Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
35271 views
1
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements some loop unrolling utilities for loops with run-time
10
// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
11
// trip counts.
12
//
13
// The functions in this file are used to generate extra code when the
14
// run-time trip count modulo the unroll factor is not 0. When this is the
15
// case, we need to generate code to execute these 'left over' iterations.
16
//
17
// The current strategy generates an if-then-else sequence prior to the
18
// unrolled loop to execute the 'left over' iterations before or after the
19
// unrolled loop.
20
//
21
//===----------------------------------------------------------------------===//
22
23
#include "llvm/ADT/Statistic.h"
24
#include "llvm/Analysis/DomTreeUpdater.h"
25
#include "llvm/Analysis/InstructionSimplify.h"
26
#include "llvm/Analysis/LoopIterator.h"
27
#include "llvm/Analysis/ScalarEvolution.h"
28
#include "llvm/Analysis/ValueTracking.h"
29
#include "llvm/IR/BasicBlock.h"
30
#include "llvm/IR/Dominators.h"
31
#include "llvm/IR/MDBuilder.h"
32
#include "llvm/IR/Module.h"
33
#include "llvm/IR/ProfDataUtils.h"
34
#include "llvm/Support/CommandLine.h"
35
#include "llvm/Support/Debug.h"
36
#include "llvm/Support/raw_ostream.h"
37
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38
#include "llvm/Transforms/Utils/Cloning.h"
39
#include "llvm/Transforms/Utils/Local.h"
40
#include "llvm/Transforms/Utils/LoopUtils.h"
41
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
42
#include "llvm/Transforms/Utils/UnrollLoop.h"
43
#include <algorithm>
44
45
using namespace llvm;
46
47
#define DEBUG_TYPE "loop-unroll"
48
49
STATISTIC(NumRuntimeUnrolled,
50
"Number of loops unrolled with run-time trip counts");
51
static cl::opt<bool> UnrollRuntimeMultiExit(
52
"unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
53
cl::desc("Allow runtime unrolling for loops with multiple exits, when "
54
"epilog is generated"));
55
static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
56
"unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
57
cl::desc("Assume the non latch exit block to be predictable"));
58
59
// Probability that the loop trip count is so small that after the prolog
60
// we do not enter the unrolled loop at all.
61
// It is unlikely that the loop trip count is smaller than the unroll factor;
62
// other than that, the choice of constant is not tuned yet.
63
static const uint32_t UnrolledLoopHeaderWeights[] = {1, 127};
64
// Probability that the loop trip count is so small that we skip the unrolled
65
// loop completely and immediately enter the epilogue loop.
66
// It is unlikely that the loop trip count is smaller than the unroll factor;
67
// other than that, the choice of constant is not tuned yet.
68
static const uint32_t EpilogHeaderWeights[] = {1, 127};
69
70
/// Connect the unrolling prolog code to the original loop.
71
/// The unrolling prolog code contains code to execute the
72
/// 'extra' iterations if the run-time trip count modulo the
73
/// unroll count is non-zero.
74
///
75
/// This function performs the following:
76
/// - Create PHI nodes at prolog end block to combine values
77
/// that exit the prolog code and jump around the prolog.
78
/// - Add a PHI operand to a PHI node at the loop exit block
79
/// for values that exit the prolog and go around the loop.
80
/// - Branch around the original loop if the trip count is less
81
/// than the unroll factor.
82
///
83
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
84
BasicBlock *PrologExit,
85
BasicBlock *OriginalLoopLatchExit,
86
BasicBlock *PreHeader, BasicBlock *NewPreHeader,
87
ValueToValueMapTy &VMap, DominatorTree *DT,
88
LoopInfo *LI, bool PreserveLCSSA,
89
ScalarEvolution &SE) {
90
// Loop structure should be the following:
91
// Preheader
92
// PrologHeader
93
// ...
94
// PrologLatch
95
// PrologExit
96
// NewPreheader
97
// Header
98
// ...
99
// Latch
100
// LatchExit
101
BasicBlock *Latch = L->getLoopLatch();
102
assert(Latch && "Loop must have a latch");
103
BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
104
105
// Create a PHI node for each outgoing value from the original loop
106
// (which means it is an outgoing value from the prolog code too).
107
// The new PHI node is inserted in the prolog end basic block.
108
// The new PHI node value is added as an operand of a PHI node in either
109
// the loop header or the loop exit block.
110
for (BasicBlock *Succ : successors(Latch)) {
111
for (PHINode &PN : Succ->phis()) {
112
// Add a new PHI node to the prolog end block and add the
113
// appropriate incoming values.
114
// TODO: This code assumes that the PrologExit (or the LatchExit block for
115
// prolog loop) contains only one predecessor from the loop, i.e. the
116
// PrologLatch. When supporting multiple-exiting block loops, we can have
117
// two or more blocks that have the LatchExit as the target in the
118
// original loop.
119
PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr");
120
NewPN->insertBefore(PrologExit->getFirstNonPHIIt());
121
// Adding a value to the new PHI node from the original loop preheader.
122
// This is the value that skips all the prolog code.
123
if (L->contains(&PN)) {
124
// Succ is loop header.
125
NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
126
PreHeader);
127
} else {
128
// Succ is LatchExit.
129
NewPN->addIncoming(PoisonValue::get(PN.getType()), PreHeader);
130
}
131
132
Value *V = PN.getIncomingValueForBlock(Latch);
133
if (Instruction *I = dyn_cast<Instruction>(V)) {
134
if (L->contains(I)) {
135
V = VMap.lookup(I);
136
}
137
}
138
// Adding a value to the new PHI node from the last prolog block
139
// that was created.
140
NewPN->addIncoming(V, PrologLatch);
141
142
// Update the existing PHI node operand with the value from the
143
// new PHI node. How this is done depends on if the existing
144
// PHI node is in the original loop block, or the exit block.
145
if (L->contains(&PN))
146
PN.setIncomingValueForBlock(NewPreHeader, NewPN);
147
else
148
PN.addIncoming(NewPN, PrologExit);
149
SE.forgetValue(&PN);
150
}
151
}
152
153
// Make sure that created prolog loop is in simplified form
154
SmallVector<BasicBlock *, 4> PrologExitPreds;
155
Loop *PrologLoop = LI->getLoopFor(PrologLatch);
156
if (PrologLoop) {
157
for (BasicBlock *PredBB : predecessors(PrologExit))
158
if (PrologLoop->contains(PredBB))
159
PrologExitPreds.push_back(PredBB);
160
161
SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
162
nullptr, PreserveLCSSA);
163
}
164
165
// Create a branch around the original loop, which is taken if there are no
166
// iterations remaining to be executed after running the prologue.
167
Instruction *InsertPt = PrologExit->getTerminator();
168
IRBuilder<> B(InsertPt);
169
170
assert(Count != 0 && "nonsensical Count!");
171
172
// If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
173
// This means %xtraiter is (BECount + 1) and all of the iterations of this
174
// loop were executed by the prologue. Note that if BECount <u (Count - 1)
175
// then (BECount + 1) cannot unsigned-overflow.
176
Value *BrLoopExit =
177
B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
178
// Split the exit to maintain loop canonicalization guarantees
179
SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
180
SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
181
nullptr, PreserveLCSSA);
182
// Add the branch to the exit block (around the unrolled loop)
183
MDNode *BranchWeights = nullptr;
184
if (hasBranchWeightMD(*Latch->getTerminator())) {
185
// Assume loop is nearly always entered.
186
MDBuilder MDB(B.getContext());
187
BranchWeights = MDB.createBranchWeights(UnrolledLoopHeaderWeights);
188
}
189
B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader,
190
BranchWeights);
191
InsertPt->eraseFromParent();
192
if (DT) {
193
auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
194
PrologExit);
195
DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
196
}
197
}
198
199
/// Connect the unrolling epilog code to the original loop.
200
/// The unrolling epilog code contains code to execute the
201
/// 'extra' iterations if the run-time trip count modulo the
202
/// unroll count is non-zero.
203
///
204
/// This function performs the following:
205
/// - Update PHI nodes at the unrolling loop exit and epilog loop exit
206
/// - Create PHI nodes at the unrolling loop exit to combine
207
/// values that exit the unrolling loop code and jump around it.
208
/// - Update PHI operands in the epilog loop by the new PHI nodes
209
/// - Branch around the epilog loop if extra iters (ModVal) is zero.
210
///
211
static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
212
BasicBlock *Exit, BasicBlock *PreHeader,
213
BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
214
ValueToValueMapTy &VMap, DominatorTree *DT,
215
LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE,
216
unsigned Count) {
217
BasicBlock *Latch = L->getLoopLatch();
218
assert(Latch && "Loop must have a latch");
219
BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
220
221
// Loop structure should be the following:
222
//
223
// PreHeader
224
// NewPreHeader
225
// Header
226
// ...
227
// Latch
228
// NewExit (PN)
229
// EpilogPreHeader
230
// EpilogHeader
231
// ...
232
// EpilogLatch
233
// Exit (EpilogPN)
234
235
// Update PHI nodes at NewExit and Exit.
236
for (PHINode &PN : NewExit->phis()) {
237
// PN should be used in another PHI located in Exit block as
238
// Exit was split by SplitBlockPredecessors into Exit and NewExit
239
// Basically it should look like:
240
// NewExit:
241
// PN = PHI [I, Latch]
242
// ...
243
// Exit:
244
// EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
245
//
246
// Exits from non-latch blocks point to the original exit block and the
247
// epilogue edges have already been added.
248
//
249
// There is EpilogPreHeader incoming block instead of NewExit as
250
// NewExit was spilt 1 more time to get EpilogPreHeader.
251
assert(PN.hasOneUse() && "The phi should have 1 use");
252
PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
253
assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
254
255
// Add incoming PreHeader from branch around the Loop
256
PN.addIncoming(PoisonValue::get(PN.getType()), PreHeader);
257
SE.forgetValue(&PN);
258
259
Value *V = PN.getIncomingValueForBlock(Latch);
260
Instruction *I = dyn_cast<Instruction>(V);
261
if (I && L->contains(I))
262
// If value comes from an instruction in the loop add VMap value.
263
V = VMap.lookup(I);
264
// For the instruction out of the loop, constant or undefined value
265
// insert value itself.
266
EpilogPN->addIncoming(V, EpilogLatch);
267
268
assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
269
"EpilogPN should have EpilogPreHeader incoming block");
270
// Change EpilogPreHeader incoming block to NewExit.
271
EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
272
NewExit);
273
// Now PHIs should look like:
274
// NewExit:
275
// PN = PHI [I, Latch], [poison, PreHeader]
276
// ...
277
// Exit:
278
// EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
279
}
280
281
// Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
282
// Update corresponding PHI nodes in epilog loop.
283
for (BasicBlock *Succ : successors(Latch)) {
284
// Skip this as we already updated phis in exit blocks.
285
if (!L->contains(Succ))
286
continue;
287
for (PHINode &PN : Succ->phis()) {
288
// Add new PHI nodes to the loop exit block and update epilog
289
// PHIs with the new PHI values.
290
PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr");
291
NewPN->insertBefore(NewExit->getFirstNonPHIIt());
292
// Adding a value to the new PHI node from the unrolling loop preheader.
293
NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
294
// Adding a value to the new PHI node from the unrolling loop latch.
295
NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
296
297
// Update the existing PHI node operand with the value from the new PHI
298
// node. Corresponding instruction in epilog loop should be PHI.
299
PHINode *VPN = cast<PHINode>(VMap[&PN]);
300
VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
301
}
302
}
303
304
Instruction *InsertPt = NewExit->getTerminator();
305
IRBuilder<> B(InsertPt);
306
Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
307
assert(Exit && "Loop must have a single exit block only");
308
// Split the epilogue exit to maintain loop canonicalization guarantees
309
SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
310
SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
311
PreserveLCSSA);
312
// Add the branch to the exit block (around the unrolling loop)
313
MDNode *BranchWeights = nullptr;
314
if (hasBranchWeightMD(*Latch->getTerminator())) {
315
// Assume equal distribution in interval [0, Count).
316
MDBuilder MDB(B.getContext());
317
BranchWeights = MDB.createBranchWeights(1, Count - 1);
318
}
319
B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit, BranchWeights);
320
InsertPt->eraseFromParent();
321
if (DT) {
322
auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
323
DT->changeImmediateDominator(Exit, NewDom);
324
}
325
326
// Split the main loop exit to maintain canonicalization guarantees.
327
SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
328
SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
329
PreserveLCSSA);
330
}
331
332
/// Create a clone of the blocks in a loop and connect them together. A new
333
/// loop will be created including all cloned blocks, and the iterator of the
334
/// new loop switched to count NewIter down to 0.
335
/// The cloned blocks should be inserted between InsertTop and InsertBot.
336
/// InsertTop should be new preheader, InsertBot new loop exit.
337
/// Returns the new cloned loop that is created.
338
static Loop *
339
CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder,
340
const bool UnrollRemainder,
341
BasicBlock *InsertTop,
342
BasicBlock *InsertBot, BasicBlock *Preheader,
343
std::vector<BasicBlock *> &NewBlocks,
344
LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
345
DominatorTree *DT, LoopInfo *LI, unsigned Count) {
346
StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
347
BasicBlock *Header = L->getHeader();
348
BasicBlock *Latch = L->getLoopLatch();
349
Function *F = Header->getParent();
350
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
351
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
352
Loop *ParentLoop = L->getParentLoop();
353
NewLoopsMap NewLoops;
354
NewLoops[ParentLoop] = ParentLoop;
355
356
// For each block in the original loop, create a new copy,
357
// and update the value map with the newly created values.
358
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
359
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
360
NewBlocks.push_back(NewBB);
361
362
addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
363
364
VMap[*BB] = NewBB;
365
if (Header == *BB) {
366
// For the first block, add a CFG connection to this newly
367
// created block.
368
InsertTop->getTerminator()->setSuccessor(0, NewBB);
369
}
370
371
if (DT) {
372
if (Header == *BB) {
373
// The header is dominated by the preheader.
374
DT->addNewBlock(NewBB, InsertTop);
375
} else {
376
// Copy information from original loop to unrolled loop.
377
BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
378
DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
379
}
380
}
381
382
if (Latch == *BB) {
383
// For the last block, create a loop back to cloned head.
384
VMap.erase((*BB)->getTerminator());
385
// Use an incrementing IV. Pre-incr/post-incr is backedge/trip count.
386
// Subtle: NewIter can be 0 if we wrapped when computing the trip count,
387
// thus we must compare the post-increment (wrapping) value.
388
BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
389
BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
390
IRBuilder<> Builder(LatchBR);
391
PHINode *NewIdx =
392
PHINode::Create(NewIter->getType(), 2, suffix + ".iter");
393
NewIdx->insertBefore(FirstLoopBB->getFirstNonPHIIt());
394
auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
395
auto *One = ConstantInt::get(NewIdx->getType(), 1);
396
Value *IdxNext =
397
Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
398
Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp");
399
MDNode *BranchWeights = nullptr;
400
if (hasBranchWeightMD(*LatchBR)) {
401
uint32_t ExitWeight;
402
uint32_t BackEdgeWeight;
403
if (Count >= 3) {
404
// Note: We do not enter this loop for zero-remainders. The check
405
// is at the end of the loop. We assume equal distribution between
406
// possible remainders in [1, Count).
407
ExitWeight = 1;
408
BackEdgeWeight = (Count - 2) / 2;
409
} else {
410
// Unnecessary backedge, should never be taken. The conditional
411
// jump should be optimized away later.
412
ExitWeight = 1;
413
BackEdgeWeight = 0;
414
}
415
MDBuilder MDB(Builder.getContext());
416
BranchWeights = MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
417
}
418
Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot, BranchWeights);
419
NewIdx->addIncoming(Zero, InsertTop);
420
NewIdx->addIncoming(IdxNext, NewBB);
421
LatchBR->eraseFromParent();
422
}
423
}
424
425
// Change the incoming values to the ones defined in the preheader or
426
// cloned loop.
427
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
428
PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
429
unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
430
NewPHI->setIncomingBlock(idx, InsertTop);
431
BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
432
idx = NewPHI->getBasicBlockIndex(Latch);
433
Value *InVal = NewPHI->getIncomingValue(idx);
434
NewPHI->setIncomingBlock(idx, NewLatch);
435
if (Value *V = VMap.lookup(InVal))
436
NewPHI->setIncomingValue(idx, V);
437
}
438
439
Loop *NewLoop = NewLoops[L];
440
assert(NewLoop && "L should have been cloned");
441
MDNode *LoopID = NewLoop->getLoopID();
442
443
// Only add loop metadata if the loop is not going to be completely
444
// unrolled.
445
if (UnrollRemainder)
446
return NewLoop;
447
448
std::optional<MDNode *> NewLoopID = makeFollowupLoopID(
449
LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
450
if (NewLoopID) {
451
NewLoop->setLoopID(*NewLoopID);
452
453
// Do not setLoopAlreadyUnrolled if loop attributes have been defined
454
// explicitly.
455
return NewLoop;
456
}
457
458
// Add unroll disable metadata to disable future unrolling for this loop.
459
NewLoop->setLoopAlreadyUnrolled();
460
return NewLoop;
461
}
462
463
/// Returns true if we can profitably unroll the multi-exit loop L. Currently,
464
/// we return true only if UnrollRuntimeMultiExit is set to true.
465
static bool canProfitablyUnrollMultiExitLoop(
466
Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
467
bool UseEpilogRemainder) {
468
469
// Priority goes to UnrollRuntimeMultiExit if it's supplied.
470
if (UnrollRuntimeMultiExit.getNumOccurrences())
471
return UnrollRuntimeMultiExit;
472
473
// The main pain point with multi-exit loop unrolling is that once unrolled,
474
// we will not be able to merge all blocks into a straight line code.
475
// There are branches within the unrolled loop that go to the OtherExits.
476
// The second point is the increase in code size, but this is true
477
// irrespective of multiple exits.
478
479
// Note: Both the heuristics below are coarse grained. We are essentially
480
// enabling unrolling of loops that have a single side exit other than the
481
// normal LatchExit (i.e. exiting into a deoptimize block).
482
// The heuristics considered are:
483
// 1. low number of branches in the unrolled version.
484
// 2. high predictability of these extra branches.
485
// We avoid unrolling loops that have more than two exiting blocks. This
486
// limits the total number of branches in the unrolled loop to be atmost
487
// the unroll factor (since one of the exiting blocks is the latch block).
488
SmallVector<BasicBlock*, 4> ExitingBlocks;
489
L->getExitingBlocks(ExitingBlocks);
490
if (ExitingBlocks.size() > 2)
491
return false;
492
493
// Allow unrolling of loops with no non latch exit blocks.
494
if (OtherExits.size() == 0)
495
return true;
496
497
// The second heuristic is that L has one exit other than the latchexit and
498
// that exit is a deoptimize block. We know that deoptimize blocks are rarely
499
// taken, which also implies the branch leading to the deoptimize block is
500
// highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
501
// assume the other exit branch is predictable even if it has no deoptimize
502
// call.
503
return (OtherExits.size() == 1 &&
504
(UnrollRuntimeOtherExitPredictable ||
505
OtherExits[0]->getPostdominatingDeoptimizeCall()));
506
// TODO: These can be fine-tuned further to consider code size or deopt states
507
// that are captured by the deoptimize exit block.
508
// Also, we can extend this to support more cases, if we actually
509
// know of kinds of multiexit loops that would benefit from unrolling.
510
}
511
512
/// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
513
/// accounting for the possibility of unsigned overflow in the 2s complement
514
/// domain. Preconditions:
515
/// 1) TripCount = BECount + 1 (allowing overflow)
516
/// 2) Log2(Count) <= BitWidth(BECount)
517
static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
518
Value *TripCount, unsigned Count) {
519
// Note that TripCount is BECount + 1.
520
if (isPowerOf2_32(Count))
521
// If the expression is zero, then either:
522
// 1. There are no iterations to be run in the prolog/epilog loop.
523
// OR
524
// 2. The addition computing TripCount overflowed.
525
//
526
// If (2) is true, we know that TripCount really is (1 << BEWidth) and so
527
// the number of iterations that remain to be run in the original loop is a
528
// multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
529
// precondition of this method).
530
return B.CreateAnd(TripCount, Count - 1, "xtraiter");
531
532
// As (BECount + 1) can potentially unsigned overflow we count
533
// (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
534
Constant *CountC = ConstantInt::get(BECount->getType(), Count);
535
Value *ModValTmp = B.CreateURem(BECount, CountC);
536
Value *ModValAdd = B.CreateAdd(ModValTmp,
537
ConstantInt::get(ModValTmp->getType(), 1));
538
// At that point (BECount % Count) + 1 could be equal to Count.
539
// To handle this case we need to take mod by Count one more time.
540
return B.CreateURem(ModValAdd, CountC, "xtraiter");
541
}
542
543
544
/// Insert code in the prolog/epilog code when unrolling a loop with a
545
/// run-time trip-count.
546
///
547
/// This method assumes that the loop unroll factor is total number
548
/// of loop bodies in the loop after unrolling. (Some folks refer
549
/// to the unroll factor as the number of *extra* copies added).
550
/// We assume also that the loop unroll factor is a power-of-two. So, after
551
/// unrolling the loop, the number of loop bodies executed is 2,
552
/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
553
/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
554
/// the switch instruction is generated.
555
///
556
/// ***Prolog case***
557
/// extraiters = tripcount % loopfactor
558
/// if (extraiters == 0) jump Loop:
559
/// else jump Prol:
560
/// Prol: LoopBody;
561
/// extraiters -= 1 // Omitted if unroll factor is 2.
562
/// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
563
/// if (tripcount < loopfactor) jump End:
564
/// Loop:
565
/// ...
566
/// End:
567
///
568
/// ***Epilog case***
569
/// extraiters = tripcount % loopfactor
570
/// if (tripcount < loopfactor) jump LoopExit:
571
/// unroll_iters = tripcount - extraiters
572
/// Loop: LoopBody; (executes unroll_iter times);
573
/// unroll_iter -= 1
574
/// if (unroll_iter != 0) jump Loop:
575
/// LoopExit:
576
/// if (extraiters == 0) jump EpilExit:
577
/// Epil: LoopBody; (executes extraiters times)
578
/// extraiters -= 1 // Omitted if unroll factor is 2.
579
/// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
580
/// EpilExit:
581
582
bool llvm::UnrollRuntimeLoopRemainder(
583
Loop *L, unsigned Count, bool AllowExpensiveTripCount,
584
bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
585
LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
586
const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
587
LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
588
LLVM_DEBUG(L->dump());
589
LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
590
: dbgs() << "Using prolog remainder.\n");
591
592
// Make sure the loop is in canonical form.
593
if (!L->isLoopSimplifyForm()) {
594
LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
595
return false;
596
}
597
598
// Guaranteed by LoopSimplifyForm.
599
BasicBlock *Latch = L->getLoopLatch();
600
BasicBlock *Header = L->getHeader();
601
602
BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
603
604
if (!LatchBR || LatchBR->isUnconditional()) {
605
// The loop-rotate pass can be helpful to avoid this in many cases.
606
LLVM_DEBUG(
607
dbgs()
608
<< "Loop latch not terminated by a conditional branch.\n");
609
return false;
610
}
611
612
unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
613
BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
614
615
if (L->contains(LatchExit)) {
616
// Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
617
// targets of the Latch be an exit block out of the loop.
618
LLVM_DEBUG(
619
dbgs()
620
<< "One of the loop latch successors must be the exit block.\n");
621
return false;
622
}
623
624
// These are exit blocks other than the target of the latch exiting block.
625
SmallVector<BasicBlock *, 4> OtherExits;
626
L->getUniqueNonLatchExitBlocks(OtherExits);
627
// Support only single exit and exiting block unless multi-exit loop
628
// unrolling is enabled.
629
if (!L->getExitingBlock() || OtherExits.size()) {
630
// We rely on LCSSA form being preserved when the exit blocks are transformed.
631
// (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
632
if (!PreserveLCSSA)
633
return false;
634
635
if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit,
636
UseEpilogRemainder)) {
637
LLVM_DEBUG(
638
dbgs()
639
<< "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
640
"enabled!\n");
641
return false;
642
}
643
}
644
// Use Scalar Evolution to compute the trip count. This allows more loops to
645
// be unrolled than relying on induction var simplification.
646
if (!SE)
647
return false;
648
649
// Only unroll loops with a computable trip count.
650
// We calculate the backedge count by using getExitCount on the Latch block,
651
// which is proven to be the only exiting block in this loop. This is same as
652
// calculating getBackedgeTakenCount on the loop (which computes SCEV for all
653
// exiting blocks).
654
const SCEV *BECountSC = SE->getExitCount(L, Latch);
655
if (isa<SCEVCouldNotCompute>(BECountSC)) {
656
LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
657
return false;
658
}
659
660
unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
661
662
// Add 1 since the backedge count doesn't include the first loop iteration.
663
// (Note that overflow can occur, this is handled explicitly below)
664
const SCEV *TripCountSC =
665
SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
666
if (isa<SCEVCouldNotCompute>(TripCountSC)) {
667
LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
668
return false;
669
}
670
671
BasicBlock *PreHeader = L->getLoopPreheader();
672
BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
673
const DataLayout &DL = Header->getDataLayout();
674
SCEVExpander Expander(*SE, DL, "loop-unroll");
675
if (!AllowExpensiveTripCount &&
676
Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
677
TTI, PreHeaderBR)) {
678
LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
679
return false;
680
}
681
682
// This constraint lets us deal with an overflowing trip count easily; see the
683
// comment on ModVal below.
684
if (Log2_32(Count) > BEWidth) {
685
LLVM_DEBUG(
686
dbgs()
687
<< "Count failed constraint on overflow trip count calculation.\n");
688
return false;
689
}
690
691
// Loop structure is the following:
692
//
693
// PreHeader
694
// Header
695
// ...
696
// Latch
697
// LatchExit
698
699
BasicBlock *NewPreHeader;
700
BasicBlock *NewExit = nullptr;
701
BasicBlock *PrologExit = nullptr;
702
BasicBlock *EpilogPreHeader = nullptr;
703
BasicBlock *PrologPreHeader = nullptr;
704
705
if (UseEpilogRemainder) {
706
// If epilog remainder
707
// Split PreHeader to insert a branch around loop for unrolling.
708
NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
709
NewPreHeader->setName(PreHeader->getName() + ".new");
710
// Split LatchExit to create phi nodes from branch above.
711
NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
712
nullptr, PreserveLCSSA);
713
// NewExit gets its DebugLoc from LatchExit, which is not part of the
714
// original Loop.
715
// Fix this by setting Loop's DebugLoc to NewExit.
716
auto *NewExitTerminator = NewExit->getTerminator();
717
NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
718
// Split NewExit to insert epilog remainder loop.
719
EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
720
EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
721
722
// If the latch exits from multiple level of nested loops, then
723
// by assumption there must be another loop exit which branches to the
724
// outer loop and we must adjust the loop for the newly inserted blocks
725
// to account for the fact that our epilogue is still in the same outer
726
// loop. Note that this leaves loopinfo temporarily out of sync with the
727
// CFG until the actual epilogue loop is inserted.
728
if (auto *ParentL = L->getParentLoop())
729
if (LI->getLoopFor(LatchExit) != ParentL) {
730
LI->removeBlock(NewExit);
731
ParentL->addBasicBlockToLoop(NewExit, *LI);
732
LI->removeBlock(EpilogPreHeader);
733
ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
734
}
735
736
} else {
737
// If prolog remainder
738
// Split the original preheader twice to insert prolog remainder loop
739
PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
740
PrologPreHeader->setName(Header->getName() + ".prol.preheader");
741
PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
742
DT, LI);
743
PrologExit->setName(Header->getName() + ".prol.loopexit");
744
// Split PrologExit to get NewPreHeader.
745
NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
746
NewPreHeader->setName(PreHeader->getName() + ".new");
747
}
748
// Loop structure should be the following:
749
// Epilog Prolog
750
//
751
// PreHeader PreHeader
752
// *NewPreHeader *PrologPreHeader
753
// Header *PrologExit
754
// ... *NewPreHeader
755
// Latch Header
756
// *NewExit ...
757
// *EpilogPreHeader Latch
758
// LatchExit LatchExit
759
760
// Calculate conditions for branch around loop for unrolling
761
// in epilog case and around prolog remainder loop in prolog case.
762
// Compute the number of extra iterations required, which is:
763
// extra iterations = run-time trip count % loop unroll factor
764
PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
765
IRBuilder<> B(PreHeaderBR);
766
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
767
PreHeaderBR);
768
Value *BECount;
769
// If there are other exits before the latch, that may cause the latch exit
770
// branch to never be executed, and the latch exit count may be poison.
771
// In this case, freeze the TripCount and base BECount on the frozen
772
// TripCount. We will introduce two branches using these values, and it's
773
// important that they see a consistent value (which would not be guaranteed
774
// if were frozen independently.)
775
if ((!OtherExits.empty() || !SE->loopHasNoAbnormalExits(L)) &&
776
!isGuaranteedNotToBeUndefOrPoison(TripCount, AC, PreHeaderBR, DT)) {
777
TripCount = B.CreateFreeze(TripCount);
778
BECount =
779
B.CreateAdd(TripCount, Constant::getAllOnesValue(TripCount->getType()));
780
} else {
781
// If we don't need to freeze, use SCEVExpander for BECount as well, to
782
// allow slightly better value reuse.
783
BECount =
784
Expander.expandCodeFor(BECountSC, BECountSC->getType(), PreHeaderBR);
785
}
786
787
Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
788
789
Value *BranchVal =
790
UseEpilogRemainder ? B.CreateICmpULT(BECount,
791
ConstantInt::get(BECount->getType(),
792
Count - 1)) :
793
B.CreateIsNotNull(ModVal, "lcmp.mod");
794
BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
795
BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
796
// Branch to either remainder (extra iterations) loop or unrolling loop.
797
MDNode *BranchWeights = nullptr;
798
if (hasBranchWeightMD(*Latch->getTerminator())) {
799
// Assume loop is nearly always entered.
800
MDBuilder MDB(B.getContext());
801
BranchWeights = MDB.createBranchWeights(EpilogHeaderWeights);
802
}
803
B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop, BranchWeights);
804
PreHeaderBR->eraseFromParent();
805
if (DT) {
806
if (UseEpilogRemainder)
807
DT->changeImmediateDominator(NewExit, PreHeader);
808
else
809
DT->changeImmediateDominator(PrologExit, PreHeader);
810
}
811
Function *F = Header->getParent();
812
// Get an ordered list of blocks in the loop to help with the ordering of the
813
// cloned blocks in the prolog/epilog code
814
LoopBlocksDFS LoopBlocks(L);
815
LoopBlocks.perform(LI);
816
817
//
818
// For each extra loop iteration, create a copy of the loop's basic blocks
819
// and generate a condition that branches to the copy depending on the
820
// number of 'left over' iterations.
821
//
822
std::vector<BasicBlock *> NewBlocks;
823
ValueToValueMapTy VMap;
824
825
// Clone all the basic blocks in the loop. If Count is 2, we don't clone
826
// the loop, otherwise we create a cloned loop to execute the extra
827
// iterations. This function adds the appropriate CFG connections.
828
BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
829
BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
830
Loop *remainderLoop = CloneLoopBlocks(
831
L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
832
NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI, Count);
833
834
// Insert the cloned blocks into the function.
835
F->splice(InsertBot->getIterator(), F, NewBlocks[0]->getIterator(), F->end());
836
837
// Now the loop blocks are cloned and the other exiting blocks from the
838
// remainder are connected to the original Loop's exit blocks. The remaining
839
// work is to update the phi nodes in the original loop, and take in the
840
// values from the cloned region.
841
for (auto *BB : OtherExits) {
842
// Given we preserve LCSSA form, we know that the values used outside the
843
// loop will be used through these phi nodes at the exit blocks that are
844
// transformed below.
845
for (PHINode &PN : BB->phis()) {
846
unsigned oldNumOperands = PN.getNumIncomingValues();
847
// Add the incoming values from the remainder code to the end of the phi
848
// node.
849
for (unsigned i = 0; i < oldNumOperands; i++){
850
auto *PredBB =PN.getIncomingBlock(i);
851
if (PredBB == Latch)
852
// The latch exit is handled separately, see connectX
853
continue;
854
if (!L->contains(PredBB))
855
// Even if we had dedicated exits, the code above inserted an
856
// extra branch which can reach the latch exit.
857
continue;
858
859
auto *V = PN.getIncomingValue(i);
860
if (Instruction *I = dyn_cast<Instruction>(V))
861
if (L->contains(I))
862
V = VMap.lookup(I);
863
PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
864
}
865
}
866
#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
867
for (BasicBlock *SuccBB : successors(BB)) {
868
assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) &&
869
"Breaks the definition of dedicated exits!");
870
}
871
#endif
872
}
873
874
// Update the immediate dominator of the exit blocks and blocks that are
875
// reachable from the exit blocks. This is needed because we now have paths
876
// from both the original loop and the remainder code reaching the exit
877
// blocks. While the IDom of these exit blocks were from the original loop,
878
// now the IDom is the preheader (which decides whether the original loop or
879
// remainder code should run).
880
if (DT && !L->getExitingBlock()) {
881
SmallVector<BasicBlock *, 16> ChildrenToUpdate;
882
// NB! We have to examine the dom children of all loop blocks, not just
883
// those which are the IDom of the exit blocks. This is because blocks
884
// reachable from the exit blocks can have their IDom as the nearest common
885
// dominator of the exit blocks.
886
for (auto *BB : L->blocks()) {
887
auto *DomNodeBB = DT->getNode(BB);
888
for (auto *DomChild : DomNodeBB->children()) {
889
auto *DomChildBB = DomChild->getBlock();
890
if (!L->contains(LI->getLoopFor(DomChildBB)))
891
ChildrenToUpdate.push_back(DomChildBB);
892
}
893
}
894
for (auto *BB : ChildrenToUpdate)
895
DT->changeImmediateDominator(BB, PreHeader);
896
}
897
898
// Loop structure should be the following:
899
// Epilog Prolog
900
//
901
// PreHeader PreHeader
902
// NewPreHeader PrologPreHeader
903
// Header PrologHeader
904
// ... ...
905
// Latch PrologLatch
906
// NewExit PrologExit
907
// EpilogPreHeader NewPreHeader
908
// EpilogHeader Header
909
// ... ...
910
// EpilogLatch Latch
911
// LatchExit LatchExit
912
913
// Rewrite the cloned instruction operands to use the values created when the
914
// clone is created.
915
for (BasicBlock *BB : NewBlocks) {
916
Module *M = BB->getModule();
917
for (Instruction &I : *BB) {
918
RemapInstruction(&I, VMap,
919
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
920
RemapDbgRecordRange(M, I.getDbgRecordRange(), VMap,
921
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
922
}
923
}
924
925
if (UseEpilogRemainder) {
926
// Connect the epilog code to the original loop and update the
927
// PHI functions.
928
ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader,
929
NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE, Count);
930
931
// Update counter in loop for unrolling.
932
// Use an incrementing IV. Pre-incr/post-incr is backedge/trip count.
933
// Subtle: TestVal can be 0 if we wrapped when computing the trip count,
934
// thus we must compare the post-increment (wrapping) value.
935
IRBuilder<> B2(NewPreHeader->getTerminator());
936
Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
937
BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
938
PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter");
939
NewIdx->insertBefore(Header->getFirstNonPHIIt());
940
B2.SetInsertPoint(LatchBR);
941
auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
942
auto *One = ConstantInt::get(NewIdx->getType(), 1);
943
Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
944
auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
945
Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp");
946
NewIdx->addIncoming(Zero, NewPreHeader);
947
NewIdx->addIncoming(IdxNext, Latch);
948
LatchBR->setCondition(IdxCmp);
949
} else {
950
// Connect the prolog code to the original loop and update the
951
// PHI functions.
952
ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
953
NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
954
}
955
956
// If this loop is nested, then the loop unroller changes the code in the any
957
// of its parent loops, so the Scalar Evolution pass needs to be run again.
958
SE->forgetTopmostLoop(L);
959
960
// Verify that the Dom Tree and Loop Info are correct.
961
#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
962
if (DT) {
963
assert(DT->verify(DominatorTree::VerificationLevel::Full));
964
LI->verify(*DT);
965
}
966
#endif
967
968
// For unroll factor 2 remainder loop will have 1 iteration.
969
if (Count == 2 && DT && LI && SE) {
970
// TODO: This code could probably be pulled out into a helper function
971
// (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion.
972
BasicBlock *RemainderLatch = remainderLoop->getLoopLatch();
973
assert(RemainderLatch);
974
SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(),
975
remainderLoop->getBlocks().end());
976
breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr);
977
remainderLoop = nullptr;
978
979
// Simplify loop values after breaking the backedge
980
const DataLayout &DL = L->getHeader()->getDataLayout();
981
SmallVector<WeakTrackingVH, 16> DeadInsts;
982
for (BasicBlock *BB : RemainderBlocks) {
983
for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
984
if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
985
if (LI->replacementPreservesLCSSAForm(&Inst, V))
986
Inst.replaceAllUsesWith(V);
987
if (isInstructionTriviallyDead(&Inst))
988
DeadInsts.emplace_back(&Inst);
989
}
990
// We can't do recursive deletion until we're done iterating, as we might
991
// have a phi which (potentially indirectly) uses instructions later in
992
// the block we're iterating through.
993
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
994
}
995
996
// Merge latch into exit block.
997
auto *ExitBB = RemainderLatch->getSingleSuccessor();
998
assert(ExitBB && "required after breaking cond br backedge");
999
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1000
MergeBlockIntoPredecessor(ExitBB, &DTU, LI);
1001
}
1002
1003
// Canonicalize to LoopSimplifyForm both original and remainder loops. We
1004
// cannot rely on the LoopUnrollPass to do this because it only does
1005
// canonicalization for parent/subloops and not the sibling loops.
1006
if (OtherExits.size() > 0) {
1007
// Generate dedicated exit blocks for the original loop, to preserve
1008
// LoopSimplifyForm.
1009
formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
1010
// Generate dedicated exit blocks for the remainder loop if one exists, to
1011
// preserve LoopSimplifyForm.
1012
if (remainderLoop)
1013
formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
1014
}
1015
1016
auto UnrollResult = LoopUnrollResult::Unmodified;
1017
if (remainderLoop && UnrollRemainder) {
1018
LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
1019
UnrollLoopOptions ULO;
1020
ULO.Count = Count - 1;
1021
ULO.Force = false;
1022
ULO.Runtime = false;
1023
ULO.AllowExpensiveTripCount = false;
1024
ULO.UnrollRemainder = false;
1025
ULO.ForgetAllSCEV = ForgetAllSCEV;
1026
assert(!getLoopConvergenceHeart(L) &&
1027
"A loop with a convergence heart does not allow runtime unrolling.");
1028
UnrollResult = UnrollLoop(remainderLoop, ULO, LI, SE, DT, AC, TTI,
1029
/*ORE*/ nullptr, PreserveLCSSA);
1030
}
1031
1032
if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1033
*ResultLoop = remainderLoop;
1034
NumRuntimeUnrolled++;
1035
return true;
1036
}
1037
1038