won't see 'md1' nor restore it for the inner-loop.
1239
//
1240
// entry
1241
// |
1242
// v
1243
// ---> while.cond1 -------------> while.end
1244
// | |
1245
// | v
1246
// | while.body
1247
// | |
1248
// | v
1249
// | for.body <---- (md2)
1250
// |_______| |______|
1251
if (Instruction *TI = BB->getTerminator())
1252
if (TI->hasMetadata(LLVMContext::MD_loop))
1253
for (BasicBlock *Pred : predecessors(BB))
1254
if (Instruction *PredTI = Pred->getTerminator())
1255
if (PredTI->hasMetadata(LLVMContext::MD_loop))
1256
return false;
1257
1258
if (BBKillable)
1259
LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1260
else if (BBPhisMergeable)
1261
LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB);
1262
1263
SmallVector<DominatorTree::UpdateType, 32> Updates;
1264
1265
if (DTU) {
1266
// To avoid processing the same predecessor more than once.
1267
SmallPtrSet<BasicBlock *, 8> SeenPreds;
1268
// All predecessors of BB (except the common predecessor) will be moved to
1269
// Succ.
1270
Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
1271
1272
for (auto *PredOfBB : predecessors(BB)) {
1273
// Do not modify those common predecessors of BB and Succ
1274
if (!SuccPreds.contains(PredOfBB))
1275
if (SeenPreds.insert(PredOfBB).second)
1276
Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1277
}
1278
1279
SeenPreds.clear();
1280
1281
for (auto *PredOfBB : predecessors(BB))
1282
// When BB cannot be killed, do not remove the edge between BB and
1283
// CommonPred.
1284
if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred)
1285
Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1286
1287
if (BBKillable)
1288
Updates.push_back({DominatorTree::Delete, BB, Succ});
1289
}
1290
1291
if (isa<PHINode>(Succ->begin())) {
1292
// If there is more than one pred of succ, and there are PHI nodes in
1293
// the successor, then we need to add incoming edges for the PHI nodes
1294
//
1295
const PredBlockVector BBPreds(predecessors(BB));
1296
1297
// Loop over all of the PHI nodes in the successor of BB.
1298
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1299
PHINode *PN = cast<PHINode>(I);
1300
redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred);
1301
}
1302
}
1303
1304
if (Succ->getSinglePredecessor()) {
1305
// BB is the only predecessor of Succ, so Succ will end up with exactly
1306
// the same predecessors BB had.
1307
// Copy over any phi, debug or lifetime instruction.
1308
BB->getTerminator()->eraseFromParent();
1309
Succ->splice(Succ->getFirstNonPHIIt(), BB);
1310
} else {
1311
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1312
// We explicitly check for such uses for merging phis.
1313
assert(PN->use_empty() && "There shouldn't be any uses here!");
1314
PN->eraseFromParent();
1315
}
1316
}
1317
1318
// If the unconditional branch we replaced contains llvm.loop metadata, we
1319
// add the metadata to the branch instructions in the predecessors.
1320
if (Instruction *TI = BB->getTerminator())
1321
if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop))
1322
for (BasicBlock *Pred : predecessors(BB))
1323
Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD);
1324
1325
if (BBKillable) {
1326
// Everything that jumped to BB now goes to Succ.
1327
BB->replaceAllUsesWith(Succ);
1328
1329
if (!Succ->hasName())
1330
Succ->takeName(BB);
1331
1332
// Clear the successor list of BB to match updates applying to DTU later.
1333
if (BB->getTerminator())
1334
BB->back().eraseFromParent();
1335
1336
new UnreachableInst(BB->getContext(), BB);
1337
assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1338
"applying corresponding DTU updates.");
1339
} else if (BBPhisMergeable) {
1340
// Everything except CommonPred that jumped to BB now goes to Succ.
1341
BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool {
1342
if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser()))
1343
return UseInst->getParent() != CommonPred &&
1344
BBPreds.contains(UseInst->getParent());
1345
return false;
1346
});
1347
}
1348
1349
if (DTU)
1350
DTU->applyUpdates(Updates);
1351
1352
if (BBKillable)
1353
DeleteDeadBlock(BB, DTU);
1354
1355
return true;
1356
}
1357
1358
static bool
1359
EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB,
1360
SmallPtrSetImpl<PHINode *> &ToRemove) {
1361
// This implementation doesn't currently consider undef operands
1362
// specially. Theoretically, two phis which are identical except for
1363
// one having an undef where the other doesn't could be collapsed.
1364
1365
bool Changed = false;
1366
1367
// Examine each PHI.
1368
// Note that increment of I must *NOT* be in the iteration_expression, since
1369
// we don't want to immediately advance when we restart from the beginning.
1370
for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1371
++I;
1372
// Is there an identical PHI node in this basic block?
1373
// Note that we only look in the upper square's triangle,
1374
// we already checked that the lower triangle PHI's aren't identical.
1375
for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1376
if (ToRemove.contains(DuplicatePN))
1377
continue;
1378
if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1379
continue;
1380
// A duplicate. Replace this PHI with the base PHI.
1381
++NumPHICSEs;
1382
DuplicatePN->replaceAllUsesWith(PN);
1383
ToRemove.insert(DuplicatePN);
1384
Changed = true;
1385
1386
// The RAUW can change PHIs that we already visited.
1387
I = BB->begin();
1388
break; // Start over from the beginning.
1389
}
1390
}
1391
return Changed;
1392
}
1393
1394
static bool
1395
EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB,
1396
SmallPtrSetImpl<PHINode *> &ToRemove) {
1397
// This implementation doesn't currently consider undef operands
1398
// specially. Theoretically, two phis which are identical except for
1399
// one having an undef where the other doesn't could be collapsed.
1400
1401
struct PHIDenseMapInfo {
1402
static PHINode *getEmptyKey() {
1403
return DenseMapInfo<PHINode *>::getEmptyKey();
1404
}
1405
1406
static PHINode *getTombstoneKey() {
1407
return DenseMapInfo<PHINode *>::getTombstoneKey();
1408
}
1409
1410
static bool isSentinel(PHINode *PN) {
1411
return PN == getEmptyKey() || PN == getTombstoneKey();
1412
}
1413
1414
// WARNING: this logic must be kept in sync with
1415
// Instruction::isIdenticalToWhenDefined()!
1416
static unsigned getHashValueImpl(PHINode *PN) {
1417
// Compute a hash value on the operands. Instcombine will likely have
1418
// sorted them, which helps expose duplicates, but we have to check all
1419
// the operands to be safe in case instcombine hasn't run.
1420
return static_cast<unsigned>(hash_combine(
1421
hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1422
hash_combine_range(PN->block_begin(), PN->block_end())));
1423
}
1424
1425
static unsigned getHashValue(PHINode *PN) {
1426
#ifndef NDEBUG
1427
// If -phicse-debug-hash was specified, return a constant -- this
1428
// will force all hashing to collide, so we'll exhaustively search
1429
// the table for a match, and the assertion in isEqual will fire if
1430
// there's a bug causing equal keys to hash differently.
1431
if (PHICSEDebugHash)
1432
return 0;
1433
#endif
1434
return getHashValueImpl(PN);
1435
}
1436
1437
static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1438
if (isSentinel(LHS) || isSentinel(RHS))
1439
return LHS == RHS;
1440
return LHS->isIdenticalTo(RHS);
1441
}
1442
1443
static bool isEqual(PHINode *LHS, PHINode *RHS) {
1444
// These comparisons are nontrivial, so assert that equality implies
1445
// hash equality (DenseMap demands this as an invariant).
1446
bool Result = isEqualImpl(LHS, RHS);
1447
assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1448
getHashValueImpl(LHS) == getHashValueImpl(RHS));
1449
return Result;
1450
}
1451
};
1452
1453
// Set of unique PHINodes.
1454
DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1455
PHISet.reserve(4 * PHICSENumPHISmallSize);
1456
1457
// Examine each PHI.
1458
bool Changed = false;
1459
for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1460
if (ToRemove.contains(PN))
1461
continue;
1462
auto Inserted = PHISet.insert(PN);
1463
if (!Inserted.second) {
1464
// A duplicate. Replace this PHI with its duplicate.
1465
++NumPHICSEs;
1466
PN->replaceAllUsesWith(*Inserted.first);
1467
ToRemove.insert(PN);
1468
Changed = true;
1469
1470
// The RAUW can change PHIs that we already visited. Start over from the
1471
// beginning.
1472
PHISet.clear();
1473
I = BB->begin();
1474
}
1475
}
1476
1477
return Changed;
1478
}
1479
1480
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB,
1481
SmallPtrSetImpl<PHINode *> &ToRemove) {
1482
if (
1483
#ifndef NDEBUG
1484
!PHICSEDebugHash &&
1485
#endif
1486
hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1487
return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove);
1488
return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove);
1489
}
1490
1491
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1492
SmallPtrSet<PHINode *, 8> ToRemove;
1493
bool Changed = EliminateDuplicatePHINodes(BB, ToRemove);
1494
for (PHINode *PN : ToRemove)
1495
PN->eraseFromParent();
1496
return Changed;
1497
}
1498
1499
Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign,
1500
const DataLayout &DL) {
1501
V = V->stripPointerCasts();
1502
1503
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1504
// TODO: Ideally, this function would not be called if PrefAlign is smaller
1505
// than the current alignment, as the known bits calculation should have
1506
// already taken it into account. However, this is not always the case,
1507
// as computeKnownBits() has a depth limit, while stripPointerCasts()
1508
// doesn't.
1509
Align CurrentAlign = AI->getAlign();
1510
if (PrefAlign <= CurrentAlign)
1511
return CurrentAlign;
1512
1513
// If the preferred alignment is greater than the natural stack alignment
1514
// then don't round up. This avoids dynamic stack realignment.
1515
if (DL.exceedsNaturalStackAlignment(PrefAlign))
1516
return CurrentAlign;
1517
AI->setAlignment(PrefAlign);
1518
return PrefAlign;
1519
}
1520
1521
if (auto *GO = dyn_cast<GlobalObject>(V)) {
1522
// TODO: as above, this shouldn't be necessary.
1523
Align CurrentAlign = GO->getPointerAlignment(DL);
1524
if (PrefAlign <= CurrentAlign)
1525
return CurrentAlign;
1526
1527
// If there is a large requested alignment and we can, bump up the alignment
1528
// of the global. If the memory we set aside for the global may not be the
1529
// memory used by the final program then it is impossible for us to reliably
1530
// enforce the preferred alignment.
1531
if (!GO->canIncreaseAlignment())
1532
return CurrentAlign;
1533
1534
if (GO->isThreadLocal()) {
1535
unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT;
1536
if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign))
1537
PrefAlign = Align(MaxTLSAlign);
1538
}
1539
1540
GO->setAlignment(PrefAlign);
1541
return PrefAlign;
1542
}
1543
1544
return Align(1);
1545
}
1546
1547
Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1548
const DataLayout &DL,
1549
const Instruction *CxtI,
1550
AssumptionCache *AC,
1551
const DominatorTree *DT) {
1552
assert(V->getType()->isPointerTy() &&
1553
"getOrEnforceKnownAlignment expects a pointer!");
1554
1555
KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1556
unsigned TrailZ = Known.countMinTrailingZeros();
1557
1558
// Avoid trouble with ridiculously large TrailZ values, such as
1559
// those computed from a null pointer.
1560
// LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1561
TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1562
1563
Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1564
1565
if (PrefAlign && *PrefAlign > Alignment)
1566
Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1567
1568
// We don't need to make any adjustment.
1569
return Alignment;
1570
}
1571
1572
///===---------------------------------------------------------------------===//
1573
/// Dbg Intrinsic utilities
1574
///
1575
1576
/// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1577
static bool PhiHasDebugValue(DILocalVariable *DIVar,
1578
DIExpression *DIExpr,
1579
PHINode *APN) {
1580
// Since we can't guarantee that the original dbg.declare intrinsic
1581
// is removed by LowerDbgDeclare(), we need to make sure that we are
1582
// not inserting the same dbg.value intrinsic over and over.
1583
SmallVector<DbgValueInst *, 1> DbgValues;
1584
SmallVector<DbgVariableRecord *, 1> DbgVariableRecords;
1585
findDbgValues(DbgValues, APN, &DbgVariableRecords);
1586
for (auto *DVI : DbgValues) {
1587
assert(is_contained(DVI->getValues(), APN));
1588
if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1589
return true;
1590
}
1591
for (auto *DVR : DbgVariableRecords) {
1592
assert(is_contained(DVR->location_ops(), APN));
1593
if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr))
1594
return true;
1595
}
1596
return false;
1597
}
1598
1599
/// Check if the alloc size of \p ValTy is large enough to cover the variable
1600
/// (or fragment of the variable) described by \p DII.
1601
///
1602
/// This is primarily intended as a helper for the different
1603
/// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted
1604
/// describes an alloca'd variable, so we need to use the alloc size of the
1605
/// value when doing the comparison. E.g. an i1 value will be identified as
1606
/// covering an n-bit fragment, if the store size of i1 is at least n bits.
1607
static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1608
const DataLayout &DL = DII->getDataLayout();
1609
TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1610
if (std::optional<uint64_t> FragmentSize =
1611
DII->getExpression()->getActiveBits(DII->getVariable()))
1612
return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
1613
1614
// We can't always calculate the size of the DI variable (e.g. if it is a
1615
// VLA). Try to use the size of the alloca that the dbg intrinsic describes
1616
// intead.
1617
if (DII->isAddressOfVariable()) {
1618
// DII should have exactly 1 location when it is an address.
1619
assert(DII->getNumVariableLocationOps() == 1 &&
1620
"address of variable must have exactly 1 location operand.");
1621
if (auto *AI =
1622
dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1623
if (std::optional<TypeSize> FragmentSize =
1624
AI->getAllocationSizeInBits(DL)) {
1625
return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1626
}
1627
}
1628
}
1629
// Could not determine size of variable. Conservatively return false.
1630
return false;
1631
}
1632
// RemoveDIs: duplicate implementation of the above, using DbgVariableRecords,
1633
// the replacement for dbg.values.
1634
static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) {
1635
const DataLayout &DL = DVR->getModule()->getDataLayout();
1636
TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1637
if (std::optional<uint64_t> FragmentSize =
1638
DVR->getExpression()->getActiveBits(DVR->getVariable()))
1639
return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
1640
1641
// We can't always calculate the size of the DI variable (e.g. if it is a
1642
// VLA). Try to use the size of the alloca that the dbg intrinsic describes
1643
// intead.
1644
if (DVR->isAddressOfVariable()) {
1645
// DVR should have exactly 1 location when it is an address.
1646
assert(DVR->getNumVariableLocationOps() == 1 &&
1647
"address of variable must have exactly 1 location operand.");
1648
if (auto *AI =
1649
dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) {
1650
if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1651
return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1652
}
1653
}
1654
}
1655
// Could not determine size of variable. Conservatively return false.
1656
return false;
1657
}
1658
1659
static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV,
1660
DILocalVariable *DIVar,
1661
DIExpression *DIExpr,
1662
const DebugLoc &NewLoc,
1663
BasicBlock::iterator Instr) {
1664
if (!UseNewDbgInfoFormat) {
1665
auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
1666
(Instruction *)nullptr);
1667
DbgVal.get<Instruction *>()->insertBefore(Instr);
1668
} else {
1669
// RemoveDIs: if we're using the new debug-info format, allocate a
1670
// DbgVariableRecord directly instead of a dbg.value intrinsic.
1671
ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1672
DbgVariableRecord *DV =
1673
new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get());
1674
Instr->getParent()->insertDbgRecordBefore(DV, Instr);
1675
}
1676
}
1677
1678
static void insertDbgValueOrDbgVariableRecordAfter(
1679
DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr,
1680
const DebugLoc &NewLoc, BasicBlock::iterator Instr) {
1681
if (!UseNewDbgInfoFormat) {
1682
auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
1683
(Instruction *)nullptr);
1684
DbgVal.get<Instruction *>()->insertAfter(&*Instr);
1685
} else {
1686
// RemoveDIs: if we're using the new debug-info format, allocate a
1687
// DbgVariableRecord directly instead of a dbg.value intrinsic.
1688
ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1689
DbgVariableRecord *DV =
1690
new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get());
1691
Instr->getParent()->insertDbgRecordAfter(DV, &*Instr);
1692
}
1693
}
1694
1695
/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1696
/// that has an associated llvm.dbg.declare intrinsic.
1697
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1698
StoreInst *SI, DIBuilder &Builder) {
1699
assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII));
1700
auto *DIVar = DII->getVariable();
1701
assert(DIVar && "Missing variable");
1702
auto *DIExpr = DII->getExpression();
1703
Value *DV = SI->getValueOperand();
1704
1705
DebugLoc NewLoc = getDebugValueLoc(DII);
1706
1707
// If the alloca describes the variable itself, i.e. the expression in the
1708
// dbg.declare doesn't start with a dereference, we can perform the
1709
// conversion if the value covers the entire fragment of DII.
1710
// If the alloca describes the *address* of DIVar, i.e. DIExpr is
1711
// *just* a DW_OP_deref, we use DV as is for the dbg.value.
1712
// We conservatively ignore other dereferences, because the following two are
1713
// not equivalent:
1714
// dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
1715
// dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
1716
// The former is adding 2 to the address of the variable, whereas the latter
1717
// is adding 2 to the value of the variable. As such, we insist on just a
1718
// deref expression.
1719
bool CanConvert =
1720
DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
1721
valueCoversEntireFragment(DV->getType(), DII));
1722
if (CanConvert) {
1723
insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1724
SI->getIterator());
1725
return;
1726
}
1727
1728
// FIXME: If storing to a part of the variable described by the dbg.declare,
1729
// then we want to insert a dbg.value for the corresponding fragment.
1730
LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII
1731
<< '\n');
1732
// For now, when there is a store to parts of the variable (but we do not
1733
// know which part) we insert an dbg.value intrinsic to indicate that we
1734
// know nothing about the variable's content.
1735
DV = UndefValue::get(DV->getType());
1736
insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1737
SI->getIterator());
1738
}
1739
1740
/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1741
/// that has an associated llvm.dbg.declare intrinsic.
1742
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1743
LoadInst *LI, DIBuilder &Builder) {
1744
auto *DIVar = DII->getVariable();
1745
auto *DIExpr = DII->getExpression();
1746
assert(DIVar && "Missing variable");
1747
1748
if (!valueCoversEntireFragment(LI->getType(), DII)) {
1749
// FIXME: If only referring to a part of the variable described by the
1750
// dbg.declare, then we want to insert a dbg.value for the corresponding
1751
// fragment.
1752
LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1753
<< *DII << '\n');
1754
return;
1755
}
1756
1757
DebugLoc NewLoc = getDebugValueLoc(DII);
1758
1759
// We are now tracking the loaded value instead of the address. In the
1760
// future if multi-location support is added to the IR, it might be
1761
// preferable to keep tracking both the loaded value and the original
1762
// address in case the alloca can not be elided.
1763
insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc,
1764
LI->getIterator());
1765
}
1766
1767
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR,
1768
StoreInst *SI, DIBuilder &Builder) {
1769
assert(DVR->isAddressOfVariable() || DVR->isDbgAssign());
1770
auto *DIVar = DVR->getVariable();
1771
assert(DIVar && "Missing variable");
1772
auto *DIExpr = DVR->getExpression();
1773
Value *DV = SI->getValueOperand();
1774
1775
DebugLoc NewLoc = getDebugValueLoc(DVR);
1776
1777
// If the alloca describes the variable itself, i.e. the expression in the
1778
// dbg.declare doesn't start with a dereference, we can perform the
1779
// conversion if the value covers the entire fragment of DII.
1780
// If the alloca describes the *address* of DIVar, i.e. DIExpr is
1781
// *just* a DW_OP_deref, we use DV as is for the dbg.value.
1782
// We conservatively ignore other dereferences, because the following two are
1783
// not equivalent:
1784
// dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
1785
// dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
1786
// The former is adding 2 to the address of the variable, whereas the latter
1787
// is adding 2 to the value of the variable. As such, we insist on just a
1788
// deref expression.
1789
bool CanConvert =
1790
DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
1791
valueCoversEntireFragment(DV->getType(), DVR));
1792
if (CanConvert) {
1793
insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1794
SI->getIterator());
1795
return;
1796
}
1797
1798
// FIXME: If storing to a part of the variable described by the dbg.declare,
1799
// then we want to insert a dbg.value for the corresponding fragment.
1800
LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR
1801
<< '\n');
1802
assert(UseNewDbgInfoFormat);
1803
1804
// For now, when there is a store to parts of the variable (but we do not
1805
// know which part) we insert an dbg.value intrinsic to indicate that we
1806
// know nothing about the variable's content.
1807
DV = UndefValue::get(DV->getType());
1808
ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1809
DbgVariableRecord *NewDVR =
1810
new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get());
1811
SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator());
1812
}
1813
1814
/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1815
/// llvm.dbg.declare intrinsic.
1816
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1817
PHINode *APN, DIBuilder &Builder) {
1818
auto *DIVar = DII->getVariable();
1819
auto *DIExpr = DII->getExpression();
1820
assert(DIVar && "Missing variable");
1821
1822
if (PhiHasDebugValue(DIVar, DIExpr, APN))
1823
return;
1824
1825
if (!valueCoversEntireFragment(APN->getType(), DII)) {
1826
// FIXME: If only referring to a part of the variable described by the
1827
// dbg.declare, then we want to insert a dbg.value for the corresponding
1828
// fragment.
1829
LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1830
<< *DII << '\n');
1831
return;
1832
}
1833
1834
BasicBlock *BB = APN->getParent();
1835
auto InsertionPt = BB->getFirstInsertionPt();
1836
1837
DebugLoc NewLoc = getDebugValueLoc(DII);
1838
1839
// The block may be a catchswitch block, which does not have a valid
1840
// insertion point.
1841
// FIXME: Insert dbg.value markers in the successors when appropriate.
1842
if (InsertionPt != BB->end()) {
1843
insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc,
1844
InsertionPt);
1845
}
1846
}
1847
1848
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI,
1849
DIBuilder &Builder) {
1850
auto *DIVar = DVR->getVariable();
1851
auto *DIExpr = DVR->getExpression();
1852
assert(DIVar && "Missing variable");
1853
1854
if (!valueCoversEntireFragment(LI->getType(), DVR)) {
1855
// FIXME: If only referring to a part of the variable described by the
1856
// dbg.declare, then we want to insert a DbgVariableRecord for the
1857
// corresponding fragment.
1858
LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: "
1859
<< *DVR << '\n');
1860
return;
1861
}
1862
1863
DebugLoc NewLoc = getDebugValueLoc(DVR);
1864
1865
// We are now tracking the loaded value instead of the address. In the
1866
// future if multi-location support is added to the IR, it might be
1867
// preferable to keep tracking both the loaded value and the original
1868
// address in case the alloca can not be elided.
1869
assert(UseNewDbgInfoFormat);
1870
1871
// Create a DbgVariableRecord directly and insert.
1872
ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI);
1873
DbgVariableRecord *DV =
1874
new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get());
1875
LI->getParent()->insertDbgRecordAfter(DV, LI);
1876
}
1877
1878
/// Determine whether this alloca is either a VLA or an array.
1879
static bool isArray(AllocaInst *AI) {
1880
return AI->isArrayAllocation() ||
1881
(AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1882
}
1883
1884
/// Determine whether this alloca is a structure.
1885
static bool isStructure(AllocaInst *AI) {
1886
return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1887
}
1888
void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN,
1889
DIBuilder &Builder) {
1890
auto *DIVar = DVR->getVariable();
1891
auto *DIExpr = DVR->getExpression();
1892
assert(DIVar && "Missing variable");
1893
1894
if (PhiHasDebugValue(DIVar, DIExpr, APN))
1895
return;
1896
1897
if (!valueCoversEntireFragment(APN->getType(), DVR)) {
1898
// FIXME: If only referring to a part of the variable described by the
1899
// dbg.declare, then we want to insert a DbgVariableRecord for the
1900
// corresponding fragment.
1901
LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: "
1902
<< *DVR << '\n');
1903
return;
1904
}
1905
1906
BasicBlock *BB = APN->getParent();
1907
auto InsertionPt = BB->getFirstInsertionPt();
1908
1909
DebugLoc NewLoc = getDebugValueLoc(DVR);
1910
1911
// The block may be a catchswitch block, which does not have a valid
1912
// insertion point.
1913
// FIXME: Insert DbgVariableRecord markers in the successors when appropriate.
1914
if (InsertionPt != BB->end()) {
1915
insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc,
1916
InsertionPt);
1917
}
1918
}
1919
1920
/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1921
/// of llvm.dbg.value intrinsics.
1922
bool llvm::LowerDbgDeclare(Function &F) {
1923
bool Changed = false;
1924
DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1925
SmallVector<DbgDeclareInst *, 4> Dbgs;
1926
SmallVector<DbgVariableRecord *> DVRs;
1927
for (auto &FI : F) {
1928
for (Instruction &BI : FI) {
1929
if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI))
1930
Dbgs.push_back(DDI);
1931
for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) {
1932
if (DVR.getType() == DbgVariableRecord::LocationType::Declare)
1933
DVRs.push_back(&DVR);
1934
}
1935
}
1936
}
1937
1938
if (Dbgs.empty() && DVRs.empty())
1939
return Changed;
1940
1941
auto LowerOne = [&](auto *DDI) {
1942
AllocaInst *AI =
1943
dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0));
1944
// If this is an alloca for a scalar variable, insert a dbg.value
1945
// at each load and store to the alloca and erase the dbg.declare.
1946
// The dbg.values allow tracking a variable even if it is not
1947
// stored on the stack, while the dbg.declare can only describe
1948
// the stack slot (and at a lexical-scope granularity). Later
1949
// passes will attempt to elide the stack slot.
1950
if (!AI || isArray(AI) || isStructure(AI))
1951
return;
1952
1953
// A volatile load/store means that the alloca can't be elided anyway.
1954
if (llvm::any_of(AI->users(), [](User *U) -> bool {
1955
if (LoadInst *LI = dyn_cast<LoadInst>(U))
1956
return LI->isVolatile();
1957
if (StoreInst *SI = dyn_cast<StoreInst>(U))
1958
return SI->isVolatile();
1959
return false;
1960
}))
1961
return;
1962
1963
SmallVector<const Value *, 8> WorkList;
1964
WorkList.push_back(AI);
1965
while (!WorkList.empty()) {
1966
const Value *V = WorkList.pop_back_val();
1967
for (const auto &AIUse : V->uses()) {
1968
User *U = AIUse.getUser();
1969
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1970
if (AIUse.getOperandNo() == 1)
1971
ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1972
} else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1973
ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1974
} else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1975
// This is a call by-value or some other instruction that takes a
1976
// pointer to the variable. Insert a *value* intrinsic that describes
1977
// the variable by dereferencing the alloca.
1978
if (!CI->isLifetimeStartOrEnd()) {
1979
DebugLoc NewLoc = getDebugValueLoc(DDI);
1980
auto *DerefExpr =
1981
DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1982
insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(),
1983
DerefExpr, NewLoc,
1984
CI->getIterator());
1985
}
1986
} else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1987
if (BI->getType()->isPointerTy())
1988
WorkList.push_back(BI);
1989
}
1990
}
1991
}
1992
DDI->eraseFromParent();
1993
Changed = true;
1994
};
1995
1996
for_each(Dbgs, LowerOne);
1997
for_each(DVRs, LowerOne);
1998
1999
if (Changed)
2000
for (BasicBlock &BB : F)
2001
RemoveRedundantDbgInstrs(&BB);
2002
2003
return Changed;
2004
}
2005
2006
// RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the
2007
// debug-info out of the block's DbgVariableRecords rather than dbg.value
2008
// intrinsics.
2009
static void
2010
insertDbgVariableRecordsForPHIs(BasicBlock *BB,
2011
SmallVectorImpl<PHINode *> &InsertedPHIs) {
2012
assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from.");
2013
if (InsertedPHIs.size() == 0)
2014
return;
2015
2016
// Map existing PHI nodes to their DbgVariableRecords.
2017
DenseMap<Value *, DbgVariableRecord *> DbgValueMap;
2018
for (auto &I : *BB) {
2019
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
2020
for (Value *V : DVR.location_ops())
2021
if (auto *Loc = dyn_cast_or_null<PHINode>(V))
2022
DbgValueMap.insert({Loc, &DVR});
2023
}
2024
}
2025
if (DbgValueMap.size() == 0)
2026
return;
2027
2028
// Map a pair of the destination BB and old DbgVariableRecord to the new
2029
// DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use
2030
// more than one of the inserted PHIs in the same destination BB, we can
2031
// update the same DbgVariableRecord with all the new PHIs instead of creating
2032
// one copy for each.
2033
MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *>
2034
NewDbgValueMap;
2035
// Then iterate through the new PHIs and look to see if they use one of the
2036
// previously mapped PHIs. If so, create a new DbgVariableRecord that will
2037
// propagate the info through the new PHI. If we use more than one new PHI in
2038
// a single destination BB with the same old dbg.value, merge the updates so
2039
// that we get a single new DbgVariableRecord with all the new PHIs.
2040
for (auto PHI : InsertedPHIs) {
2041
BasicBlock *Parent = PHI->getParent();
2042
// Avoid inserting a debug-info record into an EH block.
2043
if (Parent->getFirstNonPHI()->isEHPad())
2044
continue;
2045
for (auto VI : PHI->operand_values()) {
2046
auto V = DbgValueMap.find(VI);
2047
if (V != DbgValueMap.end()) {
2048
DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second);
2049
auto NewDI = NewDbgValueMap.find({Parent, DbgII});
2050
if (NewDI == NewDbgValueMap.end()) {
2051
DbgVariableRecord *NewDbgII = DbgII->clone();
2052
NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
2053
}
2054
DbgVariableRecord *NewDbgII = NewDI->second;
2055
// If PHI contains VI as an operand more than once, we may
2056
// replaced it in NewDbgII; confirm that it is present.
2057
if (is_contained(NewDbgII->location_ops(), VI))
2058
NewDbgII->replaceVariableLocationOp(VI, PHI);
2059
}
2060
}
2061
}
2062
// Insert the new DbgVariableRecords into their destination blocks.
2063
for (auto DI : NewDbgValueMap) {
2064
BasicBlock *Parent = DI.first.first;
2065
DbgVariableRecord *NewDbgII = DI.second;
2066
auto InsertionPt = Parent->getFirstInsertionPt();
2067
assert(InsertionPt != Parent->end() && "Ill-formed basic block");
2068
2069
Parent->insertDbgRecordBefore(NewDbgII, InsertionPt);
2070
}
2071
}
2072
2073
/// Propagate dbg.value intrinsics through the newly inserted PHIs.
2074
void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
2075
SmallVectorImpl<PHINode *> &InsertedPHIs) {
2076
assert(BB && "No BasicBlock to clone dbg.value(s) from.");
2077
if (InsertedPHIs.size() == 0)
2078
return;
2079
2080
insertDbgVariableRecordsForPHIs(BB, InsertedPHIs);
2081
2082
// Map existing PHI nodes to their dbg.values.
2083
ValueToValueMapTy DbgValueMap;
2084
for (auto &I : *BB) {
2085
if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2086
for (Value *V : DbgII->location_ops())
2087
if (auto *Loc = dyn_cast_or_null<PHINode>(V))
2088
DbgValueMap.insert({Loc, DbgII});
2089
}
2090
}
2091
if (DbgValueMap.size() == 0)
2092
return;
2093
2094
// Map a pair of the destination BB and old dbg.value to the new dbg.value,
2095
// so that if a dbg.value is being rewritten to use more than one of the
2096
// inserted PHIs in the same destination BB, we can update the same dbg.value
2097
// with all the new PHIs instead of creating one copy for each.
2098
MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
2099
DbgVariableIntrinsic *>
2100
NewDbgValueMap;
2101
// Then iterate through the new PHIs and look to see if they use one of the
2102
// previously mapped PHIs. If so, create a new dbg.value intrinsic that will
2103
// propagate the info through the new PHI. If we use more than one new PHI in
2104
// a single destination BB with the same old dbg.value, merge the updates so
2105
// that we get a single new dbg.value with all the new PHIs.
2106
for (auto *PHI : InsertedPHIs) {
2107
BasicBlock *Parent = PHI->getParent();
2108
// Avoid inserting an intrinsic into an EH block.
2109
if (Parent->getFirstNonPHI()->isEHPad())
2110
continue;
2111
for (auto *VI : PHI->operand_values()) {
2112
auto V = DbgValueMap.find(VI);
2113
if (V != DbgValueMap.end()) {
2114
auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
2115
auto NewDI = NewDbgValueMap.find({Parent, DbgII});
2116
if (NewDI == NewDbgValueMap.end()) {
2117
auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
2118
NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
2119
}
2120
DbgVariableIntrinsic *NewDbgII = NewDI->second;
2121
// If PHI contains VI as an operand more than once, we may
2122
// replaced it in NewDbgII; confirm that it is present.
2123
if (is_contained(NewDbgII->location_ops(), VI))
2124
NewDbgII->replaceVariableLocationOp(VI, PHI);
2125
}
2126
}
2127
}
2128
// Insert thew new dbg.values into their destination blocks.
2129
for (auto DI : NewDbgValueMap) {
2130
BasicBlock *Parent = DI.first.first;
2131
auto *NewDbgII = DI.second;
2132
auto InsertionPt = Parent->getFirstInsertionPt();
2133
assert(InsertionPt != Parent->end() && "Ill-formed basic block");
2134
NewDbgII->insertBefore(&*InsertionPt);
2135
}
2136
}
2137
2138
bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
2139
DIBuilder &Builder, uint8_t DIExprFlags,
2140
int Offset) {
2141
TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address);
2142
TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address);
2143
2144
auto ReplaceOne = [&](auto *DII) {
2145
assert(DII->getVariable() && "Missing variable");
2146
auto *DIExpr = DII->getExpression();
2147
DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
2148
DII->setExpression(DIExpr);
2149
DII->replaceVariableLocationOp(Address, NewAddress);
2150
};
2151
2152
for_each(DbgDeclares, ReplaceOne);
2153
for_each(DVRDeclares, ReplaceOne);
2154
2155
return !DbgDeclares.empty() || !DVRDeclares.empty();
2156
}
2157
2158
static void updateOneDbgValueForAlloca(const DebugLoc &Loc,
2159
DILocalVariable *DIVar,
2160
DIExpression *DIExpr, Value *NewAddress,
2161
DbgValueInst *DVI,
2162
DbgVariableRecord *DVR,
2163
DIBuilder &Builder, int Offset) {
2164
assert(DIVar && "Missing variable");
2165
2166
// This is an alloca-based dbg.value/DbgVariableRecord. The first thing it
2167
// should do with the alloca pointer is dereference it. Otherwise we don't
2168
// know how to handle it and give up.
2169
if (!DIExpr || DIExpr->getNumElements() < 1 ||
2170
DIExpr->getElement(0) != dwarf::DW_OP_deref)
2171
return;
2172
2173
// Insert the offset before the first deref.
2174
if (Offset)
2175
DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
2176
2177
if (DVI) {
2178
DVI->setExpression(DIExpr);
2179
DVI->replaceVariableLocationOp(0u, NewAddress);
2180
} else {
2181
assert(DVR);
2182
DVR->setExpression(DIExpr);
2183
DVR->replaceVariableLocationOp(0u, NewAddress);
2184
}
2185
}
2186
2187
void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
2188
DIBuilder &Builder, int Offset) {
2189
SmallVector<DbgValueInst *, 1> DbgUsers;
2190
SmallVector<DbgVariableRecord *, 1> DPUsers;
2191
findDbgValues(DbgUsers, AI, &DPUsers);
2192
2193
// Attempt to replace dbg.values that use this alloca.
2194
for (auto *DVI : DbgUsers)
2195
updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(),
2196
DVI->getExpression(), NewAllocaAddress, DVI,
2197
nullptr, Builder, Offset);
2198
2199
// Replace any DbgVariableRecords that use this alloca.
2200
for (DbgVariableRecord *DVR : DPUsers)
2201
updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(),
2202
DVR->getExpression(), NewAllocaAddress, nullptr,
2203
DVR, Builder, Offset);
2204
}
2205
2206
/// Where possible to salvage debug information for \p I do so.
2207
/// If not possible mark undef.
2208
void llvm::salvageDebugInfo(Instruction &I) {
2209
SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2210
SmallVector<DbgVariableRecord *, 1> DPUsers;
2211
findDbgUsers(DbgUsers, &I, &DPUsers);
2212
salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers);
2213
}
2214
2215
template <typename T> static void salvageDbgAssignAddress(T *Assign) {
2216
Instruction *I = dyn_cast<Instruction>(Assign->getAddress());
2217
// Only instructions can be salvaged at the moment.
2218
if (!I)
2219
return;
2220
2221
assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() &&
2222
"address-expression shouldn't have fragment info");
2223
2224
// The address component of a dbg.assign cannot be variadic.
2225
uint64_t CurrentLocOps = 0;
2226
SmallVector<Value *, 4> AdditionalValues;
2227
SmallVector<uint64_t, 16> Ops;
2228
Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues);
2229
2230
// Check if the salvage failed.
2231
if (!NewV)
2232
return;
2233
2234
DIExpression *SalvagedExpr = DIExpression::appendOpsToArg(
2235
Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false);
2236
assert(!SalvagedExpr->getFragmentInfo().has_value() &&
2237
"address-expression shouldn't have fragment info");
2238
2239
SalvagedExpr = SalvagedExpr->foldConstantMath();
2240
2241
// Salvage succeeds if no additional values are required.
2242
if (AdditionalValues.empty()) {
2243
Assign->setAddress(NewV);
2244
Assign->setAddressExpression(SalvagedExpr);
2245
} else {
2246
Assign->setKillAddress();
2247
}
2248
}
2249
2250
void llvm::salvageDebugInfoForDbgValues(
2251
Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers,
2252
ArrayRef<DbgVariableRecord *> DPUsers) {
2253
// These are arbitrary chosen limits on the maximum number of values and the
2254
// maximum size of a debug expression we can salvage up to, used for
2255
// performance reasons.
2256
const unsigned MaxDebugArgs = 16;
2257
const unsigned MaxExpressionSize = 128;
2258
bool Salvaged = false;
2259
2260
for (auto *DII : DbgUsers) {
2261
if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) {
2262
if (DAI->getAddress() == &I) {
2263
salvageDbgAssignAddress(DAI);
2264
Salvaged = true;
2265
}
2266
if (DAI->getValue() != &I)
2267
continue;
2268
}
2269
2270
// Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly
2271
// pointing out the value as a DWARF memory location description.
2272
bool StackValue = isa<DbgValueInst>(DII);
2273
auto DIILocation = DII->location_ops();
2274
assert(
2275
is_contained(DIILocation, &I) &&
2276
"DbgVariableIntrinsic must use salvaged instruction as its location");
2277
SmallVector<Value *, 4> AdditionalValues;
2278
// `I` may appear more than once in DII's location ops, and each use of `I`
2279
// must be updated in the DIExpression and potentially have additional
2280
// values added; thus we call salvageDebugInfoImpl for each `I` instance in
2281
// DIILocation.
2282
Value *Op0 = nullptr;
2283
DIExpression *SalvagedExpr = DII->getExpression();
2284
auto LocItr = find(DIILocation, &I);
2285
while (SalvagedExpr && LocItr != DIILocation.end()) {
2286
SmallVector<uint64_t, 16> Ops;
2287
unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
2288
uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
2289
Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
2290
if (!Op0)
2291
break;
2292
SalvagedExpr =
2293
DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
2294
LocItr = std::find(++LocItr, DIILocation.end(), &I);
2295
}
2296
// salvageDebugInfoImpl should fail on examining the first element of
2297
// DbgUsers, or none of them.
2298
if (!Op0)
2299
break;
2300
2301
SalvagedExpr = SalvagedExpr->foldConstantMath();
2302
DII->replaceVariableLocationOp(&I, Op0);
2303
bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
2304
if (AdditionalValues.empty() && IsValidSalvageExpr) {
2305
DII->setExpression(SalvagedExpr);
2306
} else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr &&
2307
DII->getNumVariableLocationOps() + AdditionalValues.size() <=
2308
MaxDebugArgs) {
2309
DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
2310
} else {
2311
// Do not salvage using DIArgList for dbg.declare, as it is not currently
2312
// supported in those instructions. Also do not salvage if the resulting
2313
// DIArgList would contain an unreasonably large number of values.
2314
DII->setKillLocation();
2315
}
2316
LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
2317
Salvaged = true;
2318
}
2319
// Duplicate of above block for DbgVariableRecords.
2320
for (auto *DVR : DPUsers) {
2321
if (DVR->isDbgAssign()) {
2322
if (DVR->getAddress() == &I) {
2323
salvageDbgAssignAddress(DVR);
2324
Salvaged = true;
2325
}
2326
if (DVR->getValue() != &I)
2327
continue;
2328
}
2329
2330
// Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
2331
// are implicitly pointing out the value as a DWARF memory location
2332
// description.
2333
bool StackValue =
2334
DVR->getType() != DbgVariableRecord::LocationType::Declare;
2335
auto DVRLocation = DVR->location_ops();
2336
assert(
2337
is_contained(DVRLocation, &I) &&
2338
"DbgVariableIntrinsic must use salvaged instruction as its location");
2339
SmallVector<Value *, 4> AdditionalValues;
2340
// 'I' may appear more than once in DVR's location ops, and each use of 'I'
2341
// must be updated in the DIExpression and potentially have additional
2342
// values added; thus we call salvageDebugInfoImpl for each 'I' instance in
2343
// DVRLocation.
2344
Value *Op0 = nullptr;
2345
DIExpression *SalvagedExpr = DVR->getExpression();
2346
auto LocItr = find(DVRLocation, &I);
2347
while (SalvagedExpr && LocItr != DVRLocation.end()) {
2348
SmallVector<uint64_t, 16> Ops;
2349
unsigned LocNo = std::distance(DVRLocation.begin(), LocItr);
2350
uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
2351
Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
2352
if (!Op0)
2353
break;
2354
SalvagedExpr =
2355
DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
2356
LocItr = std::find(++LocItr, DVRLocation.end(), &I);
2357
}
2358
// salvageDebugInfoImpl should fail on examining the first element of
2359
// DbgUsers, or none of them.
2360
if (!Op0)
2361
break;
2362
2363
SalvagedExpr = SalvagedExpr->foldConstantMath();
2364
DVR->replaceVariableLocationOp(&I, Op0);
2365
bool IsValidSalvageExpr =
2366
SalvagedExpr->getNumElements() <= MaxExpressionSize;
2367
if (AdditionalValues.empty() && IsValidSalvageExpr) {
2368
DVR->setExpression(SalvagedExpr);
2369
} else if (DVR->getType() != DbgVariableRecord::LocationType::Declare &&
2370
IsValidSalvageExpr &&
2371
DVR->getNumVariableLocationOps() + AdditionalValues.size() <=
2372
MaxDebugArgs) {
2373
DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr);
2374
} else {
2375
// Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
2376
// currently only valid for stack value expressions.
2377
// Also do not salvage if the resulting DIArgList would contain an
2378
// unreasonably large number of values.
2379
DVR->setKillLocation();
2380
}
2381
LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n');
2382
Salvaged = true;
2383
}
2384
2385
if (Salvaged)
2386
return;
2387
2388
for (auto *DII : DbgUsers)
2389
DII->setKillLocation();
2390
2391
for (auto *DVR : DPUsers)
2392
DVR->setKillLocation();
2393
}
2394
2395
Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
2396
uint64_t CurrentLocOps,
2397
SmallVectorImpl<uint64_t> &Opcodes,
2398
SmallVectorImpl<Value *> &AdditionalValues) {
2399
unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
2400
// Rewrite a GEP into a DIExpression.
2401
MapVector<Value *, APInt> VariableOffsets;
2402
APInt ConstantOffset(BitWidth, 0);
2403
if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
2404
return nullptr;
2405
if (!VariableOffsets.empty() && !CurrentLocOps) {
2406
Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
2407
CurrentLocOps = 1;
2408
}
2409
for (const auto &Offset : VariableOffsets) {
2410
AdditionalValues.push_back(Offset.first);
2411
assert(Offset.second.isStrictlyPositive() &&
2412
"Expected strictly positive multiplier for offset.");
2413
Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
2414
Offset.second.getZExtValue(), dwarf::DW_OP_mul,
2415
dwarf::DW_OP_plus});
2416
}
2417
DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
2418
return GEP->getOperand(0);
2419
}
2420
2421
uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
2422
switch (Opcode) {
2423
case Instruction::Add:
2424
return dwarf::DW_OP_plus;
2425
case Instruction::Sub:
2426
return dwarf::DW_OP_minus;
2427
case Instruction::Mul:
2428
return dwarf::DW_OP_mul;
2429
case Instruction::SDiv:
2430
return dwarf::DW_OP_div;
2431
case Instruction::SRem:
2432
return dwarf::DW_OP_mod;
2433
case Instruction::Or:
2434
return dwarf::DW_OP_or;
2435
case Instruction::And:
2436
return dwarf::DW_OP_and;
2437
case Instruction::Xor:
2438
return dwarf::DW_OP_xor;
2439
case Instruction::Shl:
2440
return dwarf::DW_OP_shl;
2441
case Instruction::LShr:
2442
return dwarf::DW_OP_shr;
2443
case Instruction::AShr:
2444
return dwarf::DW_OP_shra;
2445
default:
2446
// TODO: Salvage from each kind of binop we know about.
2447
return 0;
2448
}
2449
}
2450
2451
static void handleSSAValueOperands(uint64_t CurrentLocOps,
2452
SmallVectorImpl<uint64_t> &Opcodes,
2453
SmallVectorImpl<Value *> &AdditionalValues,
2454
Instruction *I) {
2455
if (!CurrentLocOps) {
2456
Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
2457
CurrentLocOps = 1;
2458
}
2459
Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
2460
AdditionalValues.push_back(I->getOperand(1));
2461
}
2462
2463
Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
2464
SmallVectorImpl<uint64_t> &Opcodes,
2465
SmallVectorImpl<Value *> &AdditionalValues) {
2466
// Handle binary operations with constant integer operands as a special case.
2467
auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
2468
// Values wider than 64 bits cannot be represented within a DIExpression.
2469
if (ConstInt && ConstInt->getBitWidth() > 64)
2470
return nullptr;
2471
2472
Instruction::BinaryOps BinOpcode = BI->getOpcode();
2473
// Push any Constant Int operand onto the expression stack.
2474
if (ConstInt) {
2475
uint64_t Val = ConstInt->getSExtValue();
2476
// Add or Sub Instructions with a constant operand can potentially be
2477
// simplified.
2478
if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
2479
uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
2480
DIExpression::appendOffset(Opcodes, Offset);
2481
return BI->getOperand(0);
2482
}
2483
Opcodes.append({dwarf::DW_OP_constu, Val});
2484
} else {
2485
handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI);
2486
}
2487
2488
// Add salvaged binary operator to expression stack, if it has a valid
2489
// representation in a DIExpression.
2490
uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
2491
if (!DwarfBinOp)
2492
return nullptr;
2493
Opcodes.push_back(DwarfBinOp);
2494
return BI->getOperand(0);
2495
}
2496
2497
uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) {
2498
// The signedness of the operation is implicit in the typed stack, signed and
2499
// unsigned instructions map to the same DWARF opcode.
2500
switch (Pred) {
2501
case CmpInst::ICMP_EQ:
2502
return dwarf::DW_OP_eq;
2503
case CmpInst::ICMP_NE:
2504
return dwarf::DW_OP_ne;
2505
case CmpInst::ICMP_UGT:
2506
case CmpInst::ICMP_SGT:
2507
return dwarf::DW_OP_gt;
2508
case CmpInst::ICMP_UGE:
2509
case CmpInst::ICMP_SGE:
2510
return dwarf::DW_OP_ge;
2511
case CmpInst::ICMP_ULT:
2512
case CmpInst::ICMP_SLT:
2513
return dwarf::DW_OP_lt;
2514
case CmpInst::ICMP_ULE:
2515
case CmpInst::ICMP_SLE:
2516
return dwarf::DW_OP_le;
2517
default:
2518
return 0;
2519
}
2520
}
2521
2522
Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps,
2523
SmallVectorImpl<uint64_t> &Opcodes,
2524
SmallVectorImpl<Value *> &AdditionalValues) {
2525
// Handle icmp operations with constant integer operands as a special case.
2526
auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1));
2527
// Values wider than 64 bits cannot be represented within a DIExpression.
2528
if (ConstInt && ConstInt->getBitWidth() > 64)
2529
return nullptr;
2530
// Push any Constant Int operand onto the expression stack.
2531
if (ConstInt) {
2532
if (Icmp->isSigned())
2533
Opcodes.push_back(dwarf::DW_OP_consts);
2534
else
2535
Opcodes.push_back(dwarf::DW_OP_constu);
2536
uint64_t Val = ConstInt->getSExtValue();
2537
Opcodes.push_back(Val);
2538
} else {
2539
handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp);
2540
}
2541
2542
// Add salvaged binary operator to expression stack, if it has a valid
2543
// representation in a DIExpression.
2544
uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate());
2545
if (!DwarfIcmpOp)
2546
return nullptr;
2547
Opcodes.push_back(DwarfIcmpOp);
2548
return Icmp->getOperand(0);
2549
}
2550
2551
Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
2552
SmallVectorImpl<uint64_t> &Ops,
2553
SmallVectorImpl<Value *> &AdditionalValues) {
2554
auto &M = *I.getModule();
2555
auto &DL = M.getDataLayout();
2556
2557
if (auto *CI = dyn_cast<CastInst>(&I)) {
2558
Value *FromValue = CI->getOperand(0);
2559
// No-op casts are irrelevant for debug info.
2560
if (CI->isNoopCast(DL)) {
2561
return FromValue;
2562
}
2563
2564
Type *Type = CI->getType();
2565
if (Type->isPointerTy())
2566
Type = DL.getIntPtrType(Type);
2567
// Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
2568
if (Type->isVectorTy() ||
2569
!(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
2570
isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
2571
return nullptr;
2572
2573
llvm::Type *FromType = FromValue->getType();
2574
if (FromType->isPointerTy())
2575
FromType = DL.getIntPtrType(FromType);
2576
2577
unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
2578
unsigned ToTypeBitSize = Type->getScalarSizeInBits();
2579
2580
auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
2581
isa<SExtInst>(&I));
2582
Ops.append(ExtOps.begin(), ExtOps.end());
2583
return FromValue;
2584
}
2585
2586
if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
2587
return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
2588
if (auto *BI = dyn_cast<BinaryOperator>(&I))
2589
return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
2590
if (auto *IC = dyn_cast<ICmpInst>(&I))
2591
return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues);
2592
2593
// *Not* to do: we should not attempt to salvage load instructions,
2594
// because the validity and lifetime of a dbg.value containing
2595
// DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
2596
return nullptr;
2597
}
2598
2599
/// A replacement for a dbg.value expression.
2600
using DbgValReplacement = std::optional<DIExpression *>;
2601
2602
/// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
2603
/// possibly moving/undefing users to prevent use-before-def. Returns true if
2604
/// changes are made.
2605
static bool rewriteDebugUsers(
2606
Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
2607
function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr,
2608
function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) {
2609
// Find debug users of From.
2610
SmallVector<DbgVariableIntrinsic *, 1> Users;
2611
SmallVector<DbgVariableRecord *, 1> DPUsers;
2612
findDbgUsers(Users, &From, &DPUsers);
2613
if (Users.empty() && DPUsers.empty())
2614
return false;
2615
2616
// Prevent use-before-def of To.
2617
bool Changed = false;
2618
2619
SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
2620
SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR;
2621
if (isa<Instruction>(&To)) {
2622
bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
2623
2624
for (auto *DII : Users) {
2625
// It's common to see a debug user between From and DomPoint. Move it
2626
// after DomPoint to preserve the variable update without any reordering.
2627
if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
2628
LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
2629
DII->moveAfter(&DomPoint);
2630
Changed = true;
2631
2632
// Users which otherwise aren't dominated by the replacement value must
2633
// be salvaged or deleted.
2634
} else if (!DT.dominates(&DomPoint, DII)) {
2635
UndefOrSalvage.insert(DII);
2636
}
2637
}
2638
2639
// DbgVariableRecord implementation of the above.
2640
for (auto *DVR : DPUsers) {
2641
Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr;
2642
Instruction *NextNonDebug = MarkedInstr;
2643
// The next instruction might still be a dbg.declare, skip over it.
2644
if (isa<DbgVariableIntrinsic>(NextNonDebug))
2645
NextNonDebug = NextNonDebug->getNextNonDebugInstruction();
2646
2647
if (DomPointAfterFrom && NextNonDebug == &DomPoint) {
2648
LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n');
2649
DVR->removeFromParent();
2650
// Ensure there's a marker.
2651
DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint);
2652
Changed = true;
2653
} else if (!DT.dominates(&DomPoint, MarkedInstr)) {
2654
UndefOrSalvageDVR.insert(DVR);
2655
}
2656
}
2657
}
2658
2659
// Update debug users without use-before-def risk.
2660
for (auto *DII : Users) {
2661
if (UndefOrSalvage.count(DII))
2662
continue;
2663
2664
DbgValReplacement DVRepl = RewriteExpr(*DII);
2665
if (!DVRepl)
2666
continue;
2667
2668
DII->replaceVariableLocationOp(&From, &To);
2669
DII->setExpression(*DVRepl);
2670
LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
2671
Changed = true;
2672
}
2673
for (auto *DVR : DPUsers) {
2674
if (UndefOrSalvageDVR.count(DVR))
2675
continue;
2676
2677
DbgValReplacement DVRepl = RewriteDVRExpr(*DVR);
2678
if (!DVRepl)
2679
continue;
2680
2681
DVR->replaceVariableLocationOp(&From, &To);
2682
DVR->setExpression(*DVRepl);
2683
LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n');
2684
Changed = true;
2685
}
2686
2687
if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) {
2688
// Try to salvage the remaining debug users.
2689
salvageDebugInfo(From);
2690
Changed = true;
2691
}
2692
2693
return Changed;
2694
}
2695
2696
/// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2697
/// losslessly preserve the bits and semantics of the value. This predicate is
2698
/// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2699
///
2700
/// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2701
/// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2702
/// and also does not allow lossless pointer <-> integer conversions.
2703
static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2704
Type *ToTy) {
2705
// Trivially compatible types.
2706
if (FromTy == ToTy)
2707
return true;
2708
2709
// Handle compatible pointer <-> integer conversions.
2710
if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2711
bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2712
bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2713
!DL.isNonIntegralPointerType(ToTy);
2714
return SameSize && LosslessConversion;
2715
}
2716
2717
// TODO: This is not exhaustive.
2718
return false;
2719
}
2720
2721
bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2722
Instruction &DomPoint, DominatorTree &DT) {
2723
// Exit early if From has no debug users.
2724
if (!From.isUsedByMetadata())
2725
return false;
2726
2727
assert(&From != &To && "Can't replace something with itself");
2728
2729
Type *FromTy = From.getType();
2730
Type *ToTy = To.getType();
2731
2732
auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2733
return DII.getExpression();
2734
};
2735
auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement {
2736
return DVR.getExpression();
2737
};
2738
2739
// Handle no-op conversions.
2740
Module &M = *From.getModule();
2741
const DataLayout &DL = M.getDataLayout();
2742
if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2743
return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR);
2744
2745
// Handle integer-to-integer widening and narrowing.
2746
// FIXME: Use DW_OP_convert when it's available everywhere.
2747
if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2748
uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2749
uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2750
assert(FromBits != ToBits && "Unexpected no-op conversion");
2751
2752
// When the width of the result grows, assume that a debugger will only
2753
// access the low `FromBits` bits when inspecting the source variable.
2754
if (FromBits < ToBits)
2755
return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR);
2756
2757
// The width of the result has shrunk. Use sign/zero extension to describe
2758
// the source variable's high bits.
2759
auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2760
DILocalVariable *Var = DII.getVariable();
2761
2762
// Without knowing signedness, sign/zero extension isn't possible.
2763
auto Signedness = Var->getSignedness();
2764
if (!Signedness)
2765
return std::nullopt;
2766
2767
bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2768
return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2769
Signed);
2770
};
2771
// RemoveDIs: duplicate implementation working on DbgVariableRecords rather
2772
// than on dbg.value intrinsics.
2773
auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement {
2774
DILocalVariable *Var = DVR.getVariable();
2775
2776
// Without knowing signedness, sign/zero extension isn't possible.
2777
auto Signedness = Var->getSignedness();
2778
if (!Signedness)
2779
return std::nullopt;
2780
2781
bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2782
return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits,
2783
Signed);
2784
};
2785
return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt,
2786
SignOrZeroExtDVR);
2787
}
2788
2789
// TODO: Floating-point conversions, vectors.
2790
return false;
2791
}
2792
2793
bool llvm::handleUnreachableTerminator(
2794
Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) {
2795
bool Changed = false;
2796
// RemoveDIs: erase debug-info on this instruction manually.
2797
I->dropDbgRecords();
2798
for (Use &U : I->operands()) {
2799
Value *Op = U.get();
2800
if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) {
2801
U.set(PoisonValue::get(Op->getType()));
2802
PoisonedValues.push_back(Op);
2803
Changed = true;
2804
}
2805
}
2806
2807
return Changed;
2808
}
2809
2810
std::pair<unsigned, unsigned>
2811
llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2812
unsigned NumDeadInst = 0;
2813
unsigned NumDeadDbgInst = 0;
2814
// Delete the instructions backwards, as it has a reduced likelihood of
2815
// having to update as many def-use and use-def chains.
2816
Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2817
SmallVector<Value *> Uses;
2818
handleUnreachableTerminator(EndInst, Uses);
2819
2820
while (EndInst != &BB->front()) {
2821
// Delete the next to last instruction.
2822
Instruction *Inst = &*--EndInst->getIterator();
2823
if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2824
Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
2825
if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2826
// EHPads can't have DbgVariableRecords attached to them, but it might be
2827
// possible for things with token type.
2828
Inst->dropDbgRecords();
2829
EndInst = Inst;
2830
continue;
2831
}
2832
if (isa<DbgInfoIntrinsic>(Inst))
2833
++NumDeadDbgInst;
2834
else
2835
++NumDeadInst;
2836
// RemoveDIs: erasing debug-info must be done manually.
2837
Inst->dropDbgRecords();
2838
Inst->eraseFromParent();
2839
}
2840
return {NumDeadInst, NumDeadDbgInst};
2841
}
2842
2843
unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
2844
DomTreeUpdater *DTU,
2845
MemorySSAUpdater *MSSAU) {
2846
BasicBlock *BB = I->getParent();
2847
2848
if (MSSAU)
2849
MSSAU->changeToUnreachable(I);
2850
2851
SmallSet<BasicBlock *, 8> UniqueSuccessors;
2852
2853
// Loop over all of the successors, removing BB's entry from any PHI
2854
// nodes.
2855
for (BasicBlock *Successor : successors(BB)) {
2856
Successor->removePredecessor(BB, PreserveLCSSA);
2857
if (DTU)
2858
UniqueSuccessors.insert(Successor);
2859
}
2860
auto *UI = new UnreachableInst(I->getContext(), I->getIterator());
2861
UI->setDebugLoc(I->getDebugLoc());
2862
2863
// All instructions after this are dead.
2864
unsigned NumInstrsRemoved = 0;
2865
BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2866
while (BBI != BBE) {
2867
if (!BBI->use_empty())
2868
BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
2869
BBI++->eraseFromParent();
2870
++NumInstrsRemoved;
2871
}
2872
if (DTU) {
2873
SmallVector<DominatorTree::UpdateType, 8> Updates;
2874
Updates.reserve(UniqueSuccessors.size());
2875
for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2876
Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2877
DTU->applyUpdates(Updates);
2878
}
2879
BB->flushTerminatorDbgRecords();
2880
return NumInstrsRemoved;
2881
}
2882
2883
CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2884
SmallVector<Value *, 8> Args(II->args());
2885
SmallVector<OperandBundleDef, 1> OpBundles;
2886
II->getOperandBundlesAsDefs(OpBundles);
2887
CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2888
II->getCalledOperand(), Args, OpBundles);
2889
NewCall->setCallingConv(II->getCallingConv());
2890
NewCall->setAttributes(II->getAttributes());
2891
NewCall->setDebugLoc(II->getDebugLoc());
2892
NewCall->copyMetadata(*II);
2893
2894
// If the invoke had profile metadata, try converting them for CallInst.
2895
uint64_t TotalWeight;
2896
if (NewCall->extractProfTotalWeight(TotalWeight)) {
2897
// Set the total weight if it fits into i32, otherwise reset.
2898
MDBuilder MDB(NewCall->getContext());
2899
auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2900
? nullptr
2901
: MDB.createBranchWeights({uint32_t(TotalWeight)});
2902
NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2903
}
2904
2905
return NewCall;
2906
}
2907
2908
// changeToCall - Convert the specified invoke into a normal call.
2909
CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2910
CallInst *NewCall = createCallMatchingInvoke(II);
2911
NewCall->takeName(II);
2912
NewCall->insertBefore(II);
2913
II->replaceAllUsesWith(NewCall);
2914
2915
// Follow the call by a branch to the normal destination.
2916
BasicBlock *NormalDestBB = II->getNormalDest();
2917
BranchInst::Create(NormalDestBB, II->getIterator());
2918
2919
// Update PHI nodes in the unwind destination
2920
BasicBlock *BB = II->getParent();
2921
BasicBlock *UnwindDestBB = II->getUnwindDest();
2922
UnwindDestBB->removePredecessor(BB);
2923
II->eraseFromParent();
2924
if (DTU)
2925
DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2926
return NewCall;
2927
}
2928
2929
BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2930
BasicBlock *UnwindEdge,
2931
DomTreeUpdater *DTU) {
2932
BasicBlock *BB = CI->getParent();
2933
2934
// Convert this function call into an invoke instruction. First, split the
2935
// basic block.
2936
BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2937
CI->getName() + ".noexc");
2938
2939
// Delete the unconditional branch inserted by SplitBlock
2940
BB->back().eraseFromParent();
2941
2942
// Create the new invoke instruction.
2943
SmallVector<Value *, 8> InvokeArgs(CI->args());
2944
SmallVector<OperandBundleDef, 1> OpBundles;
2945
2946
CI->getOperandBundlesAsDefs(OpBundles);
2947
2948
// Note: we're round tripping operand bundles through memory here, and that
2949
// can potentially be avoided with a cleverer API design that we do not have
2950
// as of this time.
2951
2952
InvokeInst *II =
2953
InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2954
UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2955
II->setDebugLoc(CI->getDebugLoc());
2956
II->setCallingConv(CI->getCallingConv());
2957
II->setAttributes(CI->getAttributes());
2958
II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof));
2959
2960
if (DTU)
2961
DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2962
2963
// Make sure that anything using the call now uses the invoke! This also
2964
// updates the CallGraph if present, because it uses a WeakTrackingVH.
2965
CI->replaceAllUsesWith(II);
2966
2967
// Delete the original call
2968
Split->front().eraseFromParent();
2969
return Split;
2970
}
2971
2972
static bool markAliveBlocks(Function &F,
2973
SmallPtrSetImpl<BasicBlock *> &Reachable,
2974
DomTreeUpdater *DTU = nullptr) {
2975
SmallVector<BasicBlock*, 128> Worklist;
2976
BasicBlock *BB = &F.front();
2977
Worklist.push_back(BB);
2978
Reachable.insert(BB);
2979
bool Changed = false;
2980
do {
2981
BB = Worklist.pop_back_val();
2982
2983
// Do a quick scan of the basic block, turning any obviously unreachable
2984
// instructions into LLVM unreachable insts. The instruction combining pass
2985
// canonicalizes unreachable insts into stores to null or undef.
2986
for (Instruction &I : *BB) {
2987
if (auto *CI = dyn_cast<CallInst>(&I)) {
2988
Value *Callee = CI->getCalledOperand();
2989
// Handle intrinsic calls.
2990
if (Function *F = dyn_cast<Function>(Callee)) {
2991
auto IntrinsicID = F->getIntrinsicID();
2992
// Assumptions that are known to be false are equivalent to
2993
// unreachable. Also, if the condition is undefined, then we make the
2994
// choice most beneficial to the optimizer, and choose that to also be
2995
// unreachable.
2996
if (IntrinsicID == Intrinsic::assume) {
2997
if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2998
// Don't insert a call to llvm.trap right before the unreachable.
2999
changeToUnreachable(CI, false, DTU);
3000
Changed = true;
3001
break;
3002
}
3003
} else if (IntrinsicID == Intrinsic::experimental_guard) {
3004
// A call to the guard intrinsic bails out of the current
3005
// compilation unit if the predicate passed to it is false. If the
3006
// predicate is a constant false, then we know the guard will bail
3007
// out of the current compile unconditionally, so all code following
3008
// it is dead.
3009
//
3010
// Note: unlike in llvm.assume, it is not "obviously profitable" for
3011
// guards to treat `undef` as `false` since a guard on `undef` can
3012
// still be useful for widening.
3013
if (match(CI->getArgOperand(0), m_Zero()))
3014
if (!isa<UnreachableInst>(CI->getNextNode())) {
3015
changeToUnreachable(CI->getNextNode(), false, DTU);
3016
Changed = true;
3017
break;
3018
}
3019
}
3020
} else if ((isa<ConstantPointerNull>(Callee) &&
3021
!NullPointerIsDefined(CI->getFunction(),
3022
cast<PointerType>(Callee->getType())
3023
->getAddressSpace())) ||
3024
isa<UndefValue>(Callee)) {
3025
changeToUnreachable(CI, false, DTU);
3026
Changed = true;
3027
break;
3028
}
3029
if (CI->doesNotReturn() && !CI->isMustTailCall()) {
3030
// If we found a call to a no-return function, insert an unreachable
3031
// instruction after it. Make sure there isn't *already* one there
3032
// though.
3033
if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) {
3034
// Don't insert a call to llvm.trap right before the unreachable.
3035
changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU);
3036
Changed = true;
3037
}
3038
break;
3039
}
3040
} else if (auto *SI = dyn_cast<StoreInst>(&I)) {
3041
// Store to undef and store to null are undefined and used to signal
3042
// that they should be changed to unreachable by passes that can't
3043
// modify the CFG.
3044
3045
// Don't touch volatile stores.
3046
if (SI->isVolatile()) continue;
3047
3048
Value *Ptr = SI->getOperand(1);
3049
3050
if (isa<UndefValue>(Ptr) ||
3051
(isa<ConstantPointerNull>(Ptr) &&
3052
!NullPointerIsDefined(SI->getFunction(),
3053
SI->getPointerAddressSpace()))) {
3054
changeToUnreachable(SI, false, DTU);
3055
Changed = true;
3056
break;
3057
}
3058
}
3059
}
3060
3061
Instruction *Terminator = BB->getTerminator();
3062
if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
3063
// Turn invokes that call 'nounwind' functions into ordinary calls.
3064
Value *Callee = II->getCalledOperand();
3065
if ((isa<ConstantPointerNull>(Callee) &&
3066
!NullPointerIsDefined(BB->getParent())) ||
3067
isa<UndefValue>(Callee)) {
3068
changeToUnreachable(II, false, DTU);
3069
Changed = true;
3070
} else {
3071
if (II->doesNotReturn() &&
3072
!isa<UnreachableInst>(II->getNormalDest()->front())) {
3073
// If we found an invoke of a no-return function,
3074
// create a new empty basic block with an `unreachable` terminator,
3075
// and set it as the normal destination for the invoke,
3076
// unless that is already the case.
3077
// Note that the original normal destination could have other uses.
3078
BasicBlock *OrigNormalDest = II->getNormalDest();
3079
OrigNormalDest->removePredecessor(II->getParent());
3080
LLVMContext &Ctx = II->getContext();
3081
BasicBlock *UnreachableNormalDest = BasicBlock::Create(
3082
Ctx, OrigNormalDest->getName() + ".unreachable",
3083
II->getFunction(), OrigNormalDest);
3084
new UnreachableInst(Ctx, UnreachableNormalDest);
3085
II->setNormalDest(UnreachableNormalDest);
3086
if (DTU)
3087
DTU->applyUpdates(
3088
{{DominatorTree::Delete, BB, OrigNormalDest},
3089
{DominatorTree::Insert, BB, UnreachableNormalDest}});
3090
Changed = true;
3091
}
3092
if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
3093
if (II->use_empty() && !II->mayHaveSideEffects()) {
3094
// jump to the normal destination branch.
3095
BasicBlock *NormalDestBB = II->getNormalDest();
3096
BasicBlock *UnwindDestBB = II->getUnwindDest();
3097
BranchInst::Create(NormalDestBB, II->getIterator());
3098
UnwindDestBB->removePredecessor(II->getParent());
3099
II->eraseFromParent();
3100
if (DTU)
3101
DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
3102
} else
3103
changeToCall(II, DTU);
3104
Changed = true;
3105
}
3106
}
3107
} else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
3108
// Remove catchpads which cannot be reached.
3109
struct CatchPadDenseMapInfo {
3110
static CatchPadInst *getEmptyKey() {
3111
return DenseMapInfo<CatchPadInst *>::getEmptyKey();
3112
}
3113
3114
static CatchPadInst *getTombstoneKey() {
3115
return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
3116
}
3117
3118
static unsigned getHashValue(CatchPadInst *CatchPad) {
3119
return static_cast<unsigned>(hash_combine_range(
3120
CatchPad->value_op_begin(), CatchPad->value_op_end()));
3121
}
3122
3123
static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
3124
if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
3125
RHS == getEmptyKey() || RHS == getTombstoneKey())
3126
return LHS == RHS;
3127
return LHS->isIdenticalTo(RHS);
3128
}
3129
};
3130
3131
SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
3132
// Set of unique CatchPads.
3133
SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
3134
CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
3135
HandlerSet;
3136
detail::DenseSetEmpty Empty;
3137
for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
3138
E = CatchSwitch->handler_end();
3139
I != E; ++I) {
3140
BasicBlock *HandlerBB = *I;
3141
if (DTU)
3142
++NumPerSuccessorCases[HandlerBB];
3143
auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
3144
if (!HandlerSet.insert({CatchPad, Empty}).second) {
3145
if (DTU)
3146
--NumPerSuccessorCases[HandlerBB];
3147
CatchSwitch->removeHandler(I);
3148
--I;
3149
--E;
3150
Changed = true;
3151
}
3152
}
3153
if (DTU) {
3154
std::vector<DominatorTree::UpdateType> Updates;
3155
for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
3156
if (I.second == 0)
3157
Updates.push_back({DominatorTree::Delete, BB, I.first});
3158
DTU->applyUpdates(Updates);
3159
}
3160
}
3161
3162
Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
3163
for (BasicBlock *Successor : successors(BB))
3164
if (Reachable.insert(Successor).second)
3165
Worklist.push_back(Successor);
3166
} while (!Worklist.empty());
3167
return Changed;
3168
}
3169
3170
Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
3171
Instruction *TI = BB->getTerminator();
3172
3173
if (auto *II = dyn_cast<InvokeInst>(TI))
3174
return changeToCall(II, DTU);
3175
3176
Instruction *NewTI;
3177
BasicBlock *UnwindDest;
3178
3179
if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3180
NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator());
3181
UnwindDest = CRI->getUnwindDest();
3182
} else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
3183
auto *NewCatchSwitch = CatchSwitchInst::Create(
3184
CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
3185
CatchSwitch->getName(), CatchSwitch->getIterator());
3186
for (BasicBlock *PadBB : CatchSwitch->handlers())
3187
NewCatchSwitch->addHandler(PadBB);
3188
3189
NewTI = NewCatchSwitch;
3190
UnwindDest = CatchSwitch->getUnwindDest();
3191
} else {
3192
llvm_unreachable("Could not find unwind successor");
3193
}
3194
3195
NewTI->takeName(TI);
3196
NewTI->setDebugLoc(TI->getDebugLoc());
3197
UnwindDest->removePredecessor(BB);
3198
TI->replaceAllUsesWith(NewTI);
3199
TI->eraseFromParent();
3200
if (DTU)
3201
DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
3202
return NewTI;
3203
}
3204
3205
/// removeUnreachableBlocks - Remove blocks that are not reachable, even
3206
/// if they are in a dead cycle. Return true if a change was made, false
3207
/// otherwise.
3208
bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
3209
MemorySSAUpdater *MSSAU) {
3210
SmallPtrSet<BasicBlock *, 16> Reachable;
3211
bool Changed = markAliveBlocks(F, Reachable, DTU);
3212
3213
// If there are unreachable blocks in the CFG...
3214
if (Reachable.size() == F.size())
3215
return Changed;
3216
3217
assert(Reachable.size() < F.size());
3218
3219
// Are there any blocks left to actually delete?
3220
SmallSetVector<BasicBlock *, 8> BlocksToRemove;
3221
for (BasicBlock &BB : F) {
3222
// Skip reachable basic blocks
3223
if (Reachable.count(&BB))
3224
continue;
3225
// Skip already-deleted blocks
3226
if (DTU && DTU->isBBPendingDeletion(&BB))
3227
continue;
3228
BlocksToRemove.insert(&BB);
3229
}
3230
3231
if (BlocksToRemove.empty())
3232
return Changed;
3233
3234
Changed = true;
3235
NumRemoved += BlocksToRemove.size();
3236
3237
if (MSSAU)
3238
MSSAU->removeBlocks(BlocksToRemove);
3239
3240
DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
3241
3242
return Changed;
3243
}
3244
3245
void llvm::combineMetadata(Instruction *K, const Instruction *J,
3246
ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
3247
SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
3248
K->dropUnknownNonDebugMetadata(KnownIDs);
3249
K->getAllMetadataOtherThanDebugLoc(Metadata);
3250
for (const auto &MD : Metadata) {
3251
unsigned Kind = MD.first;
3252
MDNode *JMD = J->getMetadata(Kind);
3253
MDNode *KMD = MD.second;
3254
3255
switch (Kind) {
3256
default:
3257
K->setMetadata(Kind, nullptr); // Remove unknown metadata
3258
break;
3259
case LLVMContext::MD_dbg:
3260
llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
3261
case LLVMContext::MD_DIAssignID:
3262
K->mergeDIAssignID(J);
3263
break;
3264
case LLVMContext::MD_tbaa:
3265
K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
3266
break;
3267
case LLVMContext::MD_alias_scope:
3268
K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
3269
break;
3270
case LLVMContext::MD_noalias:
3271
case LLVMContext::MD_mem_parallel_loop_access:
3272
K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
3273
break;
3274
case LLVMContext::MD_access_group:
3275
K->setMetadata(LLVMContext::MD_access_group,
3276
intersectAccessGroups(K, J));
3277
break;
3278
case LLVMContext::MD_range:
3279
if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3280
K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
3281
break;
3282
case LLVMContext::MD_fpmath:
3283
K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
3284
break;
3285
case LLVMContext::MD_invariant_load:
3286
// If K moves, only set the !invariant.load if it is present in both
3287
// instructions.
3288
if (DoesKMove)
3289
K->setMetadata(Kind, JMD);
3290
break;
3291
case LLVMContext::MD_nonnull:
3292
if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3293
K->setMetadata(Kind, JMD);
3294
break;
3295
case LLVMContext::MD_invariant_group:
3296
// Preserve !invariant.group in K.
3297
break;
3298
case LLVMContext::MD_mmra:
3299
// Combine MMRAs
3300
break;
3301
case LLVMContext::MD_align:
3302
if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3303
K->setMetadata(
3304
Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
3305
break;
3306
case LLVMContext::MD_dereferenceable:
3307
case LLVMContext::MD_dereferenceable_or_null:
3308
if (DoesKMove)
3309
K->setMetadata(Kind,
3310
MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
3311
break;
3312
case LLVMContext::MD_preserve_access_index:
3313
// Preserve !preserve.access.index in K.
3314
break;
3315
case LLVMContext::MD_noundef:
3316
// If K does move, keep noundef if it is present in both instructions.
3317
if (DoesKMove)
3318
K->setMetadata(Kind, JMD);
3319
break;
3320
case LLVMContext::MD_nontemporal:
3321
// Preserve !nontemporal if it is present on both instructions.
3322
K->setMetadata(Kind, JMD);
3323
break;
3324
case LLVMContext::MD_prof:
3325
if (DoesKMove)
3326
K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J));
3327
break;
3328
}
3329
}
3330
// Set !invariant.group from J if J has it. If both instructions have it
3331
// then we will just pick it from J - even when they are different.
3332
// Also make sure that K is load or store - f.e. combining bitcast with load
3333
// could produce bitcast with invariant.group metadata, which is invalid.
3334
// FIXME: we should try to preserve both invariant.group md if they are
3335
// different, but right now instruction can only have one invariant.group.
3336
if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
3337
if (isa<LoadInst>(K) || isa<StoreInst>(K))
3338
K->setMetadata(LLVMContext::MD_invariant_group, JMD);
3339
3340
// Merge MMRAs.
3341
// This is handled separately because we also want to handle cases where K
3342
// doesn't have tags but J does.
3343
auto JMMRA = J->getMetadata(LLVMContext::MD_mmra);
3344
auto KMMRA = K->getMetadata(LLVMContext::MD_mmra);
3345
if (JMMRA || KMMRA) {
3346
K->setMetadata(LLVMContext::MD_mmra,
3347
MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA));
3348
}
3349
}
3350
3351
void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
3352
bool KDominatesJ) {
3353
unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
3354
LLVMContext::MD_alias_scope,
3355
LLVMContext::MD_noalias,
3356
LLVMContext::MD_range,
3357
LLVMContext::MD_fpmath,
3358
LLVMContext::MD_invariant_load,
3359
LLVMContext::MD_nonnull,
3360
LLVMContext::MD_invariant_group,
3361
LLVMContext::MD_align,
3362
LLVMContext::MD_dereferenceable,
3363
LLVMContext::MD_dereferenceable_or_null,
3364
LLVMContext::MD_access_group,
3365
LLVMContext::MD_preserve_access_index,
3366
LLVMContext::MD_prof,
3367
LLVMContext::MD_nontemporal,
3368
LLVMContext::MD_noundef,
3369
LLVMContext::MD_mmra};
3370
combineMetadata(K, J, KnownIDs, KDominatesJ);
3371
}
3372
3373
void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
3374
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
3375
Source.getAllMetadata(MD);
3376
MDBuilder MDB(Dest.getContext());
3377
Type *NewType = Dest.getType();
3378
const DataLayout &DL = Source.getDataLayout();
3379
for (const auto &MDPair : MD) {
3380
unsigned ID = MDPair.first;
3381
MDNode *N = MDPair.second;
3382
// Note, essentially every kind of metadata should be preserved here! This
3383
// routine is supposed to clone a load instruction changing *only its type*.
3384
// The only metadata it makes sense to drop is metadata which is invalidated
3385
// when the pointer type changes. This should essentially never be the case
3386
// in LLVM, but we explicitly switch over only known metadata to be
3387
// conservatively correct. If you are adding metadata to LLVM which pertains
3388
// to loads, you almost certainly want to add it here.
3389
switch (ID) {
3390
case LLVMContext::MD_dbg:
3391
case LLVMContext::MD_tbaa:
3392
case LLVMContext::MD_prof:
3393
case LLVMContext::MD_fpmath:
3394
case LLVMContext::MD_tbaa_struct:
3395
case LLVMContext::MD_invariant_load:
3396
case LLVMContext::MD_alias_scope:
3397
case LLVMContext::MD_noalias:
3398
case LLVMContext::MD_nontemporal:
3399
case LLVMContext::MD_mem_parallel_loop_access:
3400
case LLVMContext::MD_access_group:
3401
case LLVMContext::MD_noundef:
3402
// All of these directly apply.
3403
Dest.setMetadata(ID, N);
3404
break;
3405
3406
case LLVMContext::MD_nonnull:
3407
copyNonnullMetadata(Source, N, Dest);
3408
break;
3409
3410
case LLVMContext::MD_align:
3411
case LLVMContext::MD_dereferenceable:
3412
case LLVMContext::MD_dereferenceable_or_null:
3413
// These only directly apply if the new type is also a pointer.
3414
if (NewType->isPointerTy())
3415
Dest.setMetadata(ID, N);
3416
break;
3417
3418
case LLVMContext::MD_range:
3419
copyRangeMetadata(DL, Source, N, Dest);
3420
break;
3421
}
3422
}
3423
}
3424
3425
void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
3426
auto *ReplInst = dyn_cast<Instruction>(Repl);
3427
if (!ReplInst)
3428
return;
3429
3430
// Patch the replacement so that it is not more restrictive than the value
3431
// being replaced.
3432
WithOverflowInst *UnusedWO;
3433
// When replacing the result of a llvm.*.with.overflow intrinsic with a
3434
// overflowing binary operator, nuw/nsw flags may no longer hold.
3435
if (isa<OverflowingBinaryOperator>(ReplInst) &&
3436
match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO))))
3437
ReplInst->dropPoisonGeneratingFlags();
3438
// Note that if 'I' is a load being replaced by some operation,
3439
// for example, by an arithmetic operation, then andIRFlags()
3440
// would just erase all math flags from the original arithmetic
3441
// operation, which is clearly not wanted and not needed.
3442
else if (!isa<LoadInst>(I))
3443
ReplInst->andIRFlags(I);
3444
3445
// FIXME: If both the original and replacement value are part of the
3446
// same control-flow region (meaning that the execution of one
3447
// guarantees the execution of the other), then we can combine the
3448
// noalias scopes here and do better than the general conservative
3449
// answer used in combineMetadata().
3450
3451
// In general, GVN unifies expressions over different control-flow
3452
// regions, and so we need a conservative combination of the noalias
3453
// scopes.
3454
combineMetadataForCSE(ReplInst, I, false);
3455
}
3456
3457
template <typename RootType, typename ShouldReplaceFn>
3458
static unsigned replaceDominatedUsesWith(Value *From, Value *To,
3459
const RootType &Root,
3460
const ShouldReplaceFn &ShouldReplace) {
3461
assert(From->getType() == To->getType());
3462
3463
unsigned Count = 0;
3464
for (Use &U : llvm::make_early_inc_range(From->uses())) {
3465
if (!ShouldReplace(Root, U))
3466
continue;
3467
LLVM_DEBUG(dbgs() << "Replace dominated use of '";
3468
From->printAsOperand(dbgs());
3469
dbgs() << "' with " << *To << " in " << *U.getUser() << "\n");
3470
U.set(To);
3471
++Count;
3472
}
3473
return Count;
3474
}
3475
3476
unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
3477
assert(From->getType() == To->getType());
3478
auto *BB = From->getParent();
3479
unsigned Count = 0;
3480
3481
for (Use &U : llvm::make_early_inc_range(From->uses())) {
3482
auto *I = cast<Instruction>(U.getUser());
3483
if (I->getParent() == BB)
3484
continue;
3485
U.set(To);
3486
++Count;
3487
}
3488
return Count;
3489
}
3490
3491
unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
3492
DominatorTree &DT,
3493
const BasicBlockEdge &Root) {
3494
auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
3495
return DT.dominates(Root, U);
3496
};
3497
return ::replaceDominatedUsesWith(From, To, Root, Dominates);
3498
}
3499
3500
unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
3501
DominatorTree &DT,
3502
const BasicBlock *BB) {
3503
auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
3504
return DT.dominates(BB, U);
3505
};
3506
return ::replaceDominatedUsesWith(From, To, BB, Dominates);
3507
}
3508
3509
unsigned llvm::replaceDominatedUsesWithIf(
3510
Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root,
3511
function_ref<bool(const Use &U, const Value *To)> ShouldReplace) {
3512
auto DominatesAndShouldReplace =
3513
[&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) {
3514
return DT.dominates(Root, U) && ShouldReplace(U, To);
3515
};
3516
return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace);
3517
}
3518
3519
unsigned llvm::replaceDominatedUsesWithIf(
3520
Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB,
3521
function_ref<bool(const Use &U, const Value *To)> ShouldReplace) {
3522
auto DominatesAndShouldReplace = [&DT, &ShouldReplace,
3523
To](const BasicBlock *BB, const Use &U) {
3524
return DT.dominates(BB, U) && ShouldReplace(U, To);
3525
};
3526
return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace);
3527
}
3528
3529
bool llvm::callsGCLeafFunction(const CallBase *Call,
3530
const TargetLibraryInfo &TLI) {
3531
// Check if the function is specifically marked as a gc leaf function.
3532
if (Call->hasFnAttr("gc-leaf-function"))
3533
return true;
3534
if (const Function *F = Call->getCalledFunction()) {
3535
if (F->hasFnAttribute("gc-leaf-function"))
3536
return true;
3537
3538
if (auto IID = F->getIntrinsicID()) {
3539
// Most LLVM intrinsics do not take safepoints.
3540
return IID != Intrinsic::experimental_gc_statepoint &&
3541
IID != Intrinsic::experimental_deoptimize &&
3542
IID != Intrinsic::memcpy_element_unordered_atomic &&
3543
IID != Intrinsic::memmove_element_unordered_atomic;
3544
}
3545
}
3546
3547
// Lib calls can be materialized by some passes, and won't be
3548
// marked as 'gc-leaf-function.' All available Libcalls are
3549
// GC-leaf.
3550
LibFunc LF;
3551
if (TLI.getLibFunc(*Call, LF)) {
3552
return TLI.has(LF);
3553
}
3554
3555
return false;
3556
}
3557
3558
void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
3559
LoadInst &NewLI) {
3560
auto *NewTy = NewLI.getType();
3561
3562
// This only directly applies if the new type is also a pointer.
3563
if (NewTy->isPointerTy()) {
3564
NewLI.setMetadata(LLVMContext::MD_nonnull, N);
3565
return;
3566
}
3567
3568
// The only other translation we can do is to integral loads with !range
3569
// metadata.
3570
if (!NewTy->isIntegerTy())
3571
return;
3572
3573
MDBuilder MDB(NewLI.getContext());
3574
const Value *Ptr = OldLI.getPointerOperand();
3575
auto *ITy = cast<IntegerType>(NewTy);
3576
auto *NullInt = ConstantExpr::getPtrToInt(
3577
ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
3578
auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
3579
NewLI.setMetadata(LLVMContext::MD_range,
3580
MDB.createRange(NonNullInt, NullInt));
3581
}
3582
3583
void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
3584
MDNode *N, LoadInst &NewLI) {
3585
auto *NewTy = NewLI.getType();
3586
// Simply copy the metadata if the type did not change.
3587
if (NewTy == OldLI.getType()) {
3588
NewLI.setMetadata(LLVMContext::MD_range, N);
3589
return;
3590
}
3591
3592
// Give up unless it is converted to a pointer where there is a single very
3593
// valuable mapping we can do reliably.
3594
// FIXME: It would be nice to propagate this in more ways, but the type
3595
// conversions make it hard.
3596
if (!NewTy->isPointerTy())
3597
return;
3598
3599
unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
3600
if (BitWidth == OldLI.getType()->getScalarSizeInBits() &&
3601
!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
3602
MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt);
3603
NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
3604
}
3605
}
3606
3607
void llvm::dropDebugUsers(Instruction &I) {
3608
SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
3609
SmallVector<DbgVariableRecord *, 1> DPUsers;
3610
findDbgUsers(DbgUsers, &I, &DPUsers);
3611
for (auto *DII : DbgUsers)
3612
DII->eraseFromParent();
3613
for (auto *DVR : DPUsers)
3614
DVR->eraseFromParent();
3615
}
3616
3617
void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
3618
BasicBlock *BB) {
3619
// Since we are moving the instructions out of its basic block, we do not
3620
// retain their original debug locations (DILocations) and debug intrinsic
3621
// instructions.
3622
//
3623
// Doing so would degrade the debugging experience and adversely affect the
3624
// accuracy of profiling information.
3625
//
3626
// Currently, when hoisting the instructions, we take the following actions:
3627
// - Remove their debug intrinsic instructions.
3628
// - Set their debug locations to the values from the insertion point.
3629
//
3630
// As per PR39141 (comment #8), the more fundamental reason why the dbg.values
3631
// need to be deleted, is because there will not be any instructions with a
3632
// DILocation in either branch left after performing the transformation. We
3633
// can only insert a dbg.value after the two branches are joined again.
3634
//
3635
// See PR38762, PR39243 for more details.
3636
//
3637
// TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
3638
// encode predicated DIExpressions that yield different results on different
3639
// code paths.
3640
3641
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
3642
Instruction *I = &*II;
3643
I->dropUBImplyingAttrsAndMetadata();
3644
if (I->isUsedByMetadata())
3645
dropDebugUsers(*I);
3646
// RemoveDIs: drop debug-info too as the following code does.
3647
I->dropDbgRecords();
3648
if (I->isDebugOrPseudoInst()) {
3649
// Remove DbgInfo and pseudo probe Intrinsics.
3650
II = I->eraseFromParent();
3651
continue;
3652
}
3653
I->setDebugLoc(InsertPt->getDebugLoc());
3654
++II;
3655
}
3656
DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(),
3657
BB->getTerminator()->getIterator());
3658
}
3659
3660
DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C,
3661
Type &Ty) {
3662
// Create integer constant expression.
3663
auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * {
3664
const APInt &API = cast<ConstantInt>(&CV)->getValue();
3665
std::optional<int64_t> InitIntOpt = API.trySExtValue();
3666
return InitIntOpt ? DIB.createConstantValueExpression(
3667
static_cast<uint64_t>(*InitIntOpt))
3668
: nullptr;
3669
};
3670
3671
if (isa<ConstantInt>(C))
3672
return createIntegerExpression(C);
3673
3674
auto *FP = dyn_cast<ConstantFP>(&C);
3675
if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) {
3676
const APFloat &APF = FP->getValueAPF();
3677
APInt const &API = APF.bitcastToAPInt();
3678
if (auto Temp = API.getZExtValue())
3679
return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp));
3680
return DIB.createConstantValueExpression(*API.getRawData());
3681
}
3682
3683
if (!Ty.isPointerTy())
3684
return nullptr;
3685
3686
if (isa<ConstantPointerNull>(C))
3687
return DIB.createConstantValueExpression(0);
3688
3689
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C))
3690
if (CE->getOpcode() == Instruction::IntToPtr) {
3691
const Value *V = CE->getOperand(0);
3692
if (auto CI = dyn_cast_or_null<ConstantInt>(V))
3693
return createIntegerExpression(*CI);
3694
}
3695
return nullptr;
3696
}
3697
3698
void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) {
3699
auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) {
3700
for (auto *Op : Set) {
3701
auto I = Mapping.find(Op);
3702
if (I != Mapping.end())
3703
DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true);
3704
}
3705
};
3706
auto RemapAssignAddress = [&Mapping](auto *DA) {
3707
auto I = Mapping.find(DA->getAddress());
3708
if (I != Mapping.end())
3709
DA->setAddress(I->second);
3710
};
3711
if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst))
3712
RemapDebugOperands(DVI, DVI->location_ops());
3713
if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst))
3714
RemapAssignAddress(DAI);
3715
for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) {
3716
RemapDebugOperands(&DVR, DVR.location_ops());
3717
if (DVR.isDbgAssign())
3718
RemapAssignAddress(&DVR);
3719
}
3720
}
3721
3722
namespace {
3723
3724
/// A potential constituent of a bitreverse or bswap expression. See
3725
/// collectBitParts for a fuller explanation.
3726
struct BitPart {
3727
BitPart(Value *P, unsigned BW) : Provider(P) {
3728
Provenance.resize(BW);
3729
}
3730
3731
/// The Value that this is a bitreverse/bswap of.
3732
Value *Provider;
3733
3734
/// The "provenance" of each bit. Provenance[A] = B means that bit A
3735
/// in Provider becomes bit B in the result of this expression.
3736
SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
3737
3738
enum { Unset = -1 };
3739
};
3740
3741
} // end anonymous namespace
3742
3743
/// Analyze the specified subexpression and see if it is capable of providing
3744
/// pieces of a bswap or bitreverse. The subexpression provides a potential
3745
/// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
3746
/// the output of the expression came from a corresponding bit in some other
3747
/// value. This function is recursive, and the end result is a mapping of
3748
/// bitnumber to bitnumber. It is the caller's responsibility to validate that
3749
/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
3750
///
3751
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
3752
/// that the expression deposits the low byte of %X into the high byte of the
3753
/// result and that all other bits are zero. This expression is accepted and a
3754
/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
3755
/// [0-7].
3756
///
3757
/// For vector types, all analysis is performed at the per-element level. No
3758
/// cross-element analysis is supported (shuffle/insertion/reduction), and all
3759
/// constant masks must be splatted across all elements.
3760
///
3761
/// To avoid revisiting values, the BitPart results are memoized into the
3762
/// provided map. To avoid unnecessary copying of BitParts, BitParts are
3763
/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
3764
/// store BitParts objects, not pointers. As we need the concept of a nullptr
3765
/// BitParts (Value has been analyzed and the analysis failed), we an Optional
3766
/// type instead to provide the same functionality.
3767
///
3768
/// Because we pass around references into \c BPS, we must use a container that
3769
/// does not invalidate internal references (std::map instead of DenseMap).
3770
static const std::optional<BitPart> &
3771
collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
3772
std::map<Value *, std::optional<BitPart>> &BPS, int Depth,
3773
bool &FoundRoot) {
3774
auto I = BPS.find(V);
3775
if (I != BPS.end())
3776
return I->second;
3777
3778
auto &Result = BPS[V] = std::nullopt;
3779
auto BitWidth = V->getType()->getScalarSizeInBits();
3780
3781
// Can't do integer/elements > 128 bits.
3782
if (BitWidth > 128)
3783
return Result;
3784
3785
// Prevent stack overflow by limiting the recursion depth
3786
if (Depth == BitPartRecursionMaxDepth) {
3787
LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
3788
return Result;
3789
}
3790
3791
if (auto *I = dyn_cast<Instruction>(V)) {
3792
Value *X, *Y;
3793
const APInt *C;
3794
3795
// If this is an or instruction, it may be an inner node of the bswap.
3796
if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
3797
// Check we have both sources and they are from the same provider.
3798
const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3799
Depth + 1, FoundRoot);
3800
if (!A || !A->Provider)
3801
return Result;
3802
3803
const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3804
Depth + 1, FoundRoot);
3805
if (!B || A->Provider != B->Provider)
3806
return Result;
3807
3808
// Try and merge the two together.
3809
Result = BitPart(A->Provider, BitWidth);
3810
for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
3811
if (A->Provenance[BitIdx] != BitPart::Unset &&
3812
B->Provenance[BitIdx] != BitPart::Unset &&
3813
A->Provenance[BitIdx] != B->Provenance[BitIdx])
3814
return Result = std::nullopt;
3815
3816
if (A->Provenance[BitIdx] == BitPart::Unset)
3817
Result->Provenance[BitIdx] = B->Provenance[BitIdx];
3818
else
3819
Result->Provenance[BitIdx] = A->Provenance[BitIdx];
3820
}
3821
3822
return Result;
3823
}
3824
3825
// If this is a logical shift by a constant, recurse then shift the result.
3826
if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
3827
const APInt &BitShift = *C;
3828
3829
// Ensure the shift amount is defined.
3830
if (BitShift.uge(BitWidth))
3831
return Result;
3832
3833
// For bswap-only, limit shift amounts to whole bytes, for an early exit.
3834
if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
3835
return Result;
3836
3837
const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3838
Depth + 1, FoundRoot);
3839
if (!Res)
3840
return Result;
3841
Result = Res;
3842
3843
// Perform the "shift" on BitProvenance.
3844
auto &P = Result->Provenance;
3845
if (I->getOpcode() == Instruction::Shl) {
3846
P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
3847
P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
3848
} else {
3849
P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
3850
P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
3851
}
3852
3853
return Result;
3854
}
3855
3856
// If this is a logical 'and' with a mask that clears bits, recurse then
3857
// unset the appropriate bits.
3858
if (match(V, m_And(m_Value(X), m_APInt(C)))) {
3859
const APInt &AndMask = *C;
3860
3861
// Check that the mask allows a multiple of 8 bits for a bswap, for an
3862
// early exit.
3863
unsigned NumMaskedBits = AndMask.popcount();
3864
if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
3865
return Result;
3866
3867
const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3868
Depth + 1, FoundRoot);
3869
if (!Res)
3870
return Result;
3871
Result = Res;
3872
3873
for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3874
// If the AndMask is zero for this bit, clear the bit.
3875
if (AndMask[BitIdx] == 0)
3876
Result->Provenance[BitIdx] = BitPart::Unset;
3877
return Result;
3878
}
3879
3880
// If this is a zext instruction zero extend the result.
3881
if (match(V, m_ZExt(m_Value(X)))) {
3882
const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3883
Depth + 1, FoundRoot);
3884
if (!Res)
3885
return Result;
3886
3887
Result = BitPart(Res->Provider, BitWidth);
3888
auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3889
for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3890
Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3891
for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3892
Result->Provenance[BitIdx] = BitPart::Unset;
3893
return Result;
3894
}
3895
3896
// If this is a truncate instruction, extract the lower bits.
3897
if (match(V, m_Trunc(m_Value(X)))) {
3898
const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3899
Depth + 1, FoundRoot);
3900
if (!Res)
3901
return Result;
3902
3903
Result = BitPart(Res->Provider, BitWidth);
3904
for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3905
Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3906
return Result;
3907
}
3908
3909
// BITREVERSE - most likely due to us previous matching a partial
3910
// bitreverse.
3911
if (match(V, m_BitReverse(m_Value(X)))) {
3912
const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3913
Depth + 1, FoundRoot);
3914
if (!Res)
3915
return Result;
3916
3917
Result = BitPart(Res->Provider, BitWidth);
3918
for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3919
Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3920
return Result;
3921
}
3922
3923
// BSWAP - most likely due to us previous matching a partial bswap.
3924
if (match(V, m_BSwap(m_Value(X)))) {
3925
const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3926
Depth + 1, FoundRoot);
3927
if (!Res)
3928
return Result;
3929
3930
unsigned ByteWidth = BitWidth / 8;
3931
Result = BitPart(Res->Provider, BitWidth);
3932
for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3933
unsigned ByteBitOfs = ByteIdx * 8;
3934
for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3935
Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3936
Res->Provenance[ByteBitOfs + BitIdx];
3937
}
3938
return Result;
3939
}
3940
3941
// Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3942
// amount (modulo).
3943
// fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3944
// fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3945
if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3946
match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3947
// We can treat fshr as a fshl by flipping the modulo amount.
3948
unsigned ModAmt = C->urem(BitWidth);
3949
if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3950
ModAmt = BitWidth - ModAmt;
3951
3952
// For bswap-only, limit shift amounts to whole bytes, for an early exit.
3953
if (!MatchBitReversals && (ModAmt % 8) != 0)
3954
return Result;
3955
3956
// Check we have both sources and they are from the same provider.
3957
const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3958
Depth + 1, FoundRoot);
3959
if (!LHS || !LHS->Provider)
3960
return Result;
3961
3962
const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3963
Depth + 1, FoundRoot);
3964
if (!RHS || LHS->Provider != RHS->Provider)
3965
return Result;
3966
3967
unsigned StartBitRHS = BitWidth - ModAmt;
3968
Result = BitPart(LHS->Provider, BitWidth);
3969
for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3970
Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3971
for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3972
Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3973
return Result;
3974
}
3975
}
3976
3977
// If we've already found a root input value then we're never going to merge
3978
// these back together.
3979
if (FoundRoot)
3980
return Result;
3981
3982
// Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
3983
// be the root input value to the bswap/bitreverse.
3984
FoundRoot = true;
3985
Result = BitPart(V, BitWidth);
3986
for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3987
Result->Provenance[BitIdx] = BitIdx;
3988
return Result;
3989
}
3990
3991
static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3992
unsigned BitWidth) {
3993
if (From % 8 != To % 8)
3994
return false;
3995
// Convert from bit indices to byte indices and check for a byte reversal.
3996
From >>= 3;
3997
To >>= 3;
3998
BitWidth >>= 3;
3999
return From == BitWidth - To - 1;
4000
}
4001
4002
static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
4003
unsigned BitWidth) {
4004
return From == BitWidth - To - 1;
4005
}
4006
4007
bool llvm::recognizeBSwapOrBitReverseIdiom(
4008
Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
4009
SmallVectorImpl<Instruction *> &InsertedInsts) {
4010
if (!match(I, m_Or(m_Value(), m_Value())) &&
4011
!match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
4012
!match(I, m_FShr(m_Value(), m_Value(), m_Value())) &&
4013
!match(I, m_BSwap(m_Value())))
4014
return false;
4015
if (!MatchBSwaps && !MatchBitReversals)
4016
return false;
4017
Type *ITy = I->getType();
4018
if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
4019
return false; // Can't do integer/elements > 128 bits.
4020
4021
// Try to find all the pieces corresponding to the bswap.
4022
bool FoundRoot = false;
4023
std::map<Value *, std::optional<BitPart>> BPS;
4024
const auto &Res =
4025
collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
4026
if (!Res)
4027
return false;
4028
ArrayRef<int8_t> BitProvenance = Res->Provenance;
4029
assert(all_of(BitProvenance,
4030
[](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
4031
"Illegal bit provenance index");
4032
4033
// If the upper bits are zero, then attempt to perform as a truncated op.
4034
Type *DemandedTy = ITy;
4035
if (BitProvenance.back() == BitPart::Unset) {
4036
while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
4037
BitProvenance = BitProvenance.drop_back();
4038
if (BitProvenance.empty())
4039
return false; // TODO - handle null value?
4040
DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
4041
if (auto *IVecTy = dyn_cast<VectorType>(ITy))
4042
DemandedTy = VectorType::get(DemandedTy, IVecTy);
4043
}
4044
4045
// Check BitProvenance hasn't found a source larger than the result type.
4046
unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
4047
if (DemandedBW > ITy->getScalarSizeInBits())
4048
return false;
4049
4050
// Now, is the bit permutation correct for a bswap or a bitreverse? We can
4051
// only byteswap values with an even number of bytes.
4052
APInt DemandedMask = APInt::getAllOnes(DemandedBW);
4053
bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
4054
bool OKForBitReverse = MatchBitReversals;
4055
for (unsigned BitIdx = 0;
4056
(BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
4057
if (BitProvenance[BitIdx] == BitPart::Unset) {
4058
DemandedMask.clearBit(BitIdx);
4059
continue;
4060
}
4061
OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
4062
DemandedBW);
4063
OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
4064
BitIdx, DemandedBW);
4065
}
4066
4067
Intrinsic::ID Intrin;
4068
if (OKForBSwap)
4069
Intrin = Intrinsic::bswap;
4070
else if (OKForBitReverse)
4071
Intrin = Intrinsic::bitreverse;
4072
else
4073
return false;
4074
4075
Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
4076
Value *Provider = Res->Provider;
4077
4078
// We may need to truncate the provider.
4079
if (DemandedTy != Provider->getType()) {
4080
auto *Trunc =
4081
CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator());
4082
InsertedInsts.push_back(Trunc);
4083
Provider = Trunc;
4084
}
4085
4086
Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator());
4087
InsertedInsts.push_back(Result);
4088
4089
if (!DemandedMask.isAllOnes()) {
4090
auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
4091
Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator());
4092
InsertedInsts.push_back(Result);
4093
}
4094
4095
// We may need to zeroextend back to the result type.
4096
if (ITy != Result->getType()) {
4097
auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator());
4098
InsertedInsts.push_back(ExtInst);
4099
}
4100
4101
return true;
4102
}
4103
4104
// CodeGen has special handling for some string functions that may replace
4105
// them with target-specific intrinsics. Since that'd skip our interceptors
4106
// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
4107
// we mark affected calls as NoBuiltin, which will disable optimization
4108
// in CodeGen.
4109
void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
4110
CallInst *CI, const TargetLibraryInfo *TLI) {
4111
Function *F = CI->getCalledFunction();
4112
LibFunc Func;
4113
if (F && !F->hasLocalLinkage() && F->hasName() &&
4114
TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
4115
!F->doesNotAccessMemory())
4116
CI->addFnAttr(Attribute::NoBuiltin);
4117
}
4118
4119
bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
4120
// We can't have a PHI with a metadata type.
4121
if (I->getOperand(OpIdx)->getType()->isMetadataTy())
4122
return false;
4123
4124
// Early exit.
4125
if (!isa<Constant>(I->getOperand(OpIdx)))
4126
return true;
4127
4128
switch (I->getOpcode()) {
4129
default:
4130
return true;
4131
case Instruction::Call:
4132
case Instruction::Invoke: {
4133
const auto &CB = cast<CallBase>(*I);
4134
4135
// Can't handle inline asm. Skip it.
4136
if (CB.isInlineAsm())
4137
return false;
4138
4139
// Constant bundle operands may need to retain their constant-ness for
4140
// correctness.
4141
if (CB.isBundleOperand(OpIdx))
4142
return false;
4143
4144
if (OpIdx < CB.arg_size()) {
4145
// Some variadic intrinsics require constants in the variadic arguments,
4146
// which currently aren't markable as immarg.
4147
if (isa<IntrinsicInst>(CB) &&
4148
OpIdx >= CB.getFunctionType()->getNumParams()) {
4149
// This is known to be OK for stackmap.
4150
return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
4151
}
4152
4153
// gcroot is a special case, since it requires a constant argument which
4154
// isn't also required to be a simple ConstantInt.
4155
if (CB.getIntrinsicID() == Intrinsic::gcroot)
4156
return false;
4157
4158
// Some intrinsic operands are required to be immediates.
4159
return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
4160
}
4161
4162
// It is never allowed to replace the call argument to an intrinsic, but it
4163
// may be possible for a call.
4164
return !isa<IntrinsicInst>(CB);
4165
}
4166
case Instruction::ShuffleVector:
4167
// Shufflevector masks are constant.
4168
return OpIdx != 2;
4169
case Instruction::Switch:
4170
case Instruction::ExtractValue:
4171
// All operands apart from the first are constant.
4172
return OpIdx == 0;
4173
case Instruction::InsertValue:
4174
// All operands apart from the first and the second are constant.
4175
return OpIdx < 2;
4176
case Instruction::Alloca:
4177
// Static allocas (constant size in the entry block) are handled by
4178
// prologue/epilogue insertion so they're free anyway. We definitely don't
4179
// want to make them non-constant.
4180
return !cast<AllocaInst>(I)->isStaticAlloca();
4181
case Instruction::GetElementPtr:
4182
if (OpIdx == 0)
4183
return true;
4184
gep_type_iterator It = gep_type_begin(I);
4185
for (auto E = std::next(It, OpIdx); It != E; ++It)
4186
if (It.isStruct())
4187
return false;
4188
return true;
4189
}
4190
}
4191
4192
Value *llvm::invertCondition(Value *Condition) {
4193
// First: Check if it's a constant
4194
if (Constant *C = dyn_cast<Constant>(Condition))
4195
return ConstantExpr::getNot(C);
4196
4197
// Second: If the condition is already inverted, return the original value
4198
Value *NotCondition;
4199
if (match(Condition, m_Not(m_Value(NotCondition))))
4200
return NotCondition;
4201
4202
BasicBlock *Parent = nullptr;
4203
Instruction *Inst = dyn_cast<Instruction>(Condition);
4204
if (Inst)
4205
Parent = Inst->getParent();
4206
else if (Argument *Arg = dyn_cast<Argument>(Condition))
4207
Parent = &Arg->getParent()->getEntryBlock();
4208
assert(Parent && "Unsupported condition to invert");
4209
4210
// Third: Check all the users for an invert
4211
for (User *U : Condition->users())
4212
if (Instruction *I = dyn_cast<Instruction>(U))
4213
if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
4214
return I;
4215
4216
// Last option: Create a new instruction
4217
auto *Inverted =
4218
BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
4219
if (Inst && !isa<PHINode>(Inst))
4220
Inverted->insertAfter(Inst);
4221
else
4222
Inverted->insertBefore(&*Parent->getFirstInsertionPt());
4223
return Inverted;
4224
}
4225
4226
bool llvm::inferAttributesFromOthers(Function &F) {
4227
// Note: We explicitly check for attributes rather than using cover functions
4228
// because some of the cover functions include the logic being implemented.
4229
4230
bool Changed = false;
4231
// readnone + not convergent implies nosync
4232
if (!F.hasFnAttribute(Attribute::NoSync) &&
4233
F.doesNotAccessMemory() && !F.isConvergent()) {
4234
F.setNoSync();
4235
Changed = true;
4236
}
4237
4238
// readonly implies nofree
4239
if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
4240
F.setDoesNotFreeMemory();
4241
Changed = true;
4242
}
4243
4244
// willreturn implies mustprogress
4245
if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
4246
F.setMustProgress();
4247
Changed = true;
4248
}
4249
4250
// TODO: There are a bunch of cases of restrictive memory effects we
4251
// can infer by inspecting arguments of argmemonly-ish functions.
4252
4253
return Changed;
4254
}
4255
4256