Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp
35266 views
1
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This is the LLVM vectorization plan. It represents a candidate for
11
/// vectorization, allowing to plan and optimize how to vectorize a given loop
12
/// before generating LLVM-IR.
13
/// The vectorizer uses vectorization plans to estimate the costs of potential
14
/// candidates and if profitable to execute the desired plan, generating vector
15
/// LLVM-IR code.
16
///
17
//===----------------------------------------------------------------------===//
18
19
#include "VPlan.h"
20
#include "LoopVectorizationPlanner.h"
21
#include "VPlanCFG.h"
22
#include "VPlanDominatorTree.h"
23
#include "VPlanPatternMatch.h"
24
#include "llvm/ADT/PostOrderIterator.h"
25
#include "llvm/ADT/STLExtras.h"
26
#include "llvm/ADT/SmallVector.h"
27
#include "llvm/ADT/StringExtras.h"
28
#include "llvm/ADT/Twine.h"
29
#include "llvm/Analysis/DomTreeUpdater.h"
30
#include "llvm/Analysis/LoopInfo.h"
31
#include "llvm/IR/BasicBlock.h"
32
#include "llvm/IR/CFG.h"
33
#include "llvm/IR/IRBuilder.h"
34
#include "llvm/IR/Instruction.h"
35
#include "llvm/IR/Instructions.h"
36
#include "llvm/IR/Type.h"
37
#include "llvm/IR/Value.h"
38
#include "llvm/Support/Casting.h"
39
#include "llvm/Support/CommandLine.h"
40
#include "llvm/Support/Debug.h"
41
#include "llvm/Support/GenericDomTreeConstruction.h"
42
#include "llvm/Support/GraphWriter.h"
43
#include "llvm/Support/raw_ostream.h"
44
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45
#include "llvm/Transforms/Utils/LoopVersioning.h"
46
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
47
#include <cassert>
48
#include <string>
49
#include <vector>
50
51
using namespace llvm;
52
using namespace llvm::VPlanPatternMatch;
53
54
namespace llvm {
55
extern cl::opt<bool> EnableVPlanNativePath;
56
}
57
58
#define DEBUG_TYPE "vplan"
59
60
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
61
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
62
const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
63
VPSlotTracker SlotTracker(
64
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
65
V.print(OS, SlotTracker);
66
return OS;
67
}
68
#endif
69
70
Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
71
const ElementCount &VF) const {
72
switch (LaneKind) {
73
case VPLane::Kind::ScalableLast:
74
// Lane = RuntimeVF - VF.getKnownMinValue() + Lane
75
return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
76
Builder.getInt32(VF.getKnownMinValue() - Lane));
77
case VPLane::Kind::First:
78
return Builder.getInt32(Lane);
79
}
80
llvm_unreachable("Unknown lane kind");
81
}
82
83
VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
84
: SubclassID(SC), UnderlyingVal(UV), Def(Def) {
85
if (Def)
86
Def->addDefinedValue(this);
87
}
88
89
VPValue::~VPValue() {
90
assert(Users.empty() && "trying to delete a VPValue with remaining users");
91
if (Def)
92
Def->removeDefinedValue(this);
93
}
94
95
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
96
void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
97
if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
98
R->print(OS, "", SlotTracker);
99
else
100
printAsOperand(OS, SlotTracker);
101
}
102
103
void VPValue::dump() const {
104
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
105
VPSlotTracker SlotTracker(
106
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
107
print(dbgs(), SlotTracker);
108
dbgs() << "\n";
109
}
110
111
void VPDef::dump() const {
112
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
113
VPSlotTracker SlotTracker(
114
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
115
print(dbgs(), "", SlotTracker);
116
dbgs() << "\n";
117
}
118
#endif
119
120
VPRecipeBase *VPValue::getDefiningRecipe() {
121
return cast_or_null<VPRecipeBase>(Def);
122
}
123
124
const VPRecipeBase *VPValue::getDefiningRecipe() const {
125
return cast_or_null<VPRecipeBase>(Def);
126
}
127
128
// Get the top-most entry block of \p Start. This is the entry block of the
129
// containing VPlan. This function is templated to support both const and non-const blocks
130
template <typename T> static T *getPlanEntry(T *Start) {
131
T *Next = Start;
132
T *Current = Start;
133
while ((Next = Next->getParent()))
134
Current = Next;
135
136
SmallSetVector<T *, 8> WorkList;
137
WorkList.insert(Current);
138
139
for (unsigned i = 0; i < WorkList.size(); i++) {
140
T *Current = WorkList[i];
141
if (Current->getNumPredecessors() == 0)
142
return Current;
143
auto &Predecessors = Current->getPredecessors();
144
WorkList.insert(Predecessors.begin(), Predecessors.end());
145
}
146
147
llvm_unreachable("VPlan without any entry node without predecessors");
148
}
149
150
VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
151
152
const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
153
154
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
155
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
156
const VPBlockBase *Block = this;
157
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
158
Block = Region->getEntry();
159
return cast<VPBasicBlock>(Block);
160
}
161
162
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
163
VPBlockBase *Block = this;
164
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
165
Block = Region->getEntry();
166
return cast<VPBasicBlock>(Block);
167
}
168
169
void VPBlockBase::setPlan(VPlan *ParentPlan) {
170
assert(
171
(ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
172
"Can only set plan on its entry or preheader block.");
173
Plan = ParentPlan;
174
}
175
176
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
177
const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
178
const VPBlockBase *Block = this;
179
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
180
Block = Region->getExiting();
181
return cast<VPBasicBlock>(Block);
182
}
183
184
VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
185
VPBlockBase *Block = this;
186
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
187
Block = Region->getExiting();
188
return cast<VPBasicBlock>(Block);
189
}
190
191
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
192
if (!Successors.empty() || !Parent)
193
return this;
194
assert(Parent->getExiting() == this &&
195
"Block w/o successors not the exiting block of its parent.");
196
return Parent->getEnclosingBlockWithSuccessors();
197
}
198
199
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
200
if (!Predecessors.empty() || !Parent)
201
return this;
202
assert(Parent->getEntry() == this &&
203
"Block w/o predecessors not the entry of its parent.");
204
return Parent->getEnclosingBlockWithPredecessors();
205
}
206
207
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
208
for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
209
delete Block;
210
}
211
212
VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
213
iterator It = begin();
214
while (It != end() && It->isPhi())
215
It++;
216
return It;
217
}
218
219
VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
220
DominatorTree *DT, IRBuilderBase &Builder,
221
InnerLoopVectorizer *ILV, VPlan *Plan,
222
LLVMContext &Ctx)
223
: VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
224
LVer(nullptr),
225
TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {}
226
227
Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228
if (Def->isLiveIn())
229
return Def->getLiveInIRValue();
230
231
if (hasScalarValue(Def, Instance)) {
232
return Data
233
.PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234
}
235
if (!Instance.Lane.isFirstLane() &&
236
vputils::isUniformAfterVectorization(Def) &&
237
hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) {
238
return Data.PerPartScalars[Def][Instance.Part][0];
239
}
240
241
assert(hasVectorValue(Def, Instance.Part));
242
auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
243
if (!VecPart->getType()->isVectorTy()) {
244
assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
245
return VecPart;
246
}
247
// TODO: Cache created scalar values.
248
Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
249
auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
250
// set(Def, Extract, Instance);
251
return Extract;
252
}
253
254
Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) {
255
if (NeedsScalar) {
256
assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) ||
257
!vputils::onlyFirstLaneUsed(Def) ||
258
(hasScalarValue(Def, VPIteration(Part, 0)) &&
259
Data.PerPartScalars[Def][Part].size() == 1)) &&
260
"Trying to access a single scalar per part but has multiple scalars "
261
"per part.");
262
return get(Def, VPIteration(Part, 0));
263
}
264
265
// If Values have been set for this Def return the one relevant for \p Part.
266
if (hasVectorValue(Def, Part))
267
return Data.PerPartOutput[Def][Part];
268
269
auto GetBroadcastInstrs = [this, Def](Value *V) {
270
bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
271
if (VF.isScalar())
272
return V;
273
// Place the code for broadcasting invariant variables in the new preheader.
274
IRBuilder<>::InsertPointGuard Guard(Builder);
275
if (SafeToHoist) {
276
BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
277
Plan->getVectorLoopRegion()->getSinglePredecessor())];
278
if (LoopVectorPreHeader)
279
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
280
}
281
282
// Place the code for broadcasting invariant variables in the new preheader.
283
// Broadcast the scalar into all locations in the vector.
284
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
285
286
return Shuf;
287
};
288
289
if (!hasScalarValue(Def, {Part, 0})) {
290
assert(Def->isLiveIn() && "expected a live-in");
291
if (Part != 0)
292
return get(Def, 0);
293
Value *IRV = Def->getLiveInIRValue();
294
Value *B = GetBroadcastInstrs(IRV);
295
set(Def, B, Part);
296
return B;
297
}
298
299
Value *ScalarValue = get(Def, {Part, 0});
300
// If we aren't vectorizing, we can just copy the scalar map values over
301
// to the vector map.
302
if (VF.isScalar()) {
303
set(Def, ScalarValue, Part);
304
return ScalarValue;
305
}
306
307
bool IsUniform = vputils::isUniformAfterVectorization(Def);
308
309
unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
310
// Check if there is a scalar value for the selected lane.
311
if (!hasScalarValue(Def, {Part, LastLane})) {
312
// At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
313
// VPExpandSCEVRecipes can also be uniform.
314
assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
315
isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
316
isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
317
"unexpected recipe found to be invariant");
318
IsUniform = true;
319
LastLane = 0;
320
}
321
322
auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
323
// Set the insert point after the last scalarized instruction or after the
324
// last PHI, if LastInst is a PHI. This ensures the insertelement sequence
325
// will directly follow the scalar definitions.
326
auto OldIP = Builder.saveIP();
327
auto NewIP =
328
isa<PHINode>(LastInst)
329
? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
330
: std::next(BasicBlock::iterator(LastInst));
331
Builder.SetInsertPoint(&*NewIP);
332
333
// However, if we are vectorizing, we need to construct the vector values.
334
// If the value is known to be uniform after vectorization, we can just
335
// broadcast the scalar value corresponding to lane zero for each unroll
336
// iteration. Otherwise, we construct the vector values using
337
// insertelement instructions. Since the resulting vectors are stored in
338
// State, we will only generate the insertelements once.
339
Value *VectorValue = nullptr;
340
if (IsUniform) {
341
VectorValue = GetBroadcastInstrs(ScalarValue);
342
set(Def, VectorValue, Part);
343
} else {
344
// Initialize packing with insertelements to start from undef.
345
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
346
Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
347
set(Def, Undef, Part);
348
for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
349
packScalarIntoVectorValue(Def, {Part, Lane});
350
VectorValue = get(Def, Part);
351
}
352
Builder.restoreIP(OldIP);
353
return VectorValue;
354
}
355
356
BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
357
VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
358
return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
359
}
360
361
void VPTransformState::addNewMetadata(Instruction *To,
362
const Instruction *Orig) {
363
// If the loop was versioned with memchecks, add the corresponding no-alias
364
// metadata.
365
if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
366
LVer->annotateInstWithNoAlias(To, Orig);
367
}
368
369
void VPTransformState::addMetadata(Value *To, Instruction *From) {
370
// No source instruction to transfer metadata from?
371
if (!From)
372
return;
373
374
if (Instruction *ToI = dyn_cast<Instruction>(To)) {
375
propagateMetadata(ToI, From);
376
addNewMetadata(ToI, From);
377
}
378
}
379
380
void VPTransformState::setDebugLocFrom(DebugLoc DL) {
381
const DILocation *DIL = DL;
382
// When a FSDiscriminator is enabled, we don't need to add the multiply
383
// factors to the discriminators.
384
if (DIL &&
385
Builder.GetInsertBlock()
386
->getParent()
387
->shouldEmitDebugInfoForProfiling() &&
388
!EnableFSDiscriminator) {
389
// FIXME: For scalable vectors, assume vscale=1.
390
auto NewDIL =
391
DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
392
if (NewDIL)
393
Builder.SetCurrentDebugLocation(*NewDIL);
394
else
395
LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
396
<< DIL->getFilename() << " Line: " << DIL->getLine());
397
} else
398
Builder.SetCurrentDebugLocation(DIL);
399
}
400
401
void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
402
const VPIteration &Instance) {
403
Value *ScalarInst = get(Def, Instance);
404
Value *VectorValue = get(Def, Instance.Part);
405
VectorValue = Builder.CreateInsertElement(
406
VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
407
set(Def, VectorValue, Instance.Part);
408
}
409
410
BasicBlock *
411
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
412
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
413
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
414
BasicBlock *PrevBB = CFG.PrevBB;
415
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
416
PrevBB->getParent(), CFG.ExitBB);
417
LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
418
419
// Hook up the new basic block to its predecessors.
420
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
421
VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
422
auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
423
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
424
425
assert(PredBB && "Predecessor basic-block not found building successor.");
426
auto *PredBBTerminator = PredBB->getTerminator();
427
LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
428
429
auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
430
if (isa<UnreachableInst>(PredBBTerminator)) {
431
assert(PredVPSuccessors.size() == 1 &&
432
"Predecessor ending w/o branch must have single successor.");
433
DebugLoc DL = PredBBTerminator->getDebugLoc();
434
PredBBTerminator->eraseFromParent();
435
auto *Br = BranchInst::Create(NewBB, PredBB);
436
Br->setDebugLoc(DL);
437
} else if (TermBr && !TermBr->isConditional()) {
438
TermBr->setSuccessor(0, NewBB);
439
} else {
440
// Set each forward successor here when it is created, excluding
441
// backedges. A backward successor is set when the branch is created.
442
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
443
assert(!TermBr->getSuccessor(idx) &&
444
"Trying to reset an existing successor block.");
445
TermBr->setSuccessor(idx, NewBB);
446
}
447
CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
448
}
449
return NewBB;
450
}
451
452
void VPIRBasicBlock::execute(VPTransformState *State) {
453
assert(getHierarchicalSuccessors().size() <= 2 &&
454
"VPIRBasicBlock can have at most two successors at the moment!");
455
State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator());
456
executeRecipes(State, getIRBasicBlock());
457
if (getSingleSuccessor()) {
458
assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator()));
459
auto *Br = State->Builder.CreateBr(getIRBasicBlock());
460
Br->setOperand(0, nullptr);
461
getIRBasicBlock()->getTerminator()->eraseFromParent();
462
}
463
464
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
465
VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
466
BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB];
467
assert(PredBB && "Predecessor basic-block not found building successor.");
468
LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
469
470
auto *PredBBTerminator = PredBB->getTerminator();
471
auto *TermBr = cast<BranchInst>(PredBBTerminator);
472
// Set each forward successor here when it is created, excluding
473
// backedges. A backward successor is set when the branch is created.
474
const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
475
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
476
assert(!TermBr->getSuccessor(idx) &&
477
"Trying to reset an existing successor block.");
478
TermBr->setSuccessor(idx, IRBB);
479
State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}});
480
}
481
}
482
483
void VPBasicBlock::execute(VPTransformState *State) {
484
bool Replica = State->Instance && !State->Instance->isFirstIteration();
485
VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
486
VPBlockBase *SingleHPred = nullptr;
487
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
488
489
auto IsLoopRegion = [](VPBlockBase *BB) {
490
auto *R = dyn_cast<VPRegionBlock>(BB);
491
return R && !R->isReplicator();
492
};
493
494
// 1. Create an IR basic block.
495
if (PrevVPBB && /* A */
496
!((SingleHPred = getSingleHierarchicalPredecessor()) &&
497
SingleHPred->getExitingBasicBlock() == PrevVPBB &&
498
PrevVPBB->getSingleHierarchicalSuccessor() &&
499
(SingleHPred->getParent() == getEnclosingLoopRegion() &&
500
!IsLoopRegion(SingleHPred))) && /* B */
501
!(Replica && getPredecessors().empty())) { /* C */
502
// The last IR basic block is reused, as an optimization, in three cases:
503
// A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
504
// B. when the current VPBB has a single (hierarchical) predecessor which
505
// is PrevVPBB and the latter has a single (hierarchical) successor which
506
// both are in the same non-replicator region; and
507
// C. when the current VPBB is an entry of a region replica - where PrevVPBB
508
// is the exiting VPBB of this region from a previous instance, or the
509
// predecessor of this region.
510
511
NewBB = createEmptyBasicBlock(State->CFG);
512
State->Builder.SetInsertPoint(NewBB);
513
// Temporarily terminate with unreachable until CFG is rewired.
514
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
515
// Register NewBB in its loop. In innermost loops its the same for all
516
// BB's.
517
if (State->CurrentVectorLoop)
518
State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
519
State->Builder.SetInsertPoint(Terminator);
520
State->CFG.PrevBB = NewBB;
521
}
522
523
// 2. Fill the IR basic block with IR instructions.
524
executeRecipes(State, NewBB);
525
}
526
527
void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
528
for (VPRecipeBase &R : Recipes) {
529
for (auto *Def : R.definedValues())
530
Def->replaceAllUsesWith(NewValue);
531
532
for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
533
R.setOperand(I, NewValue);
534
}
535
}
536
537
void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
538
LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
539
<< " in BB:" << BB->getName() << '\n');
540
541
State->CFG.VPBB2IRBB[this] = BB;
542
State->CFG.PrevVPBB = this;
543
544
for (VPRecipeBase &Recipe : Recipes)
545
Recipe.execute(*State);
546
547
LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
548
}
549
550
VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
551
assert((SplitAt == end() || SplitAt->getParent() == this) &&
552
"can only split at a position in the same block");
553
554
SmallVector<VPBlockBase *, 2> Succs(successors());
555
// First, disconnect the current block from its successors.
556
for (VPBlockBase *Succ : Succs)
557
VPBlockUtils::disconnectBlocks(this, Succ);
558
559
// Create new empty block after the block to split.
560
auto *SplitBlock = new VPBasicBlock(getName() + ".split");
561
VPBlockUtils::insertBlockAfter(SplitBlock, this);
562
563
// Add successors for block to split to new block.
564
for (VPBlockBase *Succ : Succs)
565
VPBlockUtils::connectBlocks(SplitBlock, Succ);
566
567
// Finally, move the recipes starting at SplitAt to new block.
568
for (VPRecipeBase &ToMove :
569
make_early_inc_range(make_range(SplitAt, this->end())))
570
ToMove.moveBefore(*SplitBlock, SplitBlock->end());
571
572
return SplitBlock;
573
}
574
575
VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
576
VPRegionBlock *P = getParent();
577
if (P && P->isReplicator()) {
578
P = P->getParent();
579
assert(!cast<VPRegionBlock>(P)->isReplicator() &&
580
"unexpected nested replicate regions");
581
}
582
return P;
583
}
584
585
static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
586
if (VPBB->empty()) {
587
assert(
588
VPBB->getNumSuccessors() < 2 &&
589
"block with multiple successors doesn't have a recipe as terminator");
590
return false;
591
}
592
593
const VPRecipeBase *R = &VPBB->back();
594
bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
595
match(R, m_BranchOnCond(m_VPValue())) ||
596
match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
597
(void)IsCondBranch;
598
599
if (VPBB->getNumSuccessors() >= 2 ||
600
(VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
601
assert(IsCondBranch && "block with multiple successors not terminated by "
602
"conditional branch recipe");
603
604
return true;
605
}
606
607
assert(
608
!IsCondBranch &&
609
"block with 0 or 1 successors terminated by conditional branch recipe");
610
return false;
611
}
612
613
VPRecipeBase *VPBasicBlock::getTerminator() {
614
if (hasConditionalTerminator(this))
615
return &back();
616
return nullptr;
617
}
618
619
const VPRecipeBase *VPBasicBlock::getTerminator() const {
620
if (hasConditionalTerminator(this))
621
return &back();
622
return nullptr;
623
}
624
625
bool VPBasicBlock::isExiting() const {
626
return getParent() && getParent()->getExitingBasicBlock() == this;
627
}
628
629
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
630
void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
631
if (getSuccessors().empty()) {
632
O << Indent << "No successors\n";
633
} else {
634
O << Indent << "Successor(s): ";
635
ListSeparator LS;
636
for (auto *Succ : getSuccessors())
637
O << LS << Succ->getName();
638
O << '\n';
639
}
640
}
641
642
void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
643
VPSlotTracker &SlotTracker) const {
644
O << Indent << getName() << ":\n";
645
646
auto RecipeIndent = Indent + " ";
647
for (const VPRecipeBase &Recipe : *this) {
648
Recipe.print(O, RecipeIndent, SlotTracker);
649
O << '\n';
650
}
651
652
printSuccessors(O, Indent);
653
}
654
#endif
655
656
static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
657
658
// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
659
// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
660
// Remapping of operands must be done separately. Returns a pair with the new
661
// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
662
// region, return nullptr for the exiting block.
663
static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
664
DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
665
VPBlockBase *Exiting = nullptr;
666
bool InRegion = Entry->getParent();
667
// First, clone blocks reachable from Entry.
668
for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669
VPBlockBase *NewBB = BB->clone();
670
Old2NewVPBlocks[BB] = NewBB;
671
if (InRegion && BB->getNumSuccessors() == 0) {
672
assert(!Exiting && "Multiple exiting blocks?");
673
Exiting = BB;
674
}
675
}
676
assert((!InRegion || Exiting) && "regions must have a single exiting block");
677
678
// Second, update the predecessors & successors of the cloned blocks.
679
for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
680
VPBlockBase *NewBB = Old2NewVPBlocks[BB];
681
SmallVector<VPBlockBase *> NewPreds;
682
for (VPBlockBase *Pred : BB->getPredecessors()) {
683
NewPreds.push_back(Old2NewVPBlocks[Pred]);
684
}
685
NewBB->setPredecessors(NewPreds);
686
SmallVector<VPBlockBase *> NewSuccs;
687
for (VPBlockBase *Succ : BB->successors()) {
688
NewSuccs.push_back(Old2NewVPBlocks[Succ]);
689
}
690
NewBB->setSuccessors(NewSuccs);
691
}
692
693
#if !defined(NDEBUG)
694
// Verify that the order of predecessors and successors matches in the cloned
695
// version.
696
for (const auto &[OldBB, NewBB] :
697
zip(vp_depth_first_shallow(Entry),
698
vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
699
for (const auto &[OldPred, NewPred] :
700
zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
701
assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
702
703
for (const auto &[OldSucc, NewSucc] :
704
zip(OldBB->successors(), NewBB->successors()))
705
assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
706
}
707
#endif
708
709
return std::make_pair(Old2NewVPBlocks[Entry],
710
Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
711
}
712
713
VPRegionBlock *VPRegionBlock::clone() {
714
const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
715
auto *NewRegion =
716
new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
717
for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
718
Block->setParent(NewRegion);
719
return NewRegion;
720
}
721
722
void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
723
for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
724
// Drop all references in VPBasicBlocks and replace all uses with
725
// DummyValue.
726
Block->dropAllReferences(NewValue);
727
}
728
729
void VPRegionBlock::execute(VPTransformState *State) {
730
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
731
RPOT(Entry);
732
733
if (!isReplicator()) {
734
// Create and register the new vector loop.
735
Loop *PrevLoop = State->CurrentVectorLoop;
736
State->CurrentVectorLoop = State->LI->AllocateLoop();
737
BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
738
Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
739
740
// Insert the new loop into the loop nest and register the new basic blocks
741
// before calling any utilities such as SCEV that require valid LoopInfo.
742
if (ParentLoop)
743
ParentLoop->addChildLoop(State->CurrentVectorLoop);
744
else
745
State->LI->addTopLevelLoop(State->CurrentVectorLoop);
746
747
// Visit the VPBlocks connected to "this", starting from it.
748
for (VPBlockBase *Block : RPOT) {
749
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
750
Block->execute(State);
751
}
752
753
State->CurrentVectorLoop = PrevLoop;
754
return;
755
}
756
757
assert(!State->Instance && "Replicating a Region with non-null instance.");
758
759
// Enter replicating mode.
760
State->Instance = VPIteration(0, 0);
761
762
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
763
State->Instance->Part = Part;
764
assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
765
for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
766
++Lane) {
767
State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
768
// Visit the VPBlocks connected to \p this, starting from it.
769
for (VPBlockBase *Block : RPOT) {
770
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
771
Block->execute(State);
772
}
773
}
774
}
775
776
// Exit replicating mode.
777
State->Instance.reset();
778
}
779
780
InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
781
InstructionCost Cost = 0;
782
for (VPRecipeBase &R : Recipes)
783
Cost += R.cost(VF, Ctx);
784
return Cost;
785
}
786
787
InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
788
if (!isReplicator()) {
789
InstructionCost Cost = 0;
790
for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
791
Cost += Block->cost(VF, Ctx);
792
InstructionCost BackedgeCost =
793
Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
794
LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
795
<< ": vector loop backedge\n");
796
Cost += BackedgeCost;
797
return Cost;
798
}
799
800
// Compute the cost of a replicate region. Replicating isn't supported for
801
// scalable vectors, return an invalid cost for them.
802
// TODO: Discard scalable VPlans with replicate recipes earlier after
803
// construction.
804
if (VF.isScalable())
805
return InstructionCost::getInvalid();
806
807
// First compute the cost of the conditionally executed recipes, followed by
808
// account for the branching cost, except if the mask is a header mask or
809
// uniform condition.
810
using namespace llvm::VPlanPatternMatch;
811
VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
812
InstructionCost ThenCost = Then->cost(VF, Ctx);
813
814
// For the scalar case, we may not always execute the original predicated
815
// block, Thus, scale the block's cost by the probability of executing it.
816
if (VF.isScalar())
817
return ThenCost / getReciprocalPredBlockProb();
818
819
return ThenCost;
820
}
821
822
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
823
void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
824
VPSlotTracker &SlotTracker) const {
825
O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
826
auto NewIndent = Indent + " ";
827
for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
828
O << '\n';
829
BlockBase->print(O, NewIndent, SlotTracker);
830
}
831
O << Indent << "}\n";
832
833
printSuccessors(O, Indent);
834
}
835
#endif
836
837
VPlan::~VPlan() {
838
for (auto &KV : LiveOuts)
839
delete KV.second;
840
LiveOuts.clear();
841
842
if (Entry) {
843
VPValue DummyValue;
844
for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
845
Block->dropAllReferences(&DummyValue);
846
847
VPBlockBase::deleteCFG(Entry);
848
849
Preheader->dropAllReferences(&DummyValue);
850
delete Preheader;
851
}
852
for (VPValue *VPV : VPLiveInsToFree)
853
delete VPV;
854
if (BackedgeTakenCount)
855
delete BackedgeTakenCount;
856
}
857
858
VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE,
859
bool RequiresScalarEpilogueCheck,
860
bool TailFolded, Loop *TheLoop) {
861
VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader());
862
VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
863
auto Plan = std::make_unique<VPlan>(Entry, VecPreheader);
864
Plan->TripCount =
865
vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
866
// Create VPRegionBlock, with empty header and latch blocks, to be filled
867
// during processing later.
868
VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
869
VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
870
VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
871
auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
872
false /*isReplicator*/);
873
874
VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
875
VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
876
VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
877
878
VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
879
if (!RequiresScalarEpilogueCheck) {
880
VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
881
return Plan;
882
}
883
884
// If needed, add a check in the middle block to see if we have completed
885
// all of the iterations in the first vector loop. Three cases:
886
// 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
887
// Thus if tail is to be folded, we know we don't need to run the
888
// remainder and we can set the condition to true.
889
// 2) If we require a scalar epilogue, there is no conditional branch as
890
// we unconditionally branch to the scalar preheader. Do nothing.
891
// 3) Otherwise, construct a runtime check.
892
BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
893
auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock);
894
// The connection order corresponds to the operands of the conditional branch.
895
VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
896
VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
897
898
auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
899
// Here we use the same DebugLoc as the scalar loop latch terminator instead
900
// of the corresponding compare because they may have ended up with
901
// different line numbers and we want to avoid awkward line stepping while
902
// debugging. Eg. if the compare has got a line number inside the loop.
903
VPBuilder Builder(MiddleVPBB);
904
VPValue *Cmp =
905
TailFolded
906
? Plan->getOrAddLiveIn(ConstantInt::getTrue(
907
IntegerType::getInt1Ty(TripCount->getType()->getContext())))
908
: Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
909
&Plan->getVectorTripCount(),
910
ScalarLatchTerm->getDebugLoc(), "cmp.n");
911
Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
912
ScalarLatchTerm->getDebugLoc());
913
return Plan;
914
}
915
916
void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
917
Value *CanonicalIVStartValue,
918
VPTransformState &State) {
919
// Check if the backedge taken count is needed, and if so build it.
920
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
921
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
922
auto *TCMO = Builder.CreateSub(TripCountV,
923
ConstantInt::get(TripCountV->getType(), 1),
924
"trip.count.minus.1");
925
BackedgeTakenCount->setUnderlyingValue(TCMO);
926
}
927
928
VectorTripCount.setUnderlyingValue(VectorTripCountV);
929
930
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
931
// FIXME: Model VF * UF computation completely in VPlan.
932
VFxUF.setUnderlyingValue(
933
createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF));
934
935
// When vectorizing the epilogue loop, the canonical induction start value
936
// needs to be changed from zero to the value after the main vector loop.
937
// FIXME: Improve modeling for canonical IV start values in the epilogue loop.
938
if (CanonicalIVStartValue) {
939
VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
940
auto *IV = getCanonicalIV();
941
assert(all_of(IV->users(),
942
[](const VPUser *U) {
943
return isa<VPScalarIVStepsRecipe>(U) ||
944
isa<VPScalarCastRecipe>(U) ||
945
isa<VPDerivedIVRecipe>(U) ||
946
cast<VPInstruction>(U)->getOpcode() ==
947
Instruction::Add;
948
}) &&
949
"the canonical IV should only be used by its increment or "
950
"ScalarIVSteps when resetting the start value");
951
IV->setOperand(0, VPV);
952
}
953
}
954
955
/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
956
/// VPBB are moved to the newly created VPIRBasicBlock. VPBB must have a single
957
/// predecessor, which is rewired to the new VPIRBasicBlock. All successors of
958
/// VPBB, if any, are rewired to the new VPIRBasicBlock.
959
static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
960
VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB);
961
for (auto &R : make_early_inc_range(*VPBB))
962
R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end());
963
VPBlockBase *PredVPBB = VPBB->getSinglePredecessor();
964
VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
965
VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB);
966
for (auto *Succ : to_vector(VPBB->getSuccessors())) {
967
VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ);
968
VPBlockUtils::disconnectBlocks(VPBB, Succ);
969
}
970
delete VPBB;
971
}
972
973
/// Generate the code inside the preheader and body of the vectorized loop.
974
/// Assumes a single pre-header basic-block was created for this. Introduce
975
/// additional basic-blocks as needed, and fill them all.
976
void VPlan::execute(VPTransformState *State) {
977
// Initialize CFG state.
978
State->CFG.PrevVPBB = nullptr;
979
State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
980
BasicBlock *VectorPreHeader = State->CFG.PrevBB;
981
State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
982
983
// Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
984
cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
985
State->CFG.DTU.applyUpdates(
986
{{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
987
988
// Replace regular VPBB's for the middle and scalar preheader blocks with
989
// VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
990
// skeleton creation, so we can only create the VPIRBasicBlocks now during
991
// VPlan execution rather than earlier during VPlan construction.
992
BasicBlock *MiddleBB = State->CFG.ExitBB;
993
VPBasicBlock *MiddleVPBB =
994
cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor());
995
// Find the VPBB for the scalar preheader, relying on the current structure
996
// when creating the middle block and its successrs: if there's a single
997
// predecessor, it must be the scalar preheader. Otherwise, the second
998
// successor is the scalar preheader.
999
BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1000
auto &MiddleSuccs = MiddleVPBB->getSuccessors();
1001
assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) &&
1002
"middle block has unexpected successors");
1003
VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>(
1004
MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]);
1005
assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) &&
1006
"scalar preheader cannot be wrapped already");
1007
replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh);
1008
replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
1009
1010
// Disconnect the middle block from its single successor (the scalar loop
1011
// header) in both the CFG and DT. The branch will be recreated during VPlan
1012
// execution.
1013
auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1014
BrInst->insertBefore(MiddleBB->getTerminator());
1015
MiddleBB->getTerminator()->eraseFromParent();
1016
State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1017
1018
// Generate code in the loop pre-header and body.
1019
for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
1020
Block->execute(State);
1021
1022
VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1023
BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1024
1025
// Fix the latch value of canonical, reduction and first-order recurrences
1026
// phis in the vector loop.
1027
VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1028
for (VPRecipeBase &R : Header->phis()) {
1029
// Skip phi-like recipes that generate their backedege values themselves.
1030
if (isa<VPWidenPHIRecipe>(&R))
1031
continue;
1032
1033
if (isa<VPWidenPointerInductionRecipe>(&R) ||
1034
isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1035
PHINode *Phi = nullptr;
1036
if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1037
Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
1038
} else {
1039
auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1040
assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1041
"recipe generating only scalars should have been replaced");
1042
auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
1043
Phi = cast<PHINode>(GEP->getPointerOperand());
1044
}
1045
1046
Phi->setIncomingBlock(1, VectorLatchBB);
1047
1048
// Move the last step to the end of the latch block. This ensures
1049
// consistent placement of all induction updates.
1050
Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1051
Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1052
continue;
1053
}
1054
1055
auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1056
// For canonical IV, first-order recurrences and in-order reduction phis,
1057
// only a single part is generated, which provides the last part from the
1058
// previous iteration. For non-ordered reductions all UF parts are
1059
// generated.
1060
bool SinglePartNeeded =
1061
isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1062
isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1063
(isa<VPReductionPHIRecipe>(PhiR) &&
1064
cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
1065
bool NeedsScalar =
1066
isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1067
(isa<VPReductionPHIRecipe>(PhiR) &&
1068
cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1069
unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1070
1071
for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1072
Value *Phi = State->get(PhiR, Part, NeedsScalar);
1073
Value *Val =
1074
State->get(PhiR->getBackedgeValue(),
1075
SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar);
1076
cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1077
}
1078
}
1079
1080
State->CFG.DTU.flush();
1081
assert(State->CFG.DTU.getDomTree().verify(
1082
DominatorTree::VerificationLevel::Fast) &&
1083
"DT not preserved correctly");
1084
}
1085
1086
InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1087
// For now only return the cost of the vector loop region, ignoring any other
1088
// blocks, like the preheader or middle blocks.
1089
return getVectorLoopRegion()->cost(VF, Ctx);
1090
}
1091
1092
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1093
void VPlan::printLiveIns(raw_ostream &O) const {
1094
VPSlotTracker SlotTracker(this);
1095
1096
if (VFxUF.getNumUsers() > 0) {
1097
O << "\nLive-in ";
1098
VFxUF.printAsOperand(O, SlotTracker);
1099
O << " = VF * UF";
1100
}
1101
1102
if (VectorTripCount.getNumUsers() > 0) {
1103
O << "\nLive-in ";
1104
VectorTripCount.printAsOperand(O, SlotTracker);
1105
O << " = vector-trip-count";
1106
}
1107
1108
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1109
O << "\nLive-in ";
1110
BackedgeTakenCount->printAsOperand(O, SlotTracker);
1111
O << " = backedge-taken count";
1112
}
1113
1114
O << "\n";
1115
if (TripCount->isLiveIn())
1116
O << "Live-in ";
1117
TripCount->printAsOperand(O, SlotTracker);
1118
O << " = original trip-count";
1119
O << "\n";
1120
}
1121
1122
LLVM_DUMP_METHOD
1123
void VPlan::print(raw_ostream &O) const {
1124
VPSlotTracker SlotTracker(this);
1125
1126
O << "VPlan '" << getName() << "' {";
1127
1128
printLiveIns(O);
1129
1130
if (!getPreheader()->empty()) {
1131
O << "\n";
1132
getPreheader()->print(O, "", SlotTracker);
1133
}
1134
1135
for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
1136
O << '\n';
1137
Block->print(O, "", SlotTracker);
1138
}
1139
1140
if (!LiveOuts.empty())
1141
O << "\n";
1142
for (const auto &KV : LiveOuts) {
1143
KV.second->print(O, SlotTracker);
1144
}
1145
1146
O << "}\n";
1147
}
1148
1149
std::string VPlan::getName() const {
1150
std::string Out;
1151
raw_string_ostream RSO(Out);
1152
RSO << Name << " for ";
1153
if (!VFs.empty()) {
1154
RSO << "VF={" << VFs[0];
1155
for (ElementCount VF : drop_begin(VFs))
1156
RSO << "," << VF;
1157
RSO << "},";
1158
}
1159
1160
if (UFs.empty()) {
1161
RSO << "UF>=1";
1162
} else {
1163
RSO << "UF={" << UFs[0];
1164
for (unsigned UF : drop_begin(UFs))
1165
RSO << "," << UF;
1166
RSO << "}";
1167
}
1168
1169
return Out;
1170
}
1171
1172
LLVM_DUMP_METHOD
1173
void VPlan::printDOT(raw_ostream &O) const {
1174
VPlanPrinter Printer(O, *this);
1175
Printer.dump();
1176
}
1177
1178
LLVM_DUMP_METHOD
1179
void VPlan::dump() const { print(dbgs()); }
1180
#endif
1181
1182
void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
1183
assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
1184
LiveOuts.insert({PN, new VPLiveOut(PN, V)});
1185
}
1186
1187
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1188
DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1189
// Update the operands of all cloned recipes starting at NewEntry. This
1190
// traverses all reachable blocks. This is done in two steps, to handle cycles
1191
// in PHI recipes.
1192
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1193
OldDeepRPOT(Entry);
1194
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1195
NewDeepRPOT(NewEntry);
1196
// First, collect all mappings from old to new VPValues defined by cloned
1197
// recipes.
1198
for (const auto &[OldBB, NewBB] :
1199
zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1200
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1201
assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1202
"blocks must have the same number of recipes");
1203
for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1204
assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1205
"recipes must have the same number of operands");
1206
assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1207
"recipes must define the same number of operands");
1208
for (const auto &[OldV, NewV] :
1209
zip(OldR.definedValues(), NewR.definedValues()))
1210
Old2NewVPValues[OldV] = NewV;
1211
}
1212
}
1213
1214
// Update all operands to use cloned VPValues.
1215
for (VPBasicBlock *NewBB :
1216
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1217
for (VPRecipeBase &NewR : *NewBB)
1218
for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1219
VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1220
NewR.setOperand(I, NewOp);
1221
}
1222
}
1223
}
1224
1225
VPlan *VPlan::duplicate() {
1226
// Clone blocks.
1227
VPBasicBlock *NewPreheader = Preheader->clone();
1228
const auto &[NewEntry, __] = cloneFrom(Entry);
1229
1230
// Create VPlan, clone live-ins and remap operands in the cloned blocks.
1231
auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry));
1232
DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1233
for (VPValue *OldLiveIn : VPLiveInsToFree) {
1234
Old2NewVPValues[OldLiveIn] =
1235
NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1236
}
1237
Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1238
Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1239
if (BackedgeTakenCount) {
1240
NewPlan->BackedgeTakenCount = new VPValue();
1241
Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1242
}
1243
assert(TripCount && "trip count must be set");
1244
if (TripCount->isLiveIn())
1245
Old2NewVPValues[TripCount] =
1246
NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1247
// else NewTripCount will be created and inserted into Old2NewVPValues when
1248
// TripCount is cloned. In any case NewPlan->TripCount is updated below.
1249
1250
remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1251
remapOperands(Entry, NewEntry, Old2NewVPValues);
1252
1253
// Clone live-outs.
1254
for (const auto &[_, LO] : LiveOuts)
1255
NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]);
1256
1257
// Initialize remaining fields of cloned VPlan.
1258
NewPlan->VFs = VFs;
1259
NewPlan->UFs = UFs;
1260
// TODO: Adjust names.
1261
NewPlan->Name = Name;
1262
assert(Old2NewVPValues.contains(TripCount) &&
1263
"TripCount must have been added to Old2NewVPValues");
1264
NewPlan->TripCount = Old2NewVPValues[TripCount];
1265
return NewPlan;
1266
}
1267
1268
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1269
1270
Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1271
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1272
Twine(getOrCreateBID(Block));
1273
}
1274
1275
Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1276
const std::string &Name = Block->getName();
1277
if (!Name.empty())
1278
return Name;
1279
return "VPB" + Twine(getOrCreateBID(Block));
1280
}
1281
1282
void VPlanPrinter::dump() {
1283
Depth = 1;
1284
bumpIndent(0);
1285
OS << "digraph VPlan {\n";
1286
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1287
if (!Plan.getName().empty())
1288
OS << "\\n" << DOT::EscapeString(Plan.getName());
1289
1290
{
1291
// Print live-ins.
1292
std::string Str;
1293
raw_string_ostream SS(Str);
1294
Plan.printLiveIns(SS);
1295
SmallVector<StringRef, 0> Lines;
1296
StringRef(Str).rtrim('\n').split(Lines, "\n");
1297
for (auto Line : Lines)
1298
OS << DOT::EscapeString(Line.str()) << "\\n";
1299
}
1300
1301
OS << "\"]\n";
1302
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1303
OS << "edge [fontname=Courier, fontsize=30]\n";
1304
OS << "compound=true\n";
1305
1306
dumpBlock(Plan.getPreheader());
1307
1308
for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1309
dumpBlock(Block);
1310
1311
OS << "}\n";
1312
}
1313
1314
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1315
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1316
dumpBasicBlock(BasicBlock);
1317
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1318
dumpRegion(Region);
1319
else
1320
llvm_unreachable("Unsupported kind of VPBlock.");
1321
}
1322
1323
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1324
bool Hidden, const Twine &Label) {
1325
// Due to "dot" we print an edge between two regions as an edge between the
1326
// exiting basic block and the entry basic of the respective regions.
1327
const VPBlockBase *Tail = From->getExitingBasicBlock();
1328
const VPBlockBase *Head = To->getEntryBasicBlock();
1329
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1330
OS << " [ label=\"" << Label << '\"';
1331
if (Tail != From)
1332
OS << " ltail=" << getUID(From);
1333
if (Head != To)
1334
OS << " lhead=" << getUID(To);
1335
if (Hidden)
1336
OS << "; splines=none";
1337
OS << "]\n";
1338
}
1339
1340
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1341
auto &Successors = Block->getSuccessors();
1342
if (Successors.size() == 1)
1343
drawEdge(Block, Successors.front(), false, "");
1344
else if (Successors.size() == 2) {
1345
drawEdge(Block, Successors.front(), false, "T");
1346
drawEdge(Block, Successors.back(), false, "F");
1347
} else {
1348
unsigned SuccessorNumber = 0;
1349
for (auto *Successor : Successors)
1350
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1351
}
1352
}
1353
1354
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1355
// Implement dot-formatted dump by performing plain-text dump into the
1356
// temporary storage followed by some post-processing.
1357
OS << Indent << getUID(BasicBlock) << " [label =\n";
1358
bumpIndent(1);
1359
std::string Str;
1360
raw_string_ostream SS(Str);
1361
// Use no indentation as we need to wrap the lines into quotes ourselves.
1362
BasicBlock->print(SS, "", SlotTracker);
1363
1364
// We need to process each line of the output separately, so split
1365
// single-string plain-text dump.
1366
SmallVector<StringRef, 0> Lines;
1367
StringRef(Str).rtrim('\n').split(Lines, "\n");
1368
1369
auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1370
OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1371
};
1372
1373
// Don't need the "+" after the last line.
1374
for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1375
EmitLine(Line, " +\n");
1376
EmitLine(Lines.back(), "\n");
1377
1378
bumpIndent(-1);
1379
OS << Indent << "]\n";
1380
1381
dumpEdges(BasicBlock);
1382
}
1383
1384
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1385
OS << Indent << "subgraph " << getUID(Region) << " {\n";
1386
bumpIndent(1);
1387
OS << Indent << "fontname=Courier\n"
1388
<< Indent << "label=\""
1389
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1390
<< DOT::EscapeString(Region->getName()) << "\"\n";
1391
// Dump the blocks of the region.
1392
assert(Region->getEntry() && "Region contains no inner blocks.");
1393
for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1394
dumpBlock(Block);
1395
bumpIndent(-1);
1396
OS << Indent << "}\n";
1397
dumpEdges(Region);
1398
}
1399
1400
void VPlanIngredient::print(raw_ostream &O) const {
1401
if (auto *Inst = dyn_cast<Instruction>(V)) {
1402
if (!Inst->getType()->isVoidTy()) {
1403
Inst->printAsOperand(O, false);
1404
O << " = ";
1405
}
1406
O << Inst->getOpcodeName() << " ";
1407
unsigned E = Inst->getNumOperands();
1408
if (E > 0) {
1409
Inst->getOperand(0)->printAsOperand(O, false);
1410
for (unsigned I = 1; I < E; ++I)
1411
Inst->getOperand(I)->printAsOperand(O << ", ", false);
1412
}
1413
} else // !Inst
1414
V->printAsOperand(O, false);
1415
}
1416
1417
#endif
1418
1419
template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1420
1421
void VPValue::replaceAllUsesWith(VPValue *New) {
1422
replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1423
}
1424
1425
void VPValue::replaceUsesWithIf(
1426
VPValue *New,
1427
llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1428
// Note that this early exit is required for correctness; the implementation
1429
// below relies on the number of users for this VPValue to decrease, which
1430
// isn't the case if this == New.
1431
if (this == New)
1432
return;
1433
1434
for (unsigned J = 0; J < getNumUsers();) {
1435
VPUser *User = Users[J];
1436
bool RemovedUser = false;
1437
for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1438
if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1439
continue;
1440
1441
RemovedUser = true;
1442
User->setOperand(I, New);
1443
}
1444
// If a user got removed after updating the current user, the next user to
1445
// update will be moved to the current position, so we only need to
1446
// increment the index if the number of users did not change.
1447
if (!RemovedUser)
1448
J++;
1449
}
1450
}
1451
1452
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453
void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1454
OS << Tracker.getOrCreateName(this);
1455
}
1456
1457
void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1458
interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1459
Op->printAsOperand(O, SlotTracker);
1460
});
1461
}
1462
#endif
1463
1464
void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1465
Old2NewTy &Old2New,
1466
InterleavedAccessInfo &IAI) {
1467
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1468
RPOT(Region->getEntry());
1469
for (VPBlockBase *Base : RPOT) {
1470
visitBlock(Base, Old2New, IAI);
1471
}
1472
}
1473
1474
void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1475
InterleavedAccessInfo &IAI) {
1476
if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1477
for (VPRecipeBase &VPI : *VPBB) {
1478
if (isa<VPWidenPHIRecipe>(&VPI))
1479
continue;
1480
assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1481
auto *VPInst = cast<VPInstruction>(&VPI);
1482
1483
auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1484
if (!Inst)
1485
continue;
1486
auto *IG = IAI.getInterleaveGroup(Inst);
1487
if (!IG)
1488
continue;
1489
1490
auto NewIGIter = Old2New.find(IG);
1491
if (NewIGIter == Old2New.end())
1492
Old2New[IG] = new InterleaveGroup<VPInstruction>(
1493
IG->getFactor(), IG->isReverse(), IG->getAlign());
1494
1495
if (Inst == IG->getInsertPos())
1496
Old2New[IG]->setInsertPos(VPInst);
1497
1498
InterleaveGroupMap[VPInst] = Old2New[IG];
1499
InterleaveGroupMap[VPInst]->insertMember(
1500
VPInst, IG->getIndex(Inst),
1501
Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1502
: IG->getFactor()));
1503
}
1504
} else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1505
visitRegion(Region, Old2New, IAI);
1506
else
1507
llvm_unreachable("Unsupported kind of VPBlock.");
1508
}
1509
1510
VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1511
InterleavedAccessInfo &IAI) {
1512
Old2NewTy Old2New;
1513
visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1514
}
1515
1516
void VPSlotTracker::assignName(const VPValue *V) {
1517
assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1518
auto *UV = V->getUnderlyingValue();
1519
if (!UV) {
1520
VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1521
NextSlot++;
1522
return;
1523
}
1524
1525
// Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1526
// appending ".Number" to the name if there are multiple uses.
1527
std::string Name;
1528
raw_string_ostream S(Name);
1529
UV->printAsOperand(S, false);
1530
assert(!Name.empty() && "Name cannot be empty.");
1531
std::string BaseName = (Twine("ir<") + Name + Twine(">")).str();
1532
1533
// First assign the base name for V.
1534
const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1535
// Integer or FP constants with different types will result in he same string
1536
// due to stripping types.
1537
if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1538
return;
1539
1540
// If it is already used by C > 0 other VPValues, increase the version counter
1541
// C and use it for V.
1542
const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1543
if (!UseInserted) {
1544
C->second++;
1545
A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1546
}
1547
}
1548
1549
void VPSlotTracker::assignNames(const VPlan &Plan) {
1550
if (Plan.VFxUF.getNumUsers() > 0)
1551
assignName(&Plan.VFxUF);
1552
assignName(&Plan.VectorTripCount);
1553
if (Plan.BackedgeTakenCount)
1554
assignName(Plan.BackedgeTakenCount);
1555
for (VPValue *LI : Plan.VPLiveInsToFree)
1556
assignName(LI);
1557
assignNames(Plan.getPreheader());
1558
1559
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1560
RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1561
for (const VPBasicBlock *VPBB :
1562
VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1563
assignNames(VPBB);
1564
}
1565
1566
void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1567
for (const VPRecipeBase &Recipe : *VPBB)
1568
for (VPValue *Def : Recipe.definedValues())
1569
assignName(Def);
1570
}
1571
1572
std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1573
std::string Name = VPValue2Name.lookup(V);
1574
if (!Name.empty())
1575
return Name;
1576
1577
// If no name was assigned, no VPlan was provided when creating the slot
1578
// tracker or it is not reachable from the provided VPlan. This can happen,
1579
// e.g. when trying to print a recipe that has not been inserted into a VPlan
1580
// in a debugger.
1581
// TODO: Update VPSlotTracker constructor to assign names to recipes &
1582
// VPValues not associated with a VPlan, instead of constructing names ad-hoc
1583
// here.
1584
const VPRecipeBase *DefR = V->getDefiningRecipe();
1585
(void)DefR;
1586
assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1587
"VPValue defined by a recipe in a VPlan?");
1588
1589
// Use the underlying value's name, if there is one.
1590
if (auto *UV = V->getUnderlyingValue()) {
1591
std::string Name;
1592
raw_string_ostream S(Name);
1593
UV->printAsOperand(S, false);
1594
return (Twine("ir<") + Name + ">").str();
1595
}
1596
1597
return "<badref>";
1598
}
1599
1600
bool vputils::onlyFirstLaneUsed(const VPValue *Def) {
1601
return all_of(Def->users(),
1602
[Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1603
}
1604
1605
bool vputils::onlyFirstPartUsed(const VPValue *Def) {
1606
return all_of(Def->users(),
1607
[Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); });
1608
}
1609
1610
VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1611
ScalarEvolution &SE) {
1612
if (auto *Expanded = Plan.getSCEVExpansion(Expr))
1613
return Expanded;
1614
VPValue *Expanded = nullptr;
1615
if (auto *E = dyn_cast<SCEVConstant>(Expr))
1616
Expanded = Plan.getOrAddLiveIn(E->getValue());
1617
else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1618
Expanded = Plan.getOrAddLiveIn(E->getValue());
1619
else {
1620
Expanded = new VPExpandSCEVRecipe(Expr, SE);
1621
Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
1622
}
1623
Plan.addSCEVExpansion(Expr, Expanded);
1624
return Expanded;
1625
}
1626
1627
bool vputils::isHeaderMask(VPValue *V, VPlan &Plan) {
1628
if (isa<VPActiveLaneMaskPHIRecipe>(V))
1629
return true;
1630
1631
auto IsWideCanonicalIV = [](VPValue *A) {
1632
return isa<VPWidenCanonicalIVRecipe>(A) ||
1633
(isa<VPWidenIntOrFpInductionRecipe>(A) &&
1634
cast<VPWidenIntOrFpInductionRecipe>(A)->isCanonical());
1635
};
1636
1637
VPValue *A, *B;
1638
if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B))))
1639
return B == Plan.getTripCount() &&
1640
(match(A, m_ScalarIVSteps(m_CanonicalIV(), m_SpecificInt(1))) ||
1641
IsWideCanonicalIV(A));
1642
1643
return match(V, m_Binary<Instruction::ICmp>(m_VPValue(A), m_VPValue(B))) &&
1644
IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount();
1645
}
1646
1647