Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp
35271 views
1
//===----------------- LoopRotationUtils.cpp -----------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file provides utilities to convert a loop into a loop with bottom test.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/Transforms/Utils/LoopRotationUtils.h"
14
#include "llvm/ADT/Statistic.h"
15
#include "llvm/Analysis/AssumptionCache.h"
16
#include "llvm/Analysis/CodeMetrics.h"
17
#include "llvm/Analysis/DomTreeUpdater.h"
18
#include "llvm/Analysis/InstructionSimplify.h"
19
#include "llvm/Analysis/LoopInfo.h"
20
#include "llvm/Analysis/MemorySSA.h"
21
#include "llvm/Analysis/MemorySSAUpdater.h"
22
#include "llvm/Analysis/ScalarEvolution.h"
23
#include "llvm/Analysis/ValueTracking.h"
24
#include "llvm/IR/CFG.h"
25
#include "llvm/IR/DebugInfo.h"
26
#include "llvm/IR/Dominators.h"
27
#include "llvm/IR/IntrinsicInst.h"
28
#include "llvm/IR/MDBuilder.h"
29
#include "llvm/IR/ProfDataUtils.h"
30
#include "llvm/Support/CommandLine.h"
31
#include "llvm/Support/Debug.h"
32
#include "llvm/Support/raw_ostream.h"
33
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
34
#include "llvm/Transforms/Utils/Cloning.h"
35
#include "llvm/Transforms/Utils/Local.h"
36
#include "llvm/Transforms/Utils/SSAUpdater.h"
37
#include "llvm/Transforms/Utils/ValueMapper.h"
38
using namespace llvm;
39
40
#define DEBUG_TYPE "loop-rotate"
41
42
STATISTIC(NumNotRotatedDueToHeaderSize,
43
"Number of loops not rotated due to the header size");
44
STATISTIC(NumInstrsHoisted,
45
"Number of instructions hoisted into loop preheader");
46
STATISTIC(NumInstrsDuplicated,
47
"Number of instructions cloned into loop preheader");
48
STATISTIC(NumRotated, "Number of loops rotated");
49
50
static cl::opt<bool>
51
MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
52
cl::desc("Allow loop rotation multiple times in order to reach "
53
"a better latch exit"));
54
55
// Probability that a rotated loop has zero trip count / is never entered.
56
static constexpr uint32_t ZeroTripCountWeights[] = {1, 127};
57
58
namespace {
59
/// A simple loop rotation transformation.
60
class LoopRotate {
61
const unsigned MaxHeaderSize;
62
LoopInfo *LI;
63
const TargetTransformInfo *TTI;
64
AssumptionCache *AC;
65
DominatorTree *DT;
66
ScalarEvolution *SE;
67
MemorySSAUpdater *MSSAU;
68
const SimplifyQuery &SQ;
69
bool RotationOnly;
70
bool IsUtilMode;
71
bool PrepareForLTO;
72
73
public:
74
LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
75
const TargetTransformInfo *TTI, AssumptionCache *AC,
76
DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
77
const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
78
bool PrepareForLTO)
79
: MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
80
MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
81
IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
82
bool processLoop(Loop *L);
83
84
private:
85
bool rotateLoop(Loop *L, bool SimplifiedLatch);
86
bool simplifyLoopLatch(Loop *L);
87
};
88
} // end anonymous namespace
89
90
/// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
91
/// previously exist in the map, and the value was inserted.
92
static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
93
bool Inserted = VM.insert({K, V}).second;
94
assert(Inserted);
95
(void)Inserted;
96
}
97
/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
98
/// old header into the preheader. If there were uses of the values produced by
99
/// these instruction that were outside of the loop, we have to insert PHI nodes
100
/// to merge the two values. Do this now.
101
static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
102
BasicBlock *OrigPreheader,
103
ValueToValueMapTy &ValueMap,
104
ScalarEvolution *SE,
105
SmallVectorImpl<PHINode*> *InsertedPHIs) {
106
// Remove PHI node entries that are no longer live.
107
BasicBlock::iterator I, E = OrigHeader->end();
108
for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
109
PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
110
111
// Now fix up users of the instructions in OrigHeader, inserting PHI nodes
112
// as necessary.
113
SSAUpdater SSA(InsertedPHIs);
114
for (I = OrigHeader->begin(); I != E; ++I) {
115
Value *OrigHeaderVal = &*I;
116
117
// If there are no uses of the value (e.g. because it returns void), there
118
// is nothing to rewrite.
119
if (OrigHeaderVal->use_empty())
120
continue;
121
122
Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
123
124
// The value now exits in two versions: the initial value in the preheader
125
// and the loop "next" value in the original header.
126
SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
127
// Force re-computation of OrigHeaderVal, as some users now need to use the
128
// new PHI node.
129
if (SE)
130
SE->forgetValue(OrigHeaderVal);
131
SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
132
SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
133
134
// Visit each use of the OrigHeader instruction.
135
for (Use &U : llvm::make_early_inc_range(OrigHeaderVal->uses())) {
136
// SSAUpdater can't handle a non-PHI use in the same block as an
137
// earlier def. We can easily handle those cases manually.
138
Instruction *UserInst = cast<Instruction>(U.getUser());
139
if (!isa<PHINode>(UserInst)) {
140
BasicBlock *UserBB = UserInst->getParent();
141
142
// The original users in the OrigHeader are already using the
143
// original definitions.
144
if (UserBB == OrigHeader)
145
continue;
146
147
// Users in the OrigPreHeader need to use the value to which the
148
// original definitions are mapped.
149
if (UserBB == OrigPreheader) {
150
U = OrigPreHeaderVal;
151
continue;
152
}
153
}
154
155
// Anything else can be handled by SSAUpdater.
156
SSA.RewriteUse(U);
157
}
158
159
// Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
160
// intrinsics.
161
SmallVector<DbgValueInst *, 1> DbgValues;
162
SmallVector<DbgVariableRecord *, 1> DbgVariableRecords;
163
llvm::findDbgValues(DbgValues, OrigHeaderVal, &DbgVariableRecords);
164
for (auto &DbgValue : DbgValues) {
165
// The original users in the OrigHeader are already using the original
166
// definitions.
167
BasicBlock *UserBB = DbgValue->getParent();
168
if (UserBB == OrigHeader)
169
continue;
170
171
// Users in the OrigPreHeader need to use the value to which the
172
// original definitions are mapped and anything else can be handled by
173
// the SSAUpdater. To avoid adding PHINodes, check if the value is
174
// available in UserBB, if not substitute undef.
175
Value *NewVal;
176
if (UserBB == OrigPreheader)
177
NewVal = OrigPreHeaderVal;
178
else if (SSA.HasValueForBlock(UserBB))
179
NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
180
else
181
NewVal = UndefValue::get(OrigHeaderVal->getType());
182
DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal);
183
}
184
185
// RemoveDIs: duplicate implementation for non-instruction debug-info
186
// storage in DbgVariableRecords.
187
for (DbgVariableRecord *DVR : DbgVariableRecords) {
188
// The original users in the OrigHeader are already using the original
189
// definitions.
190
BasicBlock *UserBB = DVR->getMarker()->getParent();
191
if (UserBB == OrigHeader)
192
continue;
193
194
// Users in the OrigPreHeader need to use the value to which the
195
// original definitions are mapped and anything else can be handled by
196
// the SSAUpdater. To avoid adding PHINodes, check if the value is
197
// available in UserBB, if not substitute undef.
198
Value *NewVal;
199
if (UserBB == OrigPreheader)
200
NewVal = OrigPreHeaderVal;
201
else if (SSA.HasValueForBlock(UserBB))
202
NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
203
else
204
NewVal = UndefValue::get(OrigHeaderVal->getType());
205
DVR->replaceVariableLocationOp(OrigHeaderVal, NewVal);
206
}
207
}
208
}
209
210
// Assuming both header and latch are exiting, look for a phi which is only
211
// used outside the loop (via a LCSSA phi) in the exit from the header.
212
// This means that rotating the loop can remove the phi.
213
static bool profitableToRotateLoopExitingLatch(Loop *L) {
214
BasicBlock *Header = L->getHeader();
215
BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
216
assert(BI && BI->isConditional() && "need header with conditional exit");
217
BasicBlock *HeaderExit = BI->getSuccessor(0);
218
if (L->contains(HeaderExit))
219
HeaderExit = BI->getSuccessor(1);
220
221
for (auto &Phi : Header->phis()) {
222
// Look for uses of this phi in the loop/via exits other than the header.
223
if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
224
return cast<Instruction>(U)->getParent() != HeaderExit;
225
}))
226
continue;
227
return true;
228
}
229
return false;
230
}
231
232
// Check that latch exit is deoptimizing (which means - very unlikely to happen)
233
// and there is another exit from the loop which is non-deoptimizing.
234
// If we rotate latch to that exit our loop has a better chance of being fully
235
// canonical.
236
//
237
// It can give false positives in some rare cases.
238
static bool canRotateDeoptimizingLatchExit(Loop *L) {
239
BasicBlock *Latch = L->getLoopLatch();
240
assert(Latch && "need latch");
241
BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
242
// Need normal exiting latch.
243
if (!BI || !BI->isConditional())
244
return false;
245
246
BasicBlock *Exit = BI->getSuccessor(1);
247
if (L->contains(Exit))
248
Exit = BI->getSuccessor(0);
249
250
// Latch exit is non-deoptimizing, no need to rotate.
251
if (!Exit->getPostdominatingDeoptimizeCall())
252
return false;
253
254
SmallVector<BasicBlock *, 4> Exits;
255
L->getUniqueExitBlocks(Exits);
256
if (!Exits.empty()) {
257
// There is at least one non-deoptimizing exit.
258
//
259
// Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
260
// as it can conservatively return false for deoptimizing exits with
261
// complex enough control flow down to deoptimize call.
262
//
263
// That means here we can report success for a case where
264
// all exits are deoptimizing but one of them has complex enough
265
// control flow (e.g. with loops).
266
//
267
// That should be a very rare case and false positives for this function
268
// have compile-time effect only.
269
return any_of(Exits, [](const BasicBlock *BB) {
270
return !BB->getPostdominatingDeoptimizeCall();
271
});
272
}
273
return false;
274
}
275
276
static void updateBranchWeights(BranchInst &PreHeaderBI, BranchInst &LoopBI,
277
bool HasConditionalPreHeader,
278
bool SuccsSwapped) {
279
MDNode *WeightMD = getBranchWeightMDNode(PreHeaderBI);
280
if (WeightMD == nullptr)
281
return;
282
283
// LoopBI should currently be a clone of PreHeaderBI with the same
284
// metadata. But we double check to make sure we don't have a degenerate case
285
// where instsimplify changed the instructions.
286
if (WeightMD != getBranchWeightMDNode(LoopBI))
287
return;
288
289
SmallVector<uint32_t, 2> Weights;
290
extractFromBranchWeightMD32(WeightMD, Weights);
291
if (Weights.size() != 2)
292
return;
293
uint32_t OrigLoopExitWeight = Weights[0];
294
uint32_t OrigLoopBackedgeWeight = Weights[1];
295
296
if (SuccsSwapped)
297
std::swap(OrigLoopExitWeight, OrigLoopBackedgeWeight);
298
299
// Update branch weights. Consider the following edge-counts:
300
//
301
// | |-------- |
302
// V V | V
303
// Br i1 ... | Br i1 ...
304
// | | | | |
305
// x| y| | becomes: | y0| |-----
306
// V V | | V V |
307
// Exit Loop | | Loop |
308
// | | | Br i1 ... |
309
// ----- | | | |
310
// x0| x1| y1 | |
311
// V V ----
312
// Exit
313
//
314
// The following must hold:
315
// - x == x0 + x1 # counts to "exit" must stay the same.
316
// - y0 == x - x0 == x1 # how often loop was entered at all.
317
// - y1 == y - y0 # How often loop was repeated (after first iter.).
318
//
319
// We cannot generally deduce how often we had a zero-trip count loop so we
320
// have to make a guess for how to distribute x among the new x0 and x1.
321
322
uint32_t ExitWeight0; // aka x0
323
uint32_t ExitWeight1; // aka x1
324
uint32_t EnterWeight; // aka y0
325
uint32_t LoopBackWeight; // aka y1
326
if (OrigLoopExitWeight > 0 && OrigLoopBackedgeWeight > 0) {
327
ExitWeight0 = 0;
328
if (HasConditionalPreHeader) {
329
// Here we cannot know how many 0-trip count loops we have, so we guess:
330
if (OrigLoopBackedgeWeight >= OrigLoopExitWeight) {
331
// If the loop count is bigger than the exit count then we set
332
// probabilities as if 0-trip count nearly never happens.
333
ExitWeight0 = ZeroTripCountWeights[0];
334
// Scale up counts if necessary so we can match `ZeroTripCountWeights`
335
// for the `ExitWeight0`:`ExitWeight1` (aka `x0`:`x1` ratio`) ratio.
336
while (OrigLoopExitWeight < ZeroTripCountWeights[1] + ExitWeight0) {
337
// ... but don't overflow.
338
uint32_t const HighBit = uint32_t{1} << (sizeof(uint32_t) * 8 - 1);
339
if ((OrigLoopBackedgeWeight & HighBit) != 0 ||
340
(OrigLoopExitWeight & HighBit) != 0)
341
break;
342
OrigLoopBackedgeWeight <<= 1;
343
OrigLoopExitWeight <<= 1;
344
}
345
} else {
346
// If there's a higher exit-count than backedge-count then we set
347
// probabilities as if there are only 0-trip and 1-trip cases.
348
ExitWeight0 = OrigLoopExitWeight - OrigLoopBackedgeWeight;
349
}
350
} else {
351
// Theoretically, if the loop body must be executed at least once, the
352
// backedge count must be not less than exit count. However the branch
353
// weight collected by sampling-based PGO may be not very accurate due to
354
// sampling. Therefore this workaround is required here to avoid underflow
355
// of unsigned in following update of branch weight.
356
if (OrigLoopExitWeight > OrigLoopBackedgeWeight)
357
OrigLoopBackedgeWeight = OrigLoopExitWeight;
358
}
359
assert(OrigLoopExitWeight >= ExitWeight0 && "Bad branch weight");
360
ExitWeight1 = OrigLoopExitWeight - ExitWeight0;
361
EnterWeight = ExitWeight1;
362
assert(OrigLoopBackedgeWeight >= EnterWeight && "Bad branch weight");
363
LoopBackWeight = OrigLoopBackedgeWeight - EnterWeight;
364
} else if (OrigLoopExitWeight == 0) {
365
if (OrigLoopBackedgeWeight == 0) {
366
// degenerate case... keep everything zero...
367
ExitWeight0 = 0;
368
ExitWeight1 = 0;
369
EnterWeight = 0;
370
LoopBackWeight = 0;
371
} else {
372
// Special case "LoopExitWeight == 0" weights which behaves like an
373
// endless where we don't want loop-enttry (y0) to be the same as
374
// loop-exit (x1).
375
ExitWeight0 = 0;
376
ExitWeight1 = 0;
377
EnterWeight = 1;
378
LoopBackWeight = OrigLoopBackedgeWeight;
379
}
380
} else {
381
// loop is never entered.
382
assert(OrigLoopBackedgeWeight == 0 && "remaining case is backedge zero");
383
ExitWeight0 = 1;
384
ExitWeight1 = 1;
385
EnterWeight = 0;
386
LoopBackWeight = 0;
387
}
388
389
const uint32_t LoopBIWeights[] = {
390
SuccsSwapped ? LoopBackWeight : ExitWeight1,
391
SuccsSwapped ? ExitWeight1 : LoopBackWeight,
392
};
393
setBranchWeights(LoopBI, LoopBIWeights, /*IsExpected=*/false);
394
if (HasConditionalPreHeader) {
395
const uint32_t PreHeaderBIWeights[] = {
396
SuccsSwapped ? EnterWeight : ExitWeight0,
397
SuccsSwapped ? ExitWeight0 : EnterWeight,
398
};
399
setBranchWeights(PreHeaderBI, PreHeaderBIWeights, /*IsExpected=*/false);
400
}
401
}
402
403
/// Rotate loop LP. Return true if the loop is rotated.
404
///
405
/// \param SimplifiedLatch is true if the latch was just folded into the final
406
/// loop exit. In this case we may want to rotate even though the new latch is
407
/// now an exiting branch. This rotation would have happened had the latch not
408
/// been simplified. However, if SimplifiedLatch is false, then we avoid
409
/// rotating loops in which the latch exits to avoid excessive or endless
410
/// rotation. LoopRotate should be repeatable and converge to a canonical
411
/// form. This property is satisfied because simplifying the loop latch can only
412
/// happen once across multiple invocations of the LoopRotate pass.
413
///
414
/// If -loop-rotate-multi is enabled we can do multiple rotations in one go
415
/// so to reach a suitable (non-deoptimizing) exit.
416
bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
417
// If the loop has only one block then there is not much to rotate.
418
if (L->getBlocks().size() == 1)
419
return false;
420
421
bool Rotated = false;
422
do {
423
BasicBlock *OrigHeader = L->getHeader();
424
BasicBlock *OrigLatch = L->getLoopLatch();
425
426
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
427
if (!BI || BI->isUnconditional())
428
return Rotated;
429
430
// If the loop header is not one of the loop exiting blocks then
431
// either this loop is already rotated or it is not
432
// suitable for loop rotation transformations.
433
if (!L->isLoopExiting(OrigHeader))
434
return Rotated;
435
436
// If the loop latch already contains a branch that leaves the loop then the
437
// loop is already rotated.
438
if (!OrigLatch)
439
return Rotated;
440
441
// Rotate if either the loop latch does *not* exit the loop, or if the loop
442
// latch was just simplified. Or if we think it will be profitable.
443
if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
444
!profitableToRotateLoopExitingLatch(L) &&
445
!canRotateDeoptimizingLatchExit(L))
446
return Rotated;
447
448
// Check size of original header and reject loop if it is very big or we can't
449
// duplicate blocks inside it.
450
{
451
SmallPtrSet<const Value *, 32> EphValues;
452
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
453
454
CodeMetrics Metrics;
455
Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
456
if (Metrics.notDuplicatable) {
457
LLVM_DEBUG(
458
dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
459
<< " instructions: ";
460
L->dump());
461
return Rotated;
462
}
463
if (Metrics.Convergence != ConvergenceKind::None) {
464
LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
465
"instructions: ";
466
L->dump());
467
return Rotated;
468
}
469
if (!Metrics.NumInsts.isValid()) {
470
LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions"
471
" with invalid cost: ";
472
L->dump());
473
return Rotated;
474
}
475
if (Metrics.NumInsts > MaxHeaderSize) {
476
LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
477
<< Metrics.NumInsts
478
<< " instructions, which is more than the threshold ("
479
<< MaxHeaderSize << " instructions): ";
480
L->dump());
481
++NumNotRotatedDueToHeaderSize;
482
return Rotated;
483
}
484
485
// When preparing for LTO, avoid rotating loops with calls that could be
486
// inlined during the LTO stage.
487
if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
488
return Rotated;
489
}
490
491
// Now, this loop is suitable for rotation.
492
BasicBlock *OrigPreheader = L->getLoopPreheader();
493
494
// If the loop could not be converted to canonical form, it must have an
495
// indirectbr in it, just give up.
496
if (!OrigPreheader || !L->hasDedicatedExits())
497
return Rotated;
498
499
// Anything ScalarEvolution may know about this loop or the PHI nodes
500
// in its header will soon be invalidated. We should also invalidate
501
// all outer loops because insertion and deletion of blocks that happens
502
// during the rotation may violate invariants related to backedge taken
503
// infos in them.
504
if (SE) {
505
SE->forgetTopmostLoop(L);
506
// We may hoist some instructions out of loop. In case if they were cached
507
// as "loop variant" or "loop computable", these caches must be dropped.
508
// We also may fold basic blocks, so cached block dispositions also need
509
// to be dropped.
510
SE->forgetBlockAndLoopDispositions();
511
}
512
513
LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
514
if (MSSAU && VerifyMemorySSA)
515
MSSAU->getMemorySSA()->verifyMemorySSA();
516
517
// Find new Loop header. NewHeader is a Header's one and only successor
518
// that is inside loop. Header's other successor is outside the
519
// loop. Otherwise loop is not suitable for rotation.
520
BasicBlock *Exit = BI->getSuccessor(0);
521
BasicBlock *NewHeader = BI->getSuccessor(1);
522
bool BISuccsSwapped = L->contains(Exit);
523
if (BISuccsSwapped)
524
std::swap(Exit, NewHeader);
525
assert(NewHeader && "Unable to determine new loop header");
526
assert(L->contains(NewHeader) && !L->contains(Exit) &&
527
"Unable to determine loop header and exit blocks");
528
529
// This code assumes that the new header has exactly one predecessor.
530
// Remove any single-entry PHI nodes in it.
531
assert(NewHeader->getSinglePredecessor() &&
532
"New header doesn't have one pred!");
533
FoldSingleEntryPHINodes(NewHeader);
534
535
// Begin by walking OrigHeader and populating ValueMap with an entry for
536
// each Instruction.
537
BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
538
ValueToValueMapTy ValueMap, ValueMapMSSA;
539
540
// For PHI nodes, the value available in OldPreHeader is just the
541
// incoming value from OldPreHeader.
542
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
543
InsertNewValueIntoMap(ValueMap, PN,
544
PN->getIncomingValueForBlock(OrigPreheader));
545
546
// For the rest of the instructions, either hoist to the OrigPreheader if
547
// possible or create a clone in the OldPreHeader if not.
548
Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
549
550
// Record all debug intrinsics preceding LoopEntryBranch to avoid
551
// duplication.
552
using DbgIntrinsicHash =
553
std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>;
554
auto makeHash = [](auto *D) -> DbgIntrinsicHash {
555
auto VarLocOps = D->location_ops();
556
return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()),
557
D->getVariable()},
558
D->getExpression()};
559
};
560
561
SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
562
for (Instruction &I : llvm::drop_begin(llvm::reverse(*OrigPreheader))) {
563
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
564
DbgIntrinsics.insert(makeHash(DII));
565
// Until RemoveDIs supports dbg.declares in DbgVariableRecord format,
566
// we'll need to collect DbgVariableRecords attached to any other debug
567
// intrinsics.
568
for (const DbgVariableRecord &DVR :
569
filterDbgVars(DII->getDbgRecordRange()))
570
DbgIntrinsics.insert(makeHash(&DVR));
571
} else {
572
break;
573
}
574
}
575
576
// Build DbgVariableRecord hashes for DbgVariableRecords attached to the
577
// terminator, which isn't considered in the loop above.
578
for (const DbgVariableRecord &DVR :
579
filterDbgVars(OrigPreheader->getTerminator()->getDbgRecordRange()))
580
DbgIntrinsics.insert(makeHash(&DVR));
581
582
// Remember the local noalias scope declarations in the header. After the
583
// rotation, they must be duplicated and the scope must be cloned. This
584
// avoids unwanted interaction across iterations.
585
SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
586
for (Instruction &I : *OrigHeader)
587
if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
588
NoAliasDeclInstructions.push_back(Decl);
589
590
Module *M = OrigHeader->getModule();
591
592
// Track the next DbgRecord to clone. If we have a sequence where an
593
// instruction is hoisted instead of being cloned:
594
// DbgRecord blah
595
// %foo = add i32 0, 0
596
// DbgRecord xyzzy
597
// %bar = call i32 @foobar()
598
// where %foo is hoisted, then the DbgRecord "blah" will be seen twice, once
599
// attached to %foo, then when %foo his hoisted it will "fall down" onto the
600
// function call:
601
// DbgRecord blah
602
// DbgRecord xyzzy
603
// %bar = call i32 @foobar()
604
// causing it to appear attached to the call too.
605
//
606
// To avoid this, cloneDebugInfoFrom takes an optional "start cloning from
607
// here" position to account for this behaviour. We point it at any
608
// DbgRecords on the next instruction, here labelled xyzzy, before we hoist
609
// %foo. Later, we only only clone DbgRecords from that position (xyzzy)
610
// onwards, which avoids cloning DbgRecord "blah" multiple times. (Stored as
611
// a range because it gives us a natural way of testing whether
612
// there were DbgRecords on the next instruction before we hoisted things).
613
iterator_range<DbgRecord::self_iterator> NextDbgInsts =
614
(I != E) ? I->getDbgRecordRange() : DbgMarker::getEmptyDbgRecordRange();
615
616
while (I != E) {
617
Instruction *Inst = &*I++;
618
619
// If the instruction's operands are invariant and it doesn't read or write
620
// memory, then it is safe to hoist. Doing this doesn't change the order of
621
// execution in the preheader, but does prevent the instruction from
622
// executing in each iteration of the loop. This means it is safe to hoist
623
// something that might trap, but isn't safe to hoist something that reads
624
// memory (without proving that the loop doesn't write).
625
if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
626
!Inst->mayWriteToMemory() && !Inst->isTerminator() &&
627
!isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst) &&
628
// It is not safe to hoist the value of these instructions in
629
// coroutines, as the addresses of otherwise eligible variables (e.g.
630
// thread-local variables and errno) may change if the coroutine is
631
// resumed in a different thread.Therefore, we disable this
632
// optimization for correctness. However, this may block other correct
633
// optimizations.
634
// FIXME: This should be reverted once we have a better model for
635
// memory access in coroutines.
636
!Inst->getFunction()->isPresplitCoroutine()) {
637
638
if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat &&
639
!NextDbgInsts.empty()) {
640
auto DbgValueRange =
641
LoopEntryBranch->cloneDebugInfoFrom(Inst, NextDbgInsts.begin());
642
RemapDbgRecordRange(M, DbgValueRange, ValueMap,
643
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
644
// Erase anything we've seen before.
645
for (DbgVariableRecord &DVR :
646
make_early_inc_range(filterDbgVars(DbgValueRange)))
647
if (DbgIntrinsics.count(makeHash(&DVR)))
648
DVR.eraseFromParent();
649
}
650
651
NextDbgInsts = I->getDbgRecordRange();
652
653
Inst->moveBefore(LoopEntryBranch);
654
655
++NumInstrsHoisted;
656
continue;
657
}
658
659
// Otherwise, create a duplicate of the instruction.
660
Instruction *C = Inst->clone();
661
C->insertBefore(LoopEntryBranch);
662
663
++NumInstrsDuplicated;
664
665
if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat &&
666
!NextDbgInsts.empty()) {
667
auto Range = C->cloneDebugInfoFrom(Inst, NextDbgInsts.begin());
668
RemapDbgRecordRange(M, Range, ValueMap,
669
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
670
NextDbgInsts = DbgMarker::getEmptyDbgRecordRange();
671
// Erase anything we've seen before.
672
for (DbgVariableRecord &DVR :
673
make_early_inc_range(filterDbgVars(Range)))
674
if (DbgIntrinsics.count(makeHash(&DVR)))
675
DVR.eraseFromParent();
676
}
677
678
// Eagerly remap the operands of the instruction.
679
RemapInstruction(C, ValueMap,
680
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
681
682
// Avoid inserting the same intrinsic twice.
683
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
684
if (DbgIntrinsics.count(makeHash(DII))) {
685
C->eraseFromParent();
686
continue;
687
}
688
689
// With the operands remapped, see if the instruction constant folds or is
690
// otherwise simplifyable. This commonly occurs because the entry from PHI
691
// nodes allows icmps and other instructions to fold.
692
Value *V = simplifyInstruction(C, SQ);
693
if (V && LI->replacementPreservesLCSSAForm(C, V)) {
694
// If so, then delete the temporary instruction and stick the folded value
695
// in the map.
696
InsertNewValueIntoMap(ValueMap, Inst, V);
697
if (!C->mayHaveSideEffects()) {
698
C->eraseFromParent();
699
C = nullptr;
700
}
701
} else {
702
InsertNewValueIntoMap(ValueMap, Inst, C);
703
}
704
if (C) {
705
// Otherwise, stick the new instruction into the new block!
706
C->setName(Inst->getName());
707
708
if (auto *II = dyn_cast<AssumeInst>(C))
709
AC->registerAssumption(II);
710
// MemorySSA cares whether the cloned instruction was inserted or not, and
711
// not whether it can be remapped to a simplified value.
712
if (MSSAU)
713
InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
714
}
715
}
716
717
if (!NoAliasDeclInstructions.empty()) {
718
// There are noalias scope declarations:
719
// (general):
720
// Original: OrigPre { OrigHeader NewHeader ... Latch }
721
// after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
722
//
723
// with D: llvm.experimental.noalias.scope.decl,
724
// U: !noalias or !alias.scope depending on D
725
// ... { D U1 U2 } can transform into:
726
// (0) : ... { D U1 U2 } // no relevant rotation for this part
727
// (1) : ... D' { U1 U2 D } // D is part of OrigHeader
728
// (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
729
//
730
// We now want to transform:
731
// (1) -> : ... D' { D U1 U2 D'' }
732
// (2) -> : ... D' U1' { D U2 D'' U1'' }
733
// D: original llvm.experimental.noalias.scope.decl
734
// D', U1': duplicate with replaced scopes
735
// D'', U1'': different duplicate with replaced scopes
736
// This ensures a safe fallback to 'may_alias' introduced by the rotate,
737
// as U1'' and U1' scopes will not be compatible wrt to the local restrict
738
739
// Clone the llvm.experimental.noalias.decl again for the NewHeader.
740
BasicBlock::iterator NewHeaderInsertionPoint =
741
NewHeader->getFirstNonPHIIt();
742
for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
743
LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:"
744
<< *NAD << "\n");
745
Instruction *NewNAD = NAD->clone();
746
NewNAD->insertBefore(*NewHeader, NewHeaderInsertionPoint);
747
}
748
749
// Scopes must now be duplicated, once for OrigHeader and once for
750
// OrigPreHeader'.
751
{
752
auto &Context = NewHeader->getContext();
753
754
SmallVector<MDNode *, 8> NoAliasDeclScopes;
755
for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
756
NoAliasDeclScopes.push_back(NAD->getScopeList());
757
758
LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n");
759
cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
760
"h.rot");
761
LLVM_DEBUG(OrigHeader->dump());
762
763
// Keep the compile time impact low by only adapting the inserted block
764
// of instructions in the OrigPreHeader. This might result in slightly
765
// more aliasing between these instructions and those that were already
766
// present, but it will be much faster when the original PreHeader is
767
// large.
768
LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n");
769
auto *FirstDecl =
770
cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
771
auto *LastInst = &OrigPreheader->back();
772
cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
773
Context, "pre.rot");
774
LLVM_DEBUG(OrigPreheader->dump());
775
776
LLVM_DEBUG(dbgs() << " Updated NewHeader:\n");
777
LLVM_DEBUG(NewHeader->dump());
778
}
779
}
780
781
// Along with all the other instructions, we just cloned OrigHeader's
782
// terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
783
// successors by duplicating their incoming values for OrigHeader.
784
for (BasicBlock *SuccBB : successors(OrigHeader))
785
for (BasicBlock::iterator BI = SuccBB->begin();
786
PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
787
PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
788
789
// Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
790
// OrigPreHeader's old terminator (the original branch into the loop), and
791
// remove the corresponding incoming values from the PHI nodes in OrigHeader.
792
LoopEntryBranch->eraseFromParent();
793
OrigPreheader->flushTerminatorDbgRecords();
794
795
// Update MemorySSA before the rewrite call below changes the 1:1
796
// instruction:cloned_instruction_or_value mapping.
797
if (MSSAU) {
798
InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
799
MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
800
ValueMapMSSA);
801
}
802
803
SmallVector<PHINode*, 2> InsertedPHIs;
804
// If there were any uses of instructions in the duplicated block outside the
805
// loop, update them, inserting PHI nodes as required
806
RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE,
807
&InsertedPHIs);
808
809
// Attach dbg.value intrinsics to the new phis if that phi uses a value that
810
// previously had debug metadata attached. This keeps the debug info
811
// up-to-date in the loop body.
812
if (!InsertedPHIs.empty())
813
insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
814
815
// NewHeader is now the header of the loop.
816
L->moveToHeader(NewHeader);
817
assert(L->getHeader() == NewHeader && "Latch block is our new header");
818
819
// Inform DT about changes to the CFG.
820
if (DT) {
821
// The OrigPreheader branches to the NewHeader and Exit now. Then, inform
822
// the DT about the removed edge to the OrigHeader (that got removed).
823
SmallVector<DominatorTree::UpdateType, 3> Updates;
824
Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
825
Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
826
Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
827
828
if (MSSAU) {
829
MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
830
if (VerifyMemorySSA)
831
MSSAU->getMemorySSA()->verifyMemorySSA();
832
} else {
833
DT->applyUpdates(Updates);
834
}
835
}
836
837
// At this point, we've finished our major CFG changes. As part of cloning
838
// the loop into the preheader we've simplified instructions and the
839
// duplicated conditional branch may now be branching on a constant. If it is
840
// branching on a constant and if that constant means that we enter the loop,
841
// then we fold away the cond branch to an uncond branch. This simplifies the
842
// loop in cases important for nested loops, and it also means we don't have
843
// to split as many edges.
844
BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
845
assert(PHBI->isConditional() && "Should be clone of BI condbr!");
846
const Value *Cond = PHBI->getCondition();
847
const bool HasConditionalPreHeader =
848
!isa<ConstantInt>(Cond) ||
849
PHBI->getSuccessor(cast<ConstantInt>(Cond)->isZero()) != NewHeader;
850
851
updateBranchWeights(*PHBI, *BI, HasConditionalPreHeader, BISuccsSwapped);
852
853
if (HasConditionalPreHeader) {
854
// The conditional branch can't be folded, handle the general case.
855
// Split edges as necessary to preserve LoopSimplify form.
856
857
// Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
858
// thus is not a preheader anymore.
859
// Split the edge to form a real preheader.
860
BasicBlock *NewPH = SplitCriticalEdge(
861
OrigPreheader, NewHeader,
862
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
863
NewPH->setName(NewHeader->getName() + ".lr.ph");
864
865
// Preserve canonical loop form, which means that 'Exit' should have only
866
// one predecessor. Note that Exit could be an exit block for multiple
867
// nested loops, causing both of the edges to now be critical and need to
868
// be split.
869
SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit));
870
bool SplitLatchEdge = false;
871
for (BasicBlock *ExitPred : ExitPreds) {
872
// We only need to split loop exit edges.
873
Loop *PredLoop = LI->getLoopFor(ExitPred);
874
if (!PredLoop || PredLoop->contains(Exit) ||
875
isa<IndirectBrInst>(ExitPred->getTerminator()))
876
continue;
877
SplitLatchEdge |= L->getLoopLatch() == ExitPred;
878
BasicBlock *ExitSplit = SplitCriticalEdge(
879
ExitPred, Exit,
880
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
881
ExitSplit->moveBefore(Exit);
882
}
883
assert(SplitLatchEdge &&
884
"Despite splitting all preds, failed to split latch exit?");
885
(void)SplitLatchEdge;
886
} else {
887
// We can fold the conditional branch in the preheader, this makes things
888
// simpler. The first step is to remove the extra edge to the Exit block.
889
Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
890
BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI->getIterator());
891
NewBI->setDebugLoc(PHBI->getDebugLoc());
892
PHBI->eraseFromParent();
893
894
// With our CFG finalized, update DomTree if it is available.
895
if (DT) DT->deleteEdge(OrigPreheader, Exit);
896
897
// Update MSSA too, if available.
898
if (MSSAU)
899
MSSAU->removeEdge(OrigPreheader, Exit);
900
}
901
902
assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
903
assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
904
905
if (MSSAU && VerifyMemorySSA)
906
MSSAU->getMemorySSA()->verifyMemorySSA();
907
908
// Now that the CFG and DomTree are in a consistent state again, try to merge
909
// the OrigHeader block into OrigLatch. This will succeed if they are
910
// connected by an unconditional branch. This is just a cleanup so the
911
// emitted code isn't too gross in this common case.
912
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
913
BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
914
bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
915
if (DidMerge)
916
RemoveRedundantDbgInstrs(PredBB);
917
918
if (MSSAU && VerifyMemorySSA)
919
MSSAU->getMemorySSA()->verifyMemorySSA();
920
921
LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
922
923
++NumRotated;
924
925
Rotated = true;
926
SimplifiedLatch = false;
927
928
// Check that new latch is a deoptimizing exit and then repeat rotation if possible.
929
// Deoptimizing latch exit is not a generally typical case, so we just loop over.
930
// TODO: if it becomes a performance bottleneck extend rotation algorithm
931
// to handle multiple rotations in one go.
932
} while (MultiRotate && canRotateDeoptimizingLatchExit(L));
933
934
935
return true;
936
}
937
938
/// Determine whether the instructions in this range may be safely and cheaply
939
/// speculated. This is not an important enough situation to develop complex
940
/// heuristics. We handle a single arithmetic instruction along with any type
941
/// conversions.
942
static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
943
BasicBlock::iterator End, Loop *L) {
944
bool seenIncrement = false;
945
bool MultiExitLoop = false;
946
947
if (!L->getExitingBlock())
948
MultiExitLoop = true;
949
950
for (BasicBlock::iterator I = Begin; I != End; ++I) {
951
952
if (!isSafeToSpeculativelyExecute(&*I))
953
return false;
954
955
if (isa<DbgInfoIntrinsic>(I))
956
continue;
957
958
switch (I->getOpcode()) {
959
default:
960
return false;
961
case Instruction::GetElementPtr:
962
// GEPs are cheap if all indices are constant.
963
if (!cast<GEPOperator>(I)->hasAllConstantIndices())
964
return false;
965
// fall-thru to increment case
966
[[fallthrough]];
967
case Instruction::Add:
968
case Instruction::Sub:
969
case Instruction::And:
970
case Instruction::Or:
971
case Instruction::Xor:
972
case Instruction::Shl:
973
case Instruction::LShr:
974
case Instruction::AShr: {
975
Value *IVOpnd =
976
!isa<Constant>(I->getOperand(0))
977
? I->getOperand(0)
978
: !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
979
if (!IVOpnd)
980
return false;
981
982
// If increment operand is used outside of the loop, this speculation
983
// could cause extra live range interference.
984
if (MultiExitLoop) {
985
for (User *UseI : IVOpnd->users()) {
986
auto *UserInst = cast<Instruction>(UseI);
987
if (!L->contains(UserInst))
988
return false;
989
}
990
}
991
992
if (seenIncrement)
993
return false;
994
seenIncrement = true;
995
break;
996
}
997
case Instruction::Trunc:
998
case Instruction::ZExt:
999
case Instruction::SExt:
1000
// ignore type conversions
1001
break;
1002
}
1003
}
1004
return true;
1005
}
1006
1007
/// Fold the loop tail into the loop exit by speculating the loop tail
1008
/// instructions. Typically, this is a single post-increment. In the case of a
1009
/// simple 2-block loop, hoisting the increment can be much better than
1010
/// duplicating the entire loop header. In the case of loops with early exits,
1011
/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
1012
/// canonical form so downstream passes can handle it.
1013
///
1014
/// I don't believe this invalidates SCEV.
1015
bool LoopRotate::simplifyLoopLatch(Loop *L) {
1016
BasicBlock *Latch = L->getLoopLatch();
1017
if (!Latch || Latch->hasAddressTaken())
1018
return false;
1019
1020
BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
1021
if (!Jmp || !Jmp->isUnconditional())
1022
return false;
1023
1024
BasicBlock *LastExit = Latch->getSinglePredecessor();
1025
if (!LastExit || !L->isLoopExiting(LastExit))
1026
return false;
1027
1028
BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
1029
if (!BI)
1030
return false;
1031
1032
if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
1033
return false;
1034
1035
LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
1036
<< LastExit->getName() << "\n");
1037
1038
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1039
MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
1040
/*PredecessorWithTwoSuccessors=*/true);
1041
1042
if (SE) {
1043
// Merging blocks may remove blocks reference in the block disposition cache. Clear the cache.
1044
SE->forgetBlockAndLoopDispositions();
1045
}
1046
1047
if (MSSAU && VerifyMemorySSA)
1048
MSSAU->getMemorySSA()->verifyMemorySSA();
1049
1050
return true;
1051
}
1052
1053
/// Rotate \c L, and return true if any modification was made.
1054
bool LoopRotate::processLoop(Loop *L) {
1055
// Save the loop metadata.
1056
MDNode *LoopMD = L->getLoopID();
1057
1058
bool SimplifiedLatch = false;
1059
1060
// Simplify the loop latch before attempting to rotate the header
1061
// upward. Rotation may not be needed if the loop tail can be folded into the
1062
// loop exit.
1063
if (!RotationOnly)
1064
SimplifiedLatch = simplifyLoopLatch(L);
1065
1066
bool MadeChange = rotateLoop(L, SimplifiedLatch);
1067
assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
1068
"Loop latch should be exiting after loop-rotate.");
1069
1070
// Restore the loop metadata.
1071
// NB! We presume LoopRotation DOESN'T ADD its own metadata.
1072
if ((MadeChange || SimplifiedLatch) && LoopMD)
1073
L->setLoopID(LoopMD);
1074
1075
return MadeChange || SimplifiedLatch;
1076
}
1077
1078
1079
/// The utility to convert a loop into a loop with bottom test.
1080
bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
1081
AssumptionCache *AC, DominatorTree *DT,
1082
ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
1083
const SimplifyQuery &SQ, bool RotationOnly = true,
1084
unsigned Threshold = unsigned(-1),
1085
bool IsUtilMode = true, bool PrepareForLTO) {
1086
LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
1087
IsUtilMode, PrepareForLTO);
1088
return LR.processLoop(L);
1089
}
1090
1091