Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp
35271 views
1
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines common loop utility functions.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/Transforms/Utils/LoopUtils.h"
14
#include "llvm/ADT/DenseSet.h"
15
#include "llvm/ADT/PriorityWorklist.h"
16
#include "llvm/ADT/ScopeExit.h"
17
#include "llvm/ADT/SetVector.h"
18
#include "llvm/ADT/SmallPtrSet.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/Analysis/AliasAnalysis.h"
21
#include "llvm/Analysis/BasicAliasAnalysis.h"
22
#include "llvm/Analysis/DomTreeUpdater.h"
23
#include "llvm/Analysis/GlobalsModRef.h"
24
#include "llvm/Analysis/InstSimplifyFolder.h"
25
#include "llvm/Analysis/LoopAccessAnalysis.h"
26
#include "llvm/Analysis/LoopInfo.h"
27
#include "llvm/Analysis/LoopPass.h"
28
#include "llvm/Analysis/MemorySSA.h"
29
#include "llvm/Analysis/MemorySSAUpdater.h"
30
#include "llvm/Analysis/ScalarEvolution.h"
31
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
32
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
33
#include "llvm/IR/DIBuilder.h"
34
#include "llvm/IR/Dominators.h"
35
#include "llvm/IR/Instructions.h"
36
#include "llvm/IR/IntrinsicInst.h"
37
#include "llvm/IR/MDBuilder.h"
38
#include "llvm/IR/Module.h"
39
#include "llvm/IR/PatternMatch.h"
40
#include "llvm/IR/ProfDataUtils.h"
41
#include "llvm/IR/ValueHandle.h"
42
#include "llvm/InitializePasses.h"
43
#include "llvm/Pass.h"
44
#include "llvm/Support/Debug.h"
45
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46
#include "llvm/Transforms/Utils/Local.h"
47
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
48
49
using namespace llvm;
50
using namespace llvm::PatternMatch;
51
52
#define DEBUG_TYPE "loop-utils"
53
54
static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
55
static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
56
57
bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
58
MemorySSAUpdater *MSSAU,
59
bool PreserveLCSSA) {
60
bool Changed = false;
61
62
// We re-use a vector for the in-loop predecesosrs.
63
SmallVector<BasicBlock *, 4> InLoopPredecessors;
64
65
auto RewriteExit = [&](BasicBlock *BB) {
66
assert(InLoopPredecessors.empty() &&
67
"Must start with an empty predecessors list!");
68
auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
69
70
// See if there are any non-loop predecessors of this exit block and
71
// keep track of the in-loop predecessors.
72
bool IsDedicatedExit = true;
73
for (auto *PredBB : predecessors(BB))
74
if (L->contains(PredBB)) {
75
if (isa<IndirectBrInst>(PredBB->getTerminator()))
76
// We cannot rewrite exiting edges from an indirectbr.
77
return false;
78
79
InLoopPredecessors.push_back(PredBB);
80
} else {
81
IsDedicatedExit = false;
82
}
83
84
assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
85
86
// Nothing to do if this is already a dedicated exit.
87
if (IsDedicatedExit)
88
return false;
89
90
auto *NewExitBB = SplitBlockPredecessors(
91
BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
92
93
if (!NewExitBB)
94
LLVM_DEBUG(
95
dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
96
<< *L << "\n");
97
else
98
LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
99
<< NewExitBB->getName() << "\n");
100
return true;
101
};
102
103
// Walk the exit blocks directly rather than building up a data structure for
104
// them, but only visit each one once.
105
SmallPtrSet<BasicBlock *, 4> Visited;
106
for (auto *BB : L->blocks())
107
for (auto *SuccBB : successors(BB)) {
108
// We're looking for exit blocks so skip in-loop successors.
109
if (L->contains(SuccBB))
110
continue;
111
112
// Visit each exit block exactly once.
113
if (!Visited.insert(SuccBB).second)
114
continue;
115
116
Changed |= RewriteExit(SuccBB);
117
}
118
119
return Changed;
120
}
121
122
/// Returns the instructions that use values defined in the loop.
123
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
124
SmallVector<Instruction *, 8> UsedOutside;
125
126
for (auto *Block : L->getBlocks())
127
// FIXME: I believe that this could use copy_if if the Inst reference could
128
// be adapted into a pointer.
129
for (auto &Inst : *Block) {
130
auto Users = Inst.users();
131
if (any_of(Users, [&](User *U) {
132
auto *Use = cast<Instruction>(U);
133
return !L->contains(Use->getParent());
134
}))
135
UsedOutside.push_back(&Inst);
136
}
137
138
return UsedOutside;
139
}
140
141
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
142
// By definition, all loop passes need the LoopInfo analysis and the
143
// Dominator tree it depends on. Because they all participate in the loop
144
// pass manager, they must also preserve these.
145
AU.addRequired<DominatorTreeWrapperPass>();
146
AU.addPreserved<DominatorTreeWrapperPass>();
147
AU.addRequired<LoopInfoWrapperPass>();
148
AU.addPreserved<LoopInfoWrapperPass>();
149
150
// We must also preserve LoopSimplify and LCSSA. We locally access their IDs
151
// here because users shouldn't directly get them from this header.
152
extern char &LoopSimplifyID;
153
extern char &LCSSAID;
154
AU.addRequiredID(LoopSimplifyID);
155
AU.addPreservedID(LoopSimplifyID);
156
AU.addRequiredID(LCSSAID);
157
AU.addPreservedID(LCSSAID);
158
// This is used in the LPPassManager to perform LCSSA verification on passes
159
// which preserve lcssa form
160
AU.addRequired<LCSSAVerificationPass>();
161
AU.addPreserved<LCSSAVerificationPass>();
162
163
// Loop passes are designed to run inside of a loop pass manager which means
164
// that any function analyses they require must be required by the first loop
165
// pass in the manager (so that it is computed before the loop pass manager
166
// runs) and preserved by all loop pasess in the manager. To make this
167
// reasonably robust, the set needed for most loop passes is maintained here.
168
// If your loop pass requires an analysis not listed here, you will need to
169
// carefully audit the loop pass manager nesting structure that results.
170
AU.addRequired<AAResultsWrapperPass>();
171
AU.addPreserved<AAResultsWrapperPass>();
172
AU.addPreserved<BasicAAWrapperPass>();
173
AU.addPreserved<GlobalsAAWrapperPass>();
174
AU.addPreserved<SCEVAAWrapperPass>();
175
AU.addRequired<ScalarEvolutionWrapperPass>();
176
AU.addPreserved<ScalarEvolutionWrapperPass>();
177
// FIXME: When all loop passes preserve MemorySSA, it can be required and
178
// preserved here instead of the individual handling in each pass.
179
}
180
181
/// Manually defined generic "LoopPass" dependency initialization. This is used
182
/// to initialize the exact set of passes from above in \c
183
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
184
/// with:
185
///
186
/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
187
///
188
/// As-if "LoopPass" were a pass.
189
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
190
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
191
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
192
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
193
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
194
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
195
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
196
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
197
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
198
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
199
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
200
}
201
202
/// Create MDNode for input string.
203
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
204
LLVMContext &Context = TheLoop->getHeader()->getContext();
205
Metadata *MDs[] = {
206
MDString::get(Context, Name),
207
ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
208
return MDNode::get(Context, MDs);
209
}
210
211
/// Set input string into loop metadata by keeping other values intact.
212
/// If the string is already in loop metadata update value if it is
213
/// different.
214
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
215
unsigned V) {
216
SmallVector<Metadata *, 4> MDs(1);
217
// If the loop already has metadata, retain it.
218
MDNode *LoopID = TheLoop->getLoopID();
219
if (LoopID) {
220
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
221
MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
222
// If it is of form key = value, try to parse it.
223
if (Node->getNumOperands() == 2) {
224
MDString *S = dyn_cast<MDString>(Node->getOperand(0));
225
if (S && S->getString() == StringMD) {
226
ConstantInt *IntMD =
227
mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
228
if (IntMD && IntMD->getSExtValue() == V)
229
// It is already in place. Do nothing.
230
return;
231
// We need to update the value, so just skip it here and it will
232
// be added after copying other existed nodes.
233
continue;
234
}
235
}
236
MDs.push_back(Node);
237
}
238
}
239
// Add new metadata.
240
MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
241
// Replace current metadata node with new one.
242
LLVMContext &Context = TheLoop->getHeader()->getContext();
243
MDNode *NewLoopID = MDNode::get(Context, MDs);
244
// Set operand 0 to refer to the loop id itself.
245
NewLoopID->replaceOperandWith(0, NewLoopID);
246
TheLoop->setLoopID(NewLoopID);
247
}
248
249
std::optional<ElementCount>
250
llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
251
std::optional<int> Width =
252
getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
253
254
if (Width) {
255
std::optional<int> IsScalable = getOptionalIntLoopAttribute(
256
TheLoop, "llvm.loop.vectorize.scalable.enable");
257
return ElementCount::get(*Width, IsScalable.value_or(false));
258
}
259
260
return std::nullopt;
261
}
262
263
std::optional<MDNode *> llvm::makeFollowupLoopID(
264
MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
265
const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
266
if (!OrigLoopID) {
267
if (AlwaysNew)
268
return nullptr;
269
return std::nullopt;
270
}
271
272
assert(OrigLoopID->getOperand(0) == OrigLoopID);
273
274
bool InheritAllAttrs = !InheritOptionsExceptPrefix;
275
bool InheritSomeAttrs =
276
InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
277
SmallVector<Metadata *, 8> MDs;
278
MDs.push_back(nullptr);
279
280
bool Changed = false;
281
if (InheritAllAttrs || InheritSomeAttrs) {
282
for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
283
MDNode *Op = cast<MDNode>(Existing.get());
284
285
auto InheritThisAttribute = [InheritSomeAttrs,
286
InheritOptionsExceptPrefix](MDNode *Op) {
287
if (!InheritSomeAttrs)
288
return false;
289
290
// Skip malformatted attribute metadata nodes.
291
if (Op->getNumOperands() == 0)
292
return true;
293
Metadata *NameMD = Op->getOperand(0).get();
294
if (!isa<MDString>(NameMD))
295
return true;
296
StringRef AttrName = cast<MDString>(NameMD)->getString();
297
298
// Do not inherit excluded attributes.
299
return !AttrName.starts_with(InheritOptionsExceptPrefix);
300
};
301
302
if (InheritThisAttribute(Op))
303
MDs.push_back(Op);
304
else
305
Changed = true;
306
}
307
} else {
308
// Modified if we dropped at least one attribute.
309
Changed = OrigLoopID->getNumOperands() > 1;
310
}
311
312
bool HasAnyFollowup = false;
313
for (StringRef OptionName : FollowupOptions) {
314
MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
315
if (!FollowupNode)
316
continue;
317
318
HasAnyFollowup = true;
319
for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
320
MDs.push_back(Option.get());
321
Changed = true;
322
}
323
}
324
325
// Attributes of the followup loop not specified explicity, so signal to the
326
// transformation pass to add suitable attributes.
327
if (!AlwaysNew && !HasAnyFollowup)
328
return std::nullopt;
329
330
// If no attributes were added or remove, the previous loop Id can be reused.
331
if (!AlwaysNew && !Changed)
332
return OrigLoopID;
333
334
// No attributes is equivalent to having no !llvm.loop metadata at all.
335
if (MDs.size() == 1)
336
return nullptr;
337
338
// Build the new loop ID.
339
MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
340
FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
341
return FollowupLoopID;
342
}
343
344
bool llvm::hasDisableAllTransformsHint(const Loop *L) {
345
return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
346
}
347
348
bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
349
return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
350
}
351
352
TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
353
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
354
return TM_SuppressedByUser;
355
356
std::optional<int> Count =
357
getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
358
if (Count)
359
return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
360
361
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
362
return TM_ForcedByUser;
363
364
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
365
return TM_ForcedByUser;
366
367
if (hasDisableAllTransformsHint(L))
368
return TM_Disable;
369
370
return TM_Unspecified;
371
}
372
373
TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
374
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
375
return TM_SuppressedByUser;
376
377
std::optional<int> Count =
378
getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
379
if (Count)
380
return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
381
382
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
383
return TM_ForcedByUser;
384
385
if (hasDisableAllTransformsHint(L))
386
return TM_Disable;
387
388
return TM_Unspecified;
389
}
390
391
TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
392
std::optional<bool> Enable =
393
getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
394
395
if (Enable == false)
396
return TM_SuppressedByUser;
397
398
std::optional<ElementCount> VectorizeWidth =
399
getOptionalElementCountLoopAttribute(L);
400
std::optional<int> InterleaveCount =
401
getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
402
403
// 'Forcing' vector width and interleave count to one effectively disables
404
// this tranformation.
405
if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
406
InterleaveCount == 1)
407
return TM_SuppressedByUser;
408
409
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
410
return TM_Disable;
411
412
if (Enable == true)
413
return TM_ForcedByUser;
414
415
if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
416
return TM_Disable;
417
418
if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
419
return TM_Enable;
420
421
if (hasDisableAllTransformsHint(L))
422
return TM_Disable;
423
424
return TM_Unspecified;
425
}
426
427
TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
428
if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
429
return TM_ForcedByUser;
430
431
if (hasDisableAllTransformsHint(L))
432
return TM_Disable;
433
434
return TM_Unspecified;
435
}
436
437
TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
438
if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
439
return TM_SuppressedByUser;
440
441
if (hasDisableAllTransformsHint(L))
442
return TM_Disable;
443
444
return TM_Unspecified;
445
}
446
447
/// Does a BFS from a given node to all of its children inside a given loop.
448
/// The returned vector of nodes includes the starting point.
449
SmallVector<DomTreeNode *, 16>
450
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
451
SmallVector<DomTreeNode *, 16> Worklist;
452
auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
453
// Only include subregions in the top level loop.
454
BasicBlock *BB = DTN->getBlock();
455
if (CurLoop->contains(BB))
456
Worklist.push_back(DTN);
457
};
458
459
AddRegionToWorklist(N);
460
461
for (size_t I = 0; I < Worklist.size(); I++) {
462
for (DomTreeNode *Child : Worklist[I]->children())
463
AddRegionToWorklist(Child);
464
}
465
466
return Worklist;
467
}
468
469
bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) {
470
int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
471
assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode");
472
Value *IncV = PN->getIncomingValue(LatchIdx);
473
474
for (User *U : PN->users())
475
if (U != Cond && U != IncV) return false;
476
477
for (User *U : IncV->users())
478
if (U != Cond && U != PN) return false;
479
return true;
480
}
481
482
483
void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
484
LoopInfo *LI, MemorySSA *MSSA) {
485
assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
486
auto *Preheader = L->getLoopPreheader();
487
assert(Preheader && "Preheader should exist!");
488
489
std::unique_ptr<MemorySSAUpdater> MSSAU;
490
if (MSSA)
491
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
492
493
// Now that we know the removal is safe, remove the loop by changing the
494
// branch from the preheader to go to the single exit block.
495
//
496
// Because we're deleting a large chunk of code at once, the sequence in which
497
// we remove things is very important to avoid invalidation issues.
498
499
// Tell ScalarEvolution that the loop is deleted. Do this before
500
// deleting the loop so that ScalarEvolution can look at the loop
501
// to determine what it needs to clean up.
502
if (SE) {
503
SE->forgetLoop(L);
504
SE->forgetBlockAndLoopDispositions();
505
}
506
507
Instruction *OldTerm = Preheader->getTerminator();
508
assert(!OldTerm->mayHaveSideEffects() &&
509
"Preheader must end with a side-effect-free terminator");
510
assert(OldTerm->getNumSuccessors() == 1 &&
511
"Preheader must have a single successor");
512
// Connect the preheader to the exit block. Keep the old edge to the header
513
// around to perform the dominator tree update in two separate steps
514
// -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
515
// preheader -> header.
516
//
517
//
518
// 0. Preheader 1. Preheader 2. Preheader
519
// | | | |
520
// V | V |
521
// Header <--\ | Header <--\ | Header <--\
522
// | | | | | | | | | | |
523
// | V | | | V | | | V |
524
// | Body --/ | | Body --/ | | Body --/
525
// V V V V V
526
// Exit Exit Exit
527
//
528
// By doing this is two separate steps we can perform the dominator tree
529
// update without using the batch update API.
530
//
531
// Even when the loop is never executed, we cannot remove the edge from the
532
// source block to the exit block. Consider the case where the unexecuted loop
533
// branches back to an outer loop. If we deleted the loop and removed the edge
534
// coming to this inner loop, this will break the outer loop structure (by
535
// deleting the backedge of the outer loop). If the outer loop is indeed a
536
// non-loop, it will be deleted in a future iteration of loop deletion pass.
537
IRBuilder<> Builder(OldTerm);
538
539
auto *ExitBlock = L->getUniqueExitBlock();
540
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
541
if (ExitBlock) {
542
assert(ExitBlock && "Should have a unique exit block!");
543
assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
544
545
Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
546
// Remove the old branch. The conditional branch becomes a new terminator.
547
OldTerm->eraseFromParent();
548
549
// Rewrite phis in the exit block to get their inputs from the Preheader
550
// instead of the exiting block.
551
for (PHINode &P : ExitBlock->phis()) {
552
// Set the zero'th element of Phi to be from the preheader and remove all
553
// other incoming values. Given the loop has dedicated exits, all other
554
// incoming values must be from the exiting blocks.
555
int PredIndex = 0;
556
P.setIncomingBlock(PredIndex, Preheader);
557
// Removes all incoming values from all other exiting blocks (including
558
// duplicate values from an exiting block).
559
// Nuke all entries except the zero'th entry which is the preheader entry.
560
P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
561
/* DeletePHIIfEmpty */ false);
562
563
assert((P.getNumIncomingValues() == 1 &&
564
P.getIncomingBlock(PredIndex) == Preheader) &&
565
"Should have exactly one value and that's from the preheader!");
566
}
567
568
if (DT) {
569
DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
570
if (MSSA) {
571
MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
572
*DT);
573
if (VerifyMemorySSA)
574
MSSA->verifyMemorySSA();
575
}
576
}
577
578
// Disconnect the loop body by branching directly to its exit.
579
Builder.SetInsertPoint(Preheader->getTerminator());
580
Builder.CreateBr(ExitBlock);
581
// Remove the old branch.
582
Preheader->getTerminator()->eraseFromParent();
583
} else {
584
assert(L->hasNoExitBlocks() &&
585
"Loop should have either zero or one exit blocks.");
586
587
Builder.SetInsertPoint(OldTerm);
588
Builder.CreateUnreachable();
589
Preheader->getTerminator()->eraseFromParent();
590
}
591
592
if (DT) {
593
DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
594
if (MSSA) {
595
MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
596
*DT);
597
SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
598
L->block_end());
599
MSSAU->removeBlocks(DeadBlockSet);
600
if (VerifyMemorySSA)
601
MSSA->verifyMemorySSA();
602
}
603
}
604
605
// Use a map to unique and a vector to guarantee deterministic ordering.
606
llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet;
607
llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
608
llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords;
609
610
if (ExitBlock) {
611
// Given LCSSA form is satisfied, we should not have users of instructions
612
// within the dead loop outside of the loop. However, LCSSA doesn't take
613
// unreachable uses into account. We handle them here.
614
// We could do it after drop all references (in this case all users in the
615
// loop will be already eliminated and we have less work to do but according
616
// to API doc of User::dropAllReferences only valid operation after dropping
617
// references, is deletion. So let's substitute all usages of
618
// instruction from the loop with poison value of corresponding type first.
619
for (auto *Block : L->blocks())
620
for (Instruction &I : *Block) {
621
auto *Poison = PoisonValue::get(I.getType());
622
for (Use &U : llvm::make_early_inc_range(I.uses())) {
623
if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
624
if (L->contains(Usr->getParent()))
625
continue;
626
// If we have a DT then we can check that uses outside a loop only in
627
// unreachable block.
628
if (DT)
629
assert(!DT->isReachableFromEntry(U) &&
630
"Unexpected user in reachable block");
631
U.set(Poison);
632
}
633
634
// RemoveDIs: do the same as below for DbgVariableRecords.
635
if (Block->IsNewDbgInfoFormat) {
636
for (DbgVariableRecord &DVR : llvm::make_early_inc_range(
637
filterDbgVars(I.getDbgRecordRange()))) {
638
DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
639
DVR.getDebugLoc().get());
640
if (!DeadDebugSet.insert(Key).second)
641
continue;
642
// Unlinks the DVR from it's container, for later insertion.
643
DVR.removeFromParent();
644
DeadDbgVariableRecords.push_back(&DVR);
645
}
646
}
647
648
// For one of each variable encountered, preserve a debug intrinsic (set
649
// to Poison) and transfer it to the loop exit. This terminates any
650
// variable locations that were set during the loop.
651
auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
652
if (!DVI)
653
continue;
654
if (!DeadDebugSet.insert(DebugVariable(DVI)).second)
655
continue;
656
DeadDebugInst.push_back(DVI);
657
}
658
659
// After the loop has been deleted all the values defined and modified
660
// inside the loop are going to be unavailable. Values computed in the
661
// loop will have been deleted, automatically causing their debug uses
662
// be be replaced with undef. Loop invariant values will still be available.
663
// Move dbg.values out the loop so that earlier location ranges are still
664
// terminated and loop invariant assignments are preserved.
665
DIBuilder DIB(*ExitBlock->getModule());
666
BasicBlock::iterator InsertDbgValueBefore =
667
ExitBlock->getFirstInsertionPt();
668
assert(InsertDbgValueBefore != ExitBlock->end() &&
669
"There should be a non-PHI instruction in exit block, else these "
670
"instructions will have no parent.");
671
672
for (auto *DVI : DeadDebugInst)
673
DVI->moveBefore(*ExitBlock, InsertDbgValueBefore);
674
675
// Due to the "head" bit in BasicBlock::iterator, we're going to insert
676
// each DbgVariableRecord right at the start of the block, wheras dbg.values
677
// would be repeatedly inserted before the first instruction. To replicate
678
// this behaviour, do it backwards.
679
for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords))
680
ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore);
681
}
682
683
// Remove the block from the reference counting scheme, so that we can
684
// delete it freely later.
685
for (auto *Block : L->blocks())
686
Block->dropAllReferences();
687
688
if (MSSA && VerifyMemorySSA)
689
MSSA->verifyMemorySSA();
690
691
if (LI) {
692
// Erase the instructions and the blocks without having to worry
693
// about ordering because we already dropped the references.
694
// NOTE: This iteration is safe because erasing the block does not remove
695
// its entry from the loop's block list. We do that in the next section.
696
for (BasicBlock *BB : L->blocks())
697
BB->eraseFromParent();
698
699
// Finally, the blocks from loopinfo. This has to happen late because
700
// otherwise our loop iterators won't work.
701
702
SmallPtrSet<BasicBlock *, 8> blocks;
703
blocks.insert(L->block_begin(), L->block_end());
704
for (BasicBlock *BB : blocks)
705
LI->removeBlock(BB);
706
707
// The last step is to update LoopInfo now that we've eliminated this loop.
708
// Note: LoopInfo::erase remove the given loop and relink its subloops with
709
// its parent. While removeLoop/removeChildLoop remove the given loop but
710
// not relink its subloops, which is what we want.
711
if (Loop *ParentLoop = L->getParentLoop()) {
712
Loop::iterator I = find(*ParentLoop, L);
713
assert(I != ParentLoop->end() && "Couldn't find loop");
714
ParentLoop->removeChildLoop(I);
715
} else {
716
Loop::iterator I = find(*LI, L);
717
assert(I != LI->end() && "Couldn't find loop");
718
LI->removeLoop(I);
719
}
720
LI->destroy(L);
721
}
722
}
723
724
void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
725
LoopInfo &LI, MemorySSA *MSSA) {
726
auto *Latch = L->getLoopLatch();
727
assert(Latch && "multiple latches not yet supported");
728
auto *Header = L->getHeader();
729
Loop *OutermostLoop = L->getOutermostLoop();
730
731
SE.forgetLoop(L);
732
SE.forgetBlockAndLoopDispositions();
733
734
std::unique_ptr<MemorySSAUpdater> MSSAU;
735
if (MSSA)
736
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
737
738
// Update the CFG and domtree. We chose to special case a couple of
739
// of common cases for code quality and test readability reasons.
740
[&]() -> void {
741
if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
742
if (!BI->isConditional()) {
743
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
744
(void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
745
MSSAU.get());
746
return;
747
}
748
749
// Conditional latch/exit - note that latch can be shared by inner
750
// and outer loop so the other target doesn't need to an exit
751
if (L->isLoopExiting(Latch)) {
752
// TODO: Generalize ConstantFoldTerminator so that it can be used
753
// here without invalidating LCSSA or MemorySSA. (Tricky case for
754
// LCSSA: header is an exit block of a preceeding sibling loop w/o
755
// dedicated exits.)
756
const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
757
BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
758
759
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
760
Header->removePredecessor(Latch, true);
761
762
IRBuilder<> Builder(BI);
763
auto *NewBI = Builder.CreateBr(ExitBB);
764
// Transfer the metadata to the new branch instruction (minus the
765
// loop info since this is no longer a loop)
766
NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
767
LLVMContext::MD_annotation});
768
769
BI->eraseFromParent();
770
DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
771
if (MSSA)
772
MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
773
return;
774
}
775
}
776
777
// General case. By splitting the backedge, and then explicitly making it
778
// unreachable we gracefully handle corner cases such as switch and invoke
779
// termiantors.
780
auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
781
782
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
783
(void)changeToUnreachable(BackedgeBB->getTerminator(),
784
/*PreserveLCSSA*/ true, &DTU, MSSAU.get());
785
}();
786
787
// Erase (and destroy) this loop instance. Handles relinking sub-loops
788
// and blocks within the loop as needed.
789
LI.erase(L);
790
791
// If the loop we broke had a parent, then changeToUnreachable might have
792
// caused a block to be removed from the parent loop (see loop_nest_lcssa
793
// test case in zero-btc.ll for an example), thus changing the parent's
794
// exit blocks. If that happened, we need to rebuild LCSSA on the outermost
795
// loop which might have a had a block removed.
796
if (OutermostLoop != L)
797
formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
798
}
799
800
801
/// Checks if \p L has an exiting latch branch. There may also be other
802
/// exiting blocks. Returns branch instruction terminating the loop
803
/// latch if above check is successful, nullptr otherwise.
804
static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
805
BasicBlock *Latch = L->getLoopLatch();
806
if (!Latch)
807
return nullptr;
808
809
BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
810
if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
811
return nullptr;
812
813
assert((LatchBR->getSuccessor(0) == L->getHeader() ||
814
LatchBR->getSuccessor(1) == L->getHeader()) &&
815
"At least one edge out of the latch must go to the header");
816
817
return LatchBR;
818
}
819
820
/// Return the estimated trip count for any exiting branch which dominates
821
/// the loop latch.
822
static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch,
823
Loop *L,
824
uint64_t &OrigExitWeight) {
825
// To estimate the number of times the loop body was executed, we want to
826
// know the number of times the backedge was taken, vs. the number of times
827
// we exited the loop.
828
uint64_t LoopWeight, ExitWeight;
829
if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
830
return std::nullopt;
831
832
if (L->contains(ExitingBranch->getSuccessor(1)))
833
std::swap(LoopWeight, ExitWeight);
834
835
if (!ExitWeight)
836
// Don't have a way to return predicated infinite
837
return std::nullopt;
838
839
OrigExitWeight = ExitWeight;
840
841
// Estimated exit count is a ratio of the loop weight by the weight of the
842
// edge exiting the loop, rounded to nearest.
843
uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
844
// Estimated trip count is one plus estimated exit count.
845
return ExitCount + 1;
846
}
847
848
std::optional<unsigned>
849
llvm::getLoopEstimatedTripCount(Loop *L,
850
unsigned *EstimatedLoopInvocationWeight) {
851
// Currently we take the estimate exit count only from the loop latch,
852
// ignoring other exiting blocks. This can overestimate the trip count
853
// if we exit through another exit, but can never underestimate it.
854
// TODO: incorporate information from other exits
855
if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
856
uint64_t ExitWeight;
857
if (std::optional<uint64_t> EstTripCount =
858
getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
859
if (EstimatedLoopInvocationWeight)
860
*EstimatedLoopInvocationWeight = ExitWeight;
861
return *EstTripCount;
862
}
863
}
864
return std::nullopt;
865
}
866
867
bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
868
unsigned EstimatedloopInvocationWeight) {
869
// At the moment, we currently support changing the estimate trip count of
870
// the latch branch only. We could extend this API to manipulate estimated
871
// trip counts for any exit.
872
BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
873
if (!LatchBranch)
874
return false;
875
876
// Calculate taken and exit weights.
877
unsigned LatchExitWeight = 0;
878
unsigned BackedgeTakenWeight = 0;
879
880
if (EstimatedTripCount > 0) {
881
LatchExitWeight = EstimatedloopInvocationWeight;
882
BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
883
}
884
885
// Make a swap if back edge is taken when condition is "false".
886
if (LatchBranch->getSuccessor(0) != L->getHeader())
887
std::swap(BackedgeTakenWeight, LatchExitWeight);
888
889
MDBuilder MDB(LatchBranch->getContext());
890
891
// Set/Update profile metadata.
892
LatchBranch->setMetadata(
893
LLVMContext::MD_prof,
894
MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
895
896
return true;
897
}
898
899
bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
900
ScalarEvolution &SE) {
901
Loop *OuterL = InnerLoop->getParentLoop();
902
if (!OuterL)
903
return true;
904
905
// Get the backedge taken count for the inner loop
906
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
907
const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
908
if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
909
!InnerLoopBECountSC->getType()->isIntegerTy())
910
return false;
911
912
// Get whether count is invariant to the outer loop
913
ScalarEvolution::LoopDisposition LD =
914
SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
915
if (LD != ScalarEvolution::LoopInvariant)
916
return false;
917
918
return true;
919
}
920
921
constexpr Intrinsic::ID llvm::getReductionIntrinsicID(RecurKind RK) {
922
switch (RK) {
923
default:
924
llvm_unreachable("Unexpected recurrence kind");
925
case RecurKind::Add:
926
return Intrinsic::vector_reduce_add;
927
case RecurKind::Mul:
928
return Intrinsic::vector_reduce_mul;
929
case RecurKind::And:
930
return Intrinsic::vector_reduce_and;
931
case RecurKind::Or:
932
return Intrinsic::vector_reduce_or;
933
case RecurKind::Xor:
934
return Intrinsic::vector_reduce_xor;
935
case RecurKind::FMulAdd:
936
case RecurKind::FAdd:
937
return Intrinsic::vector_reduce_fadd;
938
case RecurKind::FMul:
939
return Intrinsic::vector_reduce_fmul;
940
case RecurKind::SMax:
941
return Intrinsic::vector_reduce_smax;
942
case RecurKind::SMin:
943
return Intrinsic::vector_reduce_smin;
944
case RecurKind::UMax:
945
return Intrinsic::vector_reduce_umax;
946
case RecurKind::UMin:
947
return Intrinsic::vector_reduce_umin;
948
case RecurKind::FMax:
949
return Intrinsic::vector_reduce_fmax;
950
case RecurKind::FMin:
951
return Intrinsic::vector_reduce_fmin;
952
case RecurKind::FMaximum:
953
return Intrinsic::vector_reduce_fmaximum;
954
case RecurKind::FMinimum:
955
return Intrinsic::vector_reduce_fminimum;
956
}
957
}
958
959
unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID) {
960
switch (RdxID) {
961
case Intrinsic::vector_reduce_fadd:
962
return Instruction::FAdd;
963
case Intrinsic::vector_reduce_fmul:
964
return Instruction::FMul;
965
case Intrinsic::vector_reduce_add:
966
return Instruction::Add;
967
case Intrinsic::vector_reduce_mul:
968
return Instruction::Mul;
969
case Intrinsic::vector_reduce_and:
970
return Instruction::And;
971
case Intrinsic::vector_reduce_or:
972
return Instruction::Or;
973
case Intrinsic::vector_reduce_xor:
974
return Instruction::Xor;
975
case Intrinsic::vector_reduce_smax:
976
case Intrinsic::vector_reduce_smin:
977
case Intrinsic::vector_reduce_umax:
978
case Intrinsic::vector_reduce_umin:
979
return Instruction::ICmp;
980
case Intrinsic::vector_reduce_fmax:
981
case Intrinsic::vector_reduce_fmin:
982
return Instruction::FCmp;
983
default:
984
llvm_unreachable("Unexpected ID");
985
}
986
}
987
988
Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID) {
989
switch (RdxID) {
990
default:
991
llvm_unreachable("Unknown min/max recurrence kind");
992
case Intrinsic::vector_reduce_umin:
993
return Intrinsic::umin;
994
case Intrinsic::vector_reduce_umax:
995
return Intrinsic::umax;
996
case Intrinsic::vector_reduce_smin:
997
return Intrinsic::smin;
998
case Intrinsic::vector_reduce_smax:
999
return Intrinsic::smax;
1000
case Intrinsic::vector_reduce_fmin:
1001
return Intrinsic::minnum;
1002
case Intrinsic::vector_reduce_fmax:
1003
return Intrinsic::maxnum;
1004
case Intrinsic::vector_reduce_fminimum:
1005
return Intrinsic::minimum;
1006
case Intrinsic::vector_reduce_fmaximum:
1007
return Intrinsic::maximum;
1008
}
1009
}
1010
1011
Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) {
1012
switch (RK) {
1013
default:
1014
llvm_unreachable("Unknown min/max recurrence kind");
1015
case RecurKind::UMin:
1016
return Intrinsic::umin;
1017
case RecurKind::UMax:
1018
return Intrinsic::umax;
1019
case RecurKind::SMin:
1020
return Intrinsic::smin;
1021
case RecurKind::SMax:
1022
return Intrinsic::smax;
1023
case RecurKind::FMin:
1024
return Intrinsic::minnum;
1025
case RecurKind::FMax:
1026
return Intrinsic::maxnum;
1027
case RecurKind::FMinimum:
1028
return Intrinsic::minimum;
1029
case RecurKind::FMaximum:
1030
return Intrinsic::maximum;
1031
}
1032
}
1033
1034
RecurKind llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID) {
1035
switch (RdxID) {
1036
case Intrinsic::vector_reduce_smax:
1037
return RecurKind::SMax;
1038
case Intrinsic::vector_reduce_smin:
1039
return RecurKind::SMin;
1040
case Intrinsic::vector_reduce_umax:
1041
return RecurKind::UMax;
1042
case Intrinsic::vector_reduce_umin:
1043
return RecurKind::UMin;
1044
case Intrinsic::vector_reduce_fmax:
1045
return RecurKind::FMax;
1046
case Intrinsic::vector_reduce_fmin:
1047
return RecurKind::FMin;
1048
default:
1049
return RecurKind::None;
1050
}
1051
}
1052
1053
CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
1054
switch (RK) {
1055
default:
1056
llvm_unreachable("Unknown min/max recurrence kind");
1057
case RecurKind::UMin:
1058
return CmpInst::ICMP_ULT;
1059
case RecurKind::UMax:
1060
return CmpInst::ICMP_UGT;
1061
case RecurKind::SMin:
1062
return CmpInst::ICMP_SLT;
1063
case RecurKind::SMax:
1064
return CmpInst::ICMP_SGT;
1065
case RecurKind::FMin:
1066
return CmpInst::FCMP_OLT;
1067
case RecurKind::FMax:
1068
return CmpInst::FCMP_OGT;
1069
// We do not add FMinimum/FMaximum recurrence kind here since there is no
1070
// equivalent predicate which compares signed zeroes according to the
1071
// semantics of the intrinsics (llvm.minimum/maximum).
1072
}
1073
}
1074
1075
Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
1076
Value *Right) {
1077
Type *Ty = Left->getType();
1078
if (Ty->isIntOrIntVectorTy() ||
1079
(RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) {
1080
// TODO: Add float minnum/maxnum support when FMF nnan is set.
1081
Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK);
1082
return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
1083
"rdx.minmax");
1084
}
1085
CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
1086
Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
1087
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1088
return Select;
1089
}
1090
1091
// Helper to generate an ordered reduction.
1092
Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
1093
unsigned Op, RecurKind RdxKind) {
1094
unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1095
1096
// Extract and apply reduction ops in ascending order:
1097
// e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1098
Value *Result = Acc;
1099
for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1100
Value *Ext =
1101
Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1102
1103
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1104
Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1105
"bin.rdx");
1106
} else {
1107
assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1108
"Invalid min/max");
1109
Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
1110
}
1111
}
1112
1113
return Result;
1114
}
1115
1116
// Helper to generate a log2 shuffle reduction.
1117
Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
1118
unsigned Op,
1119
TargetTransformInfo::ReductionShuffle RS,
1120
RecurKind RdxKind) {
1121
unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
1122
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1123
// and vector ops, reducing the set of values being computed by half each
1124
// round.
1125
assert(isPowerOf2_32(VF) &&
1126
"Reduction emission only supported for pow2 vectors!");
1127
// Note: fast-math-flags flags are controlled by the builder configuration
1128
// and are assumed to apply to all generated arithmetic instructions. Other
1129
// poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
1130
// of the builder configuration, and since they're not passed explicitly,
1131
// will never be relevant here. Note that it would be generally unsound to
1132
// propagate these from an intrinsic call to the expansion anyways as we/
1133
// change the order of operations.
1134
auto BuildShuffledOp = [&Builder, &Op,
1135
&RdxKind](SmallVectorImpl<int> &ShuffleMask,
1136
Value *&TmpVec) -> void {
1137
Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1138
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1139
TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1140
"bin.rdx");
1141
} else {
1142
assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
1143
"Invalid min/max");
1144
TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1145
}
1146
};
1147
1148
Value *TmpVec = Src;
1149
if (TargetTransformInfo::ReductionShuffle::Pairwise == RS) {
1150
SmallVector<int, 32> ShuffleMask(VF);
1151
for (unsigned stride = 1; stride < VF; stride <<= 1) {
1152
// Initialise the mask with undef.
1153
std::fill(ShuffleMask.begin(), ShuffleMask.end(), -1);
1154
for (unsigned j = 0; j < VF; j += stride << 1) {
1155
ShuffleMask[j] = j + stride;
1156
}
1157
BuildShuffledOp(ShuffleMask, TmpVec);
1158
}
1159
} else {
1160
SmallVector<int, 32> ShuffleMask(VF);
1161
for (unsigned i = VF; i != 1; i >>= 1) {
1162
// Move the upper half of the vector to the lower half.
1163
for (unsigned j = 0; j != i / 2; ++j)
1164
ShuffleMask[j] = i / 2 + j;
1165
1166
// Fill the rest of the mask with undef.
1167
std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1168
BuildShuffledOp(ShuffleMask, TmpVec);
1169
}
1170
}
1171
// The result is in the first element of the vector.
1172
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1173
}
1174
1175
Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src,
1176
const RecurrenceDescriptor &Desc,
1177
PHINode *OrigPhi) {
1178
assert(
1179
RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) &&
1180
"Unexpected reduction kind");
1181
Value *InitVal = Desc.getRecurrenceStartValue();
1182
Value *NewVal = nullptr;
1183
1184
// First use the original phi to determine the new value we're trying to
1185
// select from in the loop.
1186
SelectInst *SI = nullptr;
1187
for (auto *U : OrigPhi->users()) {
1188
if ((SI = dyn_cast<SelectInst>(U)))
1189
break;
1190
}
1191
assert(SI && "One user of the original phi should be a select");
1192
1193
if (SI->getTrueValue() == OrigPhi)
1194
NewVal = SI->getFalseValue();
1195
else {
1196
assert(SI->getFalseValue() == OrigPhi &&
1197
"At least one input to the select should be the original Phi");
1198
NewVal = SI->getTrueValue();
1199
}
1200
1201
// If any predicate is true it means that we want to select the new value.
1202
Value *AnyOf =
1203
Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src;
1204
// The compares in the loop may yield poison, which propagates through the
1205
// bitwise ORs. Freeze it here before the condition is used.
1206
AnyOf = Builder.CreateFreeze(AnyOf);
1207
return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select");
1208
}
1209
1210
Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src,
1211
RecurKind RdxKind) {
1212
auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1213
switch (RdxKind) {
1214
case RecurKind::Add:
1215
return Builder.CreateAddReduce(Src);
1216
case RecurKind::Mul:
1217
return Builder.CreateMulReduce(Src);
1218
case RecurKind::And:
1219
return Builder.CreateAndReduce(Src);
1220
case RecurKind::Or:
1221
return Builder.CreateOrReduce(Src);
1222
case RecurKind::Xor:
1223
return Builder.CreateXorReduce(Src);
1224
case RecurKind::FMulAdd:
1225
case RecurKind::FAdd:
1226
return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1227
Src);
1228
case RecurKind::FMul:
1229
return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1230
case RecurKind::SMax:
1231
return Builder.CreateIntMaxReduce(Src, true);
1232
case RecurKind::SMin:
1233
return Builder.CreateIntMinReduce(Src, true);
1234
case RecurKind::UMax:
1235
return Builder.CreateIntMaxReduce(Src, false);
1236
case RecurKind::UMin:
1237
return Builder.CreateIntMinReduce(Src, false);
1238
case RecurKind::FMax:
1239
return Builder.CreateFPMaxReduce(Src);
1240
case RecurKind::FMin:
1241
return Builder.CreateFPMinReduce(Src);
1242
case RecurKind::FMinimum:
1243
return Builder.CreateFPMinimumReduce(Src);
1244
case RecurKind::FMaximum:
1245
return Builder.CreateFPMaximumReduce(Src);
1246
default:
1247
llvm_unreachable("Unhandled opcode");
1248
}
1249
}
1250
1251
Value *llvm::createSimpleTargetReduction(VectorBuilder &VBuilder, Value *Src,
1252
const RecurrenceDescriptor &Desc) {
1253
RecurKind Kind = Desc.getRecurrenceKind();
1254
assert(!RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) &&
1255
"AnyOf reduction is not supported.");
1256
Intrinsic::ID Id = getReductionIntrinsicID(Kind);
1257
auto *SrcTy = cast<VectorType>(Src->getType());
1258
Type *SrcEltTy = SrcTy->getElementType();
1259
Value *Iden =
1260
Desc.getRecurrenceIdentity(Kind, SrcEltTy, Desc.getFastMathFlags());
1261
Value *Ops[] = {Iden, Src};
1262
return VBuilder.createSimpleTargetReduction(Id, SrcTy, Ops);
1263
}
1264
1265
Value *llvm::createTargetReduction(IRBuilderBase &B,
1266
const RecurrenceDescriptor &Desc, Value *Src,
1267
PHINode *OrigPhi) {
1268
// TODO: Support in-order reductions based on the recurrence descriptor.
1269
// All ops in the reduction inherit fast-math-flags from the recurrence
1270
// descriptor.
1271
IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1272
B.setFastMathFlags(Desc.getFastMathFlags());
1273
1274
RecurKind RK = Desc.getRecurrenceKind();
1275
if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
1276
return createAnyOfTargetReduction(B, Src, Desc, OrigPhi);
1277
1278
return createSimpleTargetReduction(B, Src, RK);
1279
}
1280
1281
Value *llvm::createOrderedReduction(IRBuilderBase &B,
1282
const RecurrenceDescriptor &Desc,
1283
Value *Src, Value *Start) {
1284
assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
1285
Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1286
"Unexpected reduction kind");
1287
assert(Src->getType()->isVectorTy() && "Expected a vector type");
1288
assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1289
1290
return B.CreateFAddReduce(Start, Src);
1291
}
1292
1293
Value *llvm::createOrderedReduction(VectorBuilder &VBuilder,
1294
const RecurrenceDescriptor &Desc,
1295
Value *Src, Value *Start) {
1296
assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
1297
Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1298
"Unexpected reduction kind");
1299
assert(Src->getType()->isVectorTy() && "Expected a vector type");
1300
assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1301
1302
Intrinsic::ID Id = getReductionIntrinsicID(RecurKind::FAdd);
1303
auto *SrcTy = cast<VectorType>(Src->getType());
1304
Value *Ops[] = {Start, Src};
1305
return VBuilder.createSimpleTargetReduction(Id, SrcTy, Ops);
1306
}
1307
1308
void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
1309
bool IncludeWrapFlags) {
1310
auto *VecOp = dyn_cast<Instruction>(I);
1311
if (!VecOp)
1312
return;
1313
auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1314
: dyn_cast<Instruction>(OpValue);
1315
if (!Intersection)
1316
return;
1317
const unsigned Opcode = Intersection->getOpcode();
1318
VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1319
for (auto *V : VL) {
1320
auto *Instr = dyn_cast<Instruction>(V);
1321
if (!Instr)
1322
continue;
1323
if (OpValue == nullptr || Opcode == Instr->getOpcode())
1324
VecOp->andIRFlags(V);
1325
}
1326
}
1327
1328
bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1329
ScalarEvolution &SE) {
1330
const SCEV *Zero = SE.getZero(S->getType());
1331
return SE.isAvailableAtLoopEntry(S, L) &&
1332
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1333
}
1334
1335
bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1336
ScalarEvolution &SE) {
1337
const SCEV *Zero = SE.getZero(S->getType());
1338
return SE.isAvailableAtLoopEntry(S, L) &&
1339
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1340
}
1341
1342
bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1343
ScalarEvolution &SE) {
1344
const SCEV *Zero = SE.getZero(S->getType());
1345
return SE.isAvailableAtLoopEntry(S, L) &&
1346
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero);
1347
}
1348
1349
bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L,
1350
ScalarEvolution &SE) {
1351
const SCEV *Zero = SE.getZero(S->getType());
1352
return SE.isAvailableAtLoopEntry(S, L) &&
1353
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero);
1354
}
1355
1356
bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1357
bool Signed) {
1358
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1359
APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1360
APInt::getMinValue(BitWidth);
1361
auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1362
return SE.isAvailableAtLoopEntry(S, L) &&
1363
SE.isLoopEntryGuardedByCond(L, Predicate, S,
1364
SE.getConstant(Min));
1365
}
1366
1367
bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1368
bool Signed) {
1369
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1370
APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1371
APInt::getMaxValue(BitWidth);
1372
auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1373
return SE.isAvailableAtLoopEntry(S, L) &&
1374
SE.isLoopEntryGuardedByCond(L, Predicate, S,
1375
SE.getConstant(Max));
1376
}
1377
1378
//===----------------------------------------------------------------------===//
1379
// rewriteLoopExitValues - Optimize IV users outside the loop.
1380
// As a side effect, reduces the amount of IV processing within the loop.
1381
//===----------------------------------------------------------------------===//
1382
1383
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1384
SmallPtrSet<const Instruction *, 8> Visited;
1385
SmallVector<const Instruction *, 8> WorkList;
1386
Visited.insert(I);
1387
WorkList.push_back(I);
1388
while (!WorkList.empty()) {
1389
const Instruction *Curr = WorkList.pop_back_val();
1390
// This use is outside the loop, nothing to do.
1391
if (!L->contains(Curr))
1392
continue;
1393
// Do we assume it is a "hard" use which will not be eliminated easily?
1394
if (Curr->mayHaveSideEffects())
1395
return true;
1396
// Otherwise, add all its users to worklist.
1397
for (const auto *U : Curr->users()) {
1398
auto *UI = cast<Instruction>(U);
1399
if (Visited.insert(UI).second)
1400
WorkList.push_back(UI);
1401
}
1402
}
1403
return false;
1404
}
1405
1406
// Collect information about PHI nodes which can be transformed in
1407
// rewriteLoopExitValues.
1408
struct RewritePhi {
1409
PHINode *PN; // For which PHI node is this replacement?
1410
unsigned Ith; // For which incoming value?
1411
const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1412
Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1413
bool HighCost; // Is this expansion a high-cost?
1414
1415
RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1416
bool H)
1417
: PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1418
HighCost(H) {}
1419
};
1420
1421
// Check whether it is possible to delete the loop after rewriting exit
1422
// value. If it is possible, ignore ReplaceExitValue and do rewriting
1423
// aggressively.
1424
static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1425
BasicBlock *Preheader = L->getLoopPreheader();
1426
// If there is no preheader, the loop will not be deleted.
1427
if (!Preheader)
1428
return false;
1429
1430
// In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1431
// We obviate multiple ExitingBlocks case for simplicity.
1432
// TODO: If we see testcase with multiple ExitingBlocks can be deleted
1433
// after exit value rewriting, we can enhance the logic here.
1434
SmallVector<BasicBlock *, 4> ExitingBlocks;
1435
L->getExitingBlocks(ExitingBlocks);
1436
SmallVector<BasicBlock *, 8> ExitBlocks;
1437
L->getUniqueExitBlocks(ExitBlocks);
1438
if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1439
return false;
1440
1441
BasicBlock *ExitBlock = ExitBlocks[0];
1442
BasicBlock::iterator BI = ExitBlock->begin();
1443
while (PHINode *P = dyn_cast<PHINode>(BI)) {
1444
Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1445
1446
// If the Incoming value of P is found in RewritePhiSet, we know it
1447
// could be rewritten to use a loop invariant value in transformation
1448
// phase later. Skip it in the loop invariant check below.
1449
bool found = false;
1450
for (const RewritePhi &Phi : RewritePhiSet) {
1451
unsigned i = Phi.Ith;
1452
if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1453
found = true;
1454
break;
1455
}
1456
}
1457
1458
Instruction *I;
1459
if (!found && (I = dyn_cast<Instruction>(Incoming)))
1460
if (!L->hasLoopInvariantOperands(I))
1461
return false;
1462
1463
++BI;
1464
}
1465
1466
for (auto *BB : L->blocks())
1467
if (llvm::any_of(*BB, [](Instruction &I) {
1468
return I.mayHaveSideEffects();
1469
}))
1470
return false;
1471
1472
return true;
1473
}
1474
1475
/// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1476
/// and returns true if this Phi is an induction phi in the loop. When
1477
/// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
1478
static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1479
InductionDescriptor &ID) {
1480
if (!Phi)
1481
return false;
1482
if (!L->getLoopPreheader())
1483
return false;
1484
if (Phi->getParent() != L->getHeader())
1485
return false;
1486
return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1487
}
1488
1489
int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1490
ScalarEvolution *SE,
1491
const TargetTransformInfo *TTI,
1492
SCEVExpander &Rewriter, DominatorTree *DT,
1493
ReplaceExitVal ReplaceExitValue,
1494
SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1495
// Check a pre-condition.
1496
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1497
"Indvars did not preserve LCSSA!");
1498
1499
SmallVector<BasicBlock*, 8> ExitBlocks;
1500
L->getUniqueExitBlocks(ExitBlocks);
1501
1502
SmallVector<RewritePhi, 8> RewritePhiSet;
1503
// Find all values that are computed inside the loop, but used outside of it.
1504
// Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
1505
// the exit blocks of the loop to find them.
1506
for (BasicBlock *ExitBB : ExitBlocks) {
1507
// If there are no PHI nodes in this exit block, then no values defined
1508
// inside the loop are used on this path, skip it.
1509
PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1510
if (!PN) continue;
1511
1512
unsigned NumPreds = PN->getNumIncomingValues();
1513
1514
// Iterate over all of the PHI nodes.
1515
BasicBlock::iterator BBI = ExitBB->begin();
1516
while ((PN = dyn_cast<PHINode>(BBI++))) {
1517
if (PN->use_empty())
1518
continue; // dead use, don't replace it
1519
1520
if (!SE->isSCEVable(PN->getType()))
1521
continue;
1522
1523
// Iterate over all of the values in all the PHI nodes.
1524
for (unsigned i = 0; i != NumPreds; ++i) {
1525
// If the value being merged in is not integer or is not defined
1526
// in the loop, skip it.
1527
Value *InVal = PN->getIncomingValue(i);
1528
if (!isa<Instruction>(InVal))
1529
continue;
1530
1531
// If this pred is for a subloop, not L itself, skip it.
1532
if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1533
continue; // The Block is in a subloop, skip it.
1534
1535
// Check that InVal is defined in the loop.
1536
Instruction *Inst = cast<Instruction>(InVal);
1537
if (!L->contains(Inst))
1538
continue;
1539
1540
// Find exit values which are induction variables in the loop, and are
1541
// unused in the loop, with the only use being the exit block PhiNode,
1542
// and the induction variable update binary operator.
1543
// The exit value can be replaced with the final value when it is cheap
1544
// to do so.
1545
if (ReplaceExitValue == UnusedIndVarInLoop) {
1546
InductionDescriptor ID;
1547
PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1548
if (IndPhi) {
1549
if (!checkIsIndPhi(IndPhi, L, SE, ID))
1550
continue;
1551
// This is an induction PHI. Check that the only users are PHI
1552
// nodes, and induction variable update binary operators.
1553
if (llvm::any_of(Inst->users(), [&](User *U) {
1554
if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1555
return true;
1556
BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1557
if (B && B != ID.getInductionBinOp())
1558
return true;
1559
return false;
1560
}))
1561
continue;
1562
} else {
1563
// If it is not an induction phi, it must be an induction update
1564
// binary operator with an induction phi user.
1565
BinaryOperator *B = dyn_cast<BinaryOperator>(Inst);
1566
if (!B)
1567
continue;
1568
if (llvm::any_of(Inst->users(), [&](User *U) {
1569
PHINode *Phi = dyn_cast<PHINode>(U);
1570
if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1571
return true;
1572
return false;
1573
}))
1574
continue;
1575
if (B != ID.getInductionBinOp())
1576
continue;
1577
}
1578
}
1579
1580
// Okay, this instruction has a user outside of the current loop
1581
// and varies predictably *inside* the loop. Evaluate the value it
1582
// contains when the loop exits, if possible. We prefer to start with
1583
// expressions which are true for all exits (so as to maximize
1584
// expression reuse by the SCEVExpander), but resort to per-exit
1585
// evaluation if that fails.
1586
const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1587
if (isa<SCEVCouldNotCompute>(ExitValue) ||
1588
!SE->isLoopInvariant(ExitValue, L) ||
1589
!Rewriter.isSafeToExpand(ExitValue)) {
1590
// TODO: This should probably be sunk into SCEV in some way; maybe a
1591
// getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
1592
// most SCEV expressions and other recurrence types (e.g. shift
1593
// recurrences). Is there existing code we can reuse?
1594
const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1595
if (isa<SCEVCouldNotCompute>(ExitCount))
1596
continue;
1597
if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1598
if (AddRec->getLoop() == L)
1599
ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1600
if (isa<SCEVCouldNotCompute>(ExitValue) ||
1601
!SE->isLoopInvariant(ExitValue, L) ||
1602
!Rewriter.isSafeToExpand(ExitValue))
1603
continue;
1604
}
1605
1606
// Computing the value outside of the loop brings no benefit if it is
1607
// definitely used inside the loop in a way which can not be optimized
1608
// away. Avoid doing so unless we know we have a value which computes
1609
// the ExitValue already. TODO: This should be merged into SCEV
1610
// expander to leverage its knowledge of existing expressions.
1611
if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1612
!isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1613
continue;
1614
1615
// Check if expansions of this SCEV would count as being high cost.
1616
bool HighCost = Rewriter.isHighCostExpansion(
1617
ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1618
1619
// Note that we must not perform expansions until after
1620
// we query *all* the costs, because if we perform temporary expansion
1621
// inbetween, one that we might not intend to keep, said expansion
1622
// *may* affect cost calculation of the next SCEV's we'll query,
1623
// and next SCEV may errneously get smaller cost.
1624
1625
// Collect all the candidate PHINodes to be rewritten.
1626
Instruction *InsertPt =
1627
(isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1628
&*Inst->getParent()->getFirstInsertionPt() : Inst;
1629
RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1630
}
1631
}
1632
}
1633
1634
// TODO: evaluate whether it is beneficial to change how we calculate
1635
// high-cost: if we have SCEV 'A' which we know we will expand, should we
1636
// calculate the cost of other SCEV's after expanding SCEV 'A', thus
1637
// potentially giving cost bonus to those other SCEV's?
1638
1639
bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1640
int NumReplaced = 0;
1641
1642
// Transformation.
1643
for (const RewritePhi &Phi : RewritePhiSet) {
1644
PHINode *PN = Phi.PN;
1645
1646
// Only do the rewrite when the ExitValue can be expanded cheaply.
1647
// If LoopCanBeDel is true, rewrite exit value aggressively.
1648
if ((ReplaceExitValue == OnlyCheapRepl ||
1649
ReplaceExitValue == UnusedIndVarInLoop) &&
1650
!LoopCanBeDel && Phi.HighCost)
1651
continue;
1652
1653
Value *ExitVal = Rewriter.expandCodeFor(
1654
Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1655
1656
LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1657
<< '\n'
1658
<< " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1659
1660
#ifndef NDEBUG
1661
// If we reuse an instruction from a loop which is neither L nor one of
1662
// its containing loops, we end up breaking LCSSA form for this loop by
1663
// creating a new use of its instruction.
1664
if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1665
if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1666
if (EVL != L)
1667
assert(EVL->contains(L) && "LCSSA breach detected!");
1668
#endif
1669
1670
NumReplaced++;
1671
Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1672
PN->setIncomingValue(Phi.Ith, ExitVal);
1673
// It's necessary to tell ScalarEvolution about this explicitly so that
1674
// it can walk the def-use list and forget all SCEVs, as it may not be
1675
// watching the PHI itself. Once the new exit value is in place, there
1676
// may not be a def-use connection between the loop and every instruction
1677
// which got a SCEVAddRecExpr for that loop.
1678
SE->forgetValue(PN);
1679
1680
// If this instruction is dead now, delete it. Don't do it now to avoid
1681
// invalidating iterators.
1682
if (isInstructionTriviallyDead(Inst, TLI))
1683
DeadInsts.push_back(Inst);
1684
1685
// Replace PN with ExitVal if that is legal and does not break LCSSA.
1686
if (PN->getNumIncomingValues() == 1 &&
1687
LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1688
PN->replaceAllUsesWith(ExitVal);
1689
PN->eraseFromParent();
1690
}
1691
}
1692
1693
// The insertion point instruction may have been deleted; clear it out
1694
// so that the rewriter doesn't trip over it later.
1695
Rewriter.clearInsertPoint();
1696
return NumReplaced;
1697
}
1698
1699
/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1700
/// \p OrigLoop.
1701
void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1702
Loop *RemainderLoop, uint64_t UF) {
1703
assert(UF > 0 && "Zero unrolled factor is not supported");
1704
assert(UnrolledLoop != RemainderLoop &&
1705
"Unrolled and Remainder loops are expected to distinct");
1706
1707
// Get number of iterations in the original scalar loop.
1708
unsigned OrigLoopInvocationWeight = 0;
1709
std::optional<unsigned> OrigAverageTripCount =
1710
getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1711
if (!OrigAverageTripCount)
1712
return;
1713
1714
// Calculate number of iterations in unrolled loop.
1715
unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1716
// Calculate number of iterations for remainder loop.
1717
unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1718
1719
setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1720
OrigLoopInvocationWeight);
1721
setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1722
OrigLoopInvocationWeight);
1723
}
1724
1725
/// Utility that implements appending of loops onto a worklist.
1726
/// Loops are added in preorder (analogous for reverse postorder for trees),
1727
/// and the worklist is processed LIFO.
1728
template <typename RangeT>
1729
void llvm::appendReversedLoopsToWorklist(
1730
RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1731
// We use an internal worklist to build up the preorder traversal without
1732
// recursion.
1733
SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1734
1735
// We walk the initial sequence of loops in reverse because we generally want
1736
// to visit defs before uses and the worklist is LIFO.
1737
for (Loop *RootL : Loops) {
1738
assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1739
assert(PreOrderWorklist.empty() &&
1740
"Must start with an empty preorder walk worklist.");
1741
PreOrderWorklist.push_back(RootL);
1742
do {
1743
Loop *L = PreOrderWorklist.pop_back_val();
1744
PreOrderWorklist.append(L->begin(), L->end());
1745
PreOrderLoops.push_back(L);
1746
} while (!PreOrderWorklist.empty());
1747
1748
Worklist.insert(std::move(PreOrderLoops));
1749
PreOrderLoops.clear();
1750
}
1751
}
1752
1753
template <typename RangeT>
1754
void llvm::appendLoopsToWorklist(RangeT &&Loops,
1755
SmallPriorityWorklist<Loop *, 4> &Worklist) {
1756
appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1757
}
1758
1759
template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1760
ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1761
1762
template void
1763
llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1764
SmallPriorityWorklist<Loop *, 4> &Worklist);
1765
1766
void llvm::appendLoopsToWorklist(LoopInfo &LI,
1767
SmallPriorityWorklist<Loop *, 4> &Worklist) {
1768
appendReversedLoopsToWorklist(LI, Worklist);
1769
}
1770
1771
Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1772
LoopInfo *LI, LPPassManager *LPM) {
1773
Loop &New = *LI->AllocateLoop();
1774
if (PL)
1775
PL->addChildLoop(&New);
1776
else
1777
LI->addTopLevelLoop(&New);
1778
1779
if (LPM)
1780
LPM->addLoop(New);
1781
1782
// Add all of the blocks in L to the new loop.
1783
for (BasicBlock *BB : L->blocks())
1784
if (LI->getLoopFor(BB) == L)
1785
New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
1786
1787
// Add all of the subloops to the new loop.
1788
for (Loop *I : *L)
1789
cloneLoop(I, &New, VM, LI, LPM);
1790
1791
return &New;
1792
}
1793
1794
/// IR Values for the lower and upper bounds of a pointer evolution. We
1795
/// need to use value-handles because SCEV expansion can invalidate previously
1796
/// expanded values. Thus expansion of a pointer can invalidate the bounds for
1797
/// a previous one.
1798
struct PointerBounds {
1799
TrackingVH<Value> Start;
1800
TrackingVH<Value> End;
1801
Value *StrideToCheck;
1802
};
1803
1804
/// Expand code for the lower and upper bound of the pointer group \p CG
1805
/// in \p TheLoop. \return the values for the bounds.
1806
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1807
Loop *TheLoop, Instruction *Loc,
1808
SCEVExpander &Exp, bool HoistRuntimeChecks) {
1809
LLVMContext &Ctx = Loc->getContext();
1810
Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
1811
1812
Value *Start = nullptr, *End = nullptr;
1813
LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1814
const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
1815
1816
// If the Low and High values are themselves loop-variant, then we may want
1817
// to expand the range to include those covered by the outer loop as well.
1818
// There is a trade-off here with the advantage being that creating checks
1819
// using the expanded range permits the runtime memory checks to be hoisted
1820
// out of the outer loop. This reduces the cost of entering the inner loop,
1821
// which can be significant for low trip counts. The disadvantage is that
1822
// there is a chance we may now never enter the vectorized inner loop,
1823
// whereas using a restricted range check could have allowed us to enter at
1824
// least once. This is why the behaviour is not currently the default and is
1825
// controlled by the parameter 'HoistRuntimeChecks'.
1826
if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
1827
isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) {
1828
auto *HighAR = cast<SCEVAddRecExpr>(High);
1829
auto *LowAR = cast<SCEVAddRecExpr>(Low);
1830
const Loop *OuterLoop = TheLoop->getParentLoop();
1831
ScalarEvolution &SE = *Exp.getSE();
1832
const SCEV *Recur = LowAR->getStepRecurrence(SE);
1833
if (Recur == HighAR->getStepRecurrence(SE) &&
1834
HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
1835
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1836
const SCEV *OuterExitCount = SE.getExitCount(OuterLoop, OuterLoopLatch);
1837
if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
1838
OuterExitCount->getType()->isIntegerTy()) {
1839
const SCEV *NewHigh =
1840
cast<SCEVAddRecExpr>(High)->evaluateAtIteration(OuterExitCount, SE);
1841
if (!isa<SCEVCouldNotCompute>(NewHigh)) {
1842
LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
1843
"outer loop in order to permit hoisting\n");
1844
High = NewHigh;
1845
Low = cast<SCEVAddRecExpr>(Low)->getStart();
1846
// If there is a possibility that the stride is negative then we have
1847
// to generate extra checks to ensure the stride is positive.
1848
if (!SE.isKnownNonNegative(
1849
SE.applyLoopGuards(Recur, HighAR->getLoop()))) {
1850
Stride = Recur;
1851
LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
1852
"positive: "
1853
<< *Stride << '\n');
1854
}
1855
}
1856
}
1857
}
1858
}
1859
1860
Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
1861
End = Exp.expandCodeFor(High, PtrArithTy, Loc);
1862
if (CG->NeedsFreeze) {
1863
IRBuilder<> Builder(Loc);
1864
Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
1865
End = Builder.CreateFreeze(End, End->getName() + ".fr");
1866
}
1867
Value *StrideVal =
1868
Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
1869
LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
1870
return {Start, End, StrideVal};
1871
}
1872
1873
/// Turns a collection of checks into a collection of expanded upper and
1874
/// lower bounds for both pointers in the check.
1875
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1876
expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1877
Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) {
1878
SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1879
1880
// Here we're relying on the SCEV Expander's cache to only emit code for the
1881
// same bounds once.
1882
transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1883
[&](const RuntimePointerCheck &Check) {
1884
PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
1885
HoistRuntimeChecks),
1886
Second = expandBounds(Check.second, L, Loc, Exp,
1887
HoistRuntimeChecks);
1888
return std::make_pair(First, Second);
1889
});
1890
1891
return ChecksWithBounds;
1892
}
1893
1894
Value *llvm::addRuntimeChecks(
1895
Instruction *Loc, Loop *TheLoop,
1896
const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1897
SCEVExpander &Exp, bool HoistRuntimeChecks) {
1898
// TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1899
// TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
1900
auto ExpandedChecks =
1901
expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
1902
1903
LLVMContext &Ctx = Loc->getContext();
1904
IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1905
Loc->getDataLayout());
1906
ChkBuilder.SetInsertPoint(Loc);
1907
// Our instructions might fold to a constant.
1908
Value *MemoryRuntimeCheck = nullptr;
1909
1910
for (const auto &[A, B] : ExpandedChecks) {
1911
// Check if two pointers (A and B) conflict where conflict is computed as:
1912
// start(A) <= end(B) && start(B) <= end(A)
1913
1914
assert((A.Start->getType()->getPointerAddressSpace() ==
1915
B.End->getType()->getPointerAddressSpace()) &&
1916
(B.Start->getType()->getPointerAddressSpace() ==
1917
A.End->getType()->getPointerAddressSpace()) &&
1918
"Trying to bounds check pointers with different address spaces");
1919
1920
// [A|B].Start points to the first accessed byte under base [A|B].
1921
// [A|B].End points to the last accessed byte, plus one.
1922
// There is no conflict when the intervals are disjoint:
1923
// NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1924
//
1925
// bound0 = (B.Start < A.End)
1926
// bound1 = (A.Start < B.End)
1927
// IsConflict = bound0 & bound1
1928
Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
1929
Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
1930
Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1931
if (A.StrideToCheck) {
1932
Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1933
A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
1934
"stride.check");
1935
IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1936
}
1937
if (B.StrideToCheck) {
1938
Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1939
B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
1940
"stride.check");
1941
IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1942
}
1943
if (MemoryRuntimeCheck) {
1944
IsConflict =
1945
ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1946
}
1947
MemoryRuntimeCheck = IsConflict;
1948
}
1949
1950
return MemoryRuntimeCheck;
1951
}
1952
1953
Value *llvm::addDiffRuntimeChecks(
1954
Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
1955
function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
1956
1957
LLVMContext &Ctx = Loc->getContext();
1958
IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
1959
Loc->getDataLayout());
1960
ChkBuilder.SetInsertPoint(Loc);
1961
// Our instructions might fold to a constant.
1962
Value *MemoryRuntimeCheck = nullptr;
1963
1964
auto &SE = *Expander.getSE();
1965
// Map to keep track of created compares, The key is the pair of operands for
1966
// the compare, to allow detecting and re-using redundant compares.
1967
DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares;
1968
for (const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) {
1969
Type *Ty = SinkStart->getType();
1970
// Compute VF * IC * AccessSize.
1971
auto *VFTimesUFTimesSize =
1972
ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
1973
ConstantInt::get(Ty, IC * AccessSize));
1974
Value *Diff =
1975
Expander.expandCodeFor(SE.getMinusSCEV(SinkStart, SrcStart), Ty, Loc);
1976
1977
// Check if the same compare has already been created earlier. In that case,
1978
// there is no need to check it again.
1979
Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize});
1980
if (IsConflict)
1981
continue;
1982
1983
IsConflict =
1984
ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
1985
SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict});
1986
if (NeedsFreeze)
1987
IsConflict =
1988
ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
1989
if (MemoryRuntimeCheck) {
1990
IsConflict =
1991
ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1992
}
1993
MemoryRuntimeCheck = IsConflict;
1994
}
1995
1996
return MemoryRuntimeCheck;
1997
}
1998
1999
std::optional<IVConditionInfo>
2000
llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold,
2001
const MemorySSA &MSSA, AAResults &AA) {
2002
auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
2003
if (!TI || !TI->isConditional())
2004
return {};
2005
2006
auto *CondI = dyn_cast<Instruction>(TI->getCondition());
2007
// The case with the condition outside the loop should already be handled
2008
// earlier.
2009
// Allow CmpInst and TruncInsts as they may be users of load instructions
2010
// and have potential for partial unswitching
2011
if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI))
2012
return {};
2013
2014
SmallVector<Instruction *> InstToDuplicate;
2015
InstToDuplicate.push_back(CondI);
2016
2017
SmallVector<Value *, 4> WorkList;
2018
WorkList.append(CondI->op_begin(), CondI->op_end());
2019
2020
SmallVector<MemoryAccess *, 4> AccessesToCheck;
2021
SmallVector<MemoryLocation, 4> AccessedLocs;
2022
while (!WorkList.empty()) {
2023
Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
2024
if (!I || !L.contains(I))
2025
continue;
2026
2027
// TODO: support additional instructions.
2028
if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
2029
return {};
2030
2031
// Do not duplicate volatile and atomic loads.
2032
if (auto *LI = dyn_cast<LoadInst>(I))
2033
if (LI->isVolatile() || LI->isAtomic())
2034
return {};
2035
2036
InstToDuplicate.push_back(I);
2037
if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
2038
if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
2039
// Queue the defining access to check for alias checks.
2040
AccessesToCheck.push_back(MemUse->getDefiningAccess());
2041
AccessedLocs.push_back(MemoryLocation::get(I));
2042
} else {
2043
// MemoryDefs may clobber the location or may be atomic memory
2044
// operations. Bail out.
2045
return {};
2046
}
2047
}
2048
WorkList.append(I->op_begin(), I->op_end());
2049
}
2050
2051
if (InstToDuplicate.empty())
2052
return {};
2053
2054
SmallVector<BasicBlock *, 4> ExitingBlocks;
2055
L.getExitingBlocks(ExitingBlocks);
2056
auto HasNoClobbersOnPath =
2057
[&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
2058
MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
2059
SmallVector<MemoryAccess *, 4> AccessesToCheck)
2060
-> std::optional<IVConditionInfo> {
2061
IVConditionInfo Info;
2062
// First, collect all blocks in the loop that are on a patch from Succ
2063
// to the header.
2064
SmallVector<BasicBlock *, 4> WorkList;
2065
WorkList.push_back(Succ);
2066
WorkList.push_back(Header);
2067
SmallPtrSet<BasicBlock *, 4> Seen;
2068
Seen.insert(Header);
2069
Info.PathIsNoop &=
2070
all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
2071
2072
while (!WorkList.empty()) {
2073
BasicBlock *Current = WorkList.pop_back_val();
2074
if (!L.contains(Current))
2075
continue;
2076
const auto &SeenIns = Seen.insert(Current);
2077
if (!SeenIns.second)
2078
continue;
2079
2080
Info.PathIsNoop &= all_of(
2081
*Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
2082
WorkList.append(succ_begin(Current), succ_end(Current));
2083
}
2084
2085
// Require at least 2 blocks on a path through the loop. This skips
2086
// paths that directly exit the loop.
2087
if (Seen.size() < 2)
2088
return {};
2089
2090
// Next, check if there are any MemoryDefs that are on the path through
2091
// the loop (in the Seen set) and they may-alias any of the locations in
2092
// AccessedLocs. If that is the case, they may modify the condition and
2093
// partial unswitching is not possible.
2094
SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
2095
while (!AccessesToCheck.empty()) {
2096
MemoryAccess *Current = AccessesToCheck.pop_back_val();
2097
auto SeenI = SeenAccesses.insert(Current);
2098
if (!SeenI.second || !Seen.contains(Current->getBlock()))
2099
continue;
2100
2101
// Bail out if exceeded the threshold.
2102
if (SeenAccesses.size() >= MSSAThreshold)
2103
return {};
2104
2105
// MemoryUse are read-only accesses.
2106
if (isa<MemoryUse>(Current))
2107
continue;
2108
2109
// For a MemoryDef, check if is aliases any of the location feeding
2110
// the original condition.
2111
if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
2112
if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
2113
return isModSet(
2114
AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
2115
}))
2116
return {};
2117
}
2118
2119
for (Use &U : Current->uses())
2120
AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
2121
}
2122
2123
// We could also allow loops with known trip counts without mustprogress,
2124
// but ScalarEvolution may not be available.
2125
Info.PathIsNoop &= isMustProgress(&L);
2126
2127
// If the path is considered a no-op so far, check if it reaches a
2128
// single exit block without any phis. This ensures no values from the
2129
// loop are used outside of the loop.
2130
if (Info.PathIsNoop) {
2131
for (auto *Exiting : ExitingBlocks) {
2132
if (!Seen.contains(Exiting))
2133
continue;
2134
for (auto *Succ : successors(Exiting)) {
2135
if (L.contains(Succ))
2136
continue;
2137
2138
Info.PathIsNoop &= Succ->phis().empty() &&
2139
(!Info.ExitForPath || Info.ExitForPath == Succ);
2140
if (!Info.PathIsNoop)
2141
break;
2142
assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
2143
"cannot have multiple exit blocks");
2144
Info.ExitForPath = Succ;
2145
}
2146
}
2147
}
2148
if (!Info.ExitForPath)
2149
Info.PathIsNoop = false;
2150
2151
Info.InstToDuplicate = InstToDuplicate;
2152
return Info;
2153
};
2154
2155
// If we branch to the same successor, partial unswitching will not be
2156
// beneficial.
2157
if (TI->getSuccessor(0) == TI->getSuccessor(1))
2158
return {};
2159
2160
if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2161
AccessesToCheck)) {
2162
Info->KnownValue = ConstantInt::getTrue(TI->getContext());
2163
return Info;
2164
}
2165
if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2166
AccessesToCheck)) {
2167
Info->KnownValue = ConstantInt::getFalse(TI->getContext());
2168
return Info;
2169
}
2170
2171
return {};
2172
}
2173
2174