Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp
35231 views
1
//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This program is a utility that works like binutils "objdump", that is, it
10
// dumps out a plethora of information about an object file depending on the
11
// flags.
12
//
13
// The flags and output of this program should be near identical to those of
14
// binutils objdump.
15
//
16
//===----------------------------------------------------------------------===//
17
18
#include "llvm-objdump.h"
19
#include "COFFDump.h"
20
#include "ELFDump.h"
21
#include "MachODump.h"
22
#include "ObjdumpOptID.h"
23
#include "OffloadDump.h"
24
#include "SourcePrinter.h"
25
#include "WasmDump.h"
26
#include "XCOFFDump.h"
27
#include "llvm/ADT/STLExtras.h"
28
#include "llvm/ADT/SetOperations.h"
29
#include "llvm/ADT/StringExtras.h"
30
#include "llvm/ADT/StringSet.h"
31
#include "llvm/ADT/Twine.h"
32
#include "llvm/BinaryFormat/Wasm.h"
33
#include "llvm/DebugInfo/BTF/BTFParser.h"
34
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
35
#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
36
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
37
#include "llvm/Debuginfod/BuildIDFetcher.h"
38
#include "llvm/Debuginfod/Debuginfod.h"
39
#include "llvm/Debuginfod/HTTPClient.h"
40
#include "llvm/Demangle/Demangle.h"
41
#include "llvm/MC/MCAsmInfo.h"
42
#include "llvm/MC/MCContext.h"
43
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
44
#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
45
#include "llvm/MC/MCInst.h"
46
#include "llvm/MC/MCInstPrinter.h"
47
#include "llvm/MC/MCInstrAnalysis.h"
48
#include "llvm/MC/MCInstrInfo.h"
49
#include "llvm/MC/MCObjectFileInfo.h"
50
#include "llvm/MC/MCRegisterInfo.h"
51
#include "llvm/MC/MCTargetOptions.h"
52
#include "llvm/MC/TargetRegistry.h"
53
#include "llvm/Object/Archive.h"
54
#include "llvm/Object/BuildID.h"
55
#include "llvm/Object/COFF.h"
56
#include "llvm/Object/COFFImportFile.h"
57
#include "llvm/Object/ELFObjectFile.h"
58
#include "llvm/Object/ELFTypes.h"
59
#include "llvm/Object/FaultMapParser.h"
60
#include "llvm/Object/MachO.h"
61
#include "llvm/Object/MachOUniversal.h"
62
#include "llvm/Object/ObjectFile.h"
63
#include "llvm/Object/OffloadBinary.h"
64
#include "llvm/Object/Wasm.h"
65
#include "llvm/Option/Arg.h"
66
#include "llvm/Option/ArgList.h"
67
#include "llvm/Option/Option.h"
68
#include "llvm/Support/Casting.h"
69
#include "llvm/Support/Debug.h"
70
#include "llvm/Support/Errc.h"
71
#include "llvm/Support/FileSystem.h"
72
#include "llvm/Support/Format.h"
73
#include "llvm/Support/FormatVariadic.h"
74
#include "llvm/Support/GraphWriter.h"
75
#include "llvm/Support/LLVMDriver.h"
76
#include "llvm/Support/MemoryBuffer.h"
77
#include "llvm/Support/SourceMgr.h"
78
#include "llvm/Support/StringSaver.h"
79
#include "llvm/Support/TargetSelect.h"
80
#include "llvm/Support/WithColor.h"
81
#include "llvm/Support/raw_ostream.h"
82
#include "llvm/TargetParser/Host.h"
83
#include "llvm/TargetParser/Triple.h"
84
#include <algorithm>
85
#include <cctype>
86
#include <cstring>
87
#include <optional>
88
#include <set>
89
#include <system_error>
90
#include <unordered_map>
91
#include <utility>
92
93
using namespace llvm;
94
using namespace llvm::object;
95
using namespace llvm::objdump;
96
using namespace llvm::opt;
97
98
namespace {
99
100
class CommonOptTable : public opt::GenericOptTable {
101
public:
102
CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
103
const char *Description)
104
: opt::GenericOptTable(OptionInfos), Usage(Usage),
105
Description(Description) {
106
setGroupedShortOptions(true);
107
}
108
109
void printHelp(StringRef Argv0, bool ShowHidden = false) const {
110
Argv0 = sys::path::filename(Argv0);
111
opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
112
Description, ShowHidden, ShowHidden);
113
// TODO Replace this with OptTable API once it adds extrahelp support.
114
outs() << "\nPass @FILE as argument to read options from FILE.\n";
115
}
116
117
private:
118
const char *Usage;
119
const char *Description;
120
};
121
122
// ObjdumpOptID is in ObjdumpOptID.h
123
namespace objdump_opt {
124
#define PREFIX(NAME, VALUE) \
125
static constexpr StringLiteral NAME##_init[] = VALUE; \
126
static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
127
std::size(NAME##_init) - 1);
128
#include "ObjdumpOpts.inc"
129
#undef PREFIX
130
131
static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
132
#define OPTION(...) \
133
LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__),
134
#include "ObjdumpOpts.inc"
135
#undef OPTION
136
};
137
} // namespace objdump_opt
138
139
class ObjdumpOptTable : public CommonOptTable {
140
public:
141
ObjdumpOptTable()
142
: CommonOptTable(objdump_opt::ObjdumpInfoTable,
143
" [options] <input object files>",
144
"llvm object file dumper") {}
145
};
146
147
enum OtoolOptID {
148
OTOOL_INVALID = 0, // This is not an option ID.
149
#define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
150
#include "OtoolOpts.inc"
151
#undef OPTION
152
};
153
154
namespace otool {
155
#define PREFIX(NAME, VALUE) \
156
static constexpr StringLiteral NAME##_init[] = VALUE; \
157
static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
158
std::size(NAME##_init) - 1);
159
#include "OtoolOpts.inc"
160
#undef PREFIX
161
162
static constexpr opt::OptTable::Info OtoolInfoTable[] = {
163
#define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
164
#include "OtoolOpts.inc"
165
#undef OPTION
166
};
167
} // namespace otool
168
169
class OtoolOptTable : public CommonOptTable {
170
public:
171
OtoolOptTable()
172
: CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
173
"Mach-O object file displaying tool") {}
174
};
175
176
struct BBAddrMapLabel {
177
std::string BlockLabel;
178
std::string PGOAnalysis;
179
};
180
181
// This class represents the BBAddrMap and PGOMap associated with a single
182
// function.
183
class BBAddrMapFunctionEntry {
184
public:
185
BBAddrMapFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap)
186
: AddrMap(std::move(AddrMap)), PGOMap(std::move(PGOMap)) {}
187
188
const BBAddrMap &getAddrMap() const { return AddrMap; }
189
190
// Returns the PGO string associated with the entry of index `PGOBBEntryIndex`
191
// in `PGOMap`. If PrettyPGOAnalysis is true, prints BFI as relative frequency
192
// and BPI as percentage. Otherwise raw values are displayed.
193
std::string constructPGOLabelString(size_t PGOBBEntryIndex,
194
bool PrettyPGOAnalysis) const {
195
if (!PGOMap.FeatEnable.hasPGOAnalysis())
196
return "";
197
std::string PGOString;
198
raw_string_ostream PGOSS(PGOString);
199
200
PGOSS << " (";
201
if (PGOMap.FeatEnable.FuncEntryCount && PGOBBEntryIndex == 0) {
202
PGOSS << "Entry count: " << Twine(PGOMap.FuncEntryCount);
203
if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) {
204
PGOSS << ", ";
205
}
206
}
207
208
if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) {
209
210
assert(PGOBBEntryIndex < PGOMap.BBEntries.size() &&
211
"Expected PGOAnalysisMap and BBAddrMap to have the same entries");
212
const PGOAnalysisMap::PGOBBEntry &PGOBBEntry =
213
PGOMap.BBEntries[PGOBBEntryIndex];
214
215
if (PGOMap.FeatEnable.BBFreq) {
216
PGOSS << "Frequency: ";
217
if (PrettyPGOAnalysis)
218
printRelativeBlockFreq(PGOSS, PGOMap.BBEntries.front().BlockFreq,
219
PGOBBEntry.BlockFreq);
220
else
221
PGOSS << Twine(PGOBBEntry.BlockFreq.getFrequency());
222
if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
223
PGOSS << ", ";
224
}
225
}
226
if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
227
PGOSS << "Successors: ";
228
interleaveComma(
229
PGOBBEntry.Successors, PGOSS,
230
[&](const PGOAnalysisMap::PGOBBEntry::SuccessorEntry &SE) {
231
PGOSS << "BB" << SE.ID << ":";
232
if (PrettyPGOAnalysis)
233
PGOSS << "[" << SE.Prob << "]";
234
else
235
PGOSS.write_hex(SE.Prob.getNumerator());
236
});
237
}
238
}
239
PGOSS << ")";
240
241
return PGOString;
242
}
243
244
private:
245
const BBAddrMap AddrMap;
246
const PGOAnalysisMap PGOMap;
247
};
248
249
// This class represents the BBAddrMap and PGOMap of potentially multiple
250
// functions in a section.
251
class BBAddrMapInfo {
252
public:
253
void clear() {
254
FunctionAddrToMap.clear();
255
RangeBaseAddrToFunctionAddr.clear();
256
}
257
258
bool empty() const { return FunctionAddrToMap.empty(); }
259
260
void AddFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap) {
261
uint64_t FunctionAddr = AddrMap.getFunctionAddress();
262
for (size_t I = 1; I < AddrMap.BBRanges.size(); ++I)
263
RangeBaseAddrToFunctionAddr.emplace(AddrMap.BBRanges[I].BaseAddress,
264
FunctionAddr);
265
[[maybe_unused]] auto R = FunctionAddrToMap.try_emplace(
266
FunctionAddr, std::move(AddrMap), std::move(PGOMap));
267
assert(R.second && "duplicate function address");
268
}
269
270
// Returns the BBAddrMap entry for the function associated with `BaseAddress`.
271
// `BaseAddress` could be the function address or the address of a range
272
// associated with that function. Returns `nullptr` if `BaseAddress` is not
273
// mapped to any entry.
274
const BBAddrMapFunctionEntry *getEntryForAddress(uint64_t BaseAddress) const {
275
uint64_t FunctionAddr = BaseAddress;
276
auto S = RangeBaseAddrToFunctionAddr.find(BaseAddress);
277
if (S != RangeBaseAddrToFunctionAddr.end())
278
FunctionAddr = S->second;
279
auto R = FunctionAddrToMap.find(FunctionAddr);
280
if (R == FunctionAddrToMap.end())
281
return nullptr;
282
return &R->second;
283
}
284
285
private:
286
std::unordered_map<uint64_t, BBAddrMapFunctionEntry> FunctionAddrToMap;
287
std::unordered_map<uint64_t, uint64_t> RangeBaseAddrToFunctionAddr;
288
};
289
290
} // namespace
291
292
#define DEBUG_TYPE "objdump"
293
294
enum class ColorOutput {
295
Auto,
296
Enable,
297
Disable,
298
Invalid,
299
};
300
301
static uint64_t AdjustVMA;
302
static bool AllHeaders;
303
static std::string ArchName;
304
bool objdump::ArchiveHeaders;
305
bool objdump::Demangle;
306
bool objdump::Disassemble;
307
bool objdump::DisassembleAll;
308
bool objdump::SymbolDescription;
309
bool objdump::TracebackTable;
310
static std::vector<std::string> DisassembleSymbols;
311
static bool DisassembleZeroes;
312
static std::vector<std::string> DisassemblerOptions;
313
static ColorOutput DisassemblyColor;
314
DIDumpType objdump::DwarfDumpType;
315
static bool DynamicRelocations;
316
static bool FaultMapSection;
317
static bool FileHeaders;
318
bool objdump::SectionContents;
319
static std::vector<std::string> InputFilenames;
320
bool objdump::PrintLines;
321
static bool MachOOpt;
322
std::string objdump::MCPU;
323
std::vector<std::string> objdump::MAttrs;
324
bool objdump::ShowRawInsn;
325
bool objdump::LeadingAddr;
326
static bool Offloading;
327
static bool RawClangAST;
328
bool objdump::Relocations;
329
bool objdump::PrintImmHex;
330
bool objdump::PrivateHeaders;
331
std::vector<std::string> objdump::FilterSections;
332
bool objdump::SectionHeaders;
333
static bool ShowAllSymbols;
334
static bool ShowLMA;
335
bool objdump::PrintSource;
336
337
static uint64_t StartAddress;
338
static bool HasStartAddressFlag;
339
static uint64_t StopAddress = UINT64_MAX;
340
static bool HasStopAddressFlag;
341
342
bool objdump::SymbolTable;
343
static bool SymbolizeOperands;
344
static bool PrettyPGOAnalysisMap;
345
static bool DynamicSymbolTable;
346
std::string objdump::TripleName;
347
bool objdump::UnwindInfo;
348
static bool Wide;
349
std::string objdump::Prefix;
350
uint32_t objdump::PrefixStrip;
351
352
DebugVarsFormat objdump::DbgVariables = DVDisabled;
353
354
int objdump::DbgIndent = 52;
355
356
static StringSet<> DisasmSymbolSet;
357
StringSet<> objdump::FoundSectionSet;
358
static StringRef ToolName;
359
360
std::unique_ptr<BuildIDFetcher> BIDFetcher;
361
362
Dumper::Dumper(const object::ObjectFile &O) : O(O) {
363
WarningHandler = [this](const Twine &Msg) {
364
if (Warnings.insert(Msg.str()).second)
365
reportWarning(Msg, this->O.getFileName());
366
return Error::success();
367
};
368
}
369
370
void Dumper::reportUniqueWarning(Error Err) {
371
reportUniqueWarning(toString(std::move(Err)));
372
}
373
374
void Dumper::reportUniqueWarning(const Twine &Msg) {
375
cantFail(WarningHandler(Msg));
376
}
377
378
static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) {
379
if (const auto *O = dyn_cast<COFFObjectFile>(&Obj))
380
return createCOFFDumper(*O);
381
if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj))
382
return createELFDumper(*O);
383
if (const auto *O = dyn_cast<MachOObjectFile>(&Obj))
384
return createMachODumper(*O);
385
if (const auto *O = dyn_cast<WasmObjectFile>(&Obj))
386
return createWasmDumper(*O);
387
if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj))
388
return createXCOFFDumper(*O);
389
390
return createStringError(errc::invalid_argument,
391
"unsupported object file format");
392
}
393
394
namespace {
395
struct FilterResult {
396
// True if the section should not be skipped.
397
bool Keep;
398
399
// True if the index counter should be incremented, even if the section should
400
// be skipped. For example, sections may be skipped if they are not included
401
// in the --section flag, but we still want those to count toward the section
402
// count.
403
bool IncrementIndex;
404
};
405
} // namespace
406
407
static FilterResult checkSectionFilter(object::SectionRef S) {
408
if (FilterSections.empty())
409
return {/*Keep=*/true, /*IncrementIndex=*/true};
410
411
Expected<StringRef> SecNameOrErr = S.getName();
412
if (!SecNameOrErr) {
413
consumeError(SecNameOrErr.takeError());
414
return {/*Keep=*/false, /*IncrementIndex=*/false};
415
}
416
StringRef SecName = *SecNameOrErr;
417
418
// StringSet does not allow empty key so avoid adding sections with
419
// no name (such as the section with index 0) here.
420
if (!SecName.empty())
421
FoundSectionSet.insert(SecName);
422
423
// Only show the section if it's in the FilterSections list, but always
424
// increment so the indexing is stable.
425
return {/*Keep=*/is_contained(FilterSections, SecName),
426
/*IncrementIndex=*/true};
427
}
428
429
SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
430
uint64_t *Idx) {
431
// Start at UINT64_MAX so that the first index returned after an increment is
432
// zero (after the unsigned wrap).
433
if (Idx)
434
*Idx = UINT64_MAX;
435
return SectionFilter(
436
[Idx](object::SectionRef S) {
437
FilterResult Result = checkSectionFilter(S);
438
if (Idx != nullptr && Result.IncrementIndex)
439
*Idx += 1;
440
return Result.Keep;
441
},
442
O);
443
}
444
445
std::string objdump::getFileNameForError(const object::Archive::Child &C,
446
unsigned Index) {
447
Expected<StringRef> NameOrErr = C.getName();
448
if (NameOrErr)
449
return std::string(NameOrErr.get());
450
// If we have an error getting the name then we print the index of the archive
451
// member. Since we are already in an error state, we just ignore this error.
452
consumeError(NameOrErr.takeError());
453
return "<file index: " + std::to_string(Index) + ">";
454
}
455
456
void objdump::reportWarning(const Twine &Message, StringRef File) {
457
// Output order between errs() and outs() matters especially for archive
458
// files where the output is per member object.
459
outs().flush();
460
WithColor::warning(errs(), ToolName)
461
<< "'" << File << "': " << Message << "\n";
462
}
463
464
[[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
465
outs().flush();
466
WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
467
exit(1);
468
}
469
470
[[noreturn]] void objdump::reportError(Error E, StringRef FileName,
471
StringRef ArchiveName,
472
StringRef ArchitectureName) {
473
assert(E);
474
outs().flush();
475
WithColor::error(errs(), ToolName);
476
if (ArchiveName != "")
477
errs() << ArchiveName << "(" << FileName << ")";
478
else
479
errs() << "'" << FileName << "'";
480
if (!ArchitectureName.empty())
481
errs() << " (for architecture " << ArchitectureName << ")";
482
errs() << ": ";
483
logAllUnhandledErrors(std::move(E), errs());
484
exit(1);
485
}
486
487
static void reportCmdLineWarning(const Twine &Message) {
488
WithColor::warning(errs(), ToolName) << Message << "\n";
489
}
490
491
[[noreturn]] static void reportCmdLineError(const Twine &Message) {
492
WithColor::error(errs(), ToolName) << Message << "\n";
493
exit(1);
494
}
495
496
static void warnOnNoMatchForSections() {
497
SetVector<StringRef> MissingSections;
498
for (StringRef S : FilterSections) {
499
if (FoundSectionSet.count(S))
500
return;
501
// User may specify a unnamed section. Don't warn for it.
502
if (!S.empty())
503
MissingSections.insert(S);
504
}
505
506
// Warn only if no section in FilterSections is matched.
507
for (StringRef S : MissingSections)
508
reportCmdLineWarning("section '" + S +
509
"' mentioned in a -j/--section option, but not "
510
"found in any input file");
511
}
512
513
static const Target *getTarget(const ObjectFile *Obj) {
514
// Figure out the target triple.
515
Triple TheTriple("unknown-unknown-unknown");
516
if (TripleName.empty()) {
517
TheTriple = Obj->makeTriple();
518
} else {
519
TheTriple.setTriple(Triple::normalize(TripleName));
520
auto Arch = Obj->getArch();
521
if (Arch == Triple::arm || Arch == Triple::armeb)
522
Obj->setARMSubArch(TheTriple);
523
}
524
525
// Get the target specific parser.
526
std::string Error;
527
const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
528
Error);
529
if (!TheTarget)
530
reportError(Obj->getFileName(), "can't find target: " + Error);
531
532
// Update the triple name and return the found target.
533
TripleName = TheTriple.getTriple();
534
return TheTarget;
535
}
536
537
bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
538
return A.getOffset() < B.getOffset();
539
}
540
541
static Error getRelocationValueString(const RelocationRef &Rel,
542
bool SymbolDescription,
543
SmallVectorImpl<char> &Result) {
544
const ObjectFile *Obj = Rel.getObject();
545
if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
546
return getELFRelocationValueString(ELF, Rel, Result);
547
if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
548
return getCOFFRelocationValueString(COFF, Rel, Result);
549
if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
550
return getWasmRelocationValueString(Wasm, Rel, Result);
551
if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
552
return getMachORelocationValueString(MachO, Rel, Result);
553
if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
554
return getXCOFFRelocationValueString(*XCOFF, Rel, SymbolDescription,
555
Result);
556
llvm_unreachable("unknown object file format");
557
}
558
559
/// Indicates whether this relocation should hidden when listing
560
/// relocations, usually because it is the trailing part of a multipart
561
/// relocation that will be printed as part of the leading relocation.
562
static bool getHidden(RelocationRef RelRef) {
563
auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
564
if (!MachO)
565
return false;
566
567
unsigned Arch = MachO->getArch();
568
DataRefImpl Rel = RelRef.getRawDataRefImpl();
569
uint64_t Type = MachO->getRelocationType(Rel);
570
571
// On arches that use the generic relocations, GENERIC_RELOC_PAIR
572
// is always hidden.
573
if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
574
return Type == MachO::GENERIC_RELOC_PAIR;
575
576
if (Arch == Triple::x86_64) {
577
// On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
578
// an X86_64_RELOC_SUBTRACTOR.
579
if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
580
DataRefImpl RelPrev = Rel;
581
RelPrev.d.a--;
582
uint64_t PrevType = MachO->getRelocationType(RelPrev);
583
if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
584
return true;
585
}
586
}
587
588
return false;
589
}
590
591
/// Get the column at which we want to start printing the instruction
592
/// disassembly, taking into account anything which appears to the left of it.
593
unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
594
return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
595
}
596
597
static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
598
raw_ostream &OS) {
599
// The output of printInst starts with a tab. Print some spaces so that
600
// the tab has 1 column and advances to the target tab stop.
601
unsigned TabStop = getInstStartColumn(STI);
602
unsigned Column = OS.tell() - Start;
603
OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
604
}
605
606
void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
607
formatted_raw_ostream &OS,
608
MCSubtargetInfo const &STI) {
609
size_t Start = OS.tell();
610
if (LeadingAddr)
611
OS << format("%8" PRIx64 ":", Address);
612
if (ShowRawInsn) {
613
OS << ' ';
614
dumpBytes(Bytes, OS);
615
}
616
AlignToInstStartColumn(Start, STI, OS);
617
}
618
619
namespace {
620
621
static bool isAArch64Elf(const ObjectFile &Obj) {
622
const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
623
return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
624
}
625
626
static bool isArmElf(const ObjectFile &Obj) {
627
const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
628
return Elf && Elf->getEMachine() == ELF::EM_ARM;
629
}
630
631
static bool isCSKYElf(const ObjectFile &Obj) {
632
const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
633
return Elf && Elf->getEMachine() == ELF::EM_CSKY;
634
}
635
636
static bool hasMappingSymbols(const ObjectFile &Obj) {
637
return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
638
}
639
640
static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
641
const RelocationRef &Rel, uint64_t Address,
642
bool Is64Bits) {
643
StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": ";
644
SmallString<16> Name;
645
SmallString<32> Val;
646
Rel.getTypeName(Name);
647
if (Error E = getRelocationValueString(Rel, SymbolDescription, Val))
648
reportError(std::move(E), FileName);
649
OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
650
if (LeadingAddr)
651
OS << format(Fmt.data(), Address);
652
OS << Name << "\t" << Val;
653
}
654
655
static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF,
656
object::SectionedAddress Address,
657
LiveVariablePrinter &LVP) {
658
const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address);
659
if (!Reloc)
660
return;
661
662
SmallString<64> Val;
663
BTF.symbolize(Reloc, Val);
664
FOS << "\t\t";
665
if (LeadingAddr)
666
FOS << format("%016" PRIx64 ": ", Address.Address + AdjustVMA);
667
FOS << "CO-RE " << Val;
668
LVP.printAfterOtherLine(FOS, true);
669
}
670
671
class PrettyPrinter {
672
public:
673
virtual ~PrettyPrinter() = default;
674
virtual void
675
printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
676
object::SectionedAddress Address, formatted_raw_ostream &OS,
677
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
678
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
679
LiveVariablePrinter &LVP) {
680
if (SP && (PrintSource || PrintLines))
681
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
682
LVP.printBetweenInsts(OS, false);
683
684
printRawData(Bytes, Address.Address, OS, STI);
685
686
if (MI) {
687
// See MCInstPrinter::printInst. On targets where a PC relative immediate
688
// is relative to the next instruction and the length of a MCInst is
689
// difficult to measure (x86), this is the address of the next
690
// instruction.
691
uint64_t Addr =
692
Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
693
IP.printInst(MI, Addr, "", STI, OS);
694
} else
695
OS << "\t<unknown>";
696
}
697
};
698
PrettyPrinter PrettyPrinterInst;
699
700
class HexagonPrettyPrinter : public PrettyPrinter {
701
public:
702
void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
703
formatted_raw_ostream &OS) {
704
uint32_t opcode =
705
(Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
706
if (LeadingAddr)
707
OS << format("%8" PRIx64 ":", Address);
708
if (ShowRawInsn) {
709
OS << "\t";
710
dumpBytes(Bytes.slice(0, 4), OS);
711
OS << format("\t%08" PRIx32, opcode);
712
}
713
}
714
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
715
object::SectionedAddress Address, formatted_raw_ostream &OS,
716
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
717
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
718
LiveVariablePrinter &LVP) override {
719
if (SP && (PrintSource || PrintLines))
720
SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
721
if (!MI) {
722
printLead(Bytes, Address.Address, OS);
723
OS << " <unknown>";
724
return;
725
}
726
std::string Buffer;
727
{
728
raw_string_ostream TempStream(Buffer);
729
IP.printInst(MI, Address.Address, "", STI, TempStream);
730
}
731
StringRef Contents(Buffer);
732
// Split off bundle attributes
733
auto PacketBundle = Contents.rsplit('\n');
734
// Split off first instruction from the rest
735
auto HeadTail = PacketBundle.first.split('\n');
736
auto Preamble = " { ";
737
auto Separator = "";
738
739
// Hexagon's packets require relocations to be inline rather than
740
// clustered at the end of the packet.
741
std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
742
std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
743
auto PrintReloc = [&]() -> void {
744
while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
745
if (RelCur->getOffset() == Address.Address) {
746
printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
747
return;
748
}
749
++RelCur;
750
}
751
};
752
753
while (!HeadTail.first.empty()) {
754
OS << Separator;
755
Separator = "\n";
756
if (SP && (PrintSource || PrintLines))
757
SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
758
printLead(Bytes, Address.Address, OS);
759
OS << Preamble;
760
Preamble = " ";
761
StringRef Inst;
762
auto Duplex = HeadTail.first.split('\v');
763
if (!Duplex.second.empty()) {
764
OS << Duplex.first;
765
OS << "; ";
766
Inst = Duplex.second;
767
}
768
else
769
Inst = HeadTail.first;
770
OS << Inst;
771
HeadTail = HeadTail.second.split('\n');
772
if (HeadTail.first.empty())
773
OS << " } " << PacketBundle.second;
774
PrintReloc();
775
Bytes = Bytes.slice(4);
776
Address.Address += 4;
777
}
778
}
779
};
780
HexagonPrettyPrinter HexagonPrettyPrinterInst;
781
782
class AMDGCNPrettyPrinter : public PrettyPrinter {
783
public:
784
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
785
object::SectionedAddress Address, formatted_raw_ostream &OS,
786
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
787
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
788
LiveVariablePrinter &LVP) override {
789
if (SP && (PrintSource || PrintLines))
790
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
791
792
if (MI) {
793
SmallString<40> InstStr;
794
raw_svector_ostream IS(InstStr);
795
796
IP.printInst(MI, Address.Address, "", STI, IS);
797
798
OS << left_justify(IS.str(), 60);
799
} else {
800
// an unrecognized encoding - this is probably data so represent it
801
// using the .long directive, or .byte directive if fewer than 4 bytes
802
// remaining
803
if (Bytes.size() >= 4) {
804
OS << format(
805
"\t.long 0x%08" PRIx32 " ",
806
support::endian::read32<llvm::endianness::little>(Bytes.data()));
807
OS.indent(42);
808
} else {
809
OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
810
for (unsigned int i = 1; i < Bytes.size(); i++)
811
OS << format(", 0x%02" PRIx8, Bytes[i]);
812
OS.indent(55 - (6 * Bytes.size()));
813
}
814
}
815
816
OS << format("// %012" PRIX64 ":", Address.Address);
817
if (Bytes.size() >= 4) {
818
// D should be casted to uint32_t here as it is passed by format to
819
// snprintf as vararg.
820
for (uint32_t D :
821
ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
822
Bytes.size() / 4))
823
OS << format(" %08" PRIX32, D);
824
} else {
825
for (unsigned char B : Bytes)
826
OS << format(" %02" PRIX8, B);
827
}
828
829
if (!Annot.empty())
830
OS << " // " << Annot;
831
}
832
};
833
AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
834
835
class BPFPrettyPrinter : public PrettyPrinter {
836
public:
837
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
838
object::SectionedAddress Address, formatted_raw_ostream &OS,
839
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
840
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
841
LiveVariablePrinter &LVP) override {
842
if (SP && (PrintSource || PrintLines))
843
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
844
if (LeadingAddr)
845
OS << format("%8" PRId64 ":", Address.Address / 8);
846
if (ShowRawInsn) {
847
OS << "\t";
848
dumpBytes(Bytes, OS);
849
}
850
if (MI)
851
IP.printInst(MI, Address.Address, "", STI, OS);
852
else
853
OS << "\t<unknown>";
854
}
855
};
856
BPFPrettyPrinter BPFPrettyPrinterInst;
857
858
class ARMPrettyPrinter : public PrettyPrinter {
859
public:
860
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
861
object::SectionedAddress Address, formatted_raw_ostream &OS,
862
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
863
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
864
LiveVariablePrinter &LVP) override {
865
if (SP && (PrintSource || PrintLines))
866
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
867
LVP.printBetweenInsts(OS, false);
868
869
size_t Start = OS.tell();
870
if (LeadingAddr)
871
OS << format("%8" PRIx64 ":", Address.Address);
872
if (ShowRawInsn) {
873
size_t Pos = 0, End = Bytes.size();
874
if (STI.checkFeatures("+thumb-mode")) {
875
for (; Pos + 2 <= End; Pos += 2)
876
OS << ' '
877
<< format_hex_no_prefix(
878
llvm::support::endian::read<uint16_t>(
879
Bytes.data() + Pos, InstructionEndianness),
880
4);
881
} else {
882
for (; Pos + 4 <= End; Pos += 4)
883
OS << ' '
884
<< format_hex_no_prefix(
885
llvm::support::endian::read<uint32_t>(
886
Bytes.data() + Pos, InstructionEndianness),
887
8);
888
}
889
if (Pos < End) {
890
OS << ' ';
891
dumpBytes(Bytes.slice(Pos), OS);
892
}
893
}
894
895
AlignToInstStartColumn(Start, STI, OS);
896
897
if (MI) {
898
IP.printInst(MI, Address.Address, "", STI, OS);
899
} else
900
OS << "\t<unknown>";
901
}
902
903
void setInstructionEndianness(llvm::endianness Endianness) {
904
InstructionEndianness = Endianness;
905
}
906
907
private:
908
llvm::endianness InstructionEndianness = llvm::endianness::little;
909
};
910
ARMPrettyPrinter ARMPrettyPrinterInst;
911
912
class AArch64PrettyPrinter : public PrettyPrinter {
913
public:
914
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
915
object::SectionedAddress Address, formatted_raw_ostream &OS,
916
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
917
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
918
LiveVariablePrinter &LVP) override {
919
if (SP && (PrintSource || PrintLines))
920
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
921
LVP.printBetweenInsts(OS, false);
922
923
size_t Start = OS.tell();
924
if (LeadingAddr)
925
OS << format("%8" PRIx64 ":", Address.Address);
926
if (ShowRawInsn) {
927
size_t Pos = 0, End = Bytes.size();
928
for (; Pos + 4 <= End; Pos += 4)
929
OS << ' '
930
<< format_hex_no_prefix(
931
llvm::support::endian::read<uint32_t>(
932
Bytes.data() + Pos, llvm::endianness::little),
933
8);
934
if (Pos < End) {
935
OS << ' ';
936
dumpBytes(Bytes.slice(Pos), OS);
937
}
938
}
939
940
AlignToInstStartColumn(Start, STI, OS);
941
942
if (MI) {
943
IP.printInst(MI, Address.Address, "", STI, OS);
944
} else
945
OS << "\t<unknown>";
946
}
947
};
948
AArch64PrettyPrinter AArch64PrettyPrinterInst;
949
950
class RISCVPrettyPrinter : public PrettyPrinter {
951
public:
952
void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
953
object::SectionedAddress Address, formatted_raw_ostream &OS,
954
StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
955
StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
956
LiveVariablePrinter &LVP) override {
957
if (SP && (PrintSource || PrintLines))
958
SP->printSourceLine(OS, Address, ObjectFilename, LVP);
959
LVP.printBetweenInsts(OS, false);
960
961
size_t Start = OS.tell();
962
if (LeadingAddr)
963
OS << format("%8" PRIx64 ":", Address.Address);
964
if (ShowRawInsn) {
965
size_t Pos = 0, End = Bytes.size();
966
if (End % 4 == 0) {
967
// 32-bit and 64-bit instructions.
968
for (; Pos + 4 <= End; Pos += 4)
969
OS << ' '
970
<< format_hex_no_prefix(
971
llvm::support::endian::read<uint32_t>(
972
Bytes.data() + Pos, llvm::endianness::little),
973
8);
974
} else if (End % 2 == 0) {
975
// 16-bit and 48-bits instructions.
976
for (; Pos + 2 <= End; Pos += 2)
977
OS << ' '
978
<< format_hex_no_prefix(
979
llvm::support::endian::read<uint16_t>(
980
Bytes.data() + Pos, llvm::endianness::little),
981
4);
982
}
983
if (Pos < End) {
984
OS << ' ';
985
dumpBytes(Bytes.slice(Pos), OS);
986
}
987
}
988
989
AlignToInstStartColumn(Start, STI, OS);
990
991
if (MI) {
992
IP.printInst(MI, Address.Address, "", STI, OS);
993
} else
994
OS << "\t<unknown>";
995
}
996
};
997
RISCVPrettyPrinter RISCVPrettyPrinterInst;
998
999
PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1000
switch(Triple.getArch()) {
1001
default:
1002
return PrettyPrinterInst;
1003
case Triple::hexagon:
1004
return HexagonPrettyPrinterInst;
1005
case Triple::amdgcn:
1006
return AMDGCNPrettyPrinterInst;
1007
case Triple::bpfel:
1008
case Triple::bpfeb:
1009
return BPFPrettyPrinterInst;
1010
case Triple::arm:
1011
case Triple::armeb:
1012
case Triple::thumb:
1013
case Triple::thumbeb:
1014
return ARMPrettyPrinterInst;
1015
case Triple::aarch64:
1016
case Triple::aarch64_be:
1017
case Triple::aarch64_32:
1018
return AArch64PrettyPrinterInst;
1019
case Triple::riscv32:
1020
case Triple::riscv64:
1021
return RISCVPrettyPrinterInst;
1022
}
1023
}
1024
1025
class DisassemblerTarget {
1026
public:
1027
const Target *TheTarget;
1028
std::unique_ptr<const MCSubtargetInfo> SubtargetInfo;
1029
std::shared_ptr<MCContext> Context;
1030
std::unique_ptr<MCDisassembler> DisAsm;
1031
std::shared_ptr<MCInstrAnalysis> InstrAnalysis;
1032
std::shared_ptr<MCInstPrinter> InstPrinter;
1033
PrettyPrinter *Printer;
1034
1035
DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
1036
StringRef TripleName, StringRef MCPU,
1037
SubtargetFeatures &Features);
1038
DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features);
1039
1040
private:
1041
MCTargetOptions Options;
1042
std::shared_ptr<const MCRegisterInfo> RegisterInfo;
1043
std::shared_ptr<const MCAsmInfo> AsmInfo;
1044
std::shared_ptr<const MCInstrInfo> InstrInfo;
1045
std::shared_ptr<MCObjectFileInfo> ObjectFileInfo;
1046
};
1047
1048
DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
1049
StringRef TripleName, StringRef MCPU,
1050
SubtargetFeatures &Features)
1051
: TheTarget(TheTarget),
1052
Printer(&selectPrettyPrinter(Triple(TripleName))),
1053
RegisterInfo(TheTarget->createMCRegInfo(TripleName)) {
1054
if (!RegisterInfo)
1055
reportError(Obj.getFileName(), "no register info for target " + TripleName);
1056
1057
// Set up disassembler.
1058
AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options));
1059
if (!AsmInfo)
1060
reportError(Obj.getFileName(), "no assembly info for target " + TripleName);
1061
1062
SubtargetInfo.reset(
1063
TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1064
if (!SubtargetInfo)
1065
reportError(Obj.getFileName(),
1066
"no subtarget info for target " + TripleName);
1067
InstrInfo.reset(TheTarget->createMCInstrInfo());
1068
if (!InstrInfo)
1069
reportError(Obj.getFileName(),
1070
"no instruction info for target " + TripleName);
1071
Context =
1072
std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(),
1073
RegisterInfo.get(), SubtargetInfo.get());
1074
1075
// FIXME: for now initialize MCObjectFileInfo with default values
1076
ObjectFileInfo.reset(
1077
TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false));
1078
Context->setObjectFileInfo(ObjectFileInfo.get());
1079
1080
DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context));
1081
if (!DisAsm)
1082
reportError(Obj.getFileName(), "no disassembler for target " + TripleName);
1083
1084
if (auto *ELFObj = dyn_cast<ELFObjectFileBase>(&Obj))
1085
DisAsm->setABIVersion(ELFObj->getEIdentABIVersion());
1086
1087
InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
1088
1089
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1090
InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName),
1091
AsmPrinterVariant, *AsmInfo,
1092
*InstrInfo, *RegisterInfo));
1093
if (!InstPrinter)
1094
reportError(Obj.getFileName(),
1095
"no instruction printer for target " + TripleName);
1096
InstPrinter->setPrintImmHex(PrintImmHex);
1097
InstPrinter->setPrintBranchImmAsAddress(true);
1098
InstPrinter->setSymbolizeOperands(SymbolizeOperands);
1099
InstPrinter->setMCInstrAnalysis(InstrAnalysis.get());
1100
1101
switch (DisassemblyColor) {
1102
case ColorOutput::Enable:
1103
InstPrinter->setUseColor(true);
1104
break;
1105
case ColorOutput::Auto:
1106
InstPrinter->setUseColor(outs().has_colors());
1107
break;
1108
case ColorOutput::Disable:
1109
case ColorOutput::Invalid:
1110
InstPrinter->setUseColor(false);
1111
break;
1112
};
1113
}
1114
1115
DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other,
1116
SubtargetFeatures &Features)
1117
: TheTarget(Other.TheTarget),
1118
SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1119
Features.getString())),
1120
Context(Other.Context),
1121
DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)),
1122
InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter),
1123
Printer(Other.Printer), RegisterInfo(Other.RegisterInfo),
1124
AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo),
1125
ObjectFileInfo(Other.ObjectFileInfo) {}
1126
} // namespace
1127
1128
static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
1129
assert(Obj.isELF());
1130
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1131
return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
1132
Obj.getFileName())
1133
->getType();
1134
if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1135
return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
1136
Obj.getFileName())
1137
->getType();
1138
if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1139
return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
1140
Obj.getFileName())
1141
->getType();
1142
if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1143
return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
1144
Obj.getFileName())
1145
->getType();
1146
llvm_unreachable("Unsupported binary format");
1147
}
1148
1149
template <class ELFT>
1150
static void
1151
addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
1152
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1153
for (auto Symbol : Obj.getDynamicSymbolIterators()) {
1154
uint8_t SymbolType = Symbol.getELFType();
1155
if (SymbolType == ELF::STT_SECTION)
1156
continue;
1157
1158
uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
1159
// ELFSymbolRef::getAddress() returns size instead of value for common
1160
// symbols which is not desirable for disassembly output. Overriding.
1161
if (SymbolType == ELF::STT_COMMON)
1162
Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
1163
Obj.getFileName())
1164
->st_value;
1165
1166
StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
1167
if (Name.empty())
1168
continue;
1169
1170
section_iterator SecI =
1171
unwrapOrError(Symbol.getSection(), Obj.getFileName());
1172
if (SecI == Obj.section_end())
1173
continue;
1174
1175
AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1176
}
1177
}
1178
1179
static void
1180
addDynamicElfSymbols(const ELFObjectFileBase &Obj,
1181
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1182
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1183
addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
1184
else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1185
addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
1186
else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1187
addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
1188
else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1189
addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
1190
else
1191
llvm_unreachable("Unsupported binary format");
1192
}
1193
1194
static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
1195
for (auto SecI : Obj.sections()) {
1196
const WasmSection &Section = Obj.getWasmSection(SecI);
1197
if (Section.Type == wasm::WASM_SEC_CODE)
1198
return SecI;
1199
}
1200
return std::nullopt;
1201
}
1202
1203
static void
1204
addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
1205
std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1206
std::optional<SectionRef> Section = getWasmCodeSection(Obj);
1207
if (!Section)
1208
return;
1209
SectionSymbolsTy &Symbols = AllSymbols[*Section];
1210
1211
std::set<uint64_t> SymbolAddresses;
1212
for (const auto &Sym : Symbols)
1213
SymbolAddresses.insert(Sym.Addr);
1214
1215
for (const wasm::WasmFunction &Function : Obj.functions()) {
1216
// This adjustment mirrors the one in WasmObjectFile::getSymbolAddress.
1217
uint32_t Adjustment = Obj.isRelocatableObject() || Obj.isSharedObject()
1218
? 0
1219
: Section->getAddress();
1220
uint64_t Address = Function.CodeSectionOffset + Adjustment;
1221
// Only add fallback symbols for functions not already present in the symbol
1222
// table.
1223
if (SymbolAddresses.count(Address))
1224
continue;
1225
// This function has no symbol, so it should have no SymbolName.
1226
assert(Function.SymbolName.empty());
1227
// We use DebugName for the name, though it may be empty if there is no
1228
// "name" custom section, or that section is missing a name for this
1229
// function.
1230
StringRef Name = Function.DebugName;
1231
Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
1232
}
1233
}
1234
1235
static void addPltEntries(const ObjectFile &Obj,
1236
std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1237
StringSaver &Saver) {
1238
auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
1239
if (!ElfObj)
1240
return;
1241
DenseMap<StringRef, SectionRef> Sections;
1242
for (SectionRef Section : Obj.sections()) {
1243
Expected<StringRef> SecNameOrErr = Section.getName();
1244
if (!SecNameOrErr) {
1245
consumeError(SecNameOrErr.takeError());
1246
continue;
1247
}
1248
Sections[*SecNameOrErr] = Section;
1249
}
1250
for (auto Plt : ElfObj->getPltEntries()) {
1251
if (Plt.Symbol) {
1252
SymbolRef Symbol(*Plt.Symbol, ElfObj);
1253
uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1254
if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1255
if (!NameOrErr->empty())
1256
AllSymbols[Sections[Plt.Section]].emplace_back(
1257
Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
1258
continue;
1259
} else {
1260
// The warning has been reported in disassembleObject().
1261
consumeError(NameOrErr.takeError());
1262
}
1263
}
1264
reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
1265
" references an invalid symbol",
1266
Obj.getFileName());
1267
}
1268
}
1269
1270
// Normally the disassembly output will skip blocks of zeroes. This function
1271
// returns the number of zero bytes that can be skipped when dumping the
1272
// disassembly of the instructions in Buf.
1273
static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1274
// Find the number of leading zeroes.
1275
size_t N = 0;
1276
while (N < Buf.size() && !Buf[N])
1277
++N;
1278
1279
// We may want to skip blocks of zero bytes, but unless we see
1280
// at least 8 of them in a row.
1281
if (N < 8)
1282
return 0;
1283
1284
// We skip zeroes in multiples of 4 because do not want to truncate an
1285
// instruction if it starts with a zero byte.
1286
return N & ~0x3;
1287
}
1288
1289
// Returns a map from sections to their relocations.
1290
static std::map<SectionRef, std::vector<RelocationRef>>
1291
getRelocsMap(object::ObjectFile const &Obj) {
1292
std::map<SectionRef, std::vector<RelocationRef>> Ret;
1293
uint64_t I = (uint64_t)-1;
1294
for (SectionRef Sec : Obj.sections()) {
1295
++I;
1296
Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1297
if (!RelocatedOrErr)
1298
reportError(Obj.getFileName(),
1299
"section (" + Twine(I) +
1300
"): failed to get a relocated section: " +
1301
toString(RelocatedOrErr.takeError()));
1302
1303
section_iterator Relocated = *RelocatedOrErr;
1304
if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1305
continue;
1306
std::vector<RelocationRef> &V = Ret[*Relocated];
1307
append_range(V, Sec.relocations());
1308
// Sort relocations by address.
1309
llvm::stable_sort(V, isRelocAddressLess);
1310
}
1311
return Ret;
1312
}
1313
1314
// Used for --adjust-vma to check if address should be adjusted by the
1315
// specified value for a given section.
1316
// For ELF we do not adjust non-allocatable sections like debug ones,
1317
// because they are not loadable.
1318
// TODO: implement for other file formats.
1319
static bool shouldAdjustVA(const SectionRef &Section) {
1320
const ObjectFile *Obj = Section.getObject();
1321
if (Obj->isELF())
1322
return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1323
return false;
1324
}
1325
1326
1327
typedef std::pair<uint64_t, char> MappingSymbolPair;
1328
static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1329
uint64_t Address) {
1330
auto It =
1331
partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1332
return Val.first <= Address;
1333
});
1334
// Return zero for any address before the first mapping symbol; this means
1335
// we should use the default disassembly mode, depending on the target.
1336
if (It == MappingSymbols.begin())
1337
return '\x00';
1338
return (It - 1)->second;
1339
}
1340
1341
static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1342
uint64_t End, const ObjectFile &Obj,
1343
ArrayRef<uint8_t> Bytes,
1344
ArrayRef<MappingSymbolPair> MappingSymbols,
1345
const MCSubtargetInfo &STI, raw_ostream &OS) {
1346
llvm::endianness Endian =
1347
Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big;
1348
size_t Start = OS.tell();
1349
OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1350
if (Index + 4 <= End) {
1351
dumpBytes(Bytes.slice(Index, 4), OS);
1352
AlignToInstStartColumn(Start, STI, OS);
1353
OS << "\t.word\t"
1354
<< format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1355
10);
1356
return 4;
1357
}
1358
if (Index + 2 <= End) {
1359
dumpBytes(Bytes.slice(Index, 2), OS);
1360
AlignToInstStartColumn(Start, STI, OS);
1361
OS << "\t.short\t"
1362
<< format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1363
return 2;
1364
}
1365
dumpBytes(Bytes.slice(Index, 1), OS);
1366
AlignToInstStartColumn(Start, STI, OS);
1367
OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1368
return 1;
1369
}
1370
1371
static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1372
ArrayRef<uint8_t> Bytes) {
1373
// print out data up to 8 bytes at a time in hex and ascii
1374
uint8_t AsciiData[9] = {'\0'};
1375
uint8_t Byte;
1376
int NumBytes = 0;
1377
1378
for (; Index < End; ++Index) {
1379
if (NumBytes == 0)
1380
outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1381
Byte = Bytes.slice(Index)[0];
1382
outs() << format(" %02x", Byte);
1383
AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1384
1385
uint8_t IndentOffset = 0;
1386
NumBytes++;
1387
if (Index == End - 1 || NumBytes > 8) {
1388
// Indent the space for less than 8 bytes data.
1389
// 2 spaces for byte and one for space between bytes
1390
IndentOffset = 3 * (8 - NumBytes);
1391
for (int Excess = NumBytes; Excess < 8; Excess++)
1392
AsciiData[Excess] = '\0';
1393
NumBytes = 8;
1394
}
1395
if (NumBytes == 8) {
1396
AsciiData[8] = '\0';
1397
outs() << std::string(IndentOffset, ' ') << " ";
1398
outs() << reinterpret_cast<char *>(AsciiData);
1399
outs() << '\n';
1400
NumBytes = 0;
1401
}
1402
}
1403
}
1404
1405
SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1406
const SymbolRef &Symbol,
1407
bool IsMappingSymbol) {
1408
const StringRef FileName = Obj.getFileName();
1409
const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1410
const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1411
1412
if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1413
const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1414
DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1415
1416
const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1417
std::optional<XCOFF::StorageMappingClass> Smc =
1418
getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1419
return SymbolInfoTy(Smc, Addr, Name, SymbolIndex,
1420
isLabel(XCOFFObj, Symbol));
1421
} else if (Obj.isXCOFF()) {
1422
const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1423
return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false,
1424
/*IsXCOFF=*/true);
1425
} else if (Obj.isWasm()) {
1426
uint8_t SymType =
1427
cast<WasmObjectFile>(&Obj)->getWasmSymbol(Symbol).Info.Kind;
1428
return SymbolInfoTy(Addr, Name, SymType, false);
1429
} else {
1430
uint8_t Type =
1431
Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE;
1432
return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol);
1433
}
1434
}
1435
1436
static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1437
const uint64_t Addr, StringRef &Name,
1438
uint8_t Type) {
1439
if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1440
return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false);
1441
if (Obj.isWasm())
1442
return SymbolInfoTy(Addr, Name, wasm::WASM_SYMBOL_TYPE_SECTION);
1443
return SymbolInfoTy(Addr, Name, Type);
1444
}
1445
1446
static void collectBBAddrMapLabels(
1447
const BBAddrMapInfo &FullAddrMap, uint64_t SectionAddr, uint64_t Start,
1448
uint64_t End,
1449
std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> &Labels) {
1450
if (FullAddrMap.empty())
1451
return;
1452
Labels.clear();
1453
uint64_t StartAddress = SectionAddr + Start;
1454
uint64_t EndAddress = SectionAddr + End;
1455
const BBAddrMapFunctionEntry *FunctionMap =
1456
FullAddrMap.getEntryForAddress(StartAddress);
1457
if (!FunctionMap)
1458
return;
1459
std::optional<size_t> BBRangeIndex =
1460
FunctionMap->getAddrMap().getBBRangeIndexForBaseAddress(StartAddress);
1461
if (!BBRangeIndex)
1462
return;
1463
size_t NumBBEntriesBeforeRange = 0;
1464
for (size_t I = 0; I < *BBRangeIndex; ++I)
1465
NumBBEntriesBeforeRange +=
1466
FunctionMap->getAddrMap().BBRanges[I].BBEntries.size();
1467
const auto &BBRange = FunctionMap->getAddrMap().BBRanges[*BBRangeIndex];
1468
for (size_t I = 0; I < BBRange.BBEntries.size(); ++I) {
1469
const BBAddrMap::BBEntry &BBEntry = BBRange.BBEntries[I];
1470
uint64_t BBAddress = BBEntry.Offset + BBRange.BaseAddress;
1471
if (BBAddress >= EndAddress)
1472
continue;
1473
1474
std::string LabelString = ("BB" + Twine(BBEntry.ID)).str();
1475
Labels[BBAddress].push_back(
1476
{LabelString, FunctionMap->constructPGOLabelString(
1477
NumBBEntriesBeforeRange + I, PrettyPGOAnalysisMap)});
1478
}
1479
}
1480
1481
static void
1482
collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA,
1483
MCDisassembler *DisAsm, MCInstPrinter *IP,
1484
const MCSubtargetInfo *STI, uint64_t SectionAddr,
1485
uint64_t Start, uint64_t End,
1486
std::unordered_map<uint64_t, std::string> &Labels) {
1487
// So far only supports PowerPC and X86.
1488
const bool isPPC = STI->getTargetTriple().isPPC();
1489
if (!isPPC && !STI->getTargetTriple().isX86())
1490
return;
1491
1492
if (MIA)
1493
MIA->resetState();
1494
1495
Labels.clear();
1496
unsigned LabelCount = 0;
1497
Start += SectionAddr;
1498
End += SectionAddr;
1499
const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF();
1500
for (uint64_t Index = Start; Index < End;) {
1501
// Disassemble a real instruction and record function-local branch labels.
1502
MCInst Inst;
1503
uint64_t Size;
1504
ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1505
bool Disassembled =
1506
DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1507
if (Size == 0)
1508
Size = std::min<uint64_t>(ThisBytes.size(),
1509
DisAsm->suggestBytesToSkip(ThisBytes, Index));
1510
1511
if (MIA) {
1512
if (Disassembled) {
1513
uint64_t Target;
1514
bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1515
if (TargetKnown && (Target >= Start && Target < End) &&
1516
!Labels.count(Target)) {
1517
// On PowerPC and AIX, a function call is encoded as a branch to 0.
1518
// On other PowerPC platforms (ELF), a function call is encoded as
1519
// a branch to self. Do not add a label for these cases.
1520
if (!(isPPC &&
1521
((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF))))
1522
Labels[Target] = ("L" + Twine(LabelCount++)).str();
1523
}
1524
MIA->updateState(Inst, Index);
1525
} else
1526
MIA->resetState();
1527
}
1528
Index += Size;
1529
}
1530
}
1531
1532
// Create an MCSymbolizer for the target and add it to the MCDisassembler.
1533
// This is currently only used on AMDGPU, and assumes the format of the
1534
// void * argument passed to AMDGPU's createMCSymbolizer.
1535
static void addSymbolizer(
1536
MCContext &Ctx, const Target *Target, StringRef TripleName,
1537
MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1538
SectionSymbolsTy &Symbols,
1539
std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1540
1541
std::unique_ptr<MCRelocationInfo> RelInfo(
1542
Target->createMCRelocationInfo(TripleName, Ctx));
1543
if (!RelInfo)
1544
return;
1545
std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1546
TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1547
MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1548
DisAsm->setSymbolizer(std::move(Symbolizer));
1549
1550
if (!SymbolizeOperands)
1551
return;
1552
1553
// Synthesize labels referenced by branch instructions by
1554
// disassembling, discarding the output, and collecting the referenced
1555
// addresses from the symbolizer.
1556
for (size_t Index = 0; Index != Bytes.size();) {
1557
MCInst Inst;
1558
uint64_t Size;
1559
ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1560
const uint64_t ThisAddr = SectionAddr + Index;
1561
DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1562
if (Size == 0)
1563
Size = std::min<uint64_t>(ThisBytes.size(),
1564
DisAsm->suggestBytesToSkip(ThisBytes, Index));
1565
Index += Size;
1566
}
1567
ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1568
// Copy and sort to remove duplicates.
1569
std::vector<uint64_t> LabelAddrs;
1570
LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1571
LabelAddrsRef.end());
1572
llvm::sort(LabelAddrs);
1573
LabelAddrs.resize(llvm::unique(LabelAddrs) - LabelAddrs.begin());
1574
// Add the labels.
1575
for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1576
auto Name = std::make_unique<std::string>();
1577
*Name = (Twine("L") + Twine(LabelNum)).str();
1578
SynthesizedLabelNames.push_back(std::move(Name));
1579
Symbols.push_back(SymbolInfoTy(
1580
LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1581
}
1582
llvm::stable_sort(Symbols);
1583
// Recreate the symbolizer with the new symbols list.
1584
RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1585
Symbolizer.reset(Target->createMCSymbolizer(
1586
TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1587
DisAsm->setSymbolizer(std::move(Symbolizer));
1588
}
1589
1590
static StringRef getSegmentName(const MachOObjectFile *MachO,
1591
const SectionRef &Section) {
1592
if (MachO) {
1593
DataRefImpl DR = Section.getRawDataRefImpl();
1594
StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1595
return SegmentName;
1596
}
1597
return "";
1598
}
1599
1600
static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1601
const MCAsmInfo &MAI,
1602
const MCSubtargetInfo &STI,
1603
StringRef Comments,
1604
LiveVariablePrinter &LVP) {
1605
do {
1606
if (!Comments.empty()) {
1607
// Emit a line of comments.
1608
StringRef Comment;
1609
std::tie(Comment, Comments) = Comments.split('\n');
1610
// MAI.getCommentColumn() assumes that instructions are printed at the
1611
// position of 8, while getInstStartColumn() returns the actual position.
1612
unsigned CommentColumn =
1613
MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1614
FOS.PadToColumn(CommentColumn);
1615
FOS << MAI.getCommentString() << ' ' << Comment;
1616
}
1617
LVP.printAfterInst(FOS);
1618
FOS << '\n';
1619
} while (!Comments.empty());
1620
FOS.flush();
1621
}
1622
1623
static void createFakeELFSections(ObjectFile &Obj) {
1624
assert(Obj.isELF());
1625
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1626
Elf32LEObj->createFakeSections();
1627
else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1628
Elf64LEObj->createFakeSections();
1629
else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1630
Elf32BEObj->createFakeSections();
1631
else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1632
Elf64BEObj->createFakeSections();
1633
else
1634
llvm_unreachable("Unsupported binary format");
1635
}
1636
1637
// Tries to fetch a more complete version of the given object file using its
1638
// Build ID. Returns std::nullopt if nothing was found.
1639
static std::optional<OwningBinary<Binary>>
1640
fetchBinaryByBuildID(const ObjectFile &Obj) {
1641
object::BuildIDRef BuildID = getBuildID(&Obj);
1642
if (BuildID.empty())
1643
return std::nullopt;
1644
std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1645
if (!Path)
1646
return std::nullopt;
1647
Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1648
if (!DebugBinary) {
1649
reportWarning(toString(DebugBinary.takeError()), *Path);
1650
return std::nullopt;
1651
}
1652
return std::move(*DebugBinary);
1653
}
1654
1655
static void
1656
disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj,
1657
DisassemblerTarget &PrimaryTarget,
1658
std::optional<DisassemblerTarget> &SecondaryTarget,
1659
SourcePrinter &SP, bool InlineRelocs) {
1660
DisassemblerTarget *DT = &PrimaryTarget;
1661
bool PrimaryIsThumb = false;
1662
SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap;
1663
1664
if (SecondaryTarget) {
1665
if (isArmElf(Obj)) {
1666
PrimaryIsThumb =
1667
PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode");
1668
} else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1669
const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
1670
if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
1671
uintptr_t CodeMapInt;
1672
cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt));
1673
auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt);
1674
1675
for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) {
1676
if (CodeMap[i].getType() == chpe_range_type::Amd64 &&
1677
CodeMap[i].Length) {
1678
// Store x86_64 CHPE code ranges.
1679
uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase();
1680
CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length);
1681
}
1682
}
1683
llvm::sort(CHPECodeMap);
1684
}
1685
}
1686
}
1687
1688
std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1689
if (InlineRelocs || Obj.isXCOFF())
1690
RelocMap = getRelocsMap(Obj);
1691
bool Is64Bits = Obj.getBytesInAddress() > 4;
1692
1693
// Create a mapping from virtual address to symbol name. This is used to
1694
// pretty print the symbols while disassembling.
1695
std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1696
std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols;
1697
SectionSymbolsTy AbsoluteSymbols;
1698
const StringRef FileName = Obj.getFileName();
1699
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1700
for (const SymbolRef &Symbol : Obj.symbols()) {
1701
Expected<StringRef> NameOrErr = Symbol.getName();
1702
if (!NameOrErr) {
1703
reportWarning(toString(NameOrErr.takeError()), FileName);
1704
continue;
1705
}
1706
if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1707
continue;
1708
1709
if (Obj.isELF() &&
1710
(cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) {
1711
// Symbol is intended not to be displayed by default (STT_FILE,
1712
// STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will
1713
// synthesize a section symbol if no symbol is defined at offset 0.
1714
//
1715
// For a mapping symbol, store it within both AllSymbols and
1716
// AllMappingSymbols. If --show-all-symbols is unspecified, its label will
1717
// not be printed in disassembly listing.
1718
if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION &&
1719
hasMappingSymbols(Obj)) {
1720
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1721
if (SecI != Obj.section_end()) {
1722
uint64_t SectionAddr = SecI->getAddress();
1723
uint64_t Address = cantFail(Symbol.getAddress());
1724
StringRef Name = *NameOrErr;
1725
if (Name.consume_front("$") && Name.size() &&
1726
strchr("adtx", Name[0])) {
1727
AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr,
1728
Name[0]);
1729
AllSymbols[*SecI].push_back(
1730
createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true));
1731
}
1732
}
1733
}
1734
continue;
1735
}
1736
1737
if (MachO) {
1738
// __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1739
// symbols that support MachO header introspection. They do not bind to
1740
// code locations and are irrelevant for disassembly.
1741
if (NameOrErr->starts_with("__mh_") && NameOrErr->ends_with("_header"))
1742
continue;
1743
// Don't ask a Mach-O STAB symbol for its section unless you know that
1744
// STAB symbol's section field refers to a valid section index. Otherwise
1745
// the symbol may error trying to load a section that does not exist.
1746
DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1747
uint8_t NType = (MachO->is64Bit() ?
1748
MachO->getSymbol64TableEntry(SymDRI).n_type:
1749
MachO->getSymbolTableEntry(SymDRI).n_type);
1750
if (NType & MachO::N_STAB)
1751
continue;
1752
}
1753
1754
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1755
if (SecI != Obj.section_end())
1756
AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1757
else
1758
AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1759
}
1760
1761
if (AllSymbols.empty() && Obj.isELF())
1762
addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1763
1764
if (Obj.isWasm())
1765
addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1766
1767
if (Obj.isELF() && Obj.sections().empty())
1768
createFakeELFSections(Obj);
1769
1770
BumpPtrAllocator A;
1771
StringSaver Saver(A);
1772
addPltEntries(Obj, AllSymbols, Saver);
1773
1774
// Create a mapping from virtual address to section. An empty section can
1775
// cause more than one section at the same address. Sort such sections to be
1776
// before same-addressed non-empty sections so that symbol lookups prefer the
1777
// non-empty section.
1778
std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1779
for (SectionRef Sec : Obj.sections())
1780
SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1781
llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1782
if (LHS.first != RHS.first)
1783
return LHS.first < RHS.first;
1784
return LHS.second.getSize() < RHS.second.getSize();
1785
});
1786
1787
// Linked executables (.exe and .dll files) typically don't include a real
1788
// symbol table but they might contain an export table.
1789
if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1790
for (const auto &ExportEntry : COFFObj->export_directories()) {
1791
StringRef Name;
1792
if (Error E = ExportEntry.getSymbolName(Name))
1793
reportError(std::move(E), Obj.getFileName());
1794
if (Name.empty())
1795
continue;
1796
1797
uint32_t RVA;
1798
if (Error E = ExportEntry.getExportRVA(RVA))
1799
reportError(std::move(E), Obj.getFileName());
1800
1801
uint64_t VA = COFFObj->getImageBase() + RVA;
1802
auto Sec = partition_point(
1803
SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1804
return O.first <= VA;
1805
});
1806
if (Sec != SectionAddresses.begin()) {
1807
--Sec;
1808
AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1809
} else
1810
AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1811
}
1812
}
1813
1814
// Sort all the symbols, this allows us to use a simple binary search to find
1815
// Multiple symbols can have the same address. Use a stable sort to stabilize
1816
// the output.
1817
StringSet<> FoundDisasmSymbolSet;
1818
for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1819
llvm::stable_sort(SecSyms.second);
1820
llvm::stable_sort(AbsoluteSymbols);
1821
1822
std::unique_ptr<DWARFContext> DICtx;
1823
LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo);
1824
1825
if (DbgVariables != DVDisabled) {
1826
DICtx = DWARFContext::create(DbgObj);
1827
for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1828
LVP.addCompileUnit(CU->getUnitDIE(false));
1829
}
1830
1831
LLVM_DEBUG(LVP.dump());
1832
1833
BBAddrMapInfo FullAddrMap;
1834
auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1835
std::nullopt) {
1836
FullAddrMap.clear();
1837
if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1838
std::vector<PGOAnalysisMap> PGOAnalyses;
1839
auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex, &PGOAnalyses);
1840
if (!BBAddrMapsOrErr) {
1841
reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1842
return;
1843
}
1844
for (auto &&[FunctionBBAddrMap, FunctionPGOAnalysis] :
1845
zip_equal(*std::move(BBAddrMapsOrErr), std::move(PGOAnalyses))) {
1846
FullAddrMap.AddFunctionEntry(std::move(FunctionBBAddrMap),
1847
std::move(FunctionPGOAnalysis));
1848
}
1849
}
1850
};
1851
1852
// For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1853
// single mapping, since they don't have any conflicts.
1854
if (SymbolizeOperands && !Obj.isRelocatableObject())
1855
ReadBBAddrMap();
1856
1857
std::optional<llvm::BTFParser> BTF;
1858
if (InlineRelocs && BTFParser::hasBTFSections(Obj)) {
1859
BTF.emplace();
1860
BTFParser::ParseOptions Opts = {};
1861
Opts.LoadTypes = true;
1862
Opts.LoadRelocs = true;
1863
if (Error E = BTF->parse(Obj, Opts))
1864
WithColor::defaultErrorHandler(std::move(E));
1865
}
1866
1867
for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1868
if (FilterSections.empty() && !DisassembleAll &&
1869
(!Section.isText() || Section.isVirtual()))
1870
continue;
1871
1872
uint64_t SectionAddr = Section.getAddress();
1873
uint64_t SectSize = Section.getSize();
1874
if (!SectSize)
1875
continue;
1876
1877
// For relocatable object files, read the LLVM_BB_ADDR_MAP section
1878
// corresponding to this section, if present.
1879
if (SymbolizeOperands && Obj.isRelocatableObject())
1880
ReadBBAddrMap(Section.getIndex());
1881
1882
// Get the list of all the symbols in this section.
1883
SectionSymbolsTy &Symbols = AllSymbols[Section];
1884
auto &MappingSymbols = AllMappingSymbols[Section];
1885
llvm::sort(MappingSymbols);
1886
1887
ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1888
unwrapOrError(Section.getContents(), Obj.getFileName()));
1889
1890
std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1891
if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1892
// AMDGPU disassembler uses symbolizer for printing labels
1893
addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(),
1894
SectionAddr, Bytes, Symbols, SynthesizedLabelNames);
1895
}
1896
1897
StringRef SegmentName = getSegmentName(MachO, Section);
1898
StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1899
// If the section has no symbol at the start, just insert a dummy one.
1900
// Without --show-all-symbols, also insert one if all symbols at the start
1901
// are mapping symbols.
1902
bool CreateDummy = Symbols.empty();
1903
if (!CreateDummy) {
1904
CreateDummy = true;
1905
for (auto &Sym : Symbols) {
1906
if (Sym.Addr != SectionAddr)
1907
break;
1908
if (!Sym.IsMappingSymbol || ShowAllSymbols)
1909
CreateDummy = false;
1910
}
1911
}
1912
if (CreateDummy) {
1913
SymbolInfoTy Sym = createDummySymbolInfo(
1914
Obj, SectionAddr, SectionName,
1915
Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT);
1916
if (Obj.isXCOFF())
1917
Symbols.insert(Symbols.begin(), Sym);
1918
else
1919
Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym);
1920
}
1921
1922
SmallString<40> Comments;
1923
raw_svector_ostream CommentStream(Comments);
1924
1925
uint64_t VMAAdjustment = 0;
1926
if (shouldAdjustVA(Section))
1927
VMAAdjustment = AdjustVMA;
1928
1929
// In executable and shared objects, r_offset holds a virtual address.
1930
// Subtract SectionAddr from the r_offset field of a relocation to get
1931
// the section offset.
1932
uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1933
uint64_t Size;
1934
uint64_t Index;
1935
bool PrintedSection = false;
1936
std::vector<RelocationRef> Rels = RelocMap[Section];
1937
std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1938
std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1939
1940
// Loop over each chunk of code between two points where at least
1941
// one symbol is defined.
1942
for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1943
// Advance SI past all the symbols starting at the same address,
1944
// and make an ArrayRef of them.
1945
unsigned FirstSI = SI;
1946
uint64_t Start = Symbols[SI].Addr;
1947
ArrayRef<SymbolInfoTy> SymbolsHere;
1948
while (SI != SE && Symbols[SI].Addr == Start)
1949
++SI;
1950
SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1951
1952
// Get the demangled names of all those symbols. We end up with a vector
1953
// of StringRef that holds the names we're going to use, and a vector of
1954
// std::string that stores the new strings returned by demangle(), if
1955
// any. If we don't call demangle() then that vector can stay empty.
1956
std::vector<StringRef> SymNamesHere;
1957
std::vector<std::string> DemangledSymNamesHere;
1958
if (Demangle) {
1959
// Fetch the demangled names and store them locally.
1960
for (const SymbolInfoTy &Symbol : SymbolsHere)
1961
DemangledSymNamesHere.push_back(demangle(Symbol.Name));
1962
// Now we've finished modifying that vector, it's safe to make
1963
// a vector of StringRefs pointing into it.
1964
SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1965
DemangledSymNamesHere.end());
1966
} else {
1967
for (const SymbolInfoTy &Symbol : SymbolsHere)
1968
SymNamesHere.push_back(Symbol.Name);
1969
}
1970
1971
// Distinguish ELF data from code symbols, which will be used later on to
1972
// decide whether to 'disassemble' this chunk as a data declaration via
1973
// dumpELFData(), or whether to treat it as code.
1974
//
1975
// If data _and_ code symbols are defined at the same address, the code
1976
// takes priority, on the grounds that disassembling code is our main
1977
// purpose here, and it would be a worse failure to _not_ interpret
1978
// something that _was_ meaningful as code than vice versa.
1979
//
1980
// Any ELF symbol type that is not clearly data will be regarded as code.
1981
// In particular, one of the uses of STT_NOTYPE is for branch targets
1982
// inside functions, for which STT_FUNC would be inaccurate.
1983
//
1984
// So here, we spot whether there's any non-data symbol present at all,
1985
// and only set the DisassembleAsELFData flag if there isn't. Also, we use
1986
// this distinction to inform the decision of which symbol to print at
1987
// the head of the section, so that if we're printing code, we print a
1988
// code-related symbol name to go with it.
1989
bool DisassembleAsELFData = false;
1990
size_t DisplaySymIndex = SymbolsHere.size() - 1;
1991
if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1992
DisassembleAsELFData = true; // unless we find a code symbol below
1993
1994
for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1995
uint8_t SymTy = SymbolsHere[i].Type;
1996
if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1997
DisassembleAsELFData = false;
1998
DisplaySymIndex = i;
1999
}
2000
}
2001
}
2002
2003
// Decide which symbol(s) from this collection we're going to print.
2004
std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
2005
// If the user has given the --disassemble-symbols option, then we must
2006
// display every symbol in that set, and no others.
2007
if (!DisasmSymbolSet.empty()) {
2008
bool FoundAny = false;
2009
for (size_t i = 0; i < SymbolsHere.size(); ++i) {
2010
if (DisasmSymbolSet.count(SymNamesHere[i])) {
2011
SymsToPrint[i] = true;
2012
FoundAny = true;
2013
}
2014
}
2015
2016
// And if none of the symbols here is one that the user asked for, skip
2017
// disassembling this entire chunk of code.
2018
if (!FoundAny)
2019
continue;
2020
} else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) {
2021
// Otherwise, print whichever symbol at this location is last in the
2022
// Symbols array, because that array is pre-sorted in a way intended to
2023
// correlate with priority of which symbol to display.
2024
SymsToPrint[DisplaySymIndex] = true;
2025
}
2026
2027
// Now that we know we're disassembling this section, override the choice
2028
// of which symbols to display by printing _all_ of them at this address
2029
// if the user asked for all symbols.
2030
//
2031
// That way, '--show-all-symbols --disassemble-symbol=foo' will print
2032
// only the chunk of code headed by 'foo', but also show any other
2033
// symbols defined at that address, such as aliases for 'foo', or the ARM
2034
// mapping symbol preceding its code.
2035
if (ShowAllSymbols) {
2036
for (size_t i = 0; i < SymbolsHere.size(); ++i)
2037
SymsToPrint[i] = true;
2038
}
2039
2040
if (Start < SectionAddr || StopAddress <= Start)
2041
continue;
2042
2043
for (size_t i = 0; i < SymbolsHere.size(); ++i)
2044
FoundDisasmSymbolSet.insert(SymNamesHere[i]);
2045
2046
// The end is the section end, the beginning of the next symbol, or
2047
// --stop-address.
2048
uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
2049
if (SI < SE)
2050
End = std::min(End, Symbols[SI].Addr);
2051
if (Start >= End || End <= StartAddress)
2052
continue;
2053
Start -= SectionAddr;
2054
End -= SectionAddr;
2055
2056
if (!PrintedSection) {
2057
PrintedSection = true;
2058
outs() << "\nDisassembly of section ";
2059
if (!SegmentName.empty())
2060
outs() << SegmentName << ",";
2061
outs() << SectionName << ":\n";
2062
}
2063
2064
bool PrintedLabel = false;
2065
for (size_t i = 0; i < SymbolsHere.size(); ++i) {
2066
if (!SymsToPrint[i])
2067
continue;
2068
2069
const SymbolInfoTy &Symbol = SymbolsHere[i];
2070
const StringRef SymbolName = SymNamesHere[i];
2071
2072
if (!PrintedLabel) {
2073
outs() << '\n';
2074
PrintedLabel = true;
2075
}
2076
if (LeadingAddr)
2077
outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
2078
SectionAddr + Start + VMAAdjustment);
2079
if (Obj.isXCOFF() && SymbolDescription) {
2080
outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
2081
} else
2082
outs() << '<' << SymbolName << ">:\n";
2083
}
2084
2085
// Don't print raw contents of a virtual section. A virtual section
2086
// doesn't have any contents in the file.
2087
if (Section.isVirtual()) {
2088
outs() << "...\n";
2089
continue;
2090
}
2091
2092
// See if any of the symbols defined at this location triggers target-
2093
// specific disassembly behavior, e.g. of special descriptors or function
2094
// prelude information.
2095
//
2096
// We stop this loop at the first symbol that triggers some kind of
2097
// interesting behavior (if any), on the assumption that if two symbols
2098
// defined at the same address trigger two conflicting symbol handlers,
2099
// the object file is probably confused anyway, and it would make even
2100
// less sense to present the output of _both_ handlers, because that
2101
// would describe the same data twice.
2102
for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
2103
SymbolInfoTy Symbol = SymbolsHere[SHI];
2104
2105
Expected<bool> RespondedOrErr = DT->DisAsm->onSymbolStart(
2106
Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start);
2107
2108
if (RespondedOrErr && !*RespondedOrErr) {
2109
// This symbol didn't trigger any interesting handling. Try the other
2110
// symbols defined at this address.
2111
continue;
2112
}
2113
2114
// If onSymbolStart returned an Error, that means it identified some
2115
// kind of special data at this address, but wasn't able to disassemble
2116
// it meaningfully. So we fall back to printing the error out and
2117
// disassembling the failed region as bytes, assuming that the target
2118
// detected the failure before printing anything.
2119
if (!RespondedOrErr) {
2120
std::string ErrMsgStr = toString(RespondedOrErr.takeError());
2121
StringRef ErrMsg = ErrMsgStr;
2122
do {
2123
StringRef Line;
2124
std::tie(Line, ErrMsg) = ErrMsg.split('\n');
2125
outs() << DT->Context->getAsmInfo()->getCommentString()
2126
<< " error decoding " << SymNamesHere[SHI] << ": " << Line
2127
<< '\n';
2128
} while (!ErrMsg.empty());
2129
2130
if (Size) {
2131
outs() << DT->Context->getAsmInfo()->getCommentString()
2132
<< " decoding failed region as bytes\n";
2133
for (uint64_t I = 0; I < Size; ++I)
2134
outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
2135
<< '\n';
2136
}
2137
}
2138
2139
// Regardless of whether onSymbolStart returned an Error or true, 'Size'
2140
// will have been set to the amount of data covered by whatever prologue
2141
// the target identified. So we advance our own position to beyond that.
2142
// Sometimes that will be the entire distance to the next symbol, and
2143
// sometimes it will be just a prologue and we should start
2144
// disassembling instructions from where it left off.
2145
Start += Size;
2146
break;
2147
}
2148
2149
Index = Start;
2150
if (SectionAddr < StartAddress)
2151
Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
2152
2153
if (DisassembleAsELFData) {
2154
dumpELFData(SectionAddr, Index, End, Bytes);
2155
Index = End;
2156
continue;
2157
}
2158
2159
// Skip relocations from symbols that are not dumped.
2160
for (; RelCur != RelEnd; ++RelCur) {
2161
uint64_t Offset = RelCur->getOffset() - RelAdjustment;
2162
if (Index <= Offset)
2163
break;
2164
}
2165
2166
bool DumpARMELFData = false;
2167
bool DumpTracebackTableForXCOFFFunction =
2168
Obj.isXCOFF() && Section.isText() && TracebackTable &&
2169
Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
2170
(*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
2171
2172
formatted_raw_ostream FOS(outs());
2173
2174
std::unordered_map<uint64_t, std::string> AllLabels;
2175
std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> BBAddrMapLabels;
2176
if (SymbolizeOperands) {
2177
collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(),
2178
DT->DisAsm.get(), DT->InstPrinter.get(),
2179
PrimaryTarget.SubtargetInfo.get(),
2180
SectionAddr, Index, End, AllLabels);
2181
collectBBAddrMapLabels(FullAddrMap, SectionAddr, Index, End,
2182
BBAddrMapLabels);
2183
}
2184
2185
if (DT->InstrAnalysis)
2186
DT->InstrAnalysis->resetState();
2187
2188
while (Index < End) {
2189
uint64_t RelOffset;
2190
2191
// ARM and AArch64 ELF binaries can interleave data and text in the
2192
// same section. We rely on the markers introduced to understand what
2193
// we need to dump. If the data marker is within a function, it is
2194
// denoted as a word/short etc.
2195
if (!MappingSymbols.empty()) {
2196
char Kind = getMappingSymbolKind(MappingSymbols, Index);
2197
DumpARMELFData = Kind == 'd';
2198
if (SecondaryTarget) {
2199
if (Kind == 'a') {
2200
DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget;
2201
} else if (Kind == 't') {
2202
DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget;
2203
}
2204
}
2205
} else if (!CHPECodeMap.empty()) {
2206
uint64_t Address = SectionAddr + Index;
2207
auto It = partition_point(
2208
CHPECodeMap,
2209
[Address](const std::pair<uint64_t, uint64_t> &Entry) {
2210
return Entry.first <= Address;
2211
});
2212
if (It != CHPECodeMap.begin() && Address < (It - 1)->second) {
2213
DT = &*SecondaryTarget;
2214
} else {
2215
DT = &PrimaryTarget;
2216
// X64 disassembler range may have left Index unaligned, so
2217
// make sure that it's aligned when we switch back to ARM64
2218
// code.
2219
Index = llvm::alignTo(Index, 4);
2220
if (Index >= End)
2221
break;
2222
}
2223
}
2224
2225
auto findRel = [&]() {
2226
while (RelCur != RelEnd) {
2227
RelOffset = RelCur->getOffset() - RelAdjustment;
2228
// If this relocation is hidden, skip it.
2229
if (getHidden(*RelCur) || SectionAddr + RelOffset < StartAddress) {
2230
++RelCur;
2231
continue;
2232
}
2233
2234
// Stop when RelCur's offset is past the disassembled
2235
// instruction/data.
2236
if (RelOffset >= Index + Size)
2237
return false;
2238
if (RelOffset >= Index)
2239
return true;
2240
++RelCur;
2241
}
2242
return false;
2243
};
2244
2245
if (DumpARMELFData) {
2246
Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
2247
MappingSymbols, *DT->SubtargetInfo, FOS);
2248
} else {
2249
// When -z or --disassemble-zeroes are given we always dissasemble
2250
// them. Otherwise we might want to skip zero bytes we see.
2251
if (!DisassembleZeroes) {
2252
uint64_t MaxOffset = End - Index;
2253
// For --reloc: print zero blocks patched by relocations, so that
2254
// relocations can be shown in the dump.
2255
if (InlineRelocs && RelCur != RelEnd)
2256
MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
2257
MaxOffset);
2258
2259
if (size_t N =
2260
countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
2261
FOS << "\t\t..." << '\n';
2262
Index += N;
2263
continue;
2264
}
2265
}
2266
2267
if (DumpTracebackTableForXCOFFFunction &&
2268
doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
2269
dumpTracebackTable(Bytes.slice(Index),
2270
SectionAddr + Index + VMAAdjustment, FOS,
2271
SectionAddr + End + VMAAdjustment,
2272
*DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj));
2273
Index = End;
2274
continue;
2275
}
2276
2277
// Print local label if there's any.
2278
auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
2279
if (Iter1 != BBAddrMapLabels.end()) {
2280
for (const auto &BBLabel : Iter1->second)
2281
FOS << "<" << BBLabel.BlockLabel << ">" << BBLabel.PGOAnalysis
2282
<< ":\n";
2283
} else {
2284
auto Iter2 = AllLabels.find(SectionAddr + Index);
2285
if (Iter2 != AllLabels.end())
2286
FOS << "<" << Iter2->second << ">:\n";
2287
}
2288
2289
// Disassemble a real instruction or a data when disassemble all is
2290
// provided
2291
MCInst Inst;
2292
ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
2293
uint64_t ThisAddr = SectionAddr + Index;
2294
bool Disassembled = DT->DisAsm->getInstruction(
2295
Inst, Size, ThisBytes, ThisAddr, CommentStream);
2296
if (Size == 0)
2297
Size = std::min<uint64_t>(
2298
ThisBytes.size(),
2299
DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
2300
2301
LVP.update({Index, Section.getIndex()},
2302
{Index + Size, Section.getIndex()}, Index + Size != End);
2303
2304
DT->InstPrinter->setCommentStream(CommentStream);
2305
2306
DT->Printer->printInst(
2307
*DT->InstPrinter, Disassembled ? &Inst : nullptr,
2308
Bytes.slice(Index, Size),
2309
{SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
2310
"", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP);
2311
2312
DT->InstPrinter->setCommentStream(llvm::nulls());
2313
2314
// If disassembly succeeds, we try to resolve the target address
2315
// (jump target or memory operand address) and print it to the
2316
// right of the instruction.
2317
//
2318
// Otherwise, we don't print anything else so that we avoid
2319
// analyzing invalid or incomplete instruction information.
2320
if (Disassembled && DT->InstrAnalysis) {
2321
llvm::raw_ostream *TargetOS = &FOS;
2322
uint64_t Target;
2323
bool PrintTarget = DT->InstrAnalysis->evaluateBranch(
2324
Inst, SectionAddr + Index, Size, Target);
2325
2326
if (!PrintTarget) {
2327
if (std::optional<uint64_t> MaybeTarget =
2328
DT->InstrAnalysis->evaluateMemoryOperandAddress(
2329
Inst, DT->SubtargetInfo.get(), SectionAddr + Index,
2330
Size)) {
2331
Target = *MaybeTarget;
2332
PrintTarget = true;
2333
// Do not print real address when symbolizing.
2334
if (!SymbolizeOperands) {
2335
// Memory operand addresses are printed as comments.
2336
TargetOS = &CommentStream;
2337
*TargetOS << "0x" << Twine::utohexstr(Target);
2338
}
2339
}
2340
}
2341
2342
if (PrintTarget) {
2343
// In a relocatable object, the target's section must reside in
2344
// the same section as the call instruction or it is accessed
2345
// through a relocation.
2346
//
2347
// In a non-relocatable object, the target may be in any section.
2348
// In that case, locate the section(s) containing the target
2349
// address and find the symbol in one of those, if possible.
2350
//
2351
// N.B. Except for XCOFF, we don't walk the relocations in the
2352
// relocatable case yet.
2353
std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2354
if (!Obj.isRelocatableObject()) {
2355
auto It = llvm::partition_point(
2356
SectionAddresses,
2357
[=](const std::pair<uint64_t, SectionRef> &O) {
2358
return O.first <= Target;
2359
});
2360
uint64_t TargetSecAddr = 0;
2361
while (It != SectionAddresses.begin()) {
2362
--It;
2363
if (TargetSecAddr == 0)
2364
TargetSecAddr = It->first;
2365
if (It->first != TargetSecAddr)
2366
break;
2367
TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2368
}
2369
} else {
2370
TargetSectionSymbols.push_back(&Symbols);
2371
}
2372
TargetSectionSymbols.push_back(&AbsoluteSymbols);
2373
2374
// Find the last symbol in the first candidate section whose
2375
// offset is less than or equal to the target. If there are no
2376
// such symbols, try in the next section and so on, before finally
2377
// using the nearest preceding absolute symbol (if any), if there
2378
// are no other valid symbols.
2379
const SymbolInfoTy *TargetSym = nullptr;
2380
for (const SectionSymbolsTy *TargetSymbols :
2381
TargetSectionSymbols) {
2382
auto It = llvm::partition_point(
2383
*TargetSymbols,
2384
[=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2385
while (It != TargetSymbols->begin()) {
2386
--It;
2387
// Skip mapping symbols to avoid possible ambiguity as they
2388
// do not allow uniquely identifying the target address.
2389
if (!It->IsMappingSymbol) {
2390
TargetSym = &*It;
2391
break;
2392
}
2393
}
2394
if (TargetSym)
2395
break;
2396
}
2397
2398
// Branch targets are printed just after the instructions.
2399
// Print the labels corresponding to the target if there's any.
2400
bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
2401
bool LabelAvailable = AllLabels.count(Target);
2402
2403
if (TargetSym != nullptr) {
2404
uint64_t TargetAddress = TargetSym->Addr;
2405
uint64_t Disp = Target - TargetAddress;
2406
std::string TargetName = Demangle ? demangle(TargetSym->Name)
2407
: TargetSym->Name.str();
2408
bool RelFixedUp = false;
2409
SmallString<32> Val;
2410
2411
*TargetOS << " <";
2412
// On XCOFF, we use relocations, even without -r, so we
2413
// can print the correct name for an extern function call.
2414
if (Obj.isXCOFF() && findRel()) {
2415
// Check for possible branch relocations and
2416
// branches to fixup code.
2417
bool BranchRelocationType = true;
2418
XCOFF::RelocationType RelocType;
2419
if (Obj.is64Bit()) {
2420
const XCOFFRelocation64 *Reloc =
2421
reinterpret_cast<XCOFFRelocation64 *>(
2422
RelCur->getRawDataRefImpl().p);
2423
RelFixedUp = Reloc->isFixupIndicated();
2424
RelocType = Reloc->Type;
2425
} else {
2426
const XCOFFRelocation32 *Reloc =
2427
reinterpret_cast<XCOFFRelocation32 *>(
2428
RelCur->getRawDataRefImpl().p);
2429
RelFixedUp = Reloc->isFixupIndicated();
2430
RelocType = Reloc->Type;
2431
}
2432
BranchRelocationType =
2433
RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR ||
2434
RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR;
2435
2436
// If we have a valid relocation, try to print its
2437
// corresponding symbol name. Multiple relocations on the
2438
// same instruction are not handled.
2439
// Branches to fixup code will have the RelFixedUp flag set in
2440
// the RLD. For these instructions, we print the correct
2441
// branch target, but print the referenced symbol as a
2442
// comment.
2443
if (Error E = getRelocationValueString(*RelCur, false, Val)) {
2444
// If -r was used, this error will be printed later.
2445
// Otherwise, we ignore the error and print what
2446
// would have been printed without using relocations.
2447
consumeError(std::move(E));
2448
*TargetOS << TargetName;
2449
RelFixedUp = false; // Suppress comment for RLD sym name
2450
} else if (BranchRelocationType && !RelFixedUp)
2451
*TargetOS << Val;
2452
else
2453
*TargetOS << TargetName;
2454
if (Disp)
2455
*TargetOS << "+0x" << Twine::utohexstr(Disp);
2456
} else if (!Disp) {
2457
*TargetOS << TargetName;
2458
} else if (BBAddrMapLabelAvailable) {
2459
*TargetOS << BBAddrMapLabels[Target].front().BlockLabel;
2460
} else if (LabelAvailable) {
2461
*TargetOS << AllLabels[Target];
2462
} else {
2463
// Always Print the binary symbol plus an offset if there's no
2464
// local label corresponding to the target address.
2465
*TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2466
}
2467
*TargetOS << ">";
2468
if (RelFixedUp && !InlineRelocs) {
2469
// We have fixup code for a relocation. We print the
2470
// referenced symbol as a comment.
2471
*TargetOS << "\t# " << Val;
2472
}
2473
2474
} else if (BBAddrMapLabelAvailable) {
2475
*TargetOS << " <" << BBAddrMapLabels[Target].front().BlockLabel
2476
<< ">";
2477
} else if (LabelAvailable) {
2478
*TargetOS << " <" << AllLabels[Target] << ">";
2479
}
2480
// By convention, each record in the comment stream should be
2481
// terminated.
2482
if (TargetOS == &CommentStream)
2483
*TargetOS << "\n";
2484
}
2485
2486
DT->InstrAnalysis->updateState(Inst, SectionAddr + Index);
2487
} else if (!Disassembled && DT->InstrAnalysis) {
2488
DT->InstrAnalysis->resetState();
2489
}
2490
}
2491
2492
assert(DT->Context->getAsmInfo());
2493
emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(),
2494
*DT->SubtargetInfo, CommentStream.str(), LVP);
2495
Comments.clear();
2496
2497
if (BTF)
2498
printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP);
2499
2500
// Hexagon handles relocs in pretty printer
2501
if (InlineRelocs && Obj.getArch() != Triple::hexagon) {
2502
while (findRel()) {
2503
// When --adjust-vma is used, update the address printed.
2504
if (RelCur->getSymbol() != Obj.symbol_end()) {
2505
Expected<section_iterator> SymSI =
2506
RelCur->getSymbol()->getSection();
2507
if (SymSI && *SymSI != Obj.section_end() &&
2508
shouldAdjustVA(**SymSI))
2509
RelOffset += AdjustVMA;
2510
}
2511
2512
printRelocation(FOS, Obj.getFileName(), *RelCur,
2513
SectionAddr + RelOffset, Is64Bits);
2514
LVP.printAfterOtherLine(FOS, true);
2515
++RelCur;
2516
}
2517
}
2518
2519
Index += Size;
2520
}
2521
}
2522
}
2523
StringSet<> MissingDisasmSymbolSet =
2524
set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2525
for (StringRef Sym : MissingDisasmSymbolSet.keys())
2526
reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2527
}
2528
2529
static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2530
// If information useful for showing the disassembly is missing, try to find a
2531
// more complete binary and disassemble that instead.
2532
OwningBinary<Binary> FetchedBinary;
2533
if (Obj->symbols().empty()) {
2534
if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2535
fetchBinaryByBuildID(*Obj)) {
2536
if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2537
if (!O->symbols().empty() ||
2538
(!O->sections().empty() && Obj->sections().empty())) {
2539
FetchedBinary = std::move(*FetchedBinaryOpt);
2540
Obj = O;
2541
}
2542
}
2543
}
2544
}
2545
2546
const Target *TheTarget = getTarget(Obj);
2547
2548
// Package up features to be passed to target/subtarget
2549
Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2550
if (!FeaturesValue)
2551
reportError(FeaturesValue.takeError(), Obj->getFileName());
2552
SubtargetFeatures Features = *FeaturesValue;
2553
if (!MAttrs.empty()) {
2554
for (unsigned I = 0; I != MAttrs.size(); ++I)
2555
Features.AddFeature(MAttrs[I]);
2556
} else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2557
Features.AddFeature("+all");
2558
}
2559
2560
if (MCPU.empty())
2561
MCPU = Obj->tryGetCPUName().value_or("").str();
2562
2563
if (isArmElf(*Obj)) {
2564
// When disassembling big-endian Arm ELF, the instruction endianness is
2565
// determined in a complex way. In relocatable objects, AAELF32 mandates
2566
// that instruction endianness matches the ELF file endianness; in
2567
// executable images, that's true unless the file header has the EF_ARM_BE8
2568
// flag, in which case instructions are little-endian regardless of data
2569
// endianness.
2570
//
2571
// We must set the big-endian-instructions SubtargetFeature to make the
2572
// disassembler read the instructions the right way round, and also tell
2573
// our own prettyprinter to retrieve the encodings the same way to print in
2574
// hex.
2575
const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2576
2577
if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2578
!(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2579
Features.AddFeature("+big-endian-instructions");
2580
ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big);
2581
} else {
2582
ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little);
2583
}
2584
}
2585
2586
DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features);
2587
2588
// If we have an ARM object file, we need a second disassembler, because
2589
// ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2590
// We use mapping symbols to switch between the two assemblers, where
2591
// appropriate.
2592
std::optional<DisassemblerTarget> SecondaryTarget;
2593
2594
if (isArmElf(*Obj)) {
2595
if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) {
2596
if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"))
2597
Features.AddFeature("-thumb-mode");
2598
else
2599
Features.AddFeature("+thumb-mode");
2600
SecondaryTarget.emplace(PrimaryTarget, Features);
2601
}
2602
} else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
2603
const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
2604
if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
2605
// Set up x86_64 disassembler for ARM64EC binaries.
2606
Triple X64Triple(TripleName);
2607
X64Triple.setArch(Triple::ArchType::x86_64);
2608
2609
std::string Error;
2610
const Target *X64Target =
2611
TargetRegistry::lookupTarget("", X64Triple, Error);
2612
if (X64Target) {
2613
SubtargetFeatures X64Features;
2614
SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "",
2615
X64Features);
2616
} else {
2617
reportWarning(Error, Obj->getFileName());
2618
}
2619
}
2620
}
2621
2622
const ObjectFile *DbgObj = Obj;
2623
if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2624
if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2625
fetchBinaryByBuildID(*Obj)) {
2626
if (auto *FetchedObj =
2627
dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2628
if (FetchedObj->hasDebugInfo()) {
2629
FetchedBinary = std::move(*DebugBinaryOpt);
2630
DbgObj = FetchedObj;
2631
}
2632
}
2633
}
2634
}
2635
2636
std::unique_ptr<object::Binary> DSYMBinary;
2637
std::unique_ptr<MemoryBuffer> DSYMBuf;
2638
if (!DbgObj->hasDebugInfo()) {
2639
if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2640
DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2641
DSYMBinary, DSYMBuf);
2642
if (!DbgObj)
2643
return;
2644
}
2645
}
2646
2647
SourcePrinter SP(DbgObj, TheTarget->getName());
2648
2649
for (StringRef Opt : DisassemblerOptions)
2650
if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt))
2651
reportError(Obj->getFileName(),
2652
"Unrecognized disassembler option: " + Opt);
2653
2654
disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP,
2655
InlineRelocs);
2656
}
2657
2658
void Dumper::printRelocations() {
2659
StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2660
2661
// Build a mapping from relocation target to a vector of relocation
2662
// sections. Usually, there is an only one relocation section for
2663
// each relocated section.
2664
MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2665
uint64_t Ndx;
2666
for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) {
2667
if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2668
continue;
2669
if (Section.relocation_begin() == Section.relocation_end())
2670
continue;
2671
Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2672
if (!SecOrErr)
2673
reportError(O.getFileName(),
2674
"section (" + Twine(Ndx) +
2675
"): unable to get a relocation target: " +
2676
toString(SecOrErr.takeError()));
2677
SecToRelSec[**SecOrErr].push_back(Section);
2678
}
2679
2680
for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2681
StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName());
2682
outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2683
uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
2684
uint32_t TypePadding = 24;
2685
outs() << left_justify("OFFSET", OffsetPadding) << " "
2686
<< left_justify("TYPE", TypePadding) << " "
2687
<< "VALUE\n";
2688
2689
for (SectionRef Section : P.second) {
2690
// CREL sections require decoding, each section may have its own specific
2691
// decode problems.
2692
if (O.isELF() && ELFSectionRef(Section).getType() == ELF::SHT_CREL) {
2693
StringRef Err =
2694
cast<const ELFObjectFileBase>(O).getCrelDecodeProblem(Section);
2695
if (!Err.empty()) {
2696
reportUniqueWarning(Err);
2697
continue;
2698
}
2699
}
2700
for (const RelocationRef &Reloc : Section.relocations()) {
2701
uint64_t Address = Reloc.getOffset();
2702
SmallString<32> RelocName;
2703
SmallString<32> ValueStr;
2704
if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2705
continue;
2706
Reloc.getTypeName(RelocName);
2707
if (Error E =
2708
getRelocationValueString(Reloc, SymbolDescription, ValueStr))
2709
reportUniqueWarning(std::move(E));
2710
2711
outs() << format(Fmt.data(), Address) << " "
2712
<< left_justify(RelocName, TypePadding) << " " << ValueStr
2713
<< "\n";
2714
}
2715
}
2716
}
2717
}
2718
2719
// Returns true if we need to show LMA column when dumping section headers. We
2720
// show it only when the platform is ELF and either we have at least one section
2721
// whose VMA and LMA are different and/or when --show-lma flag is used.
2722
static bool shouldDisplayLMA(const ObjectFile &Obj) {
2723
if (!Obj.isELF())
2724
return false;
2725
for (const SectionRef &S : ToolSectionFilter(Obj))
2726
if (S.getAddress() != getELFSectionLMA(S))
2727
return true;
2728
return ShowLMA;
2729
}
2730
2731
static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2732
// Default column width for names is 13 even if no names are that long.
2733
size_t MaxWidth = 13;
2734
for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2735
StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2736
MaxWidth = std::max(MaxWidth, Name.size());
2737
}
2738
return MaxWidth;
2739
}
2740
2741
void objdump::printSectionHeaders(ObjectFile &Obj) {
2742
if (Obj.isELF() && Obj.sections().empty())
2743
createFakeELFSections(Obj);
2744
2745
size_t NameWidth = getMaxSectionNameWidth(Obj);
2746
size_t AddressWidth = 2 * Obj.getBytesInAddress();
2747
bool HasLMAColumn = shouldDisplayLMA(Obj);
2748
outs() << "\nSections:\n";
2749
if (HasLMAColumn)
2750
outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
2751
<< left_justify("VMA", AddressWidth) << " "
2752
<< left_justify("LMA", AddressWidth) << " Type\n";
2753
else
2754
outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
2755
<< left_justify("VMA", AddressWidth) << " Type\n";
2756
2757
uint64_t Idx;
2758
for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2759
StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2760
uint64_t VMA = Section.getAddress();
2761
if (shouldAdjustVA(Section))
2762
VMA += AdjustVMA;
2763
2764
uint64_t Size = Section.getSize();
2765
2766
std::string Type = Section.isText() ? "TEXT" : "";
2767
if (Section.isData())
2768
Type += Type.empty() ? "DATA" : ", DATA";
2769
if (Section.isBSS())
2770
Type += Type.empty() ? "BSS" : ", BSS";
2771
if (Section.isDebugSection())
2772
Type += Type.empty() ? "DEBUG" : ", DEBUG";
2773
2774
if (HasLMAColumn)
2775
outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2776
Name.str().c_str(), Size)
2777
<< format_hex_no_prefix(VMA, AddressWidth) << " "
2778
<< format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2779
<< " " << Type << "\n";
2780
else
2781
outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2782
Name.str().c_str(), Size)
2783
<< format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2784
}
2785
}
2786
2787
void objdump::printSectionContents(const ObjectFile *Obj) {
2788
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2789
2790
for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2791
StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2792
uint64_t BaseAddr = Section.getAddress();
2793
uint64_t Size = Section.getSize();
2794
if (!Size)
2795
continue;
2796
2797
outs() << "Contents of section ";
2798
StringRef SegmentName = getSegmentName(MachO, Section);
2799
if (!SegmentName.empty())
2800
outs() << SegmentName << ",";
2801
outs() << Name << ":\n";
2802
if (Section.isBSS()) {
2803
outs() << format("<skipping contents of bss section at [%04" PRIx64
2804
", %04" PRIx64 ")>\n",
2805
BaseAddr, BaseAddr + Size);
2806
continue;
2807
}
2808
2809
StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2810
2811
// Dump out the content as hex and printable ascii characters.
2812
for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2813
outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2814
// Dump line of hex.
2815
for (std::size_t I = 0; I < 16; ++I) {
2816
if (I != 0 && I % 4 == 0)
2817
outs() << ' ';
2818
if (Addr + I < End)
2819
outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2820
<< hexdigit(Contents[Addr + I] & 0xF, true);
2821
else
2822
outs() << " ";
2823
}
2824
// Print ascii.
2825
outs() << " ";
2826
for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2827
if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2828
outs() << Contents[Addr + I];
2829
else
2830
outs() << ".";
2831
}
2832
outs() << "\n";
2833
}
2834
}
2835
}
2836
2837
void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
2838
bool DumpDynamic) {
2839
if (O.isCOFF() && !DumpDynamic) {
2840
outs() << "\nSYMBOL TABLE:\n";
2841
printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2842
return;
2843
}
2844
2845
const StringRef FileName = O.getFileName();
2846
2847
if (!DumpDynamic) {
2848
outs() << "\nSYMBOL TABLE:\n";
2849
for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2850
printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2851
return;
2852
}
2853
2854
outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2855
if (!O.isELF()) {
2856
reportWarning(
2857
"this operation is not currently supported for this file format",
2858
FileName);
2859
return;
2860
}
2861
2862
const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2863
auto Symbols = ELF->getDynamicSymbolIterators();
2864
Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2865
ELF->readDynsymVersions();
2866
if (!SymbolVersionsOrErr) {
2867
reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2868
SymbolVersionsOrErr = std::vector<VersionEntry>();
2869
(void)!SymbolVersionsOrErr;
2870
}
2871
for (auto &Sym : Symbols)
2872
printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2873
ArchitectureName, DumpDynamic);
2874
}
2875
2876
void Dumper::printSymbol(const SymbolRef &Symbol,
2877
ArrayRef<VersionEntry> SymbolVersions,
2878
StringRef FileName, StringRef ArchiveName,
2879
StringRef ArchitectureName, bool DumpDynamic) {
2880
const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2881
Expected<uint64_t> AddrOrErr = Symbol.getAddress();
2882
if (!AddrOrErr) {
2883
reportUniqueWarning(AddrOrErr.takeError());
2884
return;
2885
}
2886
uint64_t Address = *AddrOrErr;
2887
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
2888
if (SecI != O.section_end() && shouldAdjustVA(*SecI))
2889
Address += AdjustVMA;
2890
if ((Address < StartAddress) || (Address > StopAddress))
2891
return;
2892
SymbolRef::Type Type =
2893
unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2894
uint32_t Flags =
2895
unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2896
2897
// Don't ask a Mach-O STAB symbol for its section unless you know that
2898
// STAB symbol's section field refers to a valid section index. Otherwise
2899
// the symbol may error trying to load a section that does not exist.
2900
bool IsSTAB = false;
2901
if (MachO) {
2902
DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2903
uint8_t NType =
2904
(MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2905
: MachO->getSymbolTableEntry(SymDRI).n_type);
2906
if (NType & MachO::N_STAB)
2907
IsSTAB = true;
2908
}
2909
section_iterator Section = IsSTAB
2910
? O.section_end()
2911
: unwrapOrError(Symbol.getSection(), FileName,
2912
ArchiveName, ArchitectureName);
2913
2914
StringRef Name;
2915
if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2916
if (Expected<StringRef> NameOrErr = Section->getName())
2917
Name = *NameOrErr;
2918
else
2919
consumeError(NameOrErr.takeError());
2920
2921
} else {
2922
Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2923
ArchitectureName);
2924
}
2925
2926
bool Global = Flags & SymbolRef::SF_Global;
2927
bool Weak = Flags & SymbolRef::SF_Weak;
2928
bool Absolute = Flags & SymbolRef::SF_Absolute;
2929
bool Common = Flags & SymbolRef::SF_Common;
2930
bool Hidden = Flags & SymbolRef::SF_Hidden;
2931
2932
char GlobLoc = ' ';
2933
if ((Section != O.section_end() || Absolute) && !Weak)
2934
GlobLoc = Global ? 'g' : 'l';
2935
char IFunc = ' ';
2936
if (O.isELF()) {
2937
if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2938
IFunc = 'i';
2939
if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2940
GlobLoc = 'u';
2941
}
2942
2943
char Debug = ' ';
2944
if (DumpDynamic)
2945
Debug = 'D';
2946
else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2947
Debug = 'd';
2948
2949
char FileFunc = ' ';
2950
if (Type == SymbolRef::ST_File)
2951
FileFunc = 'f';
2952
else if (Type == SymbolRef::ST_Function)
2953
FileFunc = 'F';
2954
else if (Type == SymbolRef::ST_Data)
2955
FileFunc = 'O';
2956
2957
const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2958
2959
outs() << format(Fmt, Address) << " "
2960
<< GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2961
<< (Weak ? 'w' : ' ') // Weak?
2962
<< ' ' // Constructor. Not supported yet.
2963
<< ' ' // Warning. Not supported yet.
2964
<< IFunc // Indirect reference to another symbol.
2965
<< Debug // Debugging (d) or dynamic (D) symbol.
2966
<< FileFunc // Name of function (F), file (f) or object (O).
2967
<< ' ';
2968
if (Absolute) {
2969
outs() << "*ABS*";
2970
} else if (Common) {
2971
outs() << "*COM*";
2972
} else if (Section == O.section_end()) {
2973
if (O.isXCOFF()) {
2974
XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2975
Symbol.getRawDataRefImpl());
2976
if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2977
outs() << "*DEBUG*";
2978
else
2979
outs() << "*UND*";
2980
} else
2981
outs() << "*UND*";
2982
} else {
2983
StringRef SegmentName = getSegmentName(MachO, *Section);
2984
if (!SegmentName.empty())
2985
outs() << SegmentName << ",";
2986
StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2987
outs() << SectionName;
2988
if (O.isXCOFF()) {
2989
std::optional<SymbolRef> SymRef =
2990
getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2991
if (SymRef) {
2992
2993
Expected<StringRef> NameOrErr = SymRef->getName();
2994
2995
if (NameOrErr) {
2996
outs() << " (csect:";
2997
std::string SymName =
2998
Demangle ? demangle(*NameOrErr) : NameOrErr->str();
2999
3000
if (SymbolDescription)
3001
SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
3002
SymName);
3003
3004
outs() << ' ' << SymName;
3005
outs() << ") ";
3006
} else
3007
reportWarning(toString(NameOrErr.takeError()), FileName);
3008
}
3009
}
3010
}
3011
3012
if (Common)
3013
outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
3014
else if (O.isXCOFF())
3015
outs() << '\t'
3016
<< format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
3017
Symbol.getRawDataRefImpl()));
3018
else if (O.isELF())
3019
outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
3020
else if (O.isWasm())
3021
outs() << '\t'
3022
<< format(Fmt, static_cast<uint64_t>(
3023
cast<WasmObjectFile>(O).getSymbolSize(Symbol)));
3024
3025
if (O.isELF()) {
3026
if (!SymbolVersions.empty()) {
3027
const VersionEntry &Ver =
3028
SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
3029
std::string Str;
3030
if (!Ver.Name.empty())
3031
Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
3032
outs() << ' ' << left_justify(Str, 12);
3033
}
3034
3035
uint8_t Other = ELFSymbolRef(Symbol).getOther();
3036
switch (Other) {
3037
case ELF::STV_DEFAULT:
3038
break;
3039
case ELF::STV_INTERNAL:
3040
outs() << " .internal";
3041
break;
3042
case ELF::STV_HIDDEN:
3043
outs() << " .hidden";
3044
break;
3045
case ELF::STV_PROTECTED:
3046
outs() << " .protected";
3047
break;
3048
default:
3049
outs() << format(" 0x%02x", Other);
3050
break;
3051
}
3052
} else if (Hidden) {
3053
outs() << " .hidden";
3054
}
3055
3056
std::string SymName = Demangle ? demangle(Name) : Name.str();
3057
if (O.isXCOFF() && SymbolDescription)
3058
SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
3059
3060
outs() << ' ' << SymName << '\n';
3061
}
3062
3063
static void printUnwindInfo(const ObjectFile *O) {
3064
outs() << "Unwind info:\n\n";
3065
3066
if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
3067
printCOFFUnwindInfo(Coff);
3068
else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
3069
printMachOUnwindInfo(MachO);
3070
else
3071
// TODO: Extract DWARF dump tool to objdump.
3072
WithColor::error(errs(), ToolName)
3073
<< "This operation is only currently supported "
3074
"for COFF and MachO object files.\n";
3075
}
3076
3077
/// Dump the raw contents of the __clangast section so the output can be piped
3078
/// into llvm-bcanalyzer.
3079
static void printRawClangAST(const ObjectFile *Obj) {
3080
if (outs().is_displayed()) {
3081
WithColor::error(errs(), ToolName)
3082
<< "The -raw-clang-ast option will dump the raw binary contents of "
3083
"the clang ast section.\n"
3084
"Please redirect the output to a file or another program such as "
3085
"llvm-bcanalyzer.\n";
3086
return;
3087
}
3088
3089
StringRef ClangASTSectionName("__clangast");
3090
if (Obj->isCOFF()) {
3091
ClangASTSectionName = "clangast";
3092
}
3093
3094
std::optional<object::SectionRef> ClangASTSection;
3095
for (auto Sec : ToolSectionFilter(*Obj)) {
3096
StringRef Name;
3097
if (Expected<StringRef> NameOrErr = Sec.getName())
3098
Name = *NameOrErr;
3099
else
3100
consumeError(NameOrErr.takeError());
3101
3102
if (Name == ClangASTSectionName) {
3103
ClangASTSection = Sec;
3104
break;
3105
}
3106
}
3107
if (!ClangASTSection)
3108
return;
3109
3110
StringRef ClangASTContents =
3111
unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
3112
outs().write(ClangASTContents.data(), ClangASTContents.size());
3113
}
3114
3115
static void printFaultMaps(const ObjectFile *Obj) {
3116
StringRef FaultMapSectionName;
3117
3118
if (Obj->isELF()) {
3119
FaultMapSectionName = ".llvm_faultmaps";
3120
} else if (Obj->isMachO()) {
3121
FaultMapSectionName = "__llvm_faultmaps";
3122
} else {
3123
WithColor::error(errs(), ToolName)
3124
<< "This operation is only currently supported "
3125
"for ELF and Mach-O executable files.\n";
3126
return;
3127
}
3128
3129
std::optional<object::SectionRef> FaultMapSection;
3130
3131
for (auto Sec : ToolSectionFilter(*Obj)) {
3132
StringRef Name;
3133
if (Expected<StringRef> NameOrErr = Sec.getName())
3134
Name = *NameOrErr;
3135
else
3136
consumeError(NameOrErr.takeError());
3137
3138
if (Name == FaultMapSectionName) {
3139
FaultMapSection = Sec;
3140
break;
3141
}
3142
}
3143
3144
outs() << "FaultMap table:\n";
3145
3146
if (!FaultMapSection) {
3147
outs() << "<not found>\n";
3148
return;
3149
}
3150
3151
StringRef FaultMapContents =
3152
unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
3153
FaultMapParser FMP(FaultMapContents.bytes_begin(),
3154
FaultMapContents.bytes_end());
3155
3156
outs() << FMP;
3157
}
3158
3159
void Dumper::printPrivateHeaders() {
3160
reportError(O.getFileName(), "Invalid/Unsupported object file format");
3161
}
3162
3163
static void printFileHeaders(const ObjectFile *O) {
3164
if (!O->isELF() && !O->isCOFF() && !O->isXCOFF())
3165
reportError(O->getFileName(), "Invalid/Unsupported object file format");
3166
3167
Triple::ArchType AT = O->getArch();
3168
outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
3169
uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
3170
3171
StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
3172
outs() << "start address: "
3173
<< "0x" << format(Fmt.data(), Address) << "\n";
3174
}
3175
3176
static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
3177
Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
3178
if (!ModeOrErr) {
3179
WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
3180
consumeError(ModeOrErr.takeError());
3181
return;
3182
}
3183
sys::fs::perms Mode = ModeOrErr.get();
3184
outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
3185
outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
3186
outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
3187
outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
3188
outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
3189
outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
3190
outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
3191
outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
3192
outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
3193
3194
outs() << " ";
3195
3196
outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
3197
unwrapOrError(C.getGID(), Filename),
3198
unwrapOrError(C.getRawSize(), Filename));
3199
3200
StringRef RawLastModified = C.getRawLastModified();
3201
unsigned Seconds;
3202
if (RawLastModified.getAsInteger(10, Seconds))
3203
outs() << "(date: \"" << RawLastModified
3204
<< "\" contains non-decimal chars) ";
3205
else {
3206
// Since ctime(3) returns a 26 character string of the form:
3207
// "Sun Sep 16 01:03:52 1973\n\0"
3208
// just print 24 characters.
3209
time_t t = Seconds;
3210
outs() << format("%.24s ", ctime(&t));
3211
}
3212
3213
StringRef Name = "";
3214
Expected<StringRef> NameOrErr = C.getName();
3215
if (!NameOrErr) {
3216
consumeError(NameOrErr.takeError());
3217
Name = unwrapOrError(C.getRawName(), Filename);
3218
} else {
3219
Name = NameOrErr.get();
3220
}
3221
outs() << Name << "\n";
3222
}
3223
3224
// For ELF only now.
3225
static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
3226
if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
3227
if (Elf->getEType() != ELF::ET_REL)
3228
return true;
3229
}
3230
return false;
3231
}
3232
3233
static void checkForInvalidStartStopAddress(ObjectFile *Obj,
3234
uint64_t Start, uint64_t Stop) {
3235
if (!shouldWarnForInvalidStartStopAddress(Obj))
3236
return;
3237
3238
for (const SectionRef &Section : Obj->sections())
3239
if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
3240
uint64_t BaseAddr = Section.getAddress();
3241
uint64_t Size = Section.getSize();
3242
if ((Start < BaseAddr + Size) && Stop > BaseAddr)
3243
return;
3244
}
3245
3246
if (!HasStartAddressFlag)
3247
reportWarning("no section has address less than 0x" +
3248
Twine::utohexstr(Stop) + " specified by --stop-address",
3249
Obj->getFileName());
3250
else if (!HasStopAddressFlag)
3251
reportWarning("no section has address greater than or equal to 0x" +
3252
Twine::utohexstr(Start) + " specified by --start-address",
3253
Obj->getFileName());
3254
else
3255
reportWarning("no section overlaps the range [0x" +
3256
Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
3257
") specified by --start-address/--stop-address",
3258
Obj->getFileName());
3259
}
3260
3261
static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
3262
const Archive::Child *C = nullptr) {
3263
Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O);
3264
if (!DumperOrErr) {
3265
reportError(DumperOrErr.takeError(), O->getFileName(),
3266
A ? A->getFileName() : "");
3267
return;
3268
}
3269
Dumper &D = **DumperOrErr;
3270
3271
// Avoid other output when using a raw option.
3272
if (!RawClangAST) {
3273
outs() << '\n';
3274
if (A)
3275
outs() << A->getFileName() << "(" << O->getFileName() << ")";
3276
else
3277
outs() << O->getFileName();
3278
outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
3279
}
3280
3281
if (HasStartAddressFlag || HasStopAddressFlag)
3282
checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
3283
3284
// TODO: Change print* free functions to Dumper member functions to utilitize
3285
// stateful functions like reportUniqueWarning.
3286
3287
// Note: the order here matches GNU objdump for compatability.
3288
StringRef ArchiveName = A ? A->getFileName() : "";
3289
if (ArchiveHeaders && !MachOOpt && C)
3290
printArchiveChild(ArchiveName, *C);
3291
if (FileHeaders)
3292
printFileHeaders(O);
3293
if (PrivateHeaders || FirstPrivateHeader)
3294
D.printPrivateHeaders();
3295
if (SectionHeaders)
3296
printSectionHeaders(*O);
3297
if (SymbolTable)
3298
D.printSymbolTable(ArchiveName);
3299
if (DynamicSymbolTable)
3300
D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
3301
/*DumpDynamic=*/true);
3302
if (DwarfDumpType != DIDT_Null) {
3303
std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
3304
// Dump the complete DWARF structure.
3305
DIDumpOptions DumpOpts;
3306
DumpOpts.DumpType = DwarfDumpType;
3307
DICtx->dump(outs(), DumpOpts);
3308
}
3309
if (Relocations && !Disassemble)
3310
D.printRelocations();
3311
if (DynamicRelocations)
3312
D.printDynamicRelocations();
3313
if (SectionContents)
3314
printSectionContents(O);
3315
if (Disassemble)
3316
disassembleObject(O, Relocations);
3317
if (UnwindInfo)
3318
printUnwindInfo(O);
3319
3320
// Mach-O specific options:
3321
if (ExportsTrie)
3322
printExportsTrie(O);
3323
if (Rebase)
3324
printRebaseTable(O);
3325
if (Bind)
3326
printBindTable(O);
3327
if (LazyBind)
3328
printLazyBindTable(O);
3329
if (WeakBind)
3330
printWeakBindTable(O);
3331
3332
// Other special sections:
3333
if (RawClangAST)
3334
printRawClangAST(O);
3335
if (FaultMapSection)
3336
printFaultMaps(O);
3337
if (Offloading)
3338
dumpOffloadBinary(*O);
3339
}
3340
3341
static void dumpObject(const COFFImportFile *I, const Archive *A,
3342
const Archive::Child *C = nullptr) {
3343
StringRef ArchiveName = A ? A->getFileName() : "";
3344
3345
// Avoid other output when using a raw option.
3346
if (!RawClangAST)
3347
outs() << '\n'
3348
<< ArchiveName << "(" << I->getFileName() << ")"
3349
<< ":\tfile format COFF-import-file"
3350
<< "\n\n";
3351
3352
if (ArchiveHeaders && !MachOOpt && C)
3353
printArchiveChild(ArchiveName, *C);
3354
if (SymbolTable)
3355
printCOFFSymbolTable(*I);
3356
}
3357
3358
/// Dump each object file in \a a;
3359
static void dumpArchive(const Archive *A) {
3360
Error Err = Error::success();
3361
unsigned I = -1;
3362
for (auto &C : A->children(Err)) {
3363
++I;
3364
Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
3365
if (!ChildOrErr) {
3366
if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
3367
reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
3368
continue;
3369
}
3370
if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
3371
dumpObject(O, A, &C);
3372
else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
3373
dumpObject(I, A, &C);
3374
else
3375
reportError(errorCodeToError(object_error::invalid_file_type),
3376
A->getFileName());
3377
}
3378
if (Err)
3379
reportError(std::move(Err), A->getFileName());
3380
}
3381
3382
/// Open file and figure out how to dump it.
3383
static void dumpInput(StringRef file) {
3384
// If we are using the Mach-O specific object file parser, then let it parse
3385
// the file and process the command line options. So the -arch flags can
3386
// be used to select specific slices, etc.
3387
if (MachOOpt) {
3388
parseInputMachO(file);
3389
return;
3390
}
3391
3392
// Attempt to open the binary.
3393
OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
3394
Binary &Binary = *OBinary.getBinary();
3395
3396
if (Archive *A = dyn_cast<Archive>(&Binary))
3397
dumpArchive(A);
3398
else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
3399
dumpObject(O);
3400
else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
3401
parseInputMachO(UB);
3402
else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
3403
dumpOffloadSections(*OB);
3404
else
3405
reportError(errorCodeToError(object_error::invalid_file_type), file);
3406
}
3407
3408
template <typename T>
3409
static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
3410
T &Value) {
3411
if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
3412
StringRef V(A->getValue());
3413
if (!llvm::to_integer(V, Value, 0)) {
3414
reportCmdLineError(A->getSpelling() +
3415
": expected a non-negative integer, but got '" + V +
3416
"'");
3417
}
3418
}
3419
}
3420
3421
static object::BuildID parseBuildIDArg(const opt::Arg *A) {
3422
StringRef V(A->getValue());
3423
object::BuildID BID = parseBuildID(V);
3424
if (BID.empty())
3425
reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
3426
V + "'");
3427
return BID;
3428
}
3429
3430
void objdump::invalidArgValue(const opt::Arg *A) {
3431
reportCmdLineError("'" + StringRef(A->getValue()) +
3432
"' is not a valid value for '" + A->getSpelling() + "'");
3433
}
3434
3435
static std::vector<std::string>
3436
commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
3437
std::vector<std::string> Values;
3438
for (StringRef Value : InputArgs.getAllArgValues(ID)) {
3439
llvm::SmallVector<StringRef, 2> SplitValues;
3440
llvm::SplitString(Value, SplitValues, ",");
3441
for (StringRef SplitValue : SplitValues)
3442
Values.push_back(SplitValue.str());
3443
}
3444
return Values;
3445
}
3446
3447
static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
3448
MachOOpt = true;
3449
FullLeadingAddr = true;
3450
PrintImmHex = true;
3451
3452
ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
3453
LinkOptHints = InputArgs.hasArg(OTOOL_C);
3454
if (InputArgs.hasArg(OTOOL_d))
3455
FilterSections.push_back("__DATA,__data");
3456
DylibId = InputArgs.hasArg(OTOOL_D);
3457
UniversalHeaders = InputArgs.hasArg(OTOOL_f);
3458
DataInCode = InputArgs.hasArg(OTOOL_G);
3459
FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
3460
IndirectSymbols = InputArgs.hasArg(OTOOL_I);
3461
ShowRawInsn = InputArgs.hasArg(OTOOL_j);
3462
PrivateHeaders = InputArgs.hasArg(OTOOL_l);
3463
DylibsUsed = InputArgs.hasArg(OTOOL_L);
3464
MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
3465
ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3466
DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
3467
InfoPlist = InputArgs.hasArg(OTOOL_P);
3468
Relocations = InputArgs.hasArg(OTOOL_r);
3469
if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3470
auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
3471
FilterSections.push_back(Filter);
3472
}
3473
if (InputArgs.hasArg(OTOOL_t))
3474
FilterSections.push_back("__TEXT,__text");
3475
Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3476
InputArgs.hasArg(OTOOL_o);
3477
SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3478
if (InputArgs.hasArg(OTOOL_x))
3479
FilterSections.push_back(",__text");
3480
LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3481
3482
ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3483
DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3484
3485
InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3486
if (InputFilenames.empty())
3487
reportCmdLineError("no input file");
3488
3489
for (const Arg *A : InputArgs) {
3490
const Option &O = A->getOption();
3491
if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3492
reportCmdLineWarning(O.getPrefixedName() +
3493
" is obsolete and not implemented");
3494
}
3495
}
3496
}
3497
3498
static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3499
parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3500
AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3501
ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3502
ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3503
Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3504
Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3505
DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3506
SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3507
TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3508
DisassembleSymbols =
3509
commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3510
DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3511
if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3512
DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3513
.Case("frames", DIDT_DebugFrame)
3514
.Default(DIDT_Null);
3515
if (DwarfDumpType == DIDT_Null)
3516
invalidArgValue(A);
3517
}
3518
DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3519
FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3520
Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3521
FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3522
SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3523
PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3524
InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3525
MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3526
MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3527
MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3528
ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3529
LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3530
RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3531
Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3532
PrintImmHex =
3533
InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3534
PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3535
FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3536
SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3537
ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3538
ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3539
PrintSource = InputArgs.hasArg(OBJDUMP_source);
3540
parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3541
HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3542
parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3543
HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3544
SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3545
SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3546
PrettyPGOAnalysisMap = InputArgs.hasArg(OBJDUMP_pretty_pgo_analysis_map);
3547
if (PrettyPGOAnalysisMap && !SymbolizeOperands)
3548
reportCmdLineWarning("--symbolize-operands must be enabled for "
3549
"--pretty-pgo-analysis-map to have an effect");
3550
DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3551
TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3552
UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3553
Wide = InputArgs.hasArg(OBJDUMP_wide);
3554
Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3555
parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3556
if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3557
DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3558
.Case("ascii", DVASCII)
3559
.Case("unicode", DVUnicode)
3560
.Default(DVInvalid);
3561
if (DbgVariables == DVInvalid)
3562
invalidArgValue(A);
3563
}
3564
if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) {
3565
DisassemblyColor = StringSwitch<ColorOutput>(A->getValue())
3566
.Case("on", ColorOutput::Enable)
3567
.Case("off", ColorOutput::Disable)
3568
.Case("terminal", ColorOutput::Auto)
3569
.Default(ColorOutput::Invalid);
3570
if (DisassemblyColor == ColorOutput::Invalid)
3571
invalidArgValue(A);
3572
}
3573
3574
parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3575
3576
parseMachOOptions(InputArgs);
3577
3578
// Parse -M (--disassembler-options) and deprecated
3579
// --x86-asm-syntax={att,intel}.
3580
//
3581
// Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3582
// MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3583
// called too late. For now we have to use the internal cl::opt option.
3584
const char *AsmSyntax = nullptr;
3585
for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3586
OBJDUMP_x86_asm_syntax_att,
3587
OBJDUMP_x86_asm_syntax_intel)) {
3588
switch (A->getOption().getID()) {
3589
case OBJDUMP_x86_asm_syntax_att:
3590
AsmSyntax = "--x86-asm-syntax=att";
3591
continue;
3592
case OBJDUMP_x86_asm_syntax_intel:
3593
AsmSyntax = "--x86-asm-syntax=intel";
3594
continue;
3595
}
3596
3597
SmallVector<StringRef, 2> Values;
3598
llvm::SplitString(A->getValue(), Values, ",");
3599
for (StringRef V : Values) {
3600
if (V == "att")
3601
AsmSyntax = "--x86-asm-syntax=att";
3602
else if (V == "intel")
3603
AsmSyntax = "--x86-asm-syntax=intel";
3604
else
3605
DisassemblerOptions.push_back(V.str());
3606
}
3607
}
3608
SmallVector<const char *> Args = {"llvm-objdump"};
3609
for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_mllvm))
3610
Args.push_back(A->getValue());
3611
if (AsmSyntax)
3612
Args.push_back(AsmSyntax);
3613
if (Args.size() > 1)
3614
llvm::cl::ParseCommandLineOptions(Args.size(), Args.data());
3615
3616
// Look up any provided build IDs, then append them to the input filenames.
3617
for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3618
object::BuildID BuildID = parseBuildIDArg(A);
3619
std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3620
if (!Path) {
3621
reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3622
A->getValue() + "'");
3623
}
3624
InputFilenames.push_back(std::move(*Path));
3625
}
3626
3627
// objdump defaults to a.out if no filenames specified.
3628
if (InputFilenames.empty())
3629
InputFilenames.push_back("a.out");
3630
}
3631
3632
int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) {
3633
using namespace llvm;
3634
3635
ToolName = argv[0];
3636
std::unique_ptr<CommonOptTable> T;
3637
OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3638
3639
StringRef Stem = sys::path::stem(ToolName);
3640
auto Is = [=](StringRef Tool) {
3641
// We need to recognize the following filenames:
3642
//
3643
// llvm-objdump -> objdump
3644
// llvm-otool-10.exe -> otool
3645
// powerpc64-unknown-freebsd13-objdump -> objdump
3646
auto I = Stem.rfind_insensitive(Tool);
3647
return I != StringRef::npos &&
3648
(I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3649
};
3650
if (Is("otool")) {
3651
T = std::make_unique<OtoolOptTable>();
3652
Unknown = OTOOL_UNKNOWN;
3653
HelpFlag = OTOOL_help;
3654
HelpHiddenFlag = OTOOL_help_hidden;
3655
VersionFlag = OTOOL_version;
3656
} else {
3657
T = std::make_unique<ObjdumpOptTable>();
3658
Unknown = OBJDUMP_UNKNOWN;
3659
HelpFlag = OBJDUMP_help;
3660
HelpHiddenFlag = OBJDUMP_help_hidden;
3661
VersionFlag = OBJDUMP_version;
3662
}
3663
3664
BumpPtrAllocator A;
3665
StringSaver Saver(A);
3666
opt::InputArgList InputArgs =
3667
T->parseArgs(argc, argv, Unknown, Saver,
3668
[&](StringRef Msg) { reportCmdLineError(Msg); });
3669
3670
if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3671
T->printHelp(ToolName);
3672
return 0;
3673
}
3674
if (InputArgs.hasArg(HelpHiddenFlag)) {
3675
T->printHelp(ToolName, /*ShowHidden=*/true);
3676
return 0;
3677
}
3678
3679
// Initialize targets and assembly printers/parsers.
3680
InitializeAllTargetInfos();
3681
InitializeAllTargetMCs();
3682
InitializeAllDisassemblers();
3683
3684
if (InputArgs.hasArg(VersionFlag)) {
3685
cl::PrintVersionMessage();
3686
if (!Is("otool")) {
3687
outs() << '\n';
3688
TargetRegistry::printRegisteredTargetsForVersion(outs());
3689
}
3690
return 0;
3691
}
3692
3693
// Initialize debuginfod.
3694
const bool ShouldUseDebuginfodByDefault =
3695
InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3696
std::vector<std::string> DebugFileDirectories =
3697
InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3698
if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3699
ShouldUseDebuginfodByDefault)) {
3700
HTTPClient::initialize();
3701
BIDFetcher =
3702
std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3703
} else {
3704
BIDFetcher =
3705
std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3706
}
3707
3708
if (Is("otool"))
3709
parseOtoolOptions(InputArgs);
3710
else
3711
parseObjdumpOptions(InputArgs);
3712
3713
if (StartAddress >= StopAddress)
3714
reportCmdLineError("start address should be less than stop address");
3715
3716
// Removes trailing separators from prefix.
3717
while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3718
Prefix.pop_back();
3719
3720
if (AllHeaders)
3721
ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3722
SectionHeaders = SymbolTable = true;
3723
3724
if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3725
!DisassembleSymbols.empty())
3726
Disassemble = true;
3727
3728
if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3729
!DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3730
!Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3731
!DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3732
!(MachOOpt &&
3733
(Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3734
DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3735
FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3736
InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3737
Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3738
T->printHelp(ToolName);
3739
return 2;
3740
}
3741
3742
DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3743
3744
llvm::for_each(InputFilenames, dumpInput);
3745
3746
warnOnNoMatchForSections();
3747
3748
return EXIT_SUCCESS;
3749
}
3750
3751