Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp
35266 views
1
//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file implements the construction of a VPlan-based Hierarchical CFG
11
/// (H-CFG) for an incoming IR. This construction comprises the following
12
/// components and steps:
13
//
14
/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
15
/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
16
/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
17
/// in the plain CFG.
18
/// NOTE: At this point, there is a direct correspondence between all the
19
/// VPBasicBlocks created for the initial plain CFG and the incoming
20
/// BasicBlocks. However, this might change in the future.
21
///
22
//===----------------------------------------------------------------------===//
23
24
#include "VPlanHCFGBuilder.h"
25
#include "LoopVectorizationPlanner.h"
26
#include "llvm/Analysis/LoopIterator.h"
27
28
#define DEBUG_TYPE "loop-vectorize"
29
30
using namespace llvm;
31
32
namespace {
33
// Class that is used to build the plain CFG for the incoming IR.
34
class PlainCFGBuilder {
35
private:
36
// The outermost loop of the input loop nest considered for vectorization.
37
Loop *TheLoop;
38
39
// Loop Info analysis.
40
LoopInfo *LI;
41
42
// Vectorization plan that we are working on.
43
VPlan &Plan;
44
45
// Builder of the VPlan instruction-level representation.
46
VPBuilder VPIRBuilder;
47
48
// NOTE: The following maps are intentionally destroyed after the plain CFG
49
// construction because subsequent VPlan-to-VPlan transformation may
50
// invalidate them.
51
// Map incoming BasicBlocks to their newly-created VPBasicBlocks.
52
DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
53
// Map incoming Value definitions to their newly-created VPValues.
54
DenseMap<Value *, VPValue *> IRDef2VPValue;
55
56
// Hold phi node's that need to be fixed once the plain CFG has been built.
57
SmallVector<PHINode *, 8> PhisToFix;
58
59
/// Maps loops in the original IR to their corresponding region.
60
DenseMap<Loop *, VPRegionBlock *> Loop2Region;
61
62
// Utility functions.
63
void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
64
void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB);
65
void fixPhiNodes();
66
VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
67
#ifndef NDEBUG
68
bool isExternalDef(Value *Val);
69
#endif
70
VPValue *getOrCreateVPOperand(Value *IRVal);
71
void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
72
73
public:
74
PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
75
: TheLoop(Lp), LI(LI), Plan(P) {}
76
77
/// Build plain CFG for TheLoop and connects it to Plan's entry.
78
void buildPlainCFG();
79
};
80
} // anonymous namespace
81
82
// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
83
// must have no predecessors.
84
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
85
auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * {
86
auto *SinglePred = BB->getSinglePredecessor();
87
Loop *LoopForBB = LI->getLoopFor(BB);
88
if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB)
89
return nullptr;
90
// The input IR must be in loop-simplify form, ensuring a single predecessor
91
// for exit blocks.
92
assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() &&
93
"SinglePred must be the only loop latch");
94
return SinglePred;
95
};
96
if (auto *LatchBB = GetLatchOfExit(BB)) {
97
auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent();
98
assert(VPBB == cast<VPBasicBlock>(PredRegion->getSingleSuccessor()) &&
99
"successor must already be set for PredRegion; it must have VPBB "
100
"as single successor");
101
VPBB->setPredecessors({PredRegion});
102
return;
103
}
104
// Collect VPBB predecessors.
105
SmallVector<VPBlockBase *, 2> VPBBPreds;
106
for (BasicBlock *Pred : predecessors(BB))
107
VPBBPreds.push_back(getOrCreateVPBB(Pred));
108
VPBB->setPredecessors(VPBBPreds);
109
}
110
111
static bool isHeaderBB(BasicBlock *BB, Loop *L) {
112
return L && BB == L->getHeader();
113
}
114
115
void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region,
116
BasicBlock *BB) {
117
// BB is a loop header block. Connect the region to the loop preheader.
118
Loop *LoopOfBB = LI->getLoopFor(BB);
119
Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())});
120
}
121
122
// Add operands to VPInstructions representing phi nodes from the input IR.
123
void PlainCFGBuilder::fixPhiNodes() {
124
for (auto *Phi : PhisToFix) {
125
assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
126
VPValue *VPVal = IRDef2VPValue[Phi];
127
assert(isa<VPWidenPHIRecipe>(VPVal) &&
128
"Expected WidenPHIRecipe for phi node.");
129
auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal);
130
assert(VPPhi->getNumOperands() == 0 &&
131
"Expected VPInstruction with no operands.");
132
133
Loop *L = LI->getLoopFor(Phi->getParent());
134
if (isHeaderBB(Phi->getParent(), L)) {
135
// For header phis, make sure the incoming value from the loop
136
// predecessor is the first operand of the recipe.
137
assert(Phi->getNumOperands() == 2);
138
BasicBlock *LoopPred = L->getLoopPredecessor();
139
VPPhi->addIncoming(
140
getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)),
141
BB2VPBB[LoopPred]);
142
BasicBlock *LoopLatch = L->getLoopLatch();
143
VPPhi->addIncoming(
144
getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)),
145
BB2VPBB[LoopLatch]);
146
continue;
147
}
148
149
for (unsigned I = 0; I != Phi->getNumOperands(); ++I)
150
VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)),
151
BB2VPBB[Phi->getIncomingBlock(I)]);
152
}
153
}
154
155
static bool isHeaderVPBB(VPBasicBlock *VPBB) {
156
return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB;
157
}
158
159
/// Return true of \p L loop is contained within \p OuterLoop.
160
static bool doesContainLoop(const Loop *L, const Loop *OuterLoop) {
161
if (L->getLoopDepth() < OuterLoop->getLoopDepth())
162
return false;
163
const Loop *P = L;
164
while (P) {
165
if (P == OuterLoop)
166
return true;
167
P = P->getParentLoop();
168
}
169
return false;
170
}
171
172
// Create a new empty VPBasicBlock for an incoming BasicBlock in the region
173
// corresponding to the containing loop or retrieve an existing one if it was
174
// already created. If no region exists yet for the loop containing \p BB, a new
175
// one is created.
176
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
177
if (auto *VPBB = BB2VPBB.lookup(BB)) {
178
// Retrieve existing VPBB.
179
return VPBB;
180
}
181
182
// Create new VPBB.
183
StringRef Name = isHeaderBB(BB, TheLoop) ? "vector.body" : BB->getName();
184
LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n");
185
VPBasicBlock *VPBB = new VPBasicBlock(Name);
186
BB2VPBB[BB] = VPBB;
187
188
// Get or create a region for the loop containing BB.
189
Loop *LoopOfBB = LI->getLoopFor(BB);
190
if (!LoopOfBB || !doesContainLoop(LoopOfBB, TheLoop))
191
return VPBB;
192
193
auto *RegionOfVPBB = Loop2Region.lookup(LoopOfBB);
194
if (!isHeaderBB(BB, LoopOfBB)) {
195
assert(RegionOfVPBB &&
196
"Region should have been created by visiting header earlier");
197
VPBB->setParent(RegionOfVPBB);
198
return VPBB;
199
}
200
201
assert(!RegionOfVPBB &&
202
"First visit of a header basic block expects to register its region.");
203
// Handle a header - take care of its Region.
204
if (LoopOfBB == TheLoop) {
205
RegionOfVPBB = Plan.getVectorLoopRegion();
206
} else {
207
RegionOfVPBB = new VPRegionBlock(Name.str(), false /*isReplicator*/);
208
RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]);
209
}
210
RegionOfVPBB->setEntry(VPBB);
211
Loop2Region[LoopOfBB] = RegionOfVPBB;
212
return VPBB;
213
}
214
215
#ifndef NDEBUG
216
// Return true if \p Val is considered an external definition. An external
217
// definition is either:
218
// 1. A Value that is not an Instruction. This will be refined in the future.
219
// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
220
// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
221
// outermost loop exits.
222
bool PlainCFGBuilder::isExternalDef(Value *Val) {
223
// All the Values that are not Instructions are considered external
224
// definitions for now.
225
Instruction *Inst = dyn_cast<Instruction>(Val);
226
if (!Inst)
227
return true;
228
229
BasicBlock *InstParent = Inst->getParent();
230
assert(InstParent && "Expected instruction parent.");
231
232
// Check whether Instruction definition is in loop PH.
233
BasicBlock *PH = TheLoop->getLoopPreheader();
234
assert(PH && "Expected loop pre-header.");
235
236
if (InstParent == PH)
237
// Instruction definition is in outermost loop PH.
238
return false;
239
240
// Check whether Instruction definition is in the loop exit.
241
BasicBlock *Exit = TheLoop->getUniqueExitBlock();
242
assert(Exit && "Expected loop with single exit.");
243
if (InstParent == Exit) {
244
// Instruction definition is in outermost loop exit.
245
return false;
246
}
247
248
// Check whether Instruction definition is in loop body.
249
return !TheLoop->contains(Inst);
250
}
251
#endif
252
253
// Create a new VPValue or retrieve an existing one for the Instruction's
254
// operand \p IRVal. This function must only be used to create/retrieve VPValues
255
// for *Instruction's operands* and not to create regular VPInstruction's. For
256
// the latter, please, look at 'createVPInstructionsForVPBB'.
257
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
258
auto VPValIt = IRDef2VPValue.find(IRVal);
259
if (VPValIt != IRDef2VPValue.end())
260
// Operand has an associated VPInstruction or VPValue that was previously
261
// created.
262
return VPValIt->second;
263
264
// Operand doesn't have a previously created VPInstruction/VPValue. This
265
// means that operand is:
266
// A) a definition external to VPlan,
267
// B) any other Value without specific representation in VPlan.
268
// For now, we use VPValue to represent A and B and classify both as external
269
// definitions. We may introduce specific VPValue subclasses for them in the
270
// future.
271
assert(isExternalDef(IRVal) && "Expected external definition as operand.");
272
273
// A and B: Create VPValue and add it to the pool of external definitions and
274
// to the Value->VPValue map.
275
VPValue *NewVPVal = Plan.getOrAddLiveIn(IRVal);
276
IRDef2VPValue[IRVal] = NewVPVal;
277
return NewVPVal;
278
}
279
280
// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
281
// counterpart. This function must be invoked in RPO so that the operands of a
282
// VPInstruction in \p BB have been visited before (except for Phi nodes).
283
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
284
BasicBlock *BB) {
285
VPIRBuilder.setInsertPoint(VPBB);
286
for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) {
287
Instruction *Inst = &InstRef;
288
289
// There shouldn't be any VPValue for Inst at this point. Otherwise, we
290
// visited Inst when we shouldn't, breaking the RPO traversal order.
291
assert(!IRDef2VPValue.count(Inst) &&
292
"Instruction shouldn't have been visited.");
293
294
if (auto *Br = dyn_cast<BranchInst>(Inst)) {
295
// Conditional branch instruction are represented using BranchOnCond
296
// recipes.
297
if (Br->isConditional()) {
298
VPValue *Cond = getOrCreateVPOperand(Br->getCondition());
299
VPIRBuilder.createNaryOp(VPInstruction::BranchOnCond, {Cond}, Inst);
300
}
301
302
// Skip the rest of the Instruction processing for Branch instructions.
303
continue;
304
}
305
306
VPValue *NewVPV;
307
if (auto *Phi = dyn_cast<PHINode>(Inst)) {
308
// Phi node's operands may have not been visited at this point. We create
309
// an empty VPInstruction that we will fix once the whole plain CFG has
310
// been built.
311
NewVPV = new VPWidenPHIRecipe(Phi);
312
VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV));
313
PhisToFix.push_back(Phi);
314
} else {
315
// Translate LLVM-IR operands into VPValue operands and set them in the
316
// new VPInstruction.
317
SmallVector<VPValue *, 4> VPOperands;
318
for (Value *Op : Inst->operands())
319
VPOperands.push_back(getOrCreateVPOperand(Op));
320
321
// Build VPInstruction for any arbitrary Instruction without specific
322
// representation in VPlan.
323
NewVPV = cast<VPInstruction>(
324
VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
325
}
326
327
IRDef2VPValue[Inst] = NewVPV;
328
}
329
}
330
331
// Main interface to build the plain CFG.
332
void PlainCFGBuilder::buildPlainCFG() {
333
// 0. Reuse the top-level region, vector-preheader and exit VPBBs from the
334
// skeleton. These were created directly rather than via getOrCreateVPBB(),
335
// revisit them now to update BB2VPBB. Note that header/entry and
336
// latch/exiting VPBB's of top-level region have yet to be created.
337
VPRegionBlock *TheRegion = Plan.getVectorLoopRegion();
338
BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader();
339
assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
340
"Unexpected loop preheader");
341
auto *VectorPreheaderVPBB =
342
cast<VPBasicBlock>(TheRegion->getSinglePredecessor());
343
// ThePreheaderBB conceptually corresponds to both Plan.getPreheader() (which
344
// wraps the original preheader BB) and Plan.getEntry() (which represents the
345
// new vector preheader); here we're interested in setting BB2VPBB to the
346
// latter.
347
BB2VPBB[ThePreheaderBB] = VectorPreheaderVPBB;
348
BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
349
Loop2Region[LI->getLoopFor(TheLoop->getHeader())] = TheRegion;
350
assert(LoopExitBB && "Loops with multiple exits are not supported.");
351
BB2VPBB[LoopExitBB] = cast<VPBasicBlock>(TheRegion->getSingleSuccessor());
352
353
// The existing vector region's entry and exiting VPBBs correspond to the loop
354
// header and latch.
355
VPBasicBlock *VectorHeaderVPBB = TheRegion->getEntryBasicBlock();
356
VPBasicBlock *VectorLatchVPBB = TheRegion->getExitingBasicBlock();
357
BB2VPBB[TheLoop->getHeader()] = VectorHeaderVPBB;
358
VectorHeaderVPBB->clearSuccessors();
359
VectorLatchVPBB->clearPredecessors();
360
if (TheLoop->getHeader() != TheLoop->getLoopLatch()) {
361
BB2VPBB[TheLoop->getLoopLatch()] = VectorLatchVPBB;
362
} else {
363
TheRegion->setExiting(VectorHeaderVPBB);
364
delete VectorLatchVPBB;
365
}
366
367
// 1. Scan the body of the loop in a topological order to visit each basic
368
// block after having visited its predecessor basic blocks. Create a VPBB for
369
// each BB and link it to its successor and predecessor VPBBs. Note that
370
// predecessors must be set in the same order as they are in the incomming IR.
371
// Otherwise, there might be problems with existing phi nodes and algorithm
372
// based on predecessors traversal.
373
374
// Loop PH needs to be explicitly visited since it's not taken into account by
375
// LoopBlocksDFS.
376
for (auto &I : *ThePreheaderBB) {
377
if (I.getType()->isVoidTy())
378
continue;
379
IRDef2VPValue[&I] = Plan.getOrAddLiveIn(&I);
380
}
381
382
LoopBlocksRPO RPO(TheLoop);
383
RPO.perform(LI);
384
385
for (BasicBlock *BB : RPO) {
386
// Create or retrieve the VPBasicBlock for this BB and create its
387
// VPInstructions.
388
VPBasicBlock *VPBB = getOrCreateVPBB(BB);
389
VPRegionBlock *Region = VPBB->getParent();
390
createVPInstructionsForVPBB(VPBB, BB);
391
Loop *LoopForBB = LI->getLoopFor(BB);
392
// Set VPBB predecessors in the same order as they are in the incoming BB.
393
if (!isHeaderBB(BB, LoopForBB)) {
394
setVPBBPredsFromBB(VPBB, BB);
395
} else {
396
// BB is a loop header, set the predecessor for the region, except for the
397
// top region, whose predecessor was set when creating VPlan's skeleton.
398
assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree");
399
if (TheRegion != Region)
400
setRegionPredsFromBB(Region, BB);
401
}
402
403
// Set VPBB successors. We create empty VPBBs for successors if they don't
404
// exist already. Recipes will be created when the successor is visited
405
// during the RPO traversal.
406
auto *BI = cast<BranchInst>(BB->getTerminator());
407
unsigned NumSuccs = succ_size(BB);
408
if (NumSuccs == 1) {
409
auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor());
410
VPBB->setOneSuccessor(isHeaderVPBB(Successor)
411
? Successor->getParent()
412
: static_cast<VPBlockBase *>(Successor));
413
continue;
414
}
415
assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() &&
416
"block must have conditional branch with 2 successors");
417
// Look up the branch condition to get the corresponding VPValue
418
// representing the condition bit in VPlan (which may be in another VPBB).
419
assert(IRDef2VPValue.contains(BI->getCondition()) &&
420
"Missing condition bit in IRDef2VPValue!");
421
VPBasicBlock *Successor0 = getOrCreateVPBB(BI->getSuccessor(0));
422
VPBasicBlock *Successor1 = getOrCreateVPBB(BI->getSuccessor(1));
423
if (!LoopForBB || BB != LoopForBB->getLoopLatch()) {
424
VPBB->setTwoSuccessors(Successor0, Successor1);
425
continue;
426
}
427
// For a latch we need to set the successor of the region rather than that
428
// of VPBB and it should be set to the exit, i.e., non-header successor,
429
// except for the top region, whose successor was set when creating VPlan's
430
// skeleton.
431
if (TheRegion != Region) {
432
Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1
433
: Successor0);
434
Region->setExiting(VPBB);
435
}
436
}
437
438
// 2. The whole CFG has been built at this point so all the input Values must
439
// have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
440
// VPlan operands.
441
fixPhiNodes();
442
}
443
444
void VPlanHCFGBuilder::buildPlainCFG() {
445
PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
446
PCFGBuilder.buildPlainCFG();
447
}
448
449
// Public interface to build a H-CFG.
450
void VPlanHCFGBuilder::buildHierarchicalCFG() {
451
// Build Top Region enclosing the plain CFG.
452
buildPlainCFG();
453
LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
454
455
// Compute plain CFG dom tree for VPLInfo.
456
VPDomTree.recalculate(Plan);
457
LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
458
VPDomTree.print(dbgs()));
459
}
460
461