Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/tools/llvm-mca/Views/TimelineView.cpp
35290 views
1
//===--------------------- TimelineView.cpp ---------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \brief
9
///
10
/// This file implements the TimelineView interface.
11
///
12
//===----------------------------------------------------------------------===//
13
14
#include "Views/TimelineView.h"
15
#include <numeric>
16
17
namespace llvm {
18
namespace mca {
19
20
TimelineView::TimelineView(const MCSubtargetInfo &sti, MCInstPrinter &Printer,
21
llvm::ArrayRef<llvm::MCInst> S, unsigned Iterations,
22
unsigned Cycles)
23
: InstructionView(sti, Printer, S), CurrentCycle(0),
24
MaxCycle(Cycles == 0 ? std::numeric_limits<unsigned>::max() : Cycles),
25
LastCycle(0), WaitTime(S.size()), UsedBuffer(S.size()) {
26
unsigned NumInstructions = getSource().size();
27
assert(Iterations && "Invalid number of iterations specified!");
28
NumInstructions *= Iterations;
29
Timeline.resize(NumInstructions);
30
TimelineViewEntry InvalidTVEntry = {-1, 0, 0, 0, 0};
31
std::fill(Timeline.begin(), Timeline.end(), InvalidTVEntry);
32
33
WaitTimeEntry NullWTEntry = {0, 0, 0};
34
std::fill(WaitTime.begin(), WaitTime.end(), NullWTEntry);
35
36
std::pair<unsigned, int> NullUsedBufferEntry = {/* Invalid resource ID*/ 0,
37
/* unknown buffer size */ -1};
38
std::fill(UsedBuffer.begin(), UsedBuffer.end(), NullUsedBufferEntry);
39
}
40
41
void TimelineView::onReservedBuffers(const InstRef &IR,
42
ArrayRef<unsigned> Buffers) {
43
if (IR.getSourceIndex() >= getSource().size())
44
return;
45
46
const MCSchedModel &SM = getSubTargetInfo().getSchedModel();
47
std::pair<unsigned, int> BufferInfo = {0, -1};
48
for (const unsigned Buffer : Buffers) {
49
const MCProcResourceDesc &MCDesc = *SM.getProcResource(Buffer);
50
if (!BufferInfo.first || BufferInfo.second > MCDesc.BufferSize) {
51
BufferInfo.first = Buffer;
52
BufferInfo.second = MCDesc.BufferSize;
53
}
54
}
55
56
UsedBuffer[IR.getSourceIndex()] = BufferInfo;
57
}
58
59
void TimelineView::onEvent(const HWInstructionEvent &Event) {
60
const unsigned Index = Event.IR.getSourceIndex();
61
if (Index >= Timeline.size())
62
return;
63
64
switch (Event.Type) {
65
case HWInstructionEvent::Retired: {
66
TimelineViewEntry &TVEntry = Timeline[Index];
67
if (CurrentCycle < MaxCycle)
68
TVEntry.CycleRetired = CurrentCycle;
69
70
// Update the WaitTime entry which corresponds to this Index.
71
assert(TVEntry.CycleDispatched >= 0 && "Invalid TVEntry found!");
72
unsigned CycleDispatched = static_cast<unsigned>(TVEntry.CycleDispatched);
73
WaitTimeEntry &WTEntry = WaitTime[Index % getSource().size()];
74
WTEntry.CyclesSpentInSchedulerQueue +=
75
TVEntry.CycleIssued - CycleDispatched;
76
assert(CycleDispatched <= TVEntry.CycleReady &&
77
"Instruction cannot be ready if it hasn't been dispatched yet!");
78
WTEntry.CyclesSpentInSQWhileReady +=
79
TVEntry.CycleIssued - TVEntry.CycleReady;
80
if (CurrentCycle > TVEntry.CycleExecuted) {
81
WTEntry.CyclesSpentAfterWBAndBeforeRetire +=
82
(CurrentCycle - 1) - TVEntry.CycleExecuted;
83
}
84
break;
85
}
86
case HWInstructionEvent::Ready:
87
Timeline[Index].CycleReady = CurrentCycle;
88
break;
89
case HWInstructionEvent::Issued:
90
Timeline[Index].CycleIssued = CurrentCycle;
91
break;
92
case HWInstructionEvent::Executed:
93
Timeline[Index].CycleExecuted = CurrentCycle;
94
break;
95
case HWInstructionEvent::Dispatched:
96
// There may be multiple dispatch events. Microcoded instructions that are
97
// expanded into multiple uOps may require multiple dispatch cycles. Here,
98
// we want to capture the first dispatch cycle.
99
if (Timeline[Index].CycleDispatched == -1)
100
Timeline[Index].CycleDispatched = static_cast<int>(CurrentCycle);
101
break;
102
default:
103
return;
104
}
105
if (CurrentCycle < MaxCycle)
106
LastCycle = std::max(LastCycle, CurrentCycle);
107
}
108
109
static raw_ostream::Colors chooseColor(unsigned CumulativeCycles,
110
unsigned Executions, int BufferSize) {
111
if (CumulativeCycles && BufferSize < 0)
112
return raw_ostream::MAGENTA;
113
unsigned Size = static_cast<unsigned>(BufferSize);
114
if (CumulativeCycles >= Size * Executions)
115
return raw_ostream::RED;
116
if ((CumulativeCycles * 2) >= Size * Executions)
117
return raw_ostream::YELLOW;
118
return raw_ostream::SAVEDCOLOR;
119
}
120
121
static void tryChangeColor(raw_ostream &OS, unsigned Cycles,
122
unsigned Executions, int BufferSize) {
123
if (!OS.has_colors())
124
return;
125
126
raw_ostream::Colors Color = chooseColor(Cycles, Executions, BufferSize);
127
if (Color == raw_ostream::SAVEDCOLOR) {
128
OS.resetColor();
129
return;
130
}
131
OS.changeColor(Color, /* bold */ true, /* BG */ false);
132
}
133
134
void TimelineView::printWaitTimeEntry(formatted_raw_ostream &OS,
135
const WaitTimeEntry &Entry,
136
unsigned SourceIndex,
137
unsigned Executions) const {
138
bool PrintingTotals = SourceIndex == getSource().size();
139
unsigned CumulativeExecutions = PrintingTotals ? Timeline.size() : Executions;
140
141
if (!PrintingTotals)
142
OS << SourceIndex << '.';
143
144
OS.PadToColumn(7);
145
146
double AverageTime1, AverageTime2, AverageTime3;
147
AverageTime1 =
148
(double)(Entry.CyclesSpentInSchedulerQueue * 10) / CumulativeExecutions;
149
AverageTime2 =
150
(double)(Entry.CyclesSpentInSQWhileReady * 10) / CumulativeExecutions;
151
AverageTime3 = (double)(Entry.CyclesSpentAfterWBAndBeforeRetire * 10) /
152
CumulativeExecutions;
153
154
OS << Executions;
155
OS.PadToColumn(13);
156
157
int BufferSize = PrintingTotals ? 0 : UsedBuffer[SourceIndex].second;
158
if (!PrintingTotals)
159
tryChangeColor(OS, Entry.CyclesSpentInSchedulerQueue, CumulativeExecutions,
160
BufferSize);
161
OS << format("%.1f", floor(AverageTime1 + 0.5) / 10);
162
OS.PadToColumn(20);
163
if (!PrintingTotals)
164
tryChangeColor(OS, Entry.CyclesSpentInSQWhileReady, CumulativeExecutions,
165
BufferSize);
166
OS << format("%.1f", floor(AverageTime2 + 0.5) / 10);
167
OS.PadToColumn(27);
168
if (!PrintingTotals)
169
tryChangeColor(OS, Entry.CyclesSpentAfterWBAndBeforeRetire,
170
CumulativeExecutions,
171
getSubTargetInfo().getSchedModel().MicroOpBufferSize);
172
OS << format("%.1f", floor(AverageTime3 + 0.5) / 10);
173
174
if (OS.has_colors())
175
OS.resetColor();
176
OS.PadToColumn(34);
177
}
178
179
void TimelineView::printAverageWaitTimes(raw_ostream &OS) const {
180
std::string Header =
181
"\n\nAverage Wait times (based on the timeline view):\n"
182
"[0]: Executions\n"
183
"[1]: Average time spent waiting in a scheduler's queue\n"
184
"[2]: Average time spent waiting in a scheduler's queue while ready\n"
185
"[3]: Average time elapsed from WB until retire stage\n\n"
186
" [0] [1] [2] [3]\n";
187
OS << Header;
188
formatted_raw_ostream FOS(OS);
189
unsigned Executions = Timeline.size() / getSource().size();
190
unsigned IID = 0;
191
for (const MCInst &Inst : getSource()) {
192
printWaitTimeEntry(FOS, WaitTime[IID], IID, Executions);
193
FOS << " " << printInstructionString(Inst) << '\n';
194
FOS.flush();
195
++IID;
196
}
197
198
// If the timeline contains more than one instruction,
199
// let's also print global averages.
200
if (getSource().size() != 1) {
201
WaitTimeEntry TotalWaitTime = std::accumulate(
202
WaitTime.begin(), WaitTime.end(), WaitTimeEntry{0, 0, 0},
203
[](const WaitTimeEntry &A, const WaitTimeEntry &B) {
204
return WaitTimeEntry{
205
A.CyclesSpentInSchedulerQueue + B.CyclesSpentInSchedulerQueue,
206
A.CyclesSpentInSQWhileReady + B.CyclesSpentInSQWhileReady,
207
A.CyclesSpentAfterWBAndBeforeRetire +
208
B.CyclesSpentAfterWBAndBeforeRetire};
209
});
210
printWaitTimeEntry(FOS, TotalWaitTime, IID, Executions);
211
FOS << " "
212
<< "<total>" << '\n';
213
FOS.flush();
214
}
215
}
216
217
void TimelineView::printTimelineViewEntry(formatted_raw_ostream &OS,
218
const TimelineViewEntry &Entry,
219
unsigned Iteration,
220
unsigned SourceIndex) const {
221
if (Iteration == 0 && SourceIndex == 0)
222
OS << '\n';
223
OS << '[' << Iteration << ',' << SourceIndex << ']';
224
OS.PadToColumn(10);
225
assert(Entry.CycleDispatched >= 0 && "Invalid TimelineViewEntry!");
226
unsigned CycleDispatched = static_cast<unsigned>(Entry.CycleDispatched);
227
for (unsigned I = 0, E = CycleDispatched; I < E; ++I)
228
OS << ((I % 5 == 0) ? '.' : ' ');
229
OS << TimelineView::DisplayChar::Dispatched;
230
if (CycleDispatched != Entry.CycleExecuted) {
231
// Zero latency instructions have the same value for CycleDispatched,
232
// CycleIssued and CycleExecuted.
233
for (unsigned I = CycleDispatched + 1, E = Entry.CycleIssued; I < E; ++I)
234
OS << TimelineView::DisplayChar::Waiting;
235
if (Entry.CycleIssued == Entry.CycleExecuted)
236
OS << TimelineView::DisplayChar::DisplayChar::Executed;
237
else {
238
if (CycleDispatched != Entry.CycleIssued)
239
OS << TimelineView::DisplayChar::Executing;
240
for (unsigned I = Entry.CycleIssued + 1, E = Entry.CycleExecuted; I < E;
241
++I)
242
OS << TimelineView::DisplayChar::Executing;
243
OS << TimelineView::DisplayChar::Executed;
244
}
245
}
246
247
for (unsigned I = Entry.CycleExecuted + 1, E = Entry.CycleRetired; I < E; ++I)
248
OS << TimelineView::DisplayChar::RetireLag;
249
if (Entry.CycleExecuted < Entry.CycleRetired)
250
OS << TimelineView::DisplayChar::Retired;
251
252
// Skip other columns.
253
for (unsigned I = Entry.CycleRetired + 1, E = LastCycle; I <= E; ++I)
254
OS << ((I % 5 == 0 || I == LastCycle) ? '.' : ' ');
255
}
256
257
static void printTimelineHeader(formatted_raw_ostream &OS, unsigned Cycles) {
258
OS << "\n\nTimeline view:\n";
259
if (Cycles >= 10) {
260
OS.PadToColumn(10);
261
for (unsigned I = 0; I <= Cycles; ++I) {
262
if (((I / 10) & 1) == 0)
263
OS << ' ';
264
else
265
OS << I % 10;
266
}
267
OS << '\n';
268
}
269
270
OS << "Index";
271
OS.PadToColumn(10);
272
for (unsigned I = 0; I <= Cycles; ++I) {
273
if (((I / 10) & 1) == 0)
274
OS << I % 10;
275
else
276
OS << ' ';
277
}
278
OS << '\n';
279
}
280
281
void TimelineView::printTimeline(raw_ostream &OS) const {
282
formatted_raw_ostream FOS(OS);
283
printTimelineHeader(FOS, LastCycle);
284
FOS.flush();
285
286
unsigned IID = 0;
287
ArrayRef<llvm::MCInst> Source = getSource();
288
const unsigned Iterations = Timeline.size() / Source.size();
289
for (unsigned Iteration = 0; Iteration < Iterations; ++Iteration) {
290
for (const MCInst &Inst : Source) {
291
const TimelineViewEntry &Entry = Timeline[IID];
292
// When an instruction is retired after timeline-max-cycles,
293
// its CycleRetired is left at 0. However, it's possible for
294
// a 0 latency instruction to be retired during cycle 0 and we
295
// don't want to early exit in that case. The CycleExecuted
296
// attribute is set correctly whether or not it is greater
297
// than timeline-max-cycles so we can use that to ensure
298
// we don't early exit because of a 0 latency instruction.
299
if (Entry.CycleRetired == 0 && Entry.CycleExecuted != 0) {
300
FOS << "Truncated display due to cycle limit\n";
301
return;
302
}
303
304
unsigned SourceIndex = IID % Source.size();
305
printTimelineViewEntry(FOS, Entry, Iteration, SourceIndex);
306
FOS << " " << printInstructionString(Inst) << '\n';
307
FOS.flush();
308
309
++IID;
310
}
311
}
312
}
313
314
json::Value TimelineView::toJSON() const {
315
json::Array TimelineInfo;
316
317
for (const TimelineViewEntry &TLE : Timeline) {
318
// Check if the timeline-max-cycles has been reached.
319
if (!TLE.CycleRetired && TLE.CycleExecuted)
320
break;
321
322
TimelineInfo.push_back(
323
json::Object({{"CycleDispatched", TLE.CycleDispatched},
324
{"CycleReady", TLE.CycleReady},
325
{"CycleIssued", TLE.CycleIssued},
326
{"CycleExecuted", TLE.CycleExecuted},
327
{"CycleRetired", TLE.CycleRetired}}));
328
}
329
return json::Object({{"TimelineInfo", std::move(TimelineInfo)}});
330
}
331
} // namespace mca
332
} // namespace llvm
333
334