Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/tools/llvm-diff/lib/DifferenceEngine.cpp
35291 views
1
//===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This header defines the implementation of the LLVM difference
10
// engine, which structurally compares global values within a module.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "DifferenceEngine.h"
15
#include "llvm/ADT/DenseMap.h"
16
#include "llvm/ADT/DenseSet.h"
17
#include "llvm/ADT/SmallString.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/ADT/StringSet.h"
20
#include "llvm/IR/BasicBlock.h"
21
#include "llvm/IR/CFG.h"
22
#include "llvm/IR/Constants.h"
23
#include "llvm/IR/Function.h"
24
#include "llvm/IR/Instructions.h"
25
#include "llvm/IR/Module.h"
26
#include "llvm/Support/ErrorHandling.h"
27
#include "llvm/Support/raw_ostream.h"
28
#include "llvm/Support/type_traits.h"
29
#include <utility>
30
31
using namespace llvm;
32
33
namespace {
34
35
/// A priority queue, implemented as a heap.
36
template <class T, class Sorter, unsigned InlineCapacity>
37
class PriorityQueue {
38
Sorter Precedes;
39
llvm::SmallVector<T, InlineCapacity> Storage;
40
41
public:
42
PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43
44
/// Checks whether the heap is empty.
45
bool empty() const { return Storage.empty(); }
46
47
/// Insert a new value on the heap.
48
void insert(const T &V) {
49
unsigned Index = Storage.size();
50
Storage.push_back(V);
51
if (Index == 0) return;
52
53
T *data = Storage.data();
54
while (true) {
55
unsigned Target = (Index + 1) / 2 - 1;
56
if (!Precedes(data[Index], data[Target])) return;
57
std::swap(data[Index], data[Target]);
58
if (Target == 0) return;
59
Index = Target;
60
}
61
}
62
63
/// Remove the minimum value in the heap. Only valid on a non-empty heap.
64
T remove_min() {
65
assert(!empty());
66
T tmp = Storage[0];
67
68
unsigned NewSize = Storage.size() - 1;
69
if (NewSize) {
70
// Move the slot at the end to the beginning.
71
if (std::is_trivially_copyable<T>::value)
72
Storage[0] = Storage[NewSize];
73
else
74
std::swap(Storage[0], Storage[NewSize]);
75
76
// Bubble the root up as necessary.
77
unsigned Index = 0;
78
while (true) {
79
// With a 1-based index, the children would be Index*2 and Index*2+1.
80
unsigned R = (Index + 1) * 2;
81
unsigned L = R - 1;
82
83
// If R is out of bounds, we're done after this in any case.
84
if (R >= NewSize) {
85
// If L is also out of bounds, we're done immediately.
86
if (L >= NewSize) break;
87
88
// Otherwise, test whether we should swap L and Index.
89
if (Precedes(Storage[L], Storage[Index]))
90
std::swap(Storage[L], Storage[Index]);
91
break;
92
}
93
94
// Otherwise, we need to compare with the smaller of L and R.
95
// Prefer R because it's closer to the end of the array.
96
unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97
98
// If Index is >= the min of L and R, then heap ordering is restored.
99
if (!Precedes(Storage[IndexToTest], Storage[Index]))
100
break;
101
102
// Otherwise, keep bubbling up.
103
std::swap(Storage[IndexToTest], Storage[Index]);
104
Index = IndexToTest;
105
}
106
}
107
Storage.pop_back();
108
109
return tmp;
110
}
111
};
112
113
/// A function-scope difference engine.
114
class FunctionDifferenceEngine {
115
DifferenceEngine &Engine;
116
117
// Some initializers may reference the variable we're currently checking. This
118
// can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
119
// recursing.
120
const Value *SavedLHS;
121
const Value *SavedRHS;
122
123
// The current mapping from old local values to new local values.
124
DenseMap<const Value *, const Value *> Values;
125
126
// The current mapping from old blocks to new blocks.
127
DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
128
129
// The tentative mapping from old local values while comparing a pair of
130
// basic blocks. Once the pair has been processed, the tentative mapping is
131
// committed to the Values map.
132
DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
133
134
// Equivalence Assumptions
135
//
136
// For basic blocks in loops, some values in phi nodes may depend on
137
// values from not yet processed basic blocks in the loop. When encountering
138
// such values, we optimistically asssume their equivalence and store this
139
// assumption in a BlockDiffCandidate for the pair of compared BBs.
140
//
141
// Once we have diffed all BBs, for every BlockDiffCandidate, we check all
142
// stored assumptions using the Values map that stores proven equivalences
143
// between the old and new values, and report a diff if an assumption cannot
144
// be proven to be true.
145
//
146
// Note that after having made an assumption, all further determined
147
// equivalences implicitly depend on that assumption. These will not be
148
// reverted or reported if the assumption proves to be false, because these
149
// are considered indirect diffs caused by earlier direct diffs.
150
//
151
// We aim to avoid false negatives in llvm-diff, that is, ensure that
152
// whenever no diff is reported, the functions are indeed equal. If
153
// assumptions were made, this is not entirely clear, because in principle we
154
// could end up with a circular proof where the proof of equivalence of two
155
// nodes is depending on the assumption of their equivalence.
156
//
157
// To see that assumptions do not add false negatives, note that if we do not
158
// report a diff, this means that there is an equivalence mapping between old
159
// and new values that is consistent with all assumptions made. The circular
160
// dependency that exists on an IR value level does not exist at run time,
161
// because the values selected by the phi nodes must always already have been
162
// computed. Hence, we can prove equivalence of the old and new functions by
163
// considering step-wise parallel execution, and incrementally proving
164
// equivalence of every new computed value. Another way to think about it is
165
// to imagine cloning the loop BBs for every iteration, turning the loops
166
// into (possibly infinite) DAGs, and proving equivalence by induction on the
167
// iteration, using the computed value mapping.
168
169
// The class BlockDiffCandidate stores pairs which either have already been
170
// proven to differ, or pairs whose equivalence depends on assumptions to be
171
// verified later.
172
struct BlockDiffCandidate {
173
const BasicBlock *LBB;
174
const BasicBlock *RBB;
175
// Maps old values to assumed-to-be-equivalent new values
176
SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
177
// If set, we already know the blocks differ.
178
bool KnownToDiffer;
179
};
180
181
// List of block diff candidates in the order found by processing.
182
// We generate reports in this order.
183
// For every LBB, there may only be one corresponding RBB.
184
SmallVector<BlockDiffCandidate> BlockDiffCandidates;
185
// Maps LBB to the index of its BlockDiffCandidate, if existing.
186
DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
187
188
// Note: Every LBB must always be queried together with the same RBB.
189
// The returned reference is not permanently valid and should not be stored.
190
BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
191
const BasicBlock *RBB) {
192
auto It = BlockDiffCandidateIndices.find(LBB);
193
// Check if LBB already has a diff candidate
194
if (It == BlockDiffCandidateIndices.end()) {
195
// Add new one
196
BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
197
BlockDiffCandidates.push_back(
198
{LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
199
return BlockDiffCandidates.back();
200
}
201
// Use existing one
202
BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
203
assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
204
return Result;
205
}
206
207
// Optionally passed to equivalence checker functions, so these can add
208
// assumptions in BlockDiffCandidates. Its presence controls whether
209
// assumptions are generated.
210
struct AssumptionContext {
211
// The two basic blocks that need the two compared values to be equivalent.
212
const BasicBlock *LBB;
213
const BasicBlock *RBB;
214
};
215
216
unsigned getUnprocPredCount(const BasicBlock *Block) const {
217
return llvm::count_if(predecessors(Block), [&](const BasicBlock *Pred) {
218
return !Blocks.contains(Pred);
219
});
220
}
221
222
typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
223
224
/// A type which sorts a priority queue by the number of unprocessed
225
/// predecessor blocks it has remaining.
226
///
227
/// This is actually really expensive to calculate.
228
struct QueueSorter {
229
const FunctionDifferenceEngine &fde;
230
explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
231
232
bool operator()(BlockPair &Old, BlockPair &New) {
233
return fde.getUnprocPredCount(Old.first)
234
< fde.getUnprocPredCount(New.first);
235
}
236
};
237
238
/// A queue of unified blocks to process.
239
PriorityQueue<BlockPair, QueueSorter, 20> Queue;
240
241
/// Try to unify the given two blocks. Enqueues them for processing
242
/// if they haven't already been processed.
243
///
244
/// Returns true if there was a problem unifying them.
245
bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
246
const BasicBlock *&Ref = Blocks[L];
247
248
if (Ref) {
249
if (Ref == R) return false;
250
251
Engine.logf("successor %l cannot be equivalent to %r; "
252
"it's already equivalent to %r")
253
<< L << R << Ref;
254
return true;
255
}
256
257
Ref = R;
258
Queue.insert(BlockPair(L, R));
259
return false;
260
}
261
262
/// Unifies two instructions, given that they're known not to have
263
/// structural differences.
264
void unify(const Instruction *L, const Instruction *R) {
265
DifferenceEngine::Context C(Engine, L, R);
266
267
bool Result = diff(L, R, true, true, true);
268
assert(!Result && "structural differences second time around?");
269
(void) Result;
270
if (!L->use_empty())
271
Values[L] = R;
272
}
273
274
void processQueue() {
275
while (!Queue.empty()) {
276
BlockPair Pair = Queue.remove_min();
277
diff(Pair.first, Pair.second);
278
}
279
}
280
281
void checkAndReportDiffCandidates() {
282
for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
283
284
// Check assumptions
285
for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
286
auto It = Values.find(L);
287
if (It == Values.end() || It->second != R) {
288
BDC.KnownToDiffer = true;
289
break;
290
}
291
}
292
293
// Run block diff if the BBs differ
294
if (BDC.KnownToDiffer) {
295
DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
296
runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
297
}
298
}
299
}
300
301
void diff(const BasicBlock *L, const BasicBlock *R) {
302
DifferenceEngine::Context C(Engine, L, R);
303
304
BasicBlock::const_iterator LI = L->begin(), LE = L->end();
305
BasicBlock::const_iterator RI = R->begin();
306
307
do {
308
assert(LI != LE && RI != R->end());
309
const Instruction *LeftI = &*LI, *RightI = &*RI;
310
311
// If the instructions differ, start the more sophisticated diff
312
// algorithm at the start of the block.
313
if (diff(LeftI, RightI, false, false, true)) {
314
TentativeValues.clear();
315
// Register (L, R) as diffing pair. Note that we could directly emit a
316
// block diff here, but this way we ensure all diffs are emitted in one
317
// consistent order, independent of whether the diffs were detected
318
// immediately or via invalid assumptions.
319
getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
320
return;
321
}
322
323
// Otherwise, tentatively unify them.
324
if (!LeftI->use_empty())
325
TentativeValues.insert(std::make_pair(LeftI, RightI));
326
327
++LI;
328
++RI;
329
} while (LI != LE); // This is sufficient: we can't get equality of
330
// terminators if there are residual instructions.
331
332
// Unify everything in the block, non-tentatively this time.
333
TentativeValues.clear();
334
for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
335
unify(&*LI, &*RI);
336
}
337
338
bool matchForBlockDiff(const Instruction *L, const Instruction *R);
339
void runBlockDiff(BasicBlock::const_iterator LI,
340
BasicBlock::const_iterator RI);
341
342
bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
343
// FIXME: call attributes
344
AssumptionContext AC = {L.getParent(), R.getParent()};
345
if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
346
&AC)) {
347
if (Complain) Engine.log("called functions differ");
348
return true;
349
}
350
if (L.arg_size() != R.arg_size()) {
351
if (Complain) Engine.log("argument counts differ");
352
return true;
353
}
354
for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
355
if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
356
if (Complain)
357
Engine.logf("arguments %l and %r differ")
358
<< L.getArgOperand(I) << R.getArgOperand(I);
359
return true;
360
}
361
return false;
362
}
363
364
// If AllowAssumptions is enabled, whenever we encounter a pair of values
365
// that we cannot prove to be equivalent, we assume equivalence and store that
366
// assumption to be checked later in BlockDiffCandidates.
367
bool diff(const Instruction *L, const Instruction *R, bool Complain,
368
bool TryUnify, bool AllowAssumptions) {
369
// FIXME: metadata (if Complain is set)
370
AssumptionContext ACValue = {L->getParent(), R->getParent()};
371
// nullptr AssumptionContext disables assumption generation.
372
const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
373
374
// Different opcodes always imply different operations.
375
if (L->getOpcode() != R->getOpcode()) {
376
if (Complain) Engine.log("different instruction types");
377
return true;
378
}
379
380
if (isa<CmpInst>(L)) {
381
if (cast<CmpInst>(L)->getPredicate()
382
!= cast<CmpInst>(R)->getPredicate()) {
383
if (Complain) Engine.log("different predicates");
384
return true;
385
}
386
} else if (isa<CallInst>(L)) {
387
return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
388
} else if (isa<PHINode>(L)) {
389
const PHINode &LI = cast<PHINode>(*L);
390
const PHINode &RI = cast<PHINode>(*R);
391
392
// This is really weird; type uniquing is broken?
393
if (LI.getType() != RI.getType()) {
394
if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
395
if (Complain) Engine.log("different phi types");
396
return true;
397
}
398
}
399
400
if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
401
if (Complain)
402
Engine.log("PHI node # of incoming values differ");
403
return true;
404
}
405
406
for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
407
if (TryUnify)
408
tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));
409
410
if (!equivalentAsOperands(LI.getIncomingValue(I),
411
RI.getIncomingValue(I), AC)) {
412
if (Complain)
413
Engine.log("PHI node incoming values differ");
414
return true;
415
}
416
}
417
418
return false;
419
420
// Terminators.
421
} else if (isa<InvokeInst>(L)) {
422
const InvokeInst &LI = cast<InvokeInst>(*L);
423
const InvokeInst &RI = cast<InvokeInst>(*R);
424
if (diffCallSites(LI, RI, Complain))
425
return true;
426
427
if (TryUnify) {
428
tryUnify(LI.getNormalDest(), RI.getNormalDest());
429
tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
430
}
431
return false;
432
433
} else if (isa<CallBrInst>(L)) {
434
const CallBrInst &LI = cast<CallBrInst>(*L);
435
const CallBrInst &RI = cast<CallBrInst>(*R);
436
if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
437
if (Complain)
438
Engine.log("callbr # of indirect destinations differ");
439
return true;
440
}
441
442
// Perform the "try unify" step so that we can equate the indirect
443
// destinations before checking the call site.
444
for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
445
tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
446
447
if (diffCallSites(LI, RI, Complain))
448
return true;
449
450
if (TryUnify)
451
tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
452
return false;
453
454
} else if (isa<BranchInst>(L)) {
455
const BranchInst *LI = cast<BranchInst>(L);
456
const BranchInst *RI = cast<BranchInst>(R);
457
if (LI->isConditional() != RI->isConditional()) {
458
if (Complain) Engine.log("branch conditionality differs");
459
return true;
460
}
461
462
if (LI->isConditional()) {
463
if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
464
if (Complain) Engine.log("branch conditions differ");
465
return true;
466
}
467
if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
468
}
469
if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
470
return false;
471
472
} else if (isa<IndirectBrInst>(L)) {
473
const IndirectBrInst *LI = cast<IndirectBrInst>(L);
474
const IndirectBrInst *RI = cast<IndirectBrInst>(R);
475
if (LI->getNumDestinations() != RI->getNumDestinations()) {
476
if (Complain) Engine.log("indirectbr # of destinations differ");
477
return true;
478
}
479
480
if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
481
if (Complain) Engine.log("indirectbr addresses differ");
482
return true;
483
}
484
485
if (TryUnify) {
486
for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
487
tryUnify(LI->getDestination(i), RI->getDestination(i));
488
}
489
}
490
return false;
491
492
} else if (isa<SwitchInst>(L)) {
493
const SwitchInst *LI = cast<SwitchInst>(L);
494
const SwitchInst *RI = cast<SwitchInst>(R);
495
if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
496
if (Complain) Engine.log("switch conditions differ");
497
return true;
498
}
499
if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
500
501
bool Difference = false;
502
503
DenseMap<const ConstantInt *, const BasicBlock *> LCases;
504
for (auto Case : LI->cases())
505
LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
506
507
for (auto Case : RI->cases()) {
508
const ConstantInt *CaseValue = Case.getCaseValue();
509
const BasicBlock *LCase = LCases[CaseValue];
510
if (LCase) {
511
if (TryUnify)
512
tryUnify(LCase, Case.getCaseSuccessor());
513
LCases.erase(CaseValue);
514
} else if (Complain || !Difference) {
515
if (Complain)
516
Engine.logf("right switch has extra case %r") << CaseValue;
517
Difference = true;
518
}
519
}
520
if (!Difference)
521
for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
522
I = LCases.begin(),
523
E = LCases.end();
524
I != E; ++I) {
525
if (Complain)
526
Engine.logf("left switch has extra case %l") << I->first;
527
Difference = true;
528
}
529
return Difference;
530
} else if (isa<UnreachableInst>(L)) {
531
return false;
532
}
533
534
if (L->getNumOperands() != R->getNumOperands()) {
535
if (Complain) Engine.log("instructions have different operand counts");
536
return true;
537
}
538
539
for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
540
Value *LO = L->getOperand(I), *RO = R->getOperand(I);
541
if (!equivalentAsOperands(LO, RO, AC)) {
542
if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
543
return true;
544
}
545
}
546
547
return false;
548
}
549
550
public:
551
bool equivalentAsOperands(const Constant *L, const Constant *R,
552
const AssumptionContext *AC) {
553
// Use equality as a preliminary filter.
554
if (L == R)
555
return true;
556
557
if (L->getValueID() != R->getValueID())
558
return false;
559
560
// Ask the engine about global values.
561
if (isa<GlobalValue>(L))
562
return Engine.equivalentAsOperands(cast<GlobalValue>(L),
563
cast<GlobalValue>(R));
564
565
// Compare constant expressions structurally.
566
if (isa<ConstantExpr>(L))
567
return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
568
AC);
569
570
// Constants of the "same type" don't always actually have the same
571
// type; I don't know why. Just white-list them.
572
if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
573
return true;
574
575
// Block addresses only match if we've already encountered the
576
// block. FIXME: tentative matches?
577
if (isa<BlockAddress>(L))
578
return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
579
== cast<BlockAddress>(R)->getBasicBlock();
580
581
// If L and R are ConstantVectors, compare each element
582
if (isa<ConstantVector>(L)) {
583
const ConstantVector *CVL = cast<ConstantVector>(L);
584
const ConstantVector *CVR = cast<ConstantVector>(R);
585
if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
586
return false;
587
for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
588
if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
589
return false;
590
}
591
return true;
592
}
593
594
// If L and R are ConstantArrays, compare the element count and types.
595
if (isa<ConstantArray>(L)) {
596
const ConstantArray *CAL = cast<ConstantArray>(L);
597
const ConstantArray *CAR = cast<ConstantArray>(R);
598
// Sometimes a type may be equivalent, but not uniquified---e.g. it may
599
// contain a GEP instruction. Do a deeper comparison of the types.
600
if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
601
return false;
602
603
for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
604
if (!equivalentAsOperands(CAL->getAggregateElement(I),
605
CAR->getAggregateElement(I), AC))
606
return false;
607
}
608
609
return true;
610
}
611
612
// If L and R are ConstantStructs, compare each field and type.
613
if (isa<ConstantStruct>(L)) {
614
const ConstantStruct *CSL = cast<ConstantStruct>(L);
615
const ConstantStruct *CSR = cast<ConstantStruct>(R);
616
617
const StructType *LTy = cast<StructType>(CSL->getType());
618
const StructType *RTy = cast<StructType>(CSR->getType());
619
620
// The StructTypes should have the same attributes. Don't use
621
// isLayoutIdentical(), because that just checks the element pointers,
622
// which may not work here.
623
if (LTy->getNumElements() != RTy->getNumElements() ||
624
LTy->isPacked() != RTy->isPacked())
625
return false;
626
627
for (unsigned I = 0; I < LTy->getNumElements(); I++) {
628
const Value *LAgg = CSL->getAggregateElement(I);
629
const Value *RAgg = CSR->getAggregateElement(I);
630
631
if (LAgg == SavedLHS || RAgg == SavedRHS) {
632
if (LAgg != SavedLHS || RAgg != SavedRHS)
633
// If the left and right operands aren't both re-analyzing the
634
// variable, then the initialiers don't match, so report "false".
635
// Otherwise, we skip these operands..
636
return false;
637
638
continue;
639
}
640
641
if (!equivalentAsOperands(LAgg, RAgg, AC)) {
642
return false;
643
}
644
}
645
646
return true;
647
}
648
649
return false;
650
}
651
652
bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
653
const AssumptionContext *AC) {
654
if (L == R)
655
return true;
656
657
if (L->getOpcode() != R->getOpcode())
658
return false;
659
660
switch (L->getOpcode()) {
661
case Instruction::GetElementPtr:
662
// FIXME: inbounds?
663
break;
664
665
default:
666
break;
667
}
668
669
if (L->getNumOperands() != R->getNumOperands())
670
return false;
671
672
for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
673
const auto *LOp = L->getOperand(I);
674
const auto *ROp = R->getOperand(I);
675
676
if (LOp == SavedLHS || ROp == SavedRHS) {
677
if (LOp != SavedLHS || ROp != SavedRHS)
678
// If the left and right operands aren't both re-analyzing the
679
// variable, then the initialiers don't match, so report "false".
680
// Otherwise, we skip these operands..
681
return false;
682
683
continue;
684
}
685
686
if (!equivalentAsOperands(LOp, ROp, AC))
687
return false;
688
}
689
690
return true;
691
}
692
693
// There are cases where we cannot determine whether two values are
694
// equivalent, because it depends on not yet processed basic blocks -- see the
695
// documentation on assumptions.
696
//
697
// AC is the context in which we are currently performing a diff.
698
// When we encounter a pair of values for which we can neither prove
699
// equivalence nor the opposite, we do the following:
700
// * If AC is nullptr, we treat the pair as non-equivalent.
701
// * If AC is set, we add an assumption for the basic blocks given by AC,
702
// and treat the pair as equivalent. The assumption is checked later.
703
bool equivalentAsOperands(const Value *L, const Value *R,
704
const AssumptionContext *AC) {
705
// Fall out if the values have different kind.
706
// This possibly shouldn't take priority over oracles.
707
if (L->getValueID() != R->getValueID())
708
return false;
709
710
// Value subtypes: Argument, Constant, Instruction, BasicBlock,
711
// InlineAsm, MDNode, MDString, PseudoSourceValue
712
713
if (isa<Constant>(L))
714
return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);
715
716
if (isa<Instruction>(L)) {
717
auto It = Values.find(L);
718
if (It != Values.end())
719
return It->second == R;
720
721
if (TentativeValues.count(std::make_pair(L, R)))
722
return true;
723
724
// L and R might be equivalent, this could depend on not yet processed
725
// basic blocks, so we cannot decide here.
726
if (AC) {
727
// Add an assumption, unless there is a conflict with an existing one
728
BlockDiffCandidate &BDC =
729
getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
730
auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
731
if (!InsertionResult.second && InsertionResult.first->second != R) {
732
// We already have a conflicting equivalence assumption for L, so at
733
// least one must be wrong, and we know that there is a diff.
734
BDC.KnownToDiffer = true;
735
BDC.EquivalenceAssumptions.clear();
736
return false;
737
}
738
// Optimistically assume equivalence, and check later once all BBs
739
// have been processed.
740
return true;
741
}
742
743
// Assumptions disabled, so pessimistically assume non-equivalence.
744
return false;
745
}
746
747
if (isa<Argument>(L))
748
return Values[L] == R;
749
750
if (isa<BasicBlock>(L))
751
return Blocks[cast<BasicBlock>(L)] != R;
752
753
// Pretend everything else is identical.
754
return true;
755
}
756
757
// Avoid a gcc warning about accessing 'this' in an initializer.
758
FunctionDifferenceEngine *this_() { return this; }
759
760
public:
761
FunctionDifferenceEngine(DifferenceEngine &Engine,
762
const Value *SavedLHS = nullptr,
763
const Value *SavedRHS = nullptr)
764
: Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
765
Queue(QueueSorter(*this_())) {}
766
767
void diff(const Function *L, const Function *R) {
768
assert(Values.empty() && "Multiple diffs per engine are not supported!");
769
770
if (L->arg_size() != R->arg_size())
771
Engine.log("different argument counts");
772
773
// Map the arguments.
774
for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
775
RI = R->arg_begin(), RE = R->arg_end();
776
LI != LE && RI != RE; ++LI, ++RI)
777
Values[&*LI] = &*RI;
778
779
tryUnify(&*L->begin(), &*R->begin());
780
processQueue();
781
checkAndReportDiffCandidates();
782
}
783
};
784
785
struct DiffEntry {
786
DiffEntry() = default;
787
788
unsigned Cost = 0;
789
llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
790
};
791
792
bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
793
const Instruction *R) {
794
return !diff(L, R, false, false, false);
795
}
796
797
void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
798
BasicBlock::const_iterator RStart) {
799
BasicBlock::const_iterator LE = LStart->getParent()->end();
800
BasicBlock::const_iterator RE = RStart->getParent()->end();
801
802
unsigned NL = std::distance(LStart, LE);
803
804
SmallVector<DiffEntry, 20> Paths1(NL+1);
805
SmallVector<DiffEntry, 20> Paths2(NL+1);
806
807
DiffEntry *Cur = Paths1.data();
808
DiffEntry *Next = Paths2.data();
809
810
const unsigned LeftCost = 2;
811
const unsigned RightCost = 2;
812
const unsigned MatchCost = 0;
813
814
assert(TentativeValues.empty());
815
816
// Initialize the first column.
817
for (unsigned I = 0; I != NL+1; ++I) {
818
Cur[I].Cost = I * LeftCost;
819
for (unsigned J = 0; J != I; ++J)
820
Cur[I].Path.push_back(DC_left);
821
}
822
823
for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
824
// Initialize the first row.
825
Next[0] = Cur[0];
826
Next[0].Cost += RightCost;
827
Next[0].Path.push_back(DC_right);
828
829
unsigned Index = 1;
830
for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
831
if (matchForBlockDiff(&*LI, &*RI)) {
832
Next[Index] = Cur[Index-1];
833
Next[Index].Cost += MatchCost;
834
Next[Index].Path.push_back(DC_match);
835
TentativeValues.insert(std::make_pair(&*LI, &*RI));
836
} else if (Next[Index-1].Cost <= Cur[Index].Cost) {
837
Next[Index] = Next[Index-1];
838
Next[Index].Cost += LeftCost;
839
Next[Index].Path.push_back(DC_left);
840
} else {
841
Next[Index] = Cur[Index];
842
Next[Index].Cost += RightCost;
843
Next[Index].Path.push_back(DC_right);
844
}
845
}
846
847
std::swap(Cur, Next);
848
}
849
850
// We don't need the tentative values anymore; everything from here
851
// on out should be non-tentative.
852
TentativeValues.clear();
853
854
SmallVectorImpl<char> &Path = Cur[NL].Path;
855
BasicBlock::const_iterator LI = LStart, RI = RStart;
856
857
DiffLogBuilder Diff(Engine.getConsumer());
858
859
// Drop trailing matches.
860
while (Path.size() && Path.back() == DC_match)
861
Path.pop_back();
862
863
// Skip leading matches.
864
SmallVectorImpl<char>::iterator
865
PI = Path.begin(), PE = Path.end();
866
while (PI != PE && *PI == DC_match) {
867
unify(&*LI, &*RI);
868
++PI;
869
++LI;
870
++RI;
871
}
872
873
for (; PI != PE; ++PI) {
874
switch (static_cast<DiffChange>(*PI)) {
875
case DC_match:
876
assert(LI != LE && RI != RE);
877
{
878
const Instruction *L = &*LI, *R = &*RI;
879
unify(L, R);
880
Diff.addMatch(L, R);
881
}
882
++LI; ++RI;
883
break;
884
885
case DC_left:
886
assert(LI != LE);
887
Diff.addLeft(&*LI);
888
++LI;
889
break;
890
891
case DC_right:
892
assert(RI != RE);
893
Diff.addRight(&*RI);
894
++RI;
895
break;
896
}
897
}
898
899
// Finishing unifying and complaining about the tails of the block,
900
// which should be matches all the way through.
901
while (LI != LE) {
902
assert(RI != RE);
903
unify(&*LI, &*RI);
904
++LI;
905
++RI;
906
}
907
908
// If the terminators have different kinds, but one is an invoke and the
909
// other is an unconditional branch immediately following a call, unify
910
// the results and the destinations.
911
const Instruction *LTerm = LStart->getParent()->getTerminator();
912
const Instruction *RTerm = RStart->getParent()->getTerminator();
913
if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
914
if (cast<BranchInst>(LTerm)->isConditional()) return;
915
BasicBlock::const_iterator I = LTerm->getIterator();
916
if (I == LStart->getParent()->begin()) return;
917
--I;
918
if (!isa<CallInst>(*I)) return;
919
const CallInst *LCall = cast<CallInst>(&*I);
920
const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
921
if (!equivalentAsOperands(LCall->getCalledOperand(),
922
RInvoke->getCalledOperand(), nullptr))
923
return;
924
if (!LCall->use_empty())
925
Values[LCall] = RInvoke;
926
tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
927
} else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
928
if (cast<BranchInst>(RTerm)->isConditional()) return;
929
BasicBlock::const_iterator I = RTerm->getIterator();
930
if (I == RStart->getParent()->begin()) return;
931
--I;
932
if (!isa<CallInst>(*I)) return;
933
const CallInst *RCall = cast<CallInst>(I);
934
const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
935
if (!equivalentAsOperands(LInvoke->getCalledOperand(),
936
RCall->getCalledOperand(), nullptr))
937
return;
938
if (!LInvoke->use_empty())
939
Values[LInvoke] = RCall;
940
tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
941
}
942
}
943
}
944
945
void DifferenceEngine::Oracle::anchor() { }
946
947
void DifferenceEngine::diff(const Function *L, const Function *R) {
948
Context C(*this, L, R);
949
950
// FIXME: types
951
// FIXME: attributes and CC
952
// FIXME: parameter attributes
953
954
// If both are declarations, we're done.
955
if (L->empty() && R->empty())
956
return;
957
else if (L->empty())
958
log("left function is declaration, right function is definition");
959
else if (R->empty())
960
log("right function is declaration, left function is definition");
961
else
962
FunctionDifferenceEngine(*this).diff(L, R);
963
}
964
965
void DifferenceEngine::diff(const Module *L, const Module *R) {
966
StringSet<> LNames;
967
SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
968
969
unsigned LeftAnonCount = 0;
970
unsigned RightAnonCount = 0;
971
972
for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
973
const Function *LFn = &*I;
974
StringRef Name = LFn->getName();
975
if (Name.empty()) {
976
++LeftAnonCount;
977
continue;
978
}
979
980
LNames.insert(Name);
981
982
if (Function *RFn = R->getFunction(LFn->getName()))
983
Queue.push_back(std::make_pair(LFn, RFn));
984
else
985
logf("function %l exists only in left module") << LFn;
986
}
987
988
for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
989
const Function *RFn = &*I;
990
StringRef Name = RFn->getName();
991
if (Name.empty()) {
992
++RightAnonCount;
993
continue;
994
}
995
996
if (!LNames.count(Name))
997
logf("function %r exists only in right module") << RFn;
998
}
999
1000
if (LeftAnonCount != 0 || RightAnonCount != 0) {
1001
SmallString<32> Tmp;
1002
logf(("not comparing " + Twine(LeftAnonCount) +
1003
" anonymous functions in the left module and " +
1004
Twine(RightAnonCount) + " in the right module")
1005
.toStringRef(Tmp));
1006
}
1007
1008
for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
1009
I = Queue.begin(),
1010
E = Queue.end();
1011
I != E; ++I)
1012
diff(I->first, I->second);
1013
}
1014
1015
bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
1016
const GlobalValue *R) {
1017
if (globalValueOracle) return (*globalValueOracle)(L, R);
1018
1019
if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
1020
const GlobalVariable *GVL = cast<GlobalVariable>(L);
1021
const GlobalVariable *GVR = cast<GlobalVariable>(R);
1022
if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
1023
GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
1024
return FunctionDifferenceEngine(*this, GVL, GVR)
1025
.equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
1026
nullptr);
1027
}
1028
1029
return L->getName() == R->getName();
1030
}
1031
1032