Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp
35271 views
1
//===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements loop unroll and jam as a routine, much like
10
// LoopUnroll.cpp implements loop unroll.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/ADT/ArrayRef.h"
15
#include "llvm/ADT/DenseMap.h"
16
#include "llvm/ADT/STLExtras.h"
17
#include "llvm/ADT/SmallPtrSet.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/ADT/Statistic.h"
20
#include "llvm/ADT/StringRef.h"
21
#include "llvm/ADT/Twine.h"
22
#include "llvm/Analysis/AssumptionCache.h"
23
#include "llvm/Analysis/DependenceAnalysis.h"
24
#include "llvm/Analysis/DomTreeUpdater.h"
25
#include "llvm/Analysis/LoopInfo.h"
26
#include "llvm/Analysis/LoopIterator.h"
27
#include "llvm/Analysis/MustExecute.h"
28
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
29
#include "llvm/Analysis/ScalarEvolution.h"
30
#include "llvm/IR/BasicBlock.h"
31
#include "llvm/IR/DebugInfoMetadata.h"
32
#include "llvm/IR/DebugLoc.h"
33
#include "llvm/IR/DiagnosticInfo.h"
34
#include "llvm/IR/Dominators.h"
35
#include "llvm/IR/Function.h"
36
#include "llvm/IR/Instruction.h"
37
#include "llvm/IR/Instructions.h"
38
#include "llvm/IR/IntrinsicInst.h"
39
#include "llvm/IR/User.h"
40
#include "llvm/IR/Value.h"
41
#include "llvm/IR/ValueHandle.h"
42
#include "llvm/IR/ValueMap.h"
43
#include "llvm/Support/Casting.h"
44
#include "llvm/Support/Debug.h"
45
#include "llvm/Support/ErrorHandling.h"
46
#include "llvm/Support/GenericDomTree.h"
47
#include "llvm/Support/raw_ostream.h"
48
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49
#include "llvm/Transforms/Utils/Cloning.h"
50
#include "llvm/Transforms/Utils/LoopUtils.h"
51
#include "llvm/Transforms/Utils/UnrollLoop.h"
52
#include "llvm/Transforms/Utils/ValueMapper.h"
53
#include <assert.h>
54
#include <memory>
55
#include <type_traits>
56
#include <vector>
57
58
using namespace llvm;
59
60
#define DEBUG_TYPE "loop-unroll-and-jam"
61
62
STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed");
63
STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed");
64
65
typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet;
66
67
// Partition blocks in an outer/inner loop pair into blocks before and after
68
// the loop
69
static bool partitionLoopBlocks(Loop &L, BasicBlockSet &ForeBlocks,
70
BasicBlockSet &AftBlocks, DominatorTree &DT) {
71
Loop *SubLoop = L.getSubLoops()[0];
72
BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
73
74
for (BasicBlock *BB : L.blocks()) {
75
if (!SubLoop->contains(BB)) {
76
if (DT.dominates(SubLoopLatch, BB))
77
AftBlocks.insert(BB);
78
else
79
ForeBlocks.insert(BB);
80
}
81
}
82
83
// Check that all blocks in ForeBlocks together dominate the subloop
84
// TODO: This might ideally be done better with a dominator/postdominators.
85
BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader();
86
for (BasicBlock *BB : ForeBlocks) {
87
if (BB == SubLoopPreHeader)
88
continue;
89
Instruction *TI = BB->getTerminator();
90
for (BasicBlock *Succ : successors(TI))
91
if (!ForeBlocks.count(Succ))
92
return false;
93
}
94
95
return true;
96
}
97
98
/// Partition blocks in a loop nest into blocks before and after each inner
99
/// loop.
100
static bool partitionOuterLoopBlocks(
101
Loop &Root, Loop &JamLoop, BasicBlockSet &JamLoopBlocks,
102
DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap,
103
DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, DominatorTree &DT) {
104
JamLoopBlocks.insert(JamLoop.block_begin(), JamLoop.block_end());
105
106
for (Loop *L : Root.getLoopsInPreorder()) {
107
if (L == &JamLoop)
108
break;
109
110
if (!partitionLoopBlocks(*L, ForeBlocksMap[L], AftBlocksMap[L], DT))
111
return false;
112
}
113
114
return true;
115
}
116
117
// TODO Remove when UnrollAndJamLoop changed to support unroll and jamming more
118
// than 2 levels loop.
119
static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop,
120
BasicBlockSet &ForeBlocks,
121
BasicBlockSet &SubLoopBlocks,
122
BasicBlockSet &AftBlocks,
123
DominatorTree *DT) {
124
SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end());
125
return partitionLoopBlocks(*L, ForeBlocks, AftBlocks, *DT);
126
}
127
128
// Looks at the phi nodes in Header for values coming from Latch. For these
129
// instructions and all their operands calls Visit on them, keeping going for
130
// all the operands in AftBlocks. Returns false if Visit returns false,
131
// otherwise returns true. This is used to process the instructions in the
132
// Aft blocks that need to be moved before the subloop. It is used in two
133
// places. One to check that the required set of instructions can be moved
134
// before the loop. Then to collect the instructions to actually move in
135
// moveHeaderPhiOperandsToForeBlocks.
136
template <typename T>
137
static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch,
138
BasicBlockSet &AftBlocks, T Visit) {
139
SmallPtrSet<Instruction *, 8> VisitedInstr;
140
141
std::function<bool(Instruction * I)> ProcessInstr = [&](Instruction *I) {
142
if (VisitedInstr.count(I))
143
return true;
144
145
VisitedInstr.insert(I);
146
147
if (AftBlocks.count(I->getParent()))
148
for (auto &U : I->operands())
149
if (Instruction *II = dyn_cast<Instruction>(U))
150
if (!ProcessInstr(II))
151
return false;
152
153
return Visit(I);
154
};
155
156
for (auto &Phi : Header->phis()) {
157
Value *V = Phi.getIncomingValueForBlock(Latch);
158
if (Instruction *I = dyn_cast<Instruction>(V))
159
if (!ProcessInstr(I))
160
return false;
161
}
162
163
return true;
164
}
165
166
// Move the phi operands of Header from Latch out of AftBlocks to InsertLoc.
167
static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header,
168
BasicBlock *Latch,
169
Instruction *InsertLoc,
170
BasicBlockSet &AftBlocks) {
171
// We need to ensure we move the instructions in the correct order,
172
// starting with the earliest required instruction and moving forward.
173
processHeaderPhiOperands(Header, Latch, AftBlocks,
174
[&AftBlocks, &InsertLoc](Instruction *I) {
175
if (AftBlocks.count(I->getParent()))
176
I->moveBefore(InsertLoc);
177
return true;
178
});
179
}
180
181
/*
182
This method performs Unroll and Jam. For a simple loop like:
183
for (i = ..)
184
Fore(i)
185
for (j = ..)
186
SubLoop(i, j)
187
Aft(i)
188
189
Instead of doing normal inner or outer unrolling, we do:
190
for (i = .., i+=2)
191
Fore(i)
192
Fore(i+1)
193
for (j = ..)
194
SubLoop(i, j)
195
SubLoop(i+1, j)
196
Aft(i)
197
Aft(i+1)
198
199
So the outer loop is essetially unrolled and then the inner loops are fused
200
("jammed") together into a single loop. This can increase speed when there
201
are loads in SubLoop that are invariant to i, as they become shared between
202
the now jammed inner loops.
203
204
We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
205
Fore blocks are those before the inner loop, Aft are those after. Normal
206
Unroll code is used to copy each of these sets of blocks and the results are
207
combined together into the final form above.
208
209
isSafeToUnrollAndJam should be used prior to calling this to make sure the
210
unrolling will be valid. Checking profitablility is also advisable.
211
212
If EpilogueLoop is non-null, it receives the epilogue loop (if it was
213
necessary to create one and not fully unrolled).
214
*/
215
LoopUnrollResult
216
llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount,
217
unsigned TripMultiple, bool UnrollRemainder,
218
LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
219
AssumptionCache *AC, const TargetTransformInfo *TTI,
220
OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) {
221
222
// When we enter here we should have already checked that it is safe
223
BasicBlock *Header = L->getHeader();
224
assert(Header && "No header.");
225
assert(L->getSubLoops().size() == 1);
226
Loop *SubLoop = *L->begin();
227
228
// Don't enter the unroll code if there is nothing to do.
229
if (TripCount == 0 && Count < 2) {
230
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n");
231
return LoopUnrollResult::Unmodified;
232
}
233
234
assert(Count > 0);
235
assert(TripMultiple > 0);
236
assert(TripCount == 0 || TripCount % TripMultiple == 0);
237
238
// Are we eliminating the loop control altogether?
239
bool CompletelyUnroll = (Count == TripCount);
240
241
// We use the runtime remainder in cases where we don't know trip multiple
242
if (TripMultiple % Count != 0) {
243
if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false,
244
/*UseEpilogRemainder*/ true,
245
UnrollRemainder, /*ForgetAllSCEV*/ false,
246
LI, SE, DT, AC, TTI, true, EpilogueLoop)) {
247
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
248
"generated when assuming runtime trip count\n");
249
return LoopUnrollResult::Unmodified;
250
}
251
}
252
253
// Notify ScalarEvolution that the loop will be substantially changed,
254
// if not outright eliminated.
255
if (SE) {
256
SE->forgetLoop(L);
257
SE->forgetBlockAndLoopDispositions();
258
}
259
260
using namespace ore;
261
// Report the unrolling decision.
262
if (CompletelyUnroll) {
263
LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
264
<< Header->getName() << " with trip count " << TripCount
265
<< "!\n");
266
ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
267
L->getHeader())
268
<< "completely unroll and jammed loop with "
269
<< NV("UnrollCount", TripCount) << " iterations");
270
} else {
271
auto DiagBuilder = [&]() {
272
OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
273
L->getHeader());
274
return Diag << "unroll and jammed loop by a factor of "
275
<< NV("UnrollCount", Count);
276
};
277
278
LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName()
279
<< " by " << Count);
280
if (TripMultiple != 1) {
281
LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
282
ORE->emit([&]() {
283
return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
284
<< " trips per branch";
285
});
286
} else {
287
LLVM_DEBUG(dbgs() << " with run-time trip count");
288
ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
289
}
290
LLVM_DEBUG(dbgs() << "!\n");
291
}
292
293
BasicBlock *Preheader = L->getLoopPreheader();
294
BasicBlock *LatchBlock = L->getLoopLatch();
295
assert(Preheader && "No preheader");
296
assert(LatchBlock && "No latch block");
297
BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
298
assert(BI && !BI->isUnconditional());
299
bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
300
BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
301
bool SubLoopContinueOnTrue = SubLoop->contains(
302
SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0));
303
304
// Partition blocks in an outer/inner loop pair into blocks before and after
305
// the loop
306
BasicBlockSet SubLoopBlocks;
307
BasicBlockSet ForeBlocks;
308
BasicBlockSet AftBlocks;
309
partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks,
310
DT);
311
312
// We keep track of the entering/first and exiting/last block of each of
313
// Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
314
// blocks easier.
315
std::vector<BasicBlock *> ForeBlocksFirst;
316
std::vector<BasicBlock *> ForeBlocksLast;
317
std::vector<BasicBlock *> SubLoopBlocksFirst;
318
std::vector<BasicBlock *> SubLoopBlocksLast;
319
std::vector<BasicBlock *> AftBlocksFirst;
320
std::vector<BasicBlock *> AftBlocksLast;
321
ForeBlocksFirst.push_back(Header);
322
ForeBlocksLast.push_back(SubLoop->getLoopPreheader());
323
SubLoopBlocksFirst.push_back(SubLoop->getHeader());
324
SubLoopBlocksLast.push_back(SubLoop->getExitingBlock());
325
AftBlocksFirst.push_back(SubLoop->getExitBlock());
326
AftBlocksLast.push_back(L->getExitingBlock());
327
// Maps Blocks[0] -> Blocks[It]
328
ValueToValueMapTy LastValueMap;
329
330
// Move any instructions from fore phi operands from AftBlocks into Fore.
331
moveHeaderPhiOperandsToForeBlocks(
332
Header, LatchBlock, ForeBlocksLast[0]->getTerminator(), AftBlocks);
333
334
// The current on-the-fly SSA update requires blocks to be processed in
335
// reverse postorder so that LastValueMap contains the correct value at each
336
// exit.
337
LoopBlocksDFS DFS(L);
338
DFS.perform(LI);
339
// Stash the DFS iterators before adding blocks to the loop.
340
LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
341
LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
342
343
// When a FSDiscriminator is enabled, we don't need to add the multiply
344
// factors to the discriminators.
345
if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
346
!EnableFSDiscriminator)
347
for (BasicBlock *BB : L->getBlocks())
348
for (Instruction &I : *BB)
349
if (!I.isDebugOrPseudoInst())
350
if (const DILocation *DIL = I.getDebugLoc()) {
351
auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(Count);
352
if (NewDIL)
353
I.setDebugLoc(*NewDIL);
354
else
355
LLVM_DEBUG(dbgs()
356
<< "Failed to create new discriminator: "
357
<< DIL->getFilename() << " Line: " << DIL->getLine());
358
}
359
360
// Copy all blocks
361
for (unsigned It = 1; It != Count; ++It) {
362
SmallVector<BasicBlock *, 8> NewBlocks;
363
// Maps Blocks[It] -> Blocks[It-1]
364
DenseMap<Value *, Value *> PrevItValueMap;
365
SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
366
NewLoops[L] = L;
367
NewLoops[SubLoop] = SubLoop;
368
369
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
370
ValueToValueMapTy VMap;
371
BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
372
Header->getParent()->insert(Header->getParent()->end(), New);
373
374
// Tell LI about New.
375
addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
376
377
if (ForeBlocks.count(*BB)) {
378
if (*BB == ForeBlocksFirst[0])
379
ForeBlocksFirst.push_back(New);
380
if (*BB == ForeBlocksLast[0])
381
ForeBlocksLast.push_back(New);
382
} else if (SubLoopBlocks.count(*BB)) {
383
if (*BB == SubLoopBlocksFirst[0])
384
SubLoopBlocksFirst.push_back(New);
385
if (*BB == SubLoopBlocksLast[0])
386
SubLoopBlocksLast.push_back(New);
387
} else if (AftBlocks.count(*BB)) {
388
if (*BB == AftBlocksFirst[0])
389
AftBlocksFirst.push_back(New);
390
if (*BB == AftBlocksLast[0])
391
AftBlocksLast.push_back(New);
392
} else {
393
llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
394
}
395
396
// Update our running maps of newest clones
397
PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]);
398
LastValueMap[*BB] = New;
399
for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
400
VI != VE; ++VI) {
401
PrevItValueMap[VI->second] =
402
const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]);
403
LastValueMap[VI->first] = VI->second;
404
}
405
406
NewBlocks.push_back(New);
407
408
// Update DomTree:
409
if (*BB == ForeBlocksFirst[0])
410
DT->addNewBlock(New, ForeBlocksLast[It - 1]);
411
else if (*BB == SubLoopBlocksFirst[0])
412
DT->addNewBlock(New, SubLoopBlocksLast[It - 1]);
413
else if (*BB == AftBlocksFirst[0])
414
DT->addNewBlock(New, AftBlocksLast[It - 1]);
415
else {
416
// Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
417
// structure.
418
auto BBDomNode = DT->getNode(*BB);
419
auto BBIDom = BBDomNode->getIDom();
420
BasicBlock *OriginalBBIDom = BBIDom->getBlock();
421
assert(OriginalBBIDom);
422
assert(LastValueMap[cast<Value>(OriginalBBIDom)]);
423
DT->addNewBlock(
424
New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
425
}
426
}
427
428
// Remap all instructions in the most recent iteration
429
remapInstructionsInBlocks(NewBlocks, LastValueMap);
430
for (BasicBlock *NewBlock : NewBlocks) {
431
for (Instruction &I : *NewBlock) {
432
if (auto *II = dyn_cast<AssumeInst>(&I))
433
AC->registerAssumption(II);
434
}
435
}
436
437
// Alter the ForeBlocks phi's, pointing them at the latest version of the
438
// value from the previous iteration's phis
439
for (PHINode &Phi : ForeBlocksFirst[It]->phis()) {
440
Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]);
441
assert(OldValue && "should have incoming edge from Aft[It]");
442
Value *NewValue = OldValue;
443
if (Value *PrevValue = PrevItValueMap[OldValue])
444
NewValue = PrevValue;
445
446
assert(Phi.getNumOperands() == 2);
447
Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]);
448
Phi.setIncomingValue(0, NewValue);
449
Phi.removeIncomingValue(1);
450
}
451
}
452
453
// Now that all the basic blocks for the unrolled iterations are in place,
454
// finish up connecting the blocks and phi nodes. At this point LastValueMap
455
// is the last unrolled iterations values.
456
457
// Update Phis in BB from OldBB to point to NewBB and use the latest value
458
// from LastValueMap
459
auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB,
460
BasicBlock *NewBB,
461
ValueToValueMapTy &LastValueMap) {
462
for (PHINode &Phi : BB->phis()) {
463
for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) {
464
if (Phi.getIncomingBlock(b) == OldBB) {
465
Value *OldValue = Phi.getIncomingValue(b);
466
if (Value *LastValue = LastValueMap[OldValue])
467
Phi.setIncomingValue(b, LastValue);
468
Phi.setIncomingBlock(b, NewBB);
469
break;
470
}
471
}
472
}
473
};
474
// Move all the phis from Src into Dest
475
auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) {
476
BasicBlock::iterator insertPoint = Dest->getFirstNonPHIIt();
477
while (PHINode *Phi = dyn_cast<PHINode>(Src->begin()))
478
Phi->moveBefore(*Dest, insertPoint);
479
};
480
481
// Update the PHI values outside the loop to point to the last block
482
updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(),
483
LastValueMap);
484
485
// Update ForeBlocks successors and phi nodes
486
BranchInst *ForeTerm =
487
cast<BranchInst>(ForeBlocksLast.back()->getTerminator());
488
assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor");
489
ForeTerm->setSuccessor(0, SubLoopBlocksFirst[0]);
490
491
if (CompletelyUnroll) {
492
while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) {
493
Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader));
494
Phi->eraseFromParent();
495
}
496
} else {
497
// Update the PHI values to point to the last aft block
498
updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0],
499
AftBlocksLast.back(), LastValueMap);
500
}
501
502
for (unsigned It = 1; It != Count; It++) {
503
// Remap ForeBlock successors from previous iteration to this
504
BranchInst *ForeTerm =
505
cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator());
506
assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor");
507
ForeTerm->setSuccessor(0, ForeBlocksFirst[It]);
508
}
509
510
// Subloop successors and phis
511
BranchInst *SubTerm =
512
cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator());
513
SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]);
514
SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]);
515
SubLoopBlocksFirst[0]->replacePhiUsesWith(ForeBlocksLast[0],
516
ForeBlocksLast.back());
517
SubLoopBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0],
518
SubLoopBlocksLast.back());
519
520
for (unsigned It = 1; It != Count; It++) {
521
// Replace the conditional branch of the previous iteration subloop with an
522
// unconditional one to this one
523
BranchInst *SubTerm =
524
cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator());
525
BranchInst::Create(SubLoopBlocksFirst[It], SubTerm->getIterator());
526
SubTerm->eraseFromParent();
527
528
SubLoopBlocksFirst[It]->replacePhiUsesWith(ForeBlocksLast[It],
529
ForeBlocksLast.back());
530
SubLoopBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It],
531
SubLoopBlocksLast.back());
532
movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]);
533
}
534
535
// Aft blocks successors and phis
536
BranchInst *AftTerm = cast<BranchInst>(AftBlocksLast.back()->getTerminator());
537
if (CompletelyUnroll) {
538
BranchInst::Create(LoopExit, AftTerm->getIterator());
539
AftTerm->eraseFromParent();
540
} else {
541
AftTerm->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]);
542
assert(AftTerm->getSuccessor(ContinueOnTrue) == LoopExit &&
543
"Expecting the ContinueOnTrue successor of AftTerm to be LoopExit");
544
}
545
AftBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0],
546
SubLoopBlocksLast.back());
547
548
for (unsigned It = 1; It != Count; It++) {
549
// Replace the conditional branch of the previous iteration subloop with an
550
// unconditional one to this one
551
BranchInst *AftTerm =
552
cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator());
553
BranchInst::Create(AftBlocksFirst[It], AftTerm->getIterator());
554
AftTerm->eraseFromParent();
555
556
AftBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It],
557
SubLoopBlocksLast.back());
558
movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]);
559
}
560
561
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
562
// Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
563
// new ones required.
564
if (Count != 1) {
565
SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
566
DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0],
567
SubLoopBlocksFirst[0]);
568
DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
569
SubLoopBlocksLast[0], AftBlocksFirst[0]);
570
571
DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
572
ForeBlocksLast.back(), SubLoopBlocksFirst[0]);
573
DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
574
SubLoopBlocksLast.back(), AftBlocksFirst[0]);
575
DTU.applyUpdatesPermissive(DTUpdates);
576
}
577
578
// Merge adjacent basic blocks, if possible.
579
SmallPtrSet<BasicBlock *, 16> MergeBlocks;
580
MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end());
581
MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end());
582
MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end());
583
584
MergeBlockSuccessorsIntoGivenBlocks(MergeBlocks, L, &DTU, LI);
585
586
// Apply updates to the DomTree.
587
DT = &DTU.getDomTree();
588
589
// At this point, the code is well formed. We now do a quick sweep over the
590
// inserted code, doing constant propagation and dead code elimination as we
591
// go.
592
simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC, TTI);
593
simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC,
594
TTI);
595
596
NumCompletelyUnrolledAndJammed += CompletelyUnroll;
597
++NumUnrolledAndJammed;
598
599
// Update LoopInfo if the loop is completely removed.
600
if (CompletelyUnroll)
601
LI->erase(L);
602
603
#ifndef NDEBUG
604
// We shouldn't have done anything to break loop simplify form or LCSSA.
605
Loop *OutestLoop = SubLoop->getParentLoop()
606
? SubLoop->getParentLoop()->getParentLoop()
607
? SubLoop->getParentLoop()->getParentLoop()
608
: SubLoop->getParentLoop()
609
: SubLoop;
610
assert(DT->verify());
611
LI->verify(*DT);
612
assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI));
613
if (!CompletelyUnroll)
614
assert(L->isLoopSimplifyForm());
615
assert(SubLoop->isLoopSimplifyForm());
616
SE->verify();
617
#endif
618
619
return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
620
: LoopUnrollResult::PartiallyUnrolled;
621
}
622
623
static bool getLoadsAndStores(BasicBlockSet &Blocks,
624
SmallVector<Instruction *, 4> &MemInstr) {
625
// Scan the BBs and collect legal loads and stores.
626
// Returns false if non-simple loads/stores are found.
627
for (BasicBlock *BB : Blocks) {
628
for (Instruction &I : *BB) {
629
if (auto *Ld = dyn_cast<LoadInst>(&I)) {
630
if (!Ld->isSimple())
631
return false;
632
MemInstr.push_back(&I);
633
} else if (auto *St = dyn_cast<StoreInst>(&I)) {
634
if (!St->isSimple())
635
return false;
636
MemInstr.push_back(&I);
637
} else if (I.mayReadOrWriteMemory()) {
638
return false;
639
}
640
}
641
}
642
return true;
643
}
644
645
static bool preservesForwardDependence(Instruction *Src, Instruction *Dst,
646
unsigned UnrollLevel, unsigned JamLevel,
647
bool Sequentialized, Dependence *D) {
648
// UnrollLevel might carry the dependency Src --> Dst
649
// Does a different loop after unrolling?
650
for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel;
651
++CurLoopDepth) {
652
auto JammedDir = D->getDirection(CurLoopDepth);
653
if (JammedDir == Dependence::DVEntry::LT)
654
return true;
655
656
if (JammedDir & Dependence::DVEntry::GT)
657
return false;
658
}
659
660
return true;
661
}
662
663
static bool preservesBackwardDependence(Instruction *Src, Instruction *Dst,
664
unsigned UnrollLevel, unsigned JamLevel,
665
bool Sequentialized, Dependence *D) {
666
// UnrollLevel might carry the dependency Dst --> Src
667
for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel;
668
++CurLoopDepth) {
669
auto JammedDir = D->getDirection(CurLoopDepth);
670
if (JammedDir == Dependence::DVEntry::GT)
671
return true;
672
673
if (JammedDir & Dependence::DVEntry::LT)
674
return false;
675
}
676
677
// Backward dependencies are only preserved if not interleaved.
678
return Sequentialized;
679
}
680
681
// Check whether it is semantically safe Src and Dst considering any potential
682
// dependency between them.
683
//
684
// @param UnrollLevel The level of the loop being unrolled
685
// @param JamLevel The level of the loop being jammed; if Src and Dst are on
686
// different levels, the outermost common loop counts as jammed level
687
//
688
// @return true if is safe and false if there is a dependency violation.
689
static bool checkDependency(Instruction *Src, Instruction *Dst,
690
unsigned UnrollLevel, unsigned JamLevel,
691
bool Sequentialized, DependenceInfo &DI) {
692
assert(UnrollLevel <= JamLevel &&
693
"Expecting JamLevel to be at least UnrollLevel");
694
695
if (Src == Dst)
696
return true;
697
// Ignore Input dependencies.
698
if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
699
return true;
700
701
// Check whether unroll-and-jam may violate a dependency.
702
// By construction, every dependency will be lexicographically non-negative
703
// (if it was, it would violate the current execution order), such as
704
// (0,0,>,*,*)
705
// Unroll-and-jam changes the GT execution of two executions to the same
706
// iteration of the chosen unroll level. That is, a GT dependence becomes a GE
707
// dependence (or EQ, if we fully unrolled the loop) at the loop's position:
708
// (0,0,>=,*,*)
709
// Now, the dependency is not necessarily non-negative anymore, i.e.
710
// unroll-and-jam may violate correctness.
711
std::unique_ptr<Dependence> D = DI.depends(Src, Dst, true);
712
if (!D)
713
return true;
714
assert(D->isOrdered() && "Expected an output, flow or anti dep.");
715
716
if (D->isConfused()) {
717
LLVM_DEBUG(dbgs() << " Confused dependency between:\n"
718
<< " " << *Src << "\n"
719
<< " " << *Dst << "\n");
720
return false;
721
}
722
723
// If outer levels (levels enclosing the loop being unroll-and-jammed) have a
724
// non-equal direction, then the locations accessed in the inner levels cannot
725
// overlap in memory. We assumes the indexes never overlap into neighboring
726
// dimensions.
727
for (unsigned CurLoopDepth = 1; CurLoopDepth < UnrollLevel; ++CurLoopDepth)
728
if (!(D->getDirection(CurLoopDepth) & Dependence::DVEntry::EQ))
729
return true;
730
731
auto UnrollDirection = D->getDirection(UnrollLevel);
732
733
// If the distance carried by the unrolled loop is 0, then after unrolling
734
// that distance will become non-zero resulting in non-overlapping accesses in
735
// the inner loops.
736
if (UnrollDirection == Dependence::DVEntry::EQ)
737
return true;
738
739
if (UnrollDirection & Dependence::DVEntry::LT &&
740
!preservesForwardDependence(Src, Dst, UnrollLevel, JamLevel,
741
Sequentialized, D.get()))
742
return false;
743
744
if (UnrollDirection & Dependence::DVEntry::GT &&
745
!preservesBackwardDependence(Src, Dst, UnrollLevel, JamLevel,
746
Sequentialized, D.get()))
747
return false;
748
749
return true;
750
}
751
752
static bool
753
checkDependencies(Loop &Root, const BasicBlockSet &SubLoopBlocks,
754
const DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap,
755
const DenseMap<Loop *, BasicBlockSet> &AftBlocksMap,
756
DependenceInfo &DI, LoopInfo &LI) {
757
SmallVector<BasicBlockSet, 8> AllBlocks;
758
for (Loop *L : Root.getLoopsInPreorder())
759
if (ForeBlocksMap.contains(L))
760
AllBlocks.push_back(ForeBlocksMap.lookup(L));
761
AllBlocks.push_back(SubLoopBlocks);
762
for (Loop *L : Root.getLoopsInPreorder())
763
if (AftBlocksMap.contains(L))
764
AllBlocks.push_back(AftBlocksMap.lookup(L));
765
766
unsigned LoopDepth = Root.getLoopDepth();
767
SmallVector<Instruction *, 4> EarlierLoadsAndStores;
768
SmallVector<Instruction *, 4> CurrentLoadsAndStores;
769
for (BasicBlockSet &Blocks : AllBlocks) {
770
CurrentLoadsAndStores.clear();
771
if (!getLoadsAndStores(Blocks, CurrentLoadsAndStores))
772
return false;
773
774
Loop *CurLoop = LI.getLoopFor((*Blocks.begin())->front().getParent());
775
unsigned CurLoopDepth = CurLoop->getLoopDepth();
776
777
for (auto *Earlier : EarlierLoadsAndStores) {
778
Loop *EarlierLoop = LI.getLoopFor(Earlier->getParent());
779
unsigned EarlierDepth = EarlierLoop->getLoopDepth();
780
unsigned CommonLoopDepth = std::min(EarlierDepth, CurLoopDepth);
781
for (auto *Later : CurrentLoadsAndStores) {
782
if (!checkDependency(Earlier, Later, LoopDepth, CommonLoopDepth, false,
783
DI))
784
return false;
785
}
786
}
787
788
size_t NumInsts = CurrentLoadsAndStores.size();
789
for (size_t I = 0; I < NumInsts; ++I) {
790
for (size_t J = I; J < NumInsts; ++J) {
791
if (!checkDependency(CurrentLoadsAndStores[I], CurrentLoadsAndStores[J],
792
LoopDepth, CurLoopDepth, true, DI))
793
return false;
794
}
795
}
796
797
EarlierLoadsAndStores.append(CurrentLoadsAndStores.begin(),
798
CurrentLoadsAndStores.end());
799
}
800
return true;
801
}
802
803
static bool isEligibleLoopForm(const Loop &Root) {
804
// Root must have a child.
805
if (Root.getSubLoops().size() != 1)
806
return false;
807
808
const Loop *L = &Root;
809
do {
810
// All loops in Root need to be in simplify and rotated form.
811
if (!L->isLoopSimplifyForm())
812
return false;
813
814
if (!L->isRotatedForm())
815
return false;
816
817
if (L->getHeader()->hasAddressTaken()) {
818
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n");
819
return false;
820
}
821
822
unsigned SubLoopsSize = L->getSubLoops().size();
823
if (SubLoopsSize == 0)
824
return true;
825
826
// Only one child is allowed.
827
if (SubLoopsSize != 1)
828
return false;
829
830
// Only loops with a single exit block can be unrolled and jammed.
831
// The function getExitBlock() is used for this check, rather than
832
// getUniqueExitBlock() to ensure loops with mulitple exit edges are
833
// disallowed.
834
if (!L->getExitBlock()) {
835
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single exit "
836
"blocks can be unrolled and jammed.\n");
837
return false;
838
}
839
840
// Only loops with a single exiting block can be unrolled and jammed.
841
if (!L->getExitingBlock()) {
842
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single "
843
"exiting blocks can be unrolled and jammed.\n");
844
return false;
845
}
846
847
L = L->getSubLoops()[0];
848
} while (L);
849
850
return true;
851
}
852
853
static Loop *getInnerMostLoop(Loop *L) {
854
while (!L->getSubLoops().empty())
855
L = L->getSubLoops()[0];
856
return L;
857
}
858
859
bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
860
DependenceInfo &DI, LoopInfo &LI) {
861
if (!isEligibleLoopForm(*L)) {
862
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Ineligible loop form\n");
863
return false;
864
}
865
866
/* We currently handle outer loops like this:
867
|
868
ForeFirst <------\ }
869
Blocks | } ForeBlocks of L
870
ForeLast | }
871
| |
872
... |
873
| |
874
ForeFirst <----\ | }
875
Blocks | | } ForeBlocks of a inner loop of L
876
ForeLast | | }
877
| | |
878
JamLoopFirst <\ | | }
879
Blocks | | | } JamLoopBlocks of the innermost loop
880
JamLoopLast -/ | | }
881
| | |
882
AftFirst | | }
883
Blocks | | } AftBlocks of a inner loop of L
884
AftLast ------/ | }
885
| |
886
... |
887
| |
888
AftFirst | }
889
Blocks | } AftBlocks of L
890
AftLast --------/ }
891
|
892
893
There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
894
and AftBlocks, providing that there is one edge from Fores to SubLoops,
895
one edge from SubLoops to Afts and a single outer loop exit (from Afts).
896
In practice we currently limit Aft blocks to a single block, and limit
897
things further in the profitablility checks of the unroll and jam pass.
898
899
Because of the way we rearrange basic blocks, we also require that
900
the Fore blocks of L on all unrolled iterations are safe to move before the
901
blocks of the direct child of L of all iterations. So we require that the
902
phi node looping operands of ForeHeader can be moved to at least the end of
903
ForeEnd, so that we can arrange cloned Fore Blocks before the subloop and
904
match up Phi's correctly.
905
906
i.e. The old order of blocks used to be
907
(F1)1 (F2)1 J1_1 J1_2 (A2)1 (A1)1 (F1)2 (F2)2 J2_1 J2_2 (A2)2 (A1)2.
908
It needs to be safe to transform this to
909
(F1)1 (F1)2 (F2)1 (F2)2 J1_1 J1_2 J2_1 J2_2 (A2)1 (A2)2 (A1)1 (A1)2.
910
911
There are then a number of checks along the lines of no calls, no
912
exceptions, inner loop IV is consistent, etc. Note that for loops requiring
913
runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
914
UnrollAndJamLoop if the trip count cannot be easily calculated.
915
*/
916
917
// Split blocks into Fore/SubLoop/Aft based on dominators
918
Loop *JamLoop = getInnerMostLoop(L);
919
BasicBlockSet SubLoopBlocks;
920
DenseMap<Loop *, BasicBlockSet> ForeBlocksMap;
921
DenseMap<Loop *, BasicBlockSet> AftBlocksMap;
922
if (!partitionOuterLoopBlocks(*L, *JamLoop, SubLoopBlocks, ForeBlocksMap,
923
AftBlocksMap, DT)) {
924
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n");
925
return false;
926
}
927
928
// Aft blocks may need to move instructions to fore blocks, which becomes more
929
// difficult if there are multiple (potentially conditionally executed)
930
// blocks. For now we just exclude loops with multiple aft blocks.
931
if (AftBlocksMap[L].size() != 1) {
932
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle "
933
"multiple blocks after the loop\n");
934
return false;
935
}
936
937
// Check inner loop backedge count is consistent on all iterations of the
938
// outer loop
939
if (any_of(L->getLoopsInPreorder(), [&SE](Loop *SubLoop) {
940
return !hasIterationCountInvariantInParent(SubLoop, SE);
941
})) {
942
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is "
943
"not consistent on each iteration\n");
944
return false;
945
}
946
947
// Check the loop safety info for exceptions.
948
SimpleLoopSafetyInfo LSI;
949
LSI.computeLoopSafetyInfo(L);
950
if (LSI.anyBlockMayThrow()) {
951
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n");
952
return false;
953
}
954
955
// We've ruled out the easy stuff and now need to check that there are no
956
// interdependencies which may prevent us from moving the:
957
// ForeBlocks before Subloop and AftBlocks.
958
// Subloop before AftBlocks.
959
// ForeBlock phi operands before the subloop
960
961
// Make sure we can move all instructions we need to before the subloop
962
BasicBlock *Header = L->getHeader();
963
BasicBlock *Latch = L->getLoopLatch();
964
BasicBlockSet AftBlocks = AftBlocksMap[L];
965
Loop *SubLoop = L->getSubLoops()[0];
966
if (!processHeaderPhiOperands(
967
Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) {
968
if (SubLoop->contains(I->getParent()))
969
return false;
970
if (AftBlocks.count(I->getParent())) {
971
// If we hit a phi node in afts we know we are done (probably
972
// LCSSA)
973
if (isa<PHINode>(I))
974
return false;
975
// Can't move instructions with side effects or memory
976
// reads/writes
977
if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory())
978
return false;
979
}
980
// Keep going
981
return true;
982
})) {
983
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required "
984
"instructions after subloop to before it\n");
985
return false;
986
}
987
988
// Check for memory dependencies which prohibit the unrolling we are doing.
989
// Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
990
// there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
991
if (!checkDependencies(*L, SubLoopBlocks, ForeBlocksMap, AftBlocksMap, DI,
992
LI)) {
993
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n");
994
return false;
995
}
996
997
return true;
998
}
999
1000