Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/utils/TableGen/AsmMatcherEmitter.cpp
35258 views
1
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This tablegen backend emits a target specifier matcher for converting parsed
10
// assembly operands in the MCInst structures. It also emits a matcher for
11
// custom operand parsing.
12
//
13
// Converting assembly operands into MCInst structures
14
// ---------------------------------------------------
15
//
16
// The input to the target specific matcher is a list of literal tokens and
17
// operands. The target specific parser should generally eliminate any syntax
18
// which is not relevant for matching; for example, comma tokens should have
19
// already been consumed and eliminated by the parser. Most instructions will
20
// end up with a single literal token (the instruction name) and some number of
21
// operands.
22
//
23
// Some example inputs, for X86:
24
// 'addl' (immediate ...) (register ...)
25
// 'add' (immediate ...) (memory ...)
26
// 'call' '*' %epc
27
//
28
// The assembly matcher is responsible for converting this input into a precise
29
// machine instruction (i.e., an instruction with a well defined encoding). This
30
// mapping has several properties which complicate matching:
31
//
32
// - It may be ambiguous; many architectures can legally encode particular
33
// variants of an instruction in different ways (for example, using a smaller
34
// encoding for small immediates). Such ambiguities should never be
35
// arbitrarily resolved by the assembler, the assembler is always responsible
36
// for choosing the "best" available instruction.
37
//
38
// - It may depend on the subtarget or the assembler context. Instructions
39
// which are invalid for the current mode, but otherwise unambiguous (e.g.,
40
// an SSE instruction in a file being assembled for i486) should be accepted
41
// and rejected by the assembler front end. However, if the proper encoding
42
// for an instruction is dependent on the assembler context then the matcher
43
// is responsible for selecting the correct machine instruction for the
44
// current mode.
45
//
46
// The core matching algorithm attempts to exploit the regularity in most
47
// instruction sets to quickly determine the set of possibly matching
48
// instructions, and the simplify the generated code. Additionally, this helps
49
// to ensure that the ambiguities are intentionally resolved by the user.
50
//
51
// The matching is divided into two distinct phases:
52
//
53
// 1. Classification: Each operand is mapped to the unique set which (a)
54
// contains it, and (b) is the largest such subset for which a single
55
// instruction could match all members.
56
//
57
// For register classes, we can generate these subgroups automatically. For
58
// arbitrary operands, we expect the user to define the classes and their
59
// relations to one another (for example, 8-bit signed immediates as a
60
// subset of 32-bit immediates).
61
//
62
// By partitioning the operands in this way, we guarantee that for any
63
// tuple of classes, any single instruction must match either all or none
64
// of the sets of operands which could classify to that tuple.
65
//
66
// In addition, the subset relation amongst classes induces a partial order
67
// on such tuples, which we use to resolve ambiguities.
68
//
69
// 2. The input can now be treated as a tuple of classes (static tokens are
70
// simple singleton sets). Each such tuple should generally map to a single
71
// instruction (we currently ignore cases where this isn't true, whee!!!),
72
// which we can emit a simple matcher for.
73
//
74
// Custom Operand Parsing
75
// ----------------------
76
//
77
// Some targets need a custom way to parse operands, some specific instructions
78
// can contain arguments that can represent processor flags and other kinds of
79
// identifiers that need to be mapped to specific values in the final encoded
80
// instructions. The target specific custom operand parsing works in the
81
// following way:
82
//
83
// 1. A operand match table is built, each entry contains a mnemonic, an
84
// operand class, a mask for all operand positions for that same
85
// class/mnemonic and target features to be checked while trying to match.
86
//
87
// 2. The operand matcher will try every possible entry with the same
88
// mnemonic and will check if the target feature for this mnemonic also
89
// matches. After that, if the operand to be matched has its index
90
// present in the mask, a successful match occurs. Otherwise, fallback
91
// to the regular operand parsing.
92
//
93
// 3. For a match success, each operand class that has a 'ParserMethod'
94
// becomes part of a switch from where the custom method is called.
95
//
96
//===----------------------------------------------------------------------===//
97
98
#include "Common/CodeGenInstAlias.h"
99
#include "Common/CodeGenInstruction.h"
100
#include "Common/CodeGenRegisters.h"
101
#include "Common/CodeGenTarget.h"
102
#include "Common/SubtargetFeatureInfo.h"
103
#include "Common/Types.h"
104
#include "llvm/ADT/CachedHashString.h"
105
#include "llvm/ADT/PointerUnion.h"
106
#include "llvm/ADT/STLExtras.h"
107
#include "llvm/ADT/SmallPtrSet.h"
108
#include "llvm/ADT/SmallVector.h"
109
#include "llvm/ADT/StringExtras.h"
110
#include "llvm/Support/CommandLine.h"
111
#include "llvm/Support/Debug.h"
112
#include "llvm/Support/ErrorHandling.h"
113
#include "llvm/TableGen/Error.h"
114
#include "llvm/TableGen/Record.h"
115
#include "llvm/TableGen/StringMatcher.h"
116
#include "llvm/TableGen/StringToOffsetTable.h"
117
#include "llvm/TableGen/TableGenBackend.h"
118
#include <cassert>
119
#include <cctype>
120
#include <forward_list>
121
#include <map>
122
#include <set>
123
124
using namespace llvm;
125
126
#define DEBUG_TYPE "asm-matcher-emitter"
127
128
cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
129
130
static cl::opt<std::string>
131
MatchPrefix("match-prefix", cl::init(""),
132
cl::desc("Only match instructions with the given prefix"),
133
cl::cat(AsmMatcherEmitterCat));
134
135
namespace {
136
class AsmMatcherInfo;
137
138
// Register sets are used as keys in some second-order sets TableGen creates
139
// when generating its data structures. This means that the order of two
140
// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
141
// can even affect compiler output (at least seen in diagnostics produced when
142
// all matches fail). So we use a type that sorts them consistently.
143
typedef std::set<Record *, LessRecordByID> RegisterSet;
144
145
class AsmMatcherEmitter {
146
RecordKeeper &Records;
147
148
public:
149
AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
150
151
void run(raw_ostream &o);
152
};
153
154
/// ClassInfo - Helper class for storing the information about a particular
155
/// class of operands which can be matched.
156
struct ClassInfo {
157
enum ClassInfoKind {
158
/// Invalid kind, for use as a sentinel value.
159
Invalid = 0,
160
161
/// The class for a particular token.
162
Token,
163
164
/// The (first) register class, subsequent register classes are
165
/// RegisterClass0+1, and so on.
166
RegisterClass0,
167
168
/// The (first) user defined class, subsequent user defined classes are
169
/// UserClass0+1, and so on.
170
UserClass0 = 1 << 16
171
};
172
173
/// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
174
/// N) for the Nth user defined class.
175
unsigned Kind;
176
177
/// SuperClasses - The super classes of this class. Note that for simplicities
178
/// sake user operands only record their immediate super class, while register
179
/// operands include all superclasses.
180
std::vector<ClassInfo *> SuperClasses;
181
182
/// Name - The full class name, suitable for use in an enum.
183
std::string Name;
184
185
/// ClassName - The unadorned generic name for this class (e.g., Token).
186
std::string ClassName;
187
188
/// ValueName - The name of the value this class represents; for a token this
189
/// is the literal token string, for an operand it is the TableGen class (or
190
/// empty if this is a derived class).
191
std::string ValueName;
192
193
/// PredicateMethod - The name of the operand method to test whether the
194
/// operand matches this class; this is not valid for Token or register kinds.
195
std::string PredicateMethod;
196
197
/// RenderMethod - The name of the operand method to add this operand to an
198
/// MCInst; this is not valid for Token or register kinds.
199
std::string RenderMethod;
200
201
/// ParserMethod - The name of the operand method to do a target specific
202
/// parsing on the operand.
203
std::string ParserMethod;
204
205
/// For register classes: the records for all the registers in this class.
206
RegisterSet Registers;
207
208
/// For custom match classes: the diagnostic kind for when the predicate
209
/// fails.
210
std::string DiagnosticType;
211
212
/// For custom match classes: the diagnostic string for when the predicate
213
/// fails.
214
std::string DiagnosticString;
215
216
/// Is this operand optional and not always required.
217
bool IsOptional;
218
219
/// DefaultMethod - The name of the method that returns the default operand
220
/// for optional operand
221
std::string DefaultMethod;
222
223
public:
224
/// isRegisterClass() - Check if this is a register class.
225
bool isRegisterClass() const {
226
return Kind >= RegisterClass0 && Kind < UserClass0;
227
}
228
229
/// isUserClass() - Check if this is a user defined class.
230
bool isUserClass() const { return Kind >= UserClass0; }
231
232
/// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
233
/// are related if they are in the same class hierarchy.
234
bool isRelatedTo(const ClassInfo &RHS) const {
235
// Tokens are only related to tokens.
236
if (Kind == Token || RHS.Kind == Token)
237
return Kind == Token && RHS.Kind == Token;
238
239
// Registers classes are only related to registers classes, and only if
240
// their intersection is non-empty.
241
if (isRegisterClass() || RHS.isRegisterClass()) {
242
if (!isRegisterClass() || !RHS.isRegisterClass())
243
return false;
244
245
std::vector<Record *> Tmp;
246
std::set_intersection(Registers.begin(), Registers.end(),
247
RHS.Registers.begin(), RHS.Registers.end(),
248
std::back_inserter(Tmp), LessRecordByID());
249
250
return !Tmp.empty();
251
}
252
253
// Otherwise we have two users operands; they are related if they are in the
254
// same class hierarchy.
255
//
256
// FIXME: This is an oversimplification, they should only be related if they
257
// intersect, however we don't have that information.
258
assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
259
const ClassInfo *Root = this;
260
while (!Root->SuperClasses.empty())
261
Root = Root->SuperClasses.front();
262
263
const ClassInfo *RHSRoot = &RHS;
264
while (!RHSRoot->SuperClasses.empty())
265
RHSRoot = RHSRoot->SuperClasses.front();
266
267
return Root == RHSRoot;
268
}
269
270
/// isSubsetOf - Test whether this class is a subset of \p RHS.
271
bool isSubsetOf(const ClassInfo &RHS) const {
272
// This is a subset of RHS if it is the same class...
273
if (this == &RHS)
274
return true;
275
276
// ... or if any of its super classes are a subset of RHS.
277
SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
278
SuperClasses.end());
279
SmallPtrSet<const ClassInfo *, 16> Visited;
280
while (!Worklist.empty()) {
281
auto *CI = Worklist.pop_back_val();
282
if (CI == &RHS)
283
return true;
284
for (auto *Super : CI->SuperClasses)
285
if (Visited.insert(Super).second)
286
Worklist.push_back(Super);
287
}
288
289
return false;
290
}
291
292
int getTreeDepth() const {
293
int Depth = 0;
294
const ClassInfo *Root = this;
295
while (!Root->SuperClasses.empty()) {
296
Depth++;
297
Root = Root->SuperClasses.front();
298
}
299
return Depth;
300
}
301
302
const ClassInfo *findRoot() const {
303
const ClassInfo *Root = this;
304
while (!Root->SuperClasses.empty())
305
Root = Root->SuperClasses.front();
306
return Root;
307
}
308
309
/// Compare two classes. This does not produce a total ordering, but does
310
/// guarantee that subclasses are sorted before their parents, and that the
311
/// ordering is transitive.
312
bool operator<(const ClassInfo &RHS) const {
313
if (this == &RHS)
314
return false;
315
316
// First, enforce the ordering between the three different types of class.
317
// Tokens sort before registers, which sort before user classes.
318
if (Kind == Token) {
319
if (RHS.Kind != Token)
320
return true;
321
assert(RHS.Kind == Token);
322
} else if (isRegisterClass()) {
323
if (RHS.Kind == Token)
324
return false;
325
else if (RHS.isUserClass())
326
return true;
327
assert(RHS.isRegisterClass());
328
} else if (isUserClass()) {
329
if (!RHS.isUserClass())
330
return false;
331
assert(RHS.isUserClass());
332
} else {
333
llvm_unreachable("Unknown ClassInfoKind");
334
}
335
336
if (Kind == Token || isUserClass()) {
337
// Related tokens and user classes get sorted by depth in the inheritence
338
// tree (so that subclasses are before their parents).
339
if (isRelatedTo(RHS)) {
340
if (getTreeDepth() > RHS.getTreeDepth())
341
return true;
342
if (getTreeDepth() < RHS.getTreeDepth())
343
return false;
344
} else {
345
// Unrelated tokens and user classes are ordered by the name of their
346
// root nodes, so that there is a consistent ordering between
347
// unconnected trees.
348
return findRoot()->ValueName < RHS.findRoot()->ValueName;
349
}
350
} else if (isRegisterClass()) {
351
// For register sets, sort by number of registers. This guarantees that
352
// a set will always sort before all of it's strict supersets.
353
if (Registers.size() != RHS.Registers.size())
354
return Registers.size() < RHS.Registers.size();
355
} else {
356
llvm_unreachable("Unknown ClassInfoKind");
357
}
358
359
// FIXME: We should be able to just return false here, as we only need a
360
// partial order (we use stable sorts, so this is deterministic) and the
361
// name of a class shouldn't be significant. However, some of the backends
362
// accidentally rely on this behaviour, so it will have to stay like this
363
// until they are fixed.
364
return ValueName < RHS.ValueName;
365
}
366
};
367
368
class AsmVariantInfo {
369
public:
370
StringRef RegisterPrefix;
371
StringRef TokenizingCharacters;
372
StringRef SeparatorCharacters;
373
StringRef BreakCharacters;
374
StringRef Name;
375
int AsmVariantNo;
376
};
377
378
bool getPreferSmallerInstructions(CodeGenTarget const &Target) {
379
return Target.getAsmParser()->getValueAsBit("PreferSmallerInstructions");
380
}
381
382
/// MatchableInfo - Helper class for storing the necessary information for an
383
/// instruction or alias which is capable of being matched.
384
struct MatchableInfo {
385
struct AsmOperand {
386
/// Token - This is the token that the operand came from.
387
StringRef Token;
388
389
/// The unique class instance this operand should match.
390
ClassInfo *Class;
391
392
/// The operand name this is, if anything.
393
StringRef SrcOpName;
394
395
/// The operand name this is, before renaming for tied operands.
396
StringRef OrigSrcOpName;
397
398
/// The suboperand index within SrcOpName, or -1 for the entire operand.
399
int SubOpIdx;
400
401
/// Whether the token is "isolated", i.e., it is preceded and followed
402
/// by separators.
403
bool IsIsolatedToken;
404
405
/// Register record if this token is singleton register.
406
Record *SingletonReg;
407
408
explicit AsmOperand(bool IsIsolatedToken, StringRef T)
409
: Token(T), Class(nullptr), SubOpIdx(-1),
410
IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
411
};
412
413
/// ResOperand - This represents a single operand in the result instruction
414
/// generated by the match. In cases (like addressing modes) where a single
415
/// assembler operand expands to multiple MCOperands, this represents the
416
/// single assembler operand, not the MCOperand.
417
struct ResOperand {
418
enum {
419
/// RenderAsmOperand - This represents an operand result that is
420
/// generated by calling the render method on the assembly operand. The
421
/// corresponding AsmOperand is specified by AsmOperandNum.
422
RenderAsmOperand,
423
424
/// TiedOperand - This represents a result operand that is a duplicate of
425
/// a previous result operand.
426
TiedOperand,
427
428
/// ImmOperand - This represents an immediate value that is dumped into
429
/// the operand.
430
ImmOperand,
431
432
/// RegOperand - This represents a fixed register that is dumped in.
433
RegOperand
434
} Kind;
435
436
/// Tuple containing the index of the (earlier) result operand that should
437
/// be copied from, as well as the indices of the corresponding (parsed)
438
/// operands in the asm string.
439
struct TiedOperandsTuple {
440
unsigned ResOpnd;
441
unsigned SrcOpnd1Idx;
442
unsigned SrcOpnd2Idx;
443
};
444
445
union {
446
/// This is the operand # in the AsmOperands list that this should be
447
/// copied from.
448
unsigned AsmOperandNum;
449
450
/// Description of tied operands.
451
TiedOperandsTuple TiedOperands;
452
453
/// ImmVal - This is the immediate value added to the instruction.
454
int64_t ImmVal;
455
456
/// Register - This is the register record.
457
Record *Register;
458
};
459
460
/// MINumOperands - The number of MCInst operands populated by this
461
/// operand.
462
unsigned MINumOperands;
463
464
static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
465
ResOperand X;
466
X.Kind = RenderAsmOperand;
467
X.AsmOperandNum = AsmOpNum;
468
X.MINumOperands = NumOperands;
469
return X;
470
}
471
472
static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
473
unsigned SrcOperand2) {
474
ResOperand X;
475
X.Kind = TiedOperand;
476
X.TiedOperands = {TiedOperandNum, SrcOperand1, SrcOperand2};
477
X.MINumOperands = 1;
478
return X;
479
}
480
481
static ResOperand getImmOp(int64_t Val) {
482
ResOperand X;
483
X.Kind = ImmOperand;
484
X.ImmVal = Val;
485
X.MINumOperands = 1;
486
return X;
487
}
488
489
static ResOperand getRegOp(Record *Reg) {
490
ResOperand X;
491
X.Kind = RegOperand;
492
X.Register = Reg;
493
X.MINumOperands = 1;
494
return X;
495
}
496
};
497
498
/// AsmVariantID - Target's assembly syntax variant no.
499
int AsmVariantID;
500
501
/// AsmString - The assembly string for this instruction (with variants
502
/// removed), e.g. "movsx $src, $dst".
503
std::string AsmString;
504
505
/// TheDef - This is the definition of the instruction or InstAlias that this
506
/// matchable came from.
507
Record *const TheDef;
508
509
// ResInstSize - The size of the resulting instruction for this matchable.
510
unsigned ResInstSize;
511
512
/// DefRec - This is the definition that it came from.
513
PointerUnion<const CodeGenInstruction *, const CodeGenInstAlias *> DefRec;
514
515
const CodeGenInstruction *getResultInst() const {
516
if (isa<const CodeGenInstruction *>(DefRec))
517
return cast<const CodeGenInstruction *>(DefRec);
518
return cast<const CodeGenInstAlias *>(DefRec)->ResultInst;
519
}
520
521
/// ResOperands - This is the operand list that should be built for the result
522
/// MCInst.
523
SmallVector<ResOperand, 8> ResOperands;
524
525
/// Mnemonic - This is the first token of the matched instruction, its
526
/// mnemonic.
527
StringRef Mnemonic;
528
529
/// AsmOperands - The textual operands that this instruction matches,
530
/// annotated with a class and where in the OperandList they were defined.
531
/// This directly corresponds to the tokenized AsmString after the mnemonic is
532
/// removed.
533
SmallVector<AsmOperand, 8> AsmOperands;
534
535
/// Predicates - The required subtarget features to match this instruction.
536
SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
537
538
/// ConversionFnKind - The enum value which is passed to the generated
539
/// convertToMCInst to convert parsed operands into an MCInst for this
540
/// function.
541
std::string ConversionFnKind;
542
543
/// If this instruction is deprecated in some form.
544
bool HasDeprecation = false;
545
546
/// If this is an alias, this is use to determine whether or not to using
547
/// the conversion function defined by the instruction's AsmMatchConverter
548
/// or to use the function generated by the alias.
549
bool UseInstAsmMatchConverter;
550
551
MatchableInfo(const CodeGenInstruction &CGI)
552
: AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef),
553
ResInstSize(TheDef->getValueAsInt("Size")), DefRec(&CGI),
554
UseInstAsmMatchConverter(true) {}
555
556
MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
557
: AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
558
ResInstSize(Alias->ResultInst->TheDef->getValueAsInt("Size")),
559
DefRec(Alias.release()), UseInstAsmMatchConverter(TheDef->getValueAsBit(
560
"UseInstAsmMatchConverter")) {}
561
562
// Could remove this and the dtor if PointerUnion supported unique_ptr
563
// elements with a dynamic failure/assertion (like the one below) in the case
564
// where it was copied while being in an owning state.
565
MatchableInfo(const MatchableInfo &RHS)
566
: AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
567
TheDef(RHS.TheDef), ResInstSize(RHS.ResInstSize), DefRec(RHS.DefRec),
568
ResOperands(RHS.ResOperands), Mnemonic(RHS.Mnemonic),
569
AsmOperands(RHS.AsmOperands), RequiredFeatures(RHS.RequiredFeatures),
570
ConversionFnKind(RHS.ConversionFnKind),
571
HasDeprecation(RHS.HasDeprecation),
572
UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
573
assert(!isa<const CodeGenInstAlias *>(DefRec));
574
}
575
576
~MatchableInfo() {
577
delete dyn_cast_if_present<const CodeGenInstAlias *>(DefRec);
578
}
579
580
// Two-operand aliases clone from the main matchable, but mark the second
581
// operand as a tied operand of the first for purposes of the assembler.
582
void formTwoOperandAlias(StringRef Constraint);
583
584
void initialize(const AsmMatcherInfo &Info,
585
SmallPtrSetImpl<Record *> &SingletonRegisters,
586
AsmVariantInfo const &Variant, bool HasMnemonicFirst);
587
588
/// validate - Return true if this matchable is a valid thing to match against
589
/// and perform a bunch of validity checking.
590
bool validate(StringRef CommentDelimiter, bool IsAlias) const;
591
592
/// findAsmOperand - Find the AsmOperand with the specified name and
593
/// suboperand index.
594
int findAsmOperand(StringRef N, int SubOpIdx) const {
595
auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
596
return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
597
});
598
return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
599
}
600
601
/// findAsmOperandNamed - Find the first AsmOperand with the specified name.
602
/// This does not check the suboperand index.
603
int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
604
auto I =
605
llvm::find_if(llvm::drop_begin(AsmOperands, LastIdx + 1),
606
[&](const AsmOperand &Op) { return Op.SrcOpName == N; });
607
return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
608
}
609
610
int findAsmOperandOriginallyNamed(StringRef N) const {
611
auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
612
return Op.OrigSrcOpName == N;
613
});
614
return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
615
}
616
617
void buildInstructionResultOperands();
618
void buildAliasResultOperands(bool AliasConstraintsAreChecked);
619
620
/// shouldBeMatchedBefore - Compare two matchables for ordering.
621
bool shouldBeMatchedBefore(const MatchableInfo &RHS,
622
bool PreferSmallerInstructions) const {
623
// The primary comparator is the instruction mnemonic.
624
if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic))
625
return Cmp == -1;
626
627
// (Optionally) Order by the resultant instuctions size.
628
// eg. for ARM thumb instructions smaller encodings should be preferred.
629
if (PreferSmallerInstructions && ResInstSize != RHS.ResInstSize)
630
return ResInstSize < RHS.ResInstSize;
631
632
if (AsmOperands.size() != RHS.AsmOperands.size())
633
return AsmOperands.size() < RHS.AsmOperands.size();
634
635
// Compare lexicographically by operand. The matcher validates that other
636
// orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
637
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
638
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
639
return true;
640
if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
641
return false;
642
}
643
644
// For X86 AVX/AVX512 instructions, we prefer vex encoding because the
645
// vex encoding size is smaller. Since X86InstrSSE.td is included ahead
646
// of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID.
647
// We use the ID to sort AVX instruction before AVX512 instruction in
648
// matching table. As well as InstAlias.
649
if (getResultInst()->TheDef->isSubClassOf("Instruction") &&
650
getResultInst()->TheDef->getValueAsBit("HasPositionOrder") &&
651
RHS.getResultInst()->TheDef->isSubClassOf("Instruction") &&
652
RHS.getResultInst()->TheDef->getValueAsBit("HasPositionOrder"))
653
return getResultInst()->TheDef->getID() <
654
RHS.getResultInst()->TheDef->getID();
655
656
// Give matches that require more features higher precedence. This is useful
657
// because we cannot define AssemblerPredicates with the negation of
658
// processor features. For example, ARM v6 "nop" may be either a HINT or
659
// MOV. With v6, we want to match HINT. The assembler has no way to
660
// predicate MOV under "NoV6", but HINT will always match first because it
661
// requires V6 while MOV does not.
662
if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
663
return RequiredFeatures.size() > RHS.RequiredFeatures.size();
664
665
return false;
666
}
667
668
/// couldMatchAmbiguouslyWith - Check whether this matchable could
669
/// ambiguously match the same set of operands as \p RHS (without being a
670
/// strictly superior match).
671
bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS,
672
bool PreferSmallerInstructions) const {
673
// The primary comparator is the instruction mnemonic.
674
if (Mnemonic != RHS.Mnemonic)
675
return false;
676
677
// Different variants can't conflict.
678
if (AsmVariantID != RHS.AsmVariantID)
679
return false;
680
681
// The size of instruction is unambiguous.
682
if (PreferSmallerInstructions && ResInstSize != RHS.ResInstSize)
683
return false;
684
685
// The number of operands is unambiguous.
686
if (AsmOperands.size() != RHS.AsmOperands.size())
687
return false;
688
689
// Otherwise, make sure the ordering of the two instructions is unambiguous
690
// by checking that either (a) a token or operand kind discriminates them,
691
// or (b) the ordering among equivalent kinds is consistent.
692
693
// Tokens and operand kinds are unambiguous (assuming a correct target
694
// specific parser).
695
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
696
if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
697
AsmOperands[i].Class->Kind == ClassInfo::Token)
698
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
699
*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
700
return false;
701
702
// Otherwise, this operand could commute if all operands are equivalent, or
703
// there is a pair of operands that compare less than and a pair that
704
// compare greater than.
705
bool HasLT = false, HasGT = false;
706
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
707
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
708
HasLT = true;
709
if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
710
HasGT = true;
711
}
712
713
return HasLT == HasGT;
714
}
715
716
void dump() const;
717
718
private:
719
void tokenizeAsmString(AsmMatcherInfo const &Info,
720
AsmVariantInfo const &Variant);
721
void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
722
};
723
724
struct OperandMatchEntry {
725
unsigned OperandMask;
726
const MatchableInfo *MI;
727
ClassInfo *CI;
728
729
static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
730
unsigned opMask) {
731
OperandMatchEntry X;
732
X.OperandMask = opMask;
733
X.CI = ci;
734
X.MI = mi;
735
return X;
736
}
737
};
738
739
class AsmMatcherInfo {
740
public:
741
/// Tracked Records
742
RecordKeeper &Records;
743
744
/// The tablegen AsmParser record.
745
Record *AsmParser;
746
747
/// Target - The target information.
748
CodeGenTarget &Target;
749
750
/// The classes which are needed for matching.
751
std::forward_list<ClassInfo> Classes;
752
753
/// The information on the matchables to match.
754
std::vector<std::unique_ptr<MatchableInfo>> Matchables;
755
756
/// Info for custom matching operands by user defined methods.
757
std::vector<OperandMatchEntry> OperandMatchInfo;
758
759
/// Map of Register records to their class information.
760
typedef std::map<Record *, ClassInfo *, LessRecordByID> RegisterClassesTy;
761
RegisterClassesTy RegisterClasses;
762
763
/// Map of Predicate records to their subtarget information.
764
std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
765
766
/// Map of AsmOperandClass records to their class information.
767
std::map<Record *, ClassInfo *> AsmOperandClasses;
768
769
/// Map of RegisterClass records to their class information.
770
std::map<Record *, ClassInfo *> RegisterClassClasses;
771
772
private:
773
/// Map of token to class information which has already been constructed.
774
std::map<std::string, ClassInfo *> TokenClasses;
775
776
private:
777
/// getTokenClass - Lookup or create the class for the given token.
778
ClassInfo *getTokenClass(StringRef Token);
779
780
/// getOperandClass - Lookup or create the class for the given operand.
781
ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
782
int SubOpIdx);
783
ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
784
785
/// buildRegisterClasses - Build the ClassInfo* instances for register
786
/// classes.
787
void buildRegisterClasses(SmallPtrSetImpl<Record *> &SingletonRegisters);
788
789
/// buildOperandClasses - Build the ClassInfo* instances for user defined
790
/// operand classes.
791
void buildOperandClasses();
792
793
void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
794
unsigned AsmOpIdx);
795
void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
796
MatchableInfo::AsmOperand &Op);
797
798
public:
799
AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target,
800
RecordKeeper &Records);
801
802
/// Construct the various tables used during matching.
803
void buildInfo();
804
805
/// buildOperandMatchInfo - Build the necessary information to handle user
806
/// defined operand parsing methods.
807
void buildOperandMatchInfo();
808
809
/// getSubtargetFeature - Lookup or create the subtarget feature info for the
810
/// given operand.
811
const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
812
assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
813
const auto &I = SubtargetFeatures.find(Def);
814
return I == SubtargetFeatures.end() ? nullptr : &I->second;
815
}
816
817
RecordKeeper &getRecords() const { return Records; }
818
819
bool hasOptionalOperands() const {
820
return any_of(Classes,
821
[](const ClassInfo &Class) { return Class.IsOptional; });
822
}
823
};
824
825
} // end anonymous namespace
826
827
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
828
LLVM_DUMP_METHOD void MatchableInfo::dump() const {
829
errs() << TheDef->getName() << " -- "
830
<< "flattened:\"" << AsmString << "\"\n";
831
832
errs() << " variant: " << AsmVariantID << "\n";
833
834
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
835
const AsmOperand &Op = AsmOperands[i];
836
errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
837
errs() << '\"' << Op.Token << "\"\n";
838
}
839
}
840
#endif
841
842
static std::pair<StringRef, StringRef>
843
parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
844
// Split via the '='.
845
std::pair<StringRef, StringRef> Ops = S.split('=');
846
if (Ops.second == "")
847
PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
848
// Trim whitespace and the leading '$' on the operand names.
849
size_t start = Ops.first.find_first_of('$');
850
if (start == std::string::npos)
851
PrintFatalError(Loc, "expected '$' prefix on asm operand name");
852
Ops.first = Ops.first.slice(start + 1, std::string::npos);
853
size_t end = Ops.first.find_last_of(" \t");
854
Ops.first = Ops.first.slice(0, end);
855
// Now the second operand.
856
start = Ops.second.find_first_of('$');
857
if (start == std::string::npos)
858
PrintFatalError(Loc, "expected '$' prefix on asm operand name");
859
Ops.second = Ops.second.slice(start + 1, std::string::npos);
860
end = Ops.second.find_last_of(" \t");
861
Ops.first = Ops.first.slice(0, end);
862
return Ops;
863
}
864
865
void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
866
// Figure out which operands are aliased and mark them as tied.
867
std::pair<StringRef, StringRef> Ops =
868
parseTwoOperandConstraint(Constraint, TheDef->getLoc());
869
870
// Find the AsmOperands that refer to the operands we're aliasing.
871
int SrcAsmOperand = findAsmOperandNamed(Ops.first);
872
int DstAsmOperand = findAsmOperandNamed(Ops.second);
873
if (SrcAsmOperand == -1)
874
PrintFatalError(TheDef->getLoc(),
875
"unknown source two-operand alias operand '" + Ops.first +
876
"'.");
877
if (DstAsmOperand == -1)
878
PrintFatalError(TheDef->getLoc(),
879
"unknown destination two-operand alias operand '" +
880
Ops.second + "'.");
881
882
// Find the ResOperand that refers to the operand we're aliasing away
883
// and update it to refer to the combined operand instead.
884
for (ResOperand &Op : ResOperands) {
885
if (Op.Kind == ResOperand::RenderAsmOperand &&
886
Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
887
Op.AsmOperandNum = DstAsmOperand;
888
break;
889
}
890
}
891
// Remove the AsmOperand for the alias operand.
892
AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
893
// Adjust the ResOperand references to any AsmOperands that followed
894
// the one we just deleted.
895
for (ResOperand &Op : ResOperands) {
896
switch (Op.Kind) {
897
default:
898
// Nothing to do for operands that don't reference AsmOperands.
899
break;
900
case ResOperand::RenderAsmOperand:
901
if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
902
--Op.AsmOperandNum;
903
break;
904
}
905
}
906
}
907
908
/// extractSingletonRegisterForAsmOperand - Extract singleton register,
909
/// if present, from specified token.
910
static void extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
911
const AsmMatcherInfo &Info,
912
StringRef RegisterPrefix) {
913
StringRef Tok = Op.Token;
914
915
// If this token is not an isolated token, i.e., it isn't separated from
916
// other tokens (e.g. with whitespace), don't interpret it as a register name.
917
if (!Op.IsIsolatedToken)
918
return;
919
920
if (RegisterPrefix.empty()) {
921
std::string LoweredTok = Tok.lower();
922
if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
923
Op.SingletonReg = Reg->TheDef;
924
return;
925
}
926
927
if (!Tok.starts_with(RegisterPrefix))
928
return;
929
930
StringRef RegName = Tok.substr(RegisterPrefix.size());
931
if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
932
Op.SingletonReg = Reg->TheDef;
933
934
// If there is no register prefix (i.e. "%" in "%eax"), then this may
935
// be some random non-register token, just ignore it.
936
}
937
938
void MatchableInfo::initialize(const AsmMatcherInfo &Info,
939
SmallPtrSetImpl<Record *> &SingletonRegisters,
940
AsmVariantInfo const &Variant,
941
bool HasMnemonicFirst) {
942
AsmVariantID = Variant.AsmVariantNo;
943
AsmString = CodeGenInstruction::FlattenAsmStringVariants(
944
AsmString, Variant.AsmVariantNo);
945
946
tokenizeAsmString(Info, Variant);
947
948
// The first token of the instruction is the mnemonic, which must be a
949
// simple string, not a $foo variable or a singleton register.
950
if (AsmOperands.empty())
951
PrintFatalError(TheDef->getLoc(),
952
"Instruction '" + TheDef->getName() + "' has no tokens");
953
954
assert(!AsmOperands[0].Token.empty());
955
if (HasMnemonicFirst) {
956
Mnemonic = AsmOperands[0].Token;
957
if (Mnemonic[0] == '$')
958
PrintFatalError(TheDef->getLoc(),
959
"Invalid instruction mnemonic '" + Mnemonic + "'!");
960
961
// Remove the first operand, it is tracked in the mnemonic field.
962
AsmOperands.erase(AsmOperands.begin());
963
} else if (AsmOperands[0].Token[0] != '$')
964
Mnemonic = AsmOperands[0].Token;
965
966
// Compute the require features.
967
for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
968
if (const SubtargetFeatureInfo *Feature =
969
Info.getSubtargetFeature(Predicate))
970
RequiredFeatures.push_back(Feature);
971
972
// Collect singleton registers, if used.
973
for (MatchableInfo::AsmOperand &Op : AsmOperands) {
974
extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
975
if (Record *Reg = Op.SingletonReg)
976
SingletonRegisters.insert(Reg);
977
}
978
979
const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
980
if (!DepMask)
981
DepMask = TheDef->getValue("ComplexDeprecationPredicate");
982
983
HasDeprecation =
984
DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
985
}
986
987
/// Append an AsmOperand for the given substring of AsmString.
988
void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
989
AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
990
}
991
992
/// tokenizeAsmString - Tokenize a simplified assembly string.
993
void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
994
AsmVariantInfo const &Variant) {
995
StringRef String = AsmString;
996
size_t Prev = 0;
997
bool InTok = false;
998
bool IsIsolatedToken = true;
999
for (size_t i = 0, e = String.size(); i != e; ++i) {
1000
char Char = String[i];
1001
if (Variant.BreakCharacters.contains(Char)) {
1002
if (InTok) {
1003
addAsmOperand(String.slice(Prev, i), false);
1004
Prev = i;
1005
IsIsolatedToken = false;
1006
}
1007
InTok = true;
1008
continue;
1009
}
1010
if (Variant.TokenizingCharacters.contains(Char)) {
1011
if (InTok) {
1012
addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1013
InTok = false;
1014
IsIsolatedToken = false;
1015
}
1016
addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1017
Prev = i + 1;
1018
IsIsolatedToken = true;
1019
continue;
1020
}
1021
if (Variant.SeparatorCharacters.contains(Char)) {
1022
if (InTok) {
1023
addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1024
InTok = false;
1025
}
1026
Prev = i + 1;
1027
IsIsolatedToken = true;
1028
continue;
1029
}
1030
1031
switch (Char) {
1032
case '\\':
1033
if (InTok) {
1034
addAsmOperand(String.slice(Prev, i), false);
1035
InTok = false;
1036
IsIsolatedToken = false;
1037
}
1038
++i;
1039
assert(i != String.size() && "Invalid quoted character");
1040
addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1041
Prev = i + 1;
1042
IsIsolatedToken = false;
1043
break;
1044
1045
case '$': {
1046
if (InTok) {
1047
addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1048
InTok = false;
1049
IsIsolatedToken = false;
1050
}
1051
1052
// If this isn't "${", start new identifier looking like "$xxx"
1053
if (i + 1 == String.size() || String[i + 1] != '{') {
1054
Prev = i;
1055
break;
1056
}
1057
1058
size_t EndPos = String.find('}', i);
1059
assert(EndPos != StringRef::npos &&
1060
"Missing brace in operand reference!");
1061
addAsmOperand(String.slice(i, EndPos + 1), IsIsolatedToken);
1062
Prev = EndPos + 1;
1063
i = EndPos;
1064
IsIsolatedToken = false;
1065
break;
1066
}
1067
1068
default:
1069
InTok = true;
1070
break;
1071
}
1072
}
1073
if (InTok && Prev != String.size())
1074
addAsmOperand(String.substr(Prev), IsIsolatedToken);
1075
}
1076
1077
bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1078
// Reject matchables with no .s string.
1079
if (AsmString.empty())
1080
PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1081
1082
// Reject any matchables with a newline in them, they should be marked
1083
// isCodeGenOnly if they are pseudo instructions.
1084
if (AsmString.find('\n') != std::string::npos)
1085
PrintFatalError(TheDef->getLoc(),
1086
"multiline instruction is not valid for the asmparser, "
1087
"mark it isCodeGenOnly");
1088
1089
// Remove comments from the asm string. We know that the asmstring only
1090
// has one line.
1091
if (!CommentDelimiter.empty() &&
1092
StringRef(AsmString).contains(CommentDelimiter))
1093
PrintFatalError(TheDef->getLoc(),
1094
"asmstring for instruction has comment character in it, "
1095
"mark it isCodeGenOnly");
1096
1097
// Reject matchables with operand modifiers, these aren't something we can
1098
// handle, the target should be refactored to use operands instead of
1099
// modifiers.
1100
//
1101
// Also, check for instructions which reference the operand multiple times,
1102
// if they don't define a custom AsmMatcher: this implies a constraint that
1103
// the built-in matching code would not honor.
1104
std::set<std::string> OperandNames;
1105
for (const AsmOperand &Op : AsmOperands) {
1106
StringRef Tok = Op.Token;
1107
if (Tok[0] == '$' && Tok.contains(':'))
1108
PrintFatalError(
1109
TheDef->getLoc(),
1110
"matchable with operand modifier '" + Tok +
1111
"' not supported by asm matcher. Mark isCodeGenOnly!");
1112
// Verify that any operand is only mentioned once.
1113
// We reject aliases and ignore instructions for now.
1114
if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() &&
1115
Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) {
1116
LLVM_DEBUG({
1117
errs() << "warning: '" << TheDef->getName() << "': "
1118
<< "ignoring instruction with tied operand '" << Tok << "'\n";
1119
});
1120
return false;
1121
}
1122
}
1123
1124
return true;
1125
}
1126
1127
static std::string getEnumNameForToken(StringRef Str) {
1128
std::string Res;
1129
1130
for (char C : Str) {
1131
switch (C) {
1132
case '*':
1133
Res += "_STAR_";
1134
break;
1135
case '%':
1136
Res += "_PCT_";
1137
break;
1138
case ':':
1139
Res += "_COLON_";
1140
break;
1141
case '!':
1142
Res += "_EXCLAIM_";
1143
break;
1144
case '.':
1145
Res += "_DOT_";
1146
break;
1147
case '<':
1148
Res += "_LT_";
1149
break;
1150
case '>':
1151
Res += "_GT_";
1152
break;
1153
case '-':
1154
Res += "_MINUS_";
1155
break;
1156
case '#':
1157
Res += "_HASH_";
1158
break;
1159
default:
1160
if (isAlnum(C))
1161
Res += C;
1162
else
1163
Res += "_" + utostr((unsigned)C) + "_";
1164
}
1165
}
1166
1167
return Res;
1168
}
1169
1170
ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1171
ClassInfo *&Entry = TokenClasses[std::string(Token)];
1172
1173
if (!Entry) {
1174
Classes.emplace_front();
1175
Entry = &Classes.front();
1176
Entry->Kind = ClassInfo::Token;
1177
Entry->ClassName = "Token";
1178
Entry->Name = "MCK_" + getEnumNameForToken(Token);
1179
Entry->ValueName = std::string(Token);
1180
Entry->PredicateMethod = "<invalid>";
1181
Entry->RenderMethod = "<invalid>";
1182
Entry->ParserMethod = "";
1183
Entry->DiagnosticType = "";
1184
Entry->IsOptional = false;
1185
Entry->DefaultMethod = "<invalid>";
1186
}
1187
1188
return Entry;
1189
}
1190
1191
ClassInfo *
1192
AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1193
int SubOpIdx) {
1194
Record *Rec = OI.Rec;
1195
if (SubOpIdx != -1)
1196
Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1197
return getOperandClass(Rec, SubOpIdx);
1198
}
1199
1200
ClassInfo *AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1201
if (Rec->isSubClassOf("RegisterOperand")) {
1202
// RegisterOperand may have an associated ParserMatchClass. If it does,
1203
// use it, else just fall back to the underlying register class.
1204
const RecordVal *R = Rec->getValue("ParserMatchClass");
1205
if (!R || !R->getValue())
1206
PrintFatalError(Rec->getLoc(),
1207
"Record `" + Rec->getName() +
1208
"' does not have a ParserMatchClass!\n");
1209
1210
if (DefInit *DI = dyn_cast<DefInit>(R->getValue())) {
1211
Record *MatchClass = DI->getDef();
1212
if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1213
return CI;
1214
}
1215
1216
// No custom match class. Just use the register class.
1217
Record *ClassRec = Rec->getValueAsDef("RegClass");
1218
if (!ClassRec)
1219
PrintFatalError(Rec->getLoc(),
1220
"RegisterOperand `" + Rec->getName() +
1221
"' has no associated register class!\n");
1222
if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1223
return CI;
1224
PrintFatalError(Rec->getLoc(), "register class has no class info!");
1225
}
1226
1227
if (Rec->isSubClassOf("RegisterClass")) {
1228
if (ClassInfo *CI = RegisterClassClasses[Rec])
1229
return CI;
1230
PrintFatalError(Rec->getLoc(), "register class has no class info!");
1231
}
1232
1233
if (!Rec->isSubClassOf("Operand"))
1234
PrintFatalError(Rec->getLoc(),
1235
"Operand `" + Rec->getName() +
1236
"' does not derive from class Operand!\n");
1237
Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1238
if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1239
return CI;
1240
1241
PrintFatalError(Rec->getLoc(), "operand has no match class!");
1242
}
1243
1244
struct LessRegisterSet {
1245
bool operator()(const RegisterSet &LHS, const RegisterSet &RHS) const {
1246
// std::set<T> defines its own compariso "operator<", but it
1247
// performs a lexicographical comparison by T's innate comparison
1248
// for some reason. We don't want non-deterministic pointer
1249
// comparisons so use this instead.
1250
return std::lexicographical_compare(LHS.begin(), LHS.end(), RHS.begin(),
1251
RHS.end(), LessRecordByID());
1252
}
1253
};
1254
1255
void AsmMatcherInfo::buildRegisterClasses(
1256
SmallPtrSetImpl<Record *> &SingletonRegisters) {
1257
const auto &Registers = Target.getRegBank().getRegisters();
1258
auto &RegClassList = Target.getRegBank().getRegClasses();
1259
1260
typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1261
1262
// The register sets used for matching.
1263
RegisterSetSet RegisterSets;
1264
1265
// Gather the defined sets.
1266
for (const CodeGenRegisterClass &RC : RegClassList)
1267
RegisterSets.insert(
1268
RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1269
1270
// Add any required singleton sets.
1271
for (Record *Rec : SingletonRegisters) {
1272
RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1273
}
1274
1275
// Introduce derived sets where necessary (when a register does not determine
1276
// a unique register set class), and build the mapping of registers to the set
1277
// they should classify to.
1278
std::map<Record *, RegisterSet> RegisterMap;
1279
for (const CodeGenRegister &CGR : Registers) {
1280
// Compute the intersection of all sets containing this register.
1281
RegisterSet ContainingSet;
1282
1283
for (const RegisterSet &RS : RegisterSets) {
1284
if (!RS.count(CGR.TheDef))
1285
continue;
1286
1287
if (ContainingSet.empty()) {
1288
ContainingSet = RS;
1289
continue;
1290
}
1291
1292
RegisterSet Tmp;
1293
std::set_intersection(ContainingSet.begin(), ContainingSet.end(),
1294
RS.begin(), RS.end(),
1295
std::inserter(Tmp, Tmp.begin()), LessRecordByID());
1296
ContainingSet = std::move(Tmp);
1297
}
1298
1299
if (!ContainingSet.empty()) {
1300
RegisterSets.insert(ContainingSet);
1301
RegisterMap.insert(std::pair(CGR.TheDef, ContainingSet));
1302
}
1303
}
1304
1305
// Construct the register classes.
1306
std::map<RegisterSet, ClassInfo *, LessRegisterSet> RegisterSetClasses;
1307
unsigned Index = 0;
1308
for (const RegisterSet &RS : RegisterSets) {
1309
Classes.emplace_front();
1310
ClassInfo *CI = &Classes.front();
1311
CI->Kind = ClassInfo::RegisterClass0 + Index;
1312
CI->ClassName = "Reg" + utostr(Index);
1313
CI->Name = "MCK_Reg" + utostr(Index);
1314
CI->ValueName = "";
1315
CI->PredicateMethod = ""; // unused
1316
CI->RenderMethod = "addRegOperands";
1317
CI->Registers = RS;
1318
// FIXME: diagnostic type.
1319
CI->DiagnosticType = "";
1320
CI->IsOptional = false;
1321
CI->DefaultMethod = ""; // unused
1322
RegisterSetClasses.insert(std::pair(RS, CI));
1323
++Index;
1324
}
1325
1326
// Find the superclasses; we could compute only the subgroup lattice edges,
1327
// but there isn't really a point.
1328
for (const RegisterSet &RS : RegisterSets) {
1329
ClassInfo *CI = RegisterSetClasses[RS];
1330
for (const RegisterSet &RS2 : RegisterSets)
1331
if (RS != RS2 && std::includes(RS2.begin(), RS2.end(), RS.begin(),
1332
RS.end(), LessRecordByID()))
1333
CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1334
}
1335
1336
// Name the register classes which correspond to a user defined RegisterClass.
1337
for (const CodeGenRegisterClass &RC : RegClassList) {
1338
// Def will be NULL for non-user defined register classes.
1339
Record *Def = RC.getDef();
1340
if (!Def)
1341
continue;
1342
ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1343
RC.getOrder().end())];
1344
if (CI->ValueName.empty()) {
1345
CI->ClassName = RC.getName();
1346
CI->Name = "MCK_" + RC.getName();
1347
CI->ValueName = RC.getName();
1348
} else
1349
CI->ValueName = CI->ValueName + "," + RC.getName();
1350
1351
Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1352
if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1353
CI->DiagnosticType = std::string(SI->getValue());
1354
1355
Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1356
if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1357
CI->DiagnosticString = std::string(SI->getValue());
1358
1359
// If we have a diagnostic string but the diagnostic type is not specified
1360
// explicitly, create an anonymous diagnostic type.
1361
if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1362
CI->DiagnosticType = RC.getName();
1363
1364
RegisterClassClasses.insert(std::pair(Def, CI));
1365
}
1366
1367
// Populate the map for individual registers.
1368
for (auto &It : RegisterMap)
1369
RegisterClasses[It.first] = RegisterSetClasses[It.second];
1370
1371
// Name the register classes which correspond to singleton registers.
1372
for (Record *Rec : SingletonRegisters) {
1373
ClassInfo *CI = RegisterClasses[Rec];
1374
assert(CI && "Missing singleton register class info!");
1375
1376
if (CI->ValueName.empty()) {
1377
CI->ClassName = std::string(Rec->getName());
1378
CI->Name = "MCK_" + Rec->getName().str();
1379
CI->ValueName = std::string(Rec->getName());
1380
} else
1381
CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1382
}
1383
}
1384
1385
void AsmMatcherInfo::buildOperandClasses() {
1386
std::vector<Record *> AsmOperands =
1387
Records.getAllDerivedDefinitions("AsmOperandClass");
1388
1389
// Pre-populate AsmOperandClasses map.
1390
for (Record *Rec : AsmOperands) {
1391
Classes.emplace_front();
1392
AsmOperandClasses[Rec] = &Classes.front();
1393
}
1394
1395
unsigned Index = 0;
1396
for (Record *Rec : AsmOperands) {
1397
ClassInfo *CI = AsmOperandClasses[Rec];
1398
CI->Kind = ClassInfo::UserClass0 + Index;
1399
1400
ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1401
for (Init *I : Supers->getValues()) {
1402
DefInit *DI = dyn_cast<DefInit>(I);
1403
if (!DI) {
1404
PrintError(Rec->getLoc(), "Invalid super class reference!");
1405
continue;
1406
}
1407
1408
ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1409
if (!SC)
1410
PrintError(Rec->getLoc(), "Invalid super class reference!");
1411
else
1412
CI->SuperClasses.push_back(SC);
1413
}
1414
CI->ClassName = std::string(Rec->getValueAsString("Name"));
1415
CI->Name = "MCK_" + CI->ClassName;
1416
CI->ValueName = std::string(Rec->getName());
1417
1418
// Get or construct the predicate method name.
1419
Init *PMName = Rec->getValueInit("PredicateMethod");
1420
if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1421
CI->PredicateMethod = std::string(SI->getValue());
1422
} else {
1423
assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1424
CI->PredicateMethod = "is" + CI->ClassName;
1425
}
1426
1427
// Get or construct the render method name.
1428
Init *RMName = Rec->getValueInit("RenderMethod");
1429
if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1430
CI->RenderMethod = std::string(SI->getValue());
1431
} else {
1432
assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1433
CI->RenderMethod = "add" + CI->ClassName + "Operands";
1434
}
1435
1436
// Get the parse method name or leave it as empty.
1437
Init *PRMName = Rec->getValueInit("ParserMethod");
1438
if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1439
CI->ParserMethod = std::string(SI->getValue());
1440
1441
// Get the diagnostic type and string or leave them as empty.
1442
Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1443
if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1444
CI->DiagnosticType = std::string(SI->getValue());
1445
Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1446
if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1447
CI->DiagnosticString = std::string(SI->getValue());
1448
// If we have a DiagnosticString, we need a DiagnosticType for use within
1449
// the matcher.
1450
if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1451
CI->DiagnosticType = CI->ClassName;
1452
1453
Init *IsOptional = Rec->getValueInit("IsOptional");
1454
if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1455
CI->IsOptional = BI->getValue();
1456
1457
// Get or construct the default method name.
1458
Init *DMName = Rec->getValueInit("DefaultMethod");
1459
if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1460
CI->DefaultMethod = std::string(SI->getValue());
1461
} else {
1462
assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1463
CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1464
}
1465
1466
++Index;
1467
}
1468
}
1469
1470
AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target,
1471
RecordKeeper &records)
1472
: Records(records), AsmParser(asmParser), Target(target) {}
1473
1474
/// buildOperandMatchInfo - Build the necessary information to handle user
1475
/// defined operand parsing methods.
1476
void AsmMatcherInfo::buildOperandMatchInfo() {
1477
1478
/// Map containing a mask with all operands indices that can be found for
1479
/// that class inside a instruction.
1480
typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
1481
OpClassMaskTy OpClassMask;
1482
1483
bool CallCustomParserForAllOperands =
1484
AsmParser->getValueAsBit("CallCustomParserForAllOperands");
1485
for (const auto &MI : Matchables) {
1486
OpClassMask.clear();
1487
1488
// Keep track of all operands of this instructions which belong to the
1489
// same class.
1490
unsigned NumOptionalOps = 0;
1491
for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1492
const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1493
if (CallCustomParserForAllOperands || !Op.Class->ParserMethod.empty()) {
1494
unsigned &OperandMask = OpClassMask[Op.Class];
1495
OperandMask |= maskTrailingOnes<unsigned>(NumOptionalOps + 1)
1496
<< (i - NumOptionalOps);
1497
}
1498
if (Op.Class->IsOptional)
1499
++NumOptionalOps;
1500
}
1501
1502
// Generate operand match info for each mnemonic/operand class pair.
1503
for (const auto &OCM : OpClassMask) {
1504
unsigned OpMask = OCM.second;
1505
ClassInfo *CI = OCM.first;
1506
OperandMatchInfo.push_back(
1507
OperandMatchEntry::create(MI.get(), CI, OpMask));
1508
}
1509
}
1510
}
1511
1512
void AsmMatcherInfo::buildInfo() {
1513
// Build information about all of the AssemblerPredicates.
1514
const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1515
&SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1516
SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1517
SubtargetFeaturePairs.end());
1518
#ifndef NDEBUG
1519
for (const auto &Pair : SubtargetFeatures)
1520
LLVM_DEBUG(Pair.second.dump());
1521
#endif // NDEBUG
1522
1523
bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1524
bool ReportMultipleNearMisses =
1525
AsmParser->getValueAsBit("ReportMultipleNearMisses");
1526
1527
// Parse the instructions; we need to do this first so that we can gather the
1528
// singleton register classes.
1529
SmallPtrSet<Record *, 16> SingletonRegisters;
1530
unsigned VariantCount = Target.getAsmParserVariantCount();
1531
for (unsigned VC = 0; VC != VariantCount; ++VC) {
1532
Record *AsmVariant = Target.getAsmParserVariant(VC);
1533
StringRef CommentDelimiter =
1534
AsmVariant->getValueAsString("CommentDelimiter");
1535
AsmVariantInfo Variant;
1536
Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1537
Variant.TokenizingCharacters =
1538
AsmVariant->getValueAsString("TokenizingCharacters");
1539
Variant.SeparatorCharacters =
1540
AsmVariant->getValueAsString("SeparatorCharacters");
1541
Variant.BreakCharacters = AsmVariant->getValueAsString("BreakCharacters");
1542
Variant.Name = AsmVariant->getValueAsString("Name");
1543
Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1544
1545
for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1546
1547
// If the tblgen -match-prefix option is specified (for tblgen hackers),
1548
// filter the set of instructions we consider.
1549
if (!StringRef(CGI->TheDef->getName()).starts_with(MatchPrefix))
1550
continue;
1551
1552
// Ignore "codegen only" instructions.
1553
if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1554
continue;
1555
1556
// Ignore instructions for different instructions
1557
StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1558
if (!V.empty() && V != Variant.Name)
1559
continue;
1560
1561
auto II = std::make_unique<MatchableInfo>(*CGI);
1562
1563
II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1564
1565
// Ignore instructions which shouldn't be matched and diagnose invalid
1566
// instruction definitions with an error.
1567
if (!II->validate(CommentDelimiter, false))
1568
continue;
1569
1570
Matchables.push_back(std::move(II));
1571
}
1572
1573
// Parse all of the InstAlias definitions and stick them in the list of
1574
// matchables.
1575
std::vector<Record *> AllInstAliases =
1576
Records.getAllDerivedDefinitions("InstAlias");
1577
for (Record *InstAlias : AllInstAliases) {
1578
auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target);
1579
1580
// If the tblgen -match-prefix option is specified (for tblgen hackers),
1581
// filter the set of instruction aliases we consider, based on the target
1582
// instruction.
1583
if (!StringRef(Alias->ResultInst->TheDef->getName())
1584
.starts_with(MatchPrefix))
1585
continue;
1586
1587
StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1588
if (!V.empty() && V != Variant.Name)
1589
continue;
1590
1591
auto II = std::make_unique<MatchableInfo>(std::move(Alias));
1592
1593
II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1594
1595
// Validate the alias definitions.
1596
II->validate(CommentDelimiter, true);
1597
1598
Matchables.push_back(std::move(II));
1599
}
1600
}
1601
1602
// Build info for the register classes.
1603
buildRegisterClasses(SingletonRegisters);
1604
1605
// Build info for the user defined assembly operand classes.
1606
buildOperandClasses();
1607
1608
// Build the information about matchables, now that we have fully formed
1609
// classes.
1610
std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1611
for (auto &II : Matchables) {
1612
// Parse the tokens after the mnemonic.
1613
// Note: buildInstructionOperandReference may insert new AsmOperands, so
1614
// don't precompute the loop bound.
1615
for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1616
MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1617
StringRef Token = Op.Token;
1618
1619
// Check for singleton registers.
1620
if (Record *RegRecord = Op.SingletonReg) {
1621
Op.Class = RegisterClasses[RegRecord];
1622
assert(Op.Class && Op.Class->Registers.size() == 1 &&
1623
"Unexpected class for singleton register");
1624
continue;
1625
}
1626
1627
// Check for simple tokens.
1628
if (Token[0] != '$') {
1629
Op.Class = getTokenClass(Token);
1630
continue;
1631
}
1632
1633
if (Token.size() > 1 && isdigit(Token[1])) {
1634
Op.Class = getTokenClass(Token);
1635
continue;
1636
}
1637
1638
// Otherwise this is an operand reference.
1639
StringRef OperandName;
1640
if (Token[1] == '{')
1641
OperandName = Token.substr(2, Token.size() - 3);
1642
else
1643
OperandName = Token.substr(1);
1644
1645
if (isa<const CodeGenInstruction *>(II->DefRec))
1646
buildInstructionOperandReference(II.get(), OperandName, i);
1647
else
1648
buildAliasOperandReference(II.get(), OperandName, Op);
1649
}
1650
1651
if (isa<const CodeGenInstruction *>(II->DefRec)) {
1652
II->buildInstructionResultOperands();
1653
// If the instruction has a two-operand alias, build up the
1654
// matchable here. We'll add them in bulk at the end to avoid
1655
// confusing this loop.
1656
StringRef Constraint =
1657
II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1658
if (Constraint != "") {
1659
// Start by making a copy of the original matchable.
1660
auto AliasII = std::make_unique<MatchableInfo>(*II);
1661
1662
// Adjust it to be a two-operand alias.
1663
AliasII->formTwoOperandAlias(Constraint);
1664
1665
// Add the alias to the matchables list.
1666
NewMatchables.push_back(std::move(AliasII));
1667
}
1668
} else
1669
// FIXME: The tied operands checking is not yet integrated with the
1670
// framework for reporting multiple near misses. To prevent invalid
1671
// formats from being matched with an alias if a tied-operands check
1672
// would otherwise have disallowed it, we just disallow such constructs
1673
// in TableGen completely.
1674
II->buildAliasResultOperands(!ReportMultipleNearMisses);
1675
}
1676
if (!NewMatchables.empty())
1677
Matchables.insert(Matchables.end(),
1678
std::make_move_iterator(NewMatchables.begin()),
1679
std::make_move_iterator(NewMatchables.end()));
1680
1681
// Process token alias definitions and set up the associated superclass
1682
// information.
1683
std::vector<Record *> AllTokenAliases =
1684
Records.getAllDerivedDefinitions("TokenAlias");
1685
for (Record *Rec : AllTokenAliases) {
1686
ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1687
ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1688
if (FromClass == ToClass)
1689
PrintFatalError(Rec->getLoc(),
1690
"error: Destination value identical to source value.");
1691
FromClass->SuperClasses.push_back(ToClass);
1692
}
1693
1694
// Reorder classes so that classes precede super classes.
1695
Classes.sort();
1696
1697
#ifdef EXPENSIVE_CHECKS
1698
// Verify that the table is sorted and operator < works transitively.
1699
for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1700
for (auto J = I; J != E; ++J) {
1701
assert(!(*J < *I));
1702
assert(I == J || !J->isSubsetOf(*I));
1703
}
1704
}
1705
#endif
1706
}
1707
1708
/// buildInstructionOperandReference - The specified operand is a reference to a
1709
/// named operand such as $src. Resolve the Class and OperandInfo pointers.
1710
void AsmMatcherInfo::buildInstructionOperandReference(MatchableInfo *II,
1711
StringRef OperandName,
1712
unsigned AsmOpIdx) {
1713
const CodeGenInstruction &CGI = *cast<const CodeGenInstruction *>(II->DefRec);
1714
const CGIOperandList &Operands = CGI.Operands;
1715
MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1716
1717
// Map this token to an operand.
1718
unsigned Idx;
1719
if (!Operands.hasOperandNamed(OperandName, Idx))
1720
PrintFatalError(II->TheDef->getLoc(),
1721
"error: unable to find operand: '" + OperandName + "'");
1722
1723
// If the instruction operand has multiple suboperands, but the parser
1724
// match class for the asm operand is still the default "ImmAsmOperand",
1725
// then handle each suboperand separately.
1726
if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1727
Record *Rec = Operands[Idx].Rec;
1728
assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1729
Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1730
if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1731
// Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1732
StringRef Token = Op->Token; // save this in case Op gets moved
1733
for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1734
MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1735
NewAsmOp.SubOpIdx = SI;
1736
II->AsmOperands.insert(II->AsmOperands.begin() + AsmOpIdx + SI,
1737
NewAsmOp);
1738
}
1739
// Replace Op with first suboperand.
1740
Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1741
Op->SubOpIdx = 0;
1742
}
1743
}
1744
1745
// Set up the operand class.
1746
Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1747
Op->OrigSrcOpName = OperandName;
1748
1749
// If the named operand is tied, canonicalize it to the untied operand.
1750
// For example, something like:
1751
// (outs GPR:$dst), (ins GPR:$src)
1752
// with an asmstring of
1753
// "inc $src"
1754
// we want to canonicalize to:
1755
// "inc $dst"
1756
// so that we know how to provide the $dst operand when filling in the result.
1757
int OITied = -1;
1758
if (Operands[Idx].MINumOperands == 1)
1759
OITied = Operands[Idx].getTiedRegister();
1760
if (OITied != -1) {
1761
// The tied operand index is an MIOperand index, find the operand that
1762
// contains it.
1763
std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1764
OperandName = Operands[Idx.first].Name;
1765
Op->SubOpIdx = Idx.second;
1766
}
1767
1768
Op->SrcOpName = OperandName;
1769
}
1770
1771
/// buildAliasOperandReference - When parsing an operand reference out of the
1772
/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1773
/// operand reference is by looking it up in the result pattern definition.
1774
void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1775
StringRef OperandName,
1776
MatchableInfo::AsmOperand &Op) {
1777
const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(II->DefRec);
1778
1779
// Set up the operand class.
1780
for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1781
if (CGA.ResultOperands[i].isRecord() &&
1782
CGA.ResultOperands[i].getName() == OperandName) {
1783
// It's safe to go with the first one we find, because CodeGenInstAlias
1784
// validates that all operands with the same name have the same record.
1785
Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1786
// Use the match class from the Alias definition, not the
1787
// destination instruction, as we may have an immediate that's
1788
// being munged by the match class.
1789
Op.Class =
1790
getOperandClass(CGA.ResultOperands[i].getRecord(), Op.SubOpIdx);
1791
Op.SrcOpName = OperandName;
1792
Op.OrigSrcOpName = OperandName;
1793
return;
1794
}
1795
1796
PrintFatalError(II->TheDef->getLoc(),
1797
"error: unable to find operand: '" + OperandName + "'");
1798
}
1799
1800
void MatchableInfo::buildInstructionResultOperands() {
1801
const CodeGenInstruction *ResultInst = getResultInst();
1802
1803
// Loop over all operands of the result instruction, determining how to
1804
// populate them.
1805
for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1806
// If this is a tied operand, just copy from the previously handled operand.
1807
int TiedOp = -1;
1808
if (OpInfo.MINumOperands == 1)
1809
TiedOp = OpInfo.getTiedRegister();
1810
if (TiedOp != -1) {
1811
int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1812
if (TiedSrcOperand != -1 &&
1813
ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1814
ResOperands.push_back(ResOperand::getTiedOp(
1815
TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1816
else
1817
ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1818
continue;
1819
}
1820
1821
int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1822
if (OpInfo.Name.empty() || SrcOperand == -1) {
1823
// This may happen for operands that are tied to a suboperand of a
1824
// complex operand. Simply use a dummy value here; nobody should
1825
// use this operand slot.
1826
// FIXME: The long term goal is for the MCOperand list to not contain
1827
// tied operands at all.
1828
ResOperands.push_back(ResOperand::getImmOp(0));
1829
continue;
1830
}
1831
1832
// Check if the one AsmOperand populates the entire operand.
1833
unsigned NumOperands = OpInfo.MINumOperands;
1834
if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1835
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1836
continue;
1837
}
1838
1839
// Add a separate ResOperand for each suboperand.
1840
for (unsigned AI = 0; AI < NumOperands; ++AI) {
1841
assert(AsmOperands[SrcOperand + AI].SubOpIdx == (int)AI &&
1842
AsmOperands[SrcOperand + AI].SrcOpName == OpInfo.Name &&
1843
"unexpected AsmOperands for suboperands");
1844
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1845
}
1846
}
1847
}
1848
1849
void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1850
const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(DefRec);
1851
const CodeGenInstruction *ResultInst = getResultInst();
1852
1853
// Map of: $reg -> #lastref
1854
// where $reg is the name of the operand in the asm string
1855
// where #lastref is the last processed index where $reg was referenced in
1856
// the asm string.
1857
SmallDenseMap<StringRef, int> OperandRefs;
1858
1859
// Loop over all operands of the result instruction, determining how to
1860
// populate them.
1861
unsigned AliasOpNo = 0;
1862
unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1863
for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1864
const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1865
1866
// If this is a tied operand, just copy from the previously handled operand.
1867
int TiedOp = -1;
1868
if (OpInfo->MINumOperands == 1)
1869
TiedOp = OpInfo->getTiedRegister();
1870
if (TiedOp != -1) {
1871
unsigned SrcOp1 = 0;
1872
unsigned SrcOp2 = 0;
1873
1874
// If an operand has been specified twice in the asm string,
1875
// add the two source operand's indices to the TiedOp so that
1876
// at runtime the 'tied' constraint is checked.
1877
if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1878
SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1879
1880
// Find the next operand (similarly named operand) in the string.
1881
StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1882
auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1883
SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1884
1885
// Not updating the record in OperandRefs will cause TableGen
1886
// to fail with an error at the end of this function.
1887
if (AliasConstraintsAreChecked)
1888
Insert.first->second = SrcOp2;
1889
1890
// In case it only has one reference in the asm string,
1891
// it doesn't need to be checked for tied constraints.
1892
SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1893
}
1894
1895
// If the alias operand is of a different operand class, we only want
1896
// to benefit from the tied-operands check and just match the operand
1897
// as a normal, but not copy the original (TiedOp) to the result
1898
// instruction. We do this by passing -1 as the tied operand to copy.
1899
if (ResultInst->Operands[i].Rec->getName() !=
1900
ResultInst->Operands[TiedOp].Rec->getName()) {
1901
SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1902
int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1903
StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1904
SrcOp2 = findAsmOperand(Name, SubIdx);
1905
ResOperands.push_back(
1906
ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
1907
} else {
1908
ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1909
continue;
1910
}
1911
}
1912
1913
// Handle all the suboperands for this operand.
1914
const std::string &OpName = OpInfo->Name;
1915
for (; AliasOpNo < LastOpNo &&
1916
CGA.ResultInstOperandIndex[AliasOpNo].first == i;
1917
++AliasOpNo) {
1918
int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1919
1920
// Find out what operand from the asmparser that this MCInst operand
1921
// comes from.
1922
switch (CGA.ResultOperands[AliasOpNo].Kind) {
1923
case CodeGenInstAlias::ResultOperand::K_Record: {
1924
StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1925
int SrcOperand = findAsmOperand(Name, SubIdx);
1926
if (SrcOperand == -1)
1927
PrintFatalError(TheDef->getLoc(),
1928
"Instruction '" + TheDef->getName() +
1929
"' has operand '" + OpName +
1930
"' that doesn't appear in asm string!");
1931
1932
// Add it to the operand references. If it is added a second time, the
1933
// record won't be updated and it will fail later on.
1934
OperandRefs.try_emplace(Name, SrcOperand);
1935
1936
unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1937
ResOperands.push_back(
1938
ResOperand::getRenderedOp(SrcOperand, NumOperands));
1939
break;
1940
}
1941
case CodeGenInstAlias::ResultOperand::K_Imm: {
1942
int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1943
ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1944
break;
1945
}
1946
case CodeGenInstAlias::ResultOperand::K_Reg: {
1947
Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1948
ResOperands.push_back(ResOperand::getRegOp(Reg));
1949
break;
1950
}
1951
}
1952
}
1953
}
1954
1955
// Check that operands are not repeated more times than is supported.
1956
for (auto &T : OperandRefs) {
1957
if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1958
PrintFatalError(TheDef->getLoc(),
1959
"Operand '" + T.first + "' can never be matched");
1960
}
1961
}
1962
1963
static unsigned
1964
getConverterOperandID(const std::string &Name,
1965
SmallSetVector<CachedHashString, 16> &Table,
1966
bool &IsNew) {
1967
IsNew = Table.insert(CachedHashString(Name));
1968
1969
unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1970
1971
assert(ID < Table.size());
1972
1973
return ID;
1974
}
1975
1976
static unsigned
1977
emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1978
std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1979
bool HasMnemonicFirst, bool HasOptionalOperands,
1980
raw_ostream &OS) {
1981
SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1982
SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1983
std::vector<std::vector<uint8_t>> ConversionTable;
1984
size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1985
1986
// TargetOperandClass - This is the target's operand class, like X86Operand.
1987
std::string TargetOperandClass = Target.getName().str() + "Operand";
1988
1989
// Write the convert function to a separate stream, so we can drop it after
1990
// the enum. We'll build up the conversion handlers for the individual
1991
// operand types opportunistically as we encounter them.
1992
std::string ConvertFnBody;
1993
raw_string_ostream CvtOS(ConvertFnBody);
1994
// Start the unified conversion function.
1995
if (HasOptionalOperands) {
1996
CvtOS << "void " << Target.getName() << ClassName << "::\n"
1997
<< "convertToMCInst(unsigned Kind, MCInst &Inst, "
1998
<< "unsigned Opcode,\n"
1999
<< " const OperandVector &Operands,\n"
2000
<< " const SmallBitVector &OptionalOperandsMask,\n"
2001
<< " ArrayRef<unsigned> DefaultsOffset) {\n";
2002
} else {
2003
CvtOS << "void " << Target.getName() << ClassName << "::\n"
2004
<< "convertToMCInst(unsigned Kind, MCInst &Inst, "
2005
<< "unsigned Opcode,\n"
2006
<< " const OperandVector &Operands) {\n";
2007
}
2008
CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
2009
CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n";
2010
CvtOS << " Inst.setOpcode(Opcode);\n";
2011
CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
2012
if (HasOptionalOperands) {
2013
// When optional operands are involved, formal and actual operand indices
2014
// may differ. Map the former to the latter by subtracting the number of
2015
// absent optional operands.
2016
// FIXME: This is not an operand index in the CVT_Tied case
2017
CvtOS << " unsigned OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
2018
} else {
2019
CvtOS << " unsigned OpIdx = *(p + 1);\n";
2020
}
2021
CvtOS << " switch (*p) {\n";
2022
CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n";
2023
CvtOS << " case CVT_Reg:\n";
2024
CvtOS << " static_cast<" << TargetOperandClass
2025
<< " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
2026
CvtOS << " break;\n";
2027
CvtOS << " case CVT_Tied: {\n";
2028
CvtOS << " assert(*(p + 1) < (size_t)(std::end(TiedAsmOperandTable) -\n";
2029
CvtOS
2030
<< " std::begin(TiedAsmOperandTable)) &&\n";
2031
CvtOS << " \"Tied operand not found\");\n";
2032
CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[*(p + 1)][0];\n";
2033
CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n";
2034
CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
2035
CvtOS << " break;\n";
2036
CvtOS << " }\n";
2037
2038
std::string OperandFnBody;
2039
raw_string_ostream OpOS(OperandFnBody);
2040
// Start the operand number lookup function.
2041
OpOS << "void " << Target.getName() << ClassName << "::\n"
2042
<< "convertToMapAndConstraints(unsigned Kind,\n";
2043
OpOS.indent(27);
2044
OpOS << "const OperandVector &Operands) {\n"
2045
<< " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2046
<< " unsigned NumMCOperands = 0;\n"
2047
<< " const uint8_t *Converter = ConversionTable[Kind];\n"
2048
<< " for (const uint8_t *p = Converter; *p; p += 2) {\n"
2049
<< " switch (*p) {\n"
2050
<< " default: llvm_unreachable(\"invalid conversion entry!\");\n"
2051
<< " case CVT_Reg:\n"
2052
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2053
<< " Operands[*(p + 1)]->setConstraint(\"r\");\n"
2054
<< " ++NumMCOperands;\n"
2055
<< " break;\n"
2056
<< " case CVT_Tied:\n"
2057
<< " ++NumMCOperands;\n"
2058
<< " break;\n";
2059
2060
// Pre-populate the operand conversion kinds with the standard always
2061
// available entries.
2062
OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2063
OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2064
OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2065
enum { CVT_Done, CVT_Reg, CVT_Tied };
2066
2067
// Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2068
std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2069
TiedOperandsEnumMap;
2070
2071
for (auto &II : Infos) {
2072
// Check if we have a custom match function.
2073
StringRef AsmMatchConverter =
2074
II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2075
if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2076
std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2077
II->ConversionFnKind = Signature;
2078
2079
// Check if we have already generated this signature.
2080
if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2081
continue;
2082
2083
// Remember this converter for the kind enum.
2084
unsigned KindID = OperandConversionKinds.size();
2085
OperandConversionKinds.insert(
2086
CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2087
2088
// Add the converter row for this instruction.
2089
ConversionTable.emplace_back();
2090
ConversionTable.back().push_back(KindID);
2091
ConversionTable.back().push_back(CVT_Done);
2092
2093
// Add the handler to the conversion driver function.
2094
CvtOS << " case CVT_" << getEnumNameForToken(AsmMatchConverter)
2095
<< ":\n"
2096
<< " " << AsmMatchConverter << "(Inst, Operands);\n"
2097
<< " break;\n";
2098
2099
// FIXME: Handle the operand number lookup for custom match functions.
2100
continue;
2101
}
2102
2103
// Build the conversion function signature.
2104
std::string Signature = "Convert";
2105
2106
std::vector<uint8_t> ConversionRow;
2107
2108
// Compute the convert enum and the case body.
2109
MaxRowLength = std::max(MaxRowLength, II->ResOperands.size() * 2 + 1);
2110
2111
for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2112
const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2113
2114
// Generate code to populate each result operand.
2115
switch (OpInfo.Kind) {
2116
case MatchableInfo::ResOperand::RenderAsmOperand: {
2117
// This comes from something we parsed.
2118
const MatchableInfo::AsmOperand &Op =
2119
II->AsmOperands[OpInfo.AsmOperandNum];
2120
2121
// Registers are always converted the same, don't duplicate the
2122
// conversion function based on them.
2123
Signature += "__";
2124
std::string Class;
2125
Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2126
Signature += Class;
2127
Signature += utostr(OpInfo.MINumOperands);
2128
Signature += "_" + itostr(OpInfo.AsmOperandNum);
2129
2130
// Add the conversion kind, if necessary, and get the associated ID
2131
// the index of its entry in the vector).
2132
std::string Name =
2133
"CVT_" +
2134
(Op.Class->isRegisterClass() ? "Reg" : Op.Class->RenderMethod);
2135
if (Op.Class->IsOptional) {
2136
// For optional operands we must also care about DefaultMethod
2137
assert(HasOptionalOperands);
2138
Name += "_" + Op.Class->DefaultMethod;
2139
}
2140
Name = getEnumNameForToken(Name);
2141
2142
bool IsNewConverter = false;
2143
unsigned ID =
2144
getConverterOperandID(Name, OperandConversionKinds, IsNewConverter);
2145
2146
// Add the operand entry to the instruction kind conversion row.
2147
ConversionRow.push_back(ID);
2148
ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2149
2150
if (!IsNewConverter)
2151
break;
2152
2153
// This is a new operand kind. Add a handler for it to the
2154
// converter driver.
2155
CvtOS << " case " << Name << ":\n";
2156
if (Op.Class->IsOptional) {
2157
// If optional operand is not present in actual instruction then we
2158
// should call its DefaultMethod before RenderMethod
2159
assert(HasOptionalOperands);
2160
CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2161
<< " " << Op.Class->DefaultMethod << "()"
2162
<< "->" << Op.Class->RenderMethod << "(Inst, "
2163
<< OpInfo.MINumOperands << ");\n"
2164
<< " } else {\n"
2165
<< " static_cast<" << TargetOperandClass
2166
<< " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2167
<< "(Inst, " << OpInfo.MINumOperands << ");\n"
2168
<< " }\n";
2169
} else {
2170
CvtOS << " static_cast<" << TargetOperandClass
2171
<< " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2172
<< "(Inst, " << OpInfo.MINumOperands << ");\n";
2173
}
2174
CvtOS << " break;\n";
2175
2176
// Add a handler for the operand number lookup.
2177
OpOS << " case " << Name << ":\n"
2178
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2179
2180
if (Op.Class->isRegisterClass())
2181
OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
2182
else
2183
OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
2184
OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2185
<< " break;\n";
2186
break;
2187
}
2188
case MatchableInfo::ResOperand::TiedOperand: {
2189
// If this operand is tied to a previous one, just copy the MCInst
2190
// operand from the earlier one.We can only tie single MCOperand values.
2191
assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2192
uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2193
uint8_t SrcOp1 = OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2194
uint8_t SrcOp2 = OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2195
assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
2196
"Tied operand precedes its target!");
2197
auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2198
utostr(SrcOp1) + '_' + utostr(SrcOp2);
2199
Signature += "__" + TiedTupleName;
2200
ConversionRow.push_back(CVT_Tied);
2201
ConversionRow.push_back(TiedOp);
2202
ConversionRow.push_back(SrcOp1);
2203
ConversionRow.push_back(SrcOp2);
2204
2205
// Also create an 'enum' for this combination of tied operands.
2206
auto Key = std::tuple(TiedOp, SrcOp1, SrcOp2);
2207
TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2208
break;
2209
}
2210
case MatchableInfo::ResOperand::ImmOperand: {
2211
int64_t Val = OpInfo.ImmVal;
2212
std::string Ty = "imm_" + itostr(Val);
2213
Ty = getEnumNameForToken(Ty);
2214
Signature += "__" + Ty;
2215
2216
std::string Name = "CVT_" + Ty;
2217
bool IsNewConverter = false;
2218
unsigned ID =
2219
getConverterOperandID(Name, OperandConversionKinds, IsNewConverter);
2220
// Add the operand entry to the instruction kind conversion row.
2221
ConversionRow.push_back(ID);
2222
ConversionRow.push_back(0);
2223
2224
if (!IsNewConverter)
2225
break;
2226
2227
CvtOS << " case " << Name << ":\n"
2228
<< " Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2229
<< " break;\n";
2230
2231
OpOS << " case " << Name << ":\n"
2232
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2233
<< " Operands[*(p + 1)]->setConstraint(\"\");\n"
2234
<< " ++NumMCOperands;\n"
2235
<< " break;\n";
2236
break;
2237
}
2238
case MatchableInfo::ResOperand::RegOperand: {
2239
std::string Reg, Name;
2240
if (!OpInfo.Register) {
2241
Name = "reg0";
2242
Reg = "0";
2243
} else {
2244
Reg = getQualifiedName(OpInfo.Register);
2245
Name = "reg" + OpInfo.Register->getName().str();
2246
}
2247
Signature += "__" + Name;
2248
Name = "CVT_" + Name;
2249
bool IsNewConverter = false;
2250
unsigned ID =
2251
getConverterOperandID(Name, OperandConversionKinds, IsNewConverter);
2252
// Add the operand entry to the instruction kind conversion row.
2253
ConversionRow.push_back(ID);
2254
ConversionRow.push_back(0);
2255
2256
if (!IsNewConverter)
2257
break;
2258
CvtOS << " case " << Name << ":\n"
2259
<< " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2260
<< " break;\n";
2261
2262
OpOS << " case " << Name << ":\n"
2263
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2264
<< " Operands[*(p + 1)]->setConstraint(\"m\");\n"
2265
<< " ++NumMCOperands;\n"
2266
<< " break;\n";
2267
}
2268
}
2269
}
2270
2271
// If there were no operands, add to the signature to that effect
2272
if (Signature == "Convert")
2273
Signature += "_NoOperands";
2274
2275
II->ConversionFnKind = Signature;
2276
2277
// Save the signature. If we already have it, don't add a new row
2278
// to the table.
2279
if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2280
continue;
2281
2282
// Add the row to the table.
2283
ConversionTable.push_back(std::move(ConversionRow));
2284
}
2285
2286
// Finish up the converter driver function.
2287
CvtOS << " }\n }\n}\n\n";
2288
2289
// Finish up the operand number lookup function.
2290
OpOS << " }\n }\n}\n\n";
2291
2292
// Output a static table for tied operands.
2293
if (TiedOperandsEnumMap.size()) {
2294
// The number of tied operand combinations will be small in practice,
2295
// but just add the assert to be sure.
2296
assert(TiedOperandsEnumMap.size() <= 254 &&
2297
"Too many tied-operand combinations to reference with "
2298
"an 8bit offset from the conversion table, where index "
2299
"'255' is reserved as operand not to be copied.");
2300
2301
OS << "enum {\n";
2302
for (auto &KV : TiedOperandsEnumMap) {
2303
OS << " " << KV.second << ",\n";
2304
}
2305
OS << "};\n\n";
2306
2307
OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2308
for (auto &KV : TiedOperandsEnumMap) {
2309
OS << " /* " << KV.second << " */ { " << utostr(std::get<0>(KV.first))
2310
<< ", " << utostr(std::get<1>(KV.first)) << ", "
2311
<< utostr(std::get<2>(KV.first)) << " },\n";
2312
}
2313
OS << "};\n\n";
2314
} else
2315
OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2316
"{ /* empty */ {0, 0, 0} };\n\n";
2317
2318
OS << "namespace {\n";
2319
2320
// Output the operand conversion kind enum.
2321
OS << "enum OperatorConversionKind {\n";
2322
for (const auto &Converter : OperandConversionKinds)
2323
OS << " " << Converter << ",\n";
2324
OS << " CVT_NUM_CONVERTERS\n";
2325
OS << "};\n\n";
2326
2327
// Output the instruction conversion kind enum.
2328
OS << "enum InstructionConversionKind {\n";
2329
for (const auto &Signature : InstructionConversionKinds)
2330
OS << " " << Signature << ",\n";
2331
OS << " CVT_NUM_SIGNATURES\n";
2332
OS << "};\n\n";
2333
2334
OS << "} // end anonymous namespace\n\n";
2335
2336
// Output the conversion table.
2337
OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2338
<< MaxRowLength << "] = {\n";
2339
2340
for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2341
assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2342
OS << " // " << InstructionConversionKinds[Row] << "\n";
2343
OS << " { ";
2344
for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2345
OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2346
if (OperandConversionKinds[ConversionTable[Row][i]] !=
2347
CachedHashString("CVT_Tied")) {
2348
OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2349
continue;
2350
}
2351
2352
// For a tied operand, emit a reference to the TiedAsmOperandTable
2353
// that contains the operand to copy, and the parsed operands to
2354
// check for their tied constraints.
2355
auto Key = std::tuple((uint8_t)ConversionTable[Row][i + 1],
2356
(uint8_t)ConversionTable[Row][i + 2],
2357
(uint8_t)ConversionTable[Row][i + 3]);
2358
auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2359
assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2360
"No record for tied operand pair");
2361
OS << TiedOpndEnum->second << ", ";
2362
i += 2;
2363
}
2364
OS << "CVT_Done },\n";
2365
}
2366
2367
OS << "};\n\n";
2368
2369
// Spit out the conversion driver function.
2370
OS << ConvertFnBody;
2371
2372
// Spit out the operand number lookup function.
2373
OS << OperandFnBody;
2374
2375
return ConversionTable.size();
2376
}
2377
2378
/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2379
static void emitMatchClassEnumeration(CodeGenTarget &Target,
2380
std::forward_list<ClassInfo> &Infos,
2381
raw_ostream &OS) {
2382
OS << "namespace {\n\n";
2383
2384
OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2385
<< "/// instruction matching.\n";
2386
OS << "enum MatchClassKind {\n";
2387
OS << " InvalidMatchClass = 0,\n";
2388
OS << " OptionalMatchClass = 1,\n";
2389
ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2390
StringRef LastName = "OptionalMatchClass";
2391
for (const auto &CI : Infos) {
2392
if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2393
OS << " MCK_LAST_TOKEN = " << LastName << ",\n";
2394
} else if (LastKind < ClassInfo::UserClass0 &&
2395
CI.Kind >= ClassInfo::UserClass0) {
2396
OS << " MCK_LAST_REGISTER = " << LastName << ",\n";
2397
}
2398
LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2399
LastName = CI.Name;
2400
2401
OS << " " << CI.Name << ", // ";
2402
if (CI.Kind == ClassInfo::Token) {
2403
OS << "'" << CI.ValueName << "'\n";
2404
} else if (CI.isRegisterClass()) {
2405
if (!CI.ValueName.empty())
2406
OS << "register class '" << CI.ValueName << "'\n";
2407
else
2408
OS << "derived register class\n";
2409
} else {
2410
OS << "user defined class '" << CI.ValueName << "'\n";
2411
}
2412
}
2413
OS << " NumMatchClassKinds\n";
2414
OS << "};\n\n";
2415
2416
OS << "} // end anonymous namespace\n\n";
2417
}
2418
2419
/// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2420
/// used when an assembly operand does not match the expected operand class.
2421
static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info,
2422
raw_ostream &OS) {
2423
// If the target does not use DiagnosticString for any operands, don't emit
2424
// an unused function.
2425
if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) {
2426
return CI.DiagnosticString.empty();
2427
}))
2428
return;
2429
2430
OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2431
<< "AsmParser::" << Info.Target.getName()
2432
<< "MatchResultTy MatchResult) {\n";
2433
OS << " switch (MatchResult) {\n";
2434
2435
for (const auto &CI : Info.Classes) {
2436
if (!CI.DiagnosticString.empty()) {
2437
assert(!CI.DiagnosticType.empty() &&
2438
"DiagnosticString set without DiagnosticType");
2439
OS << " case " << Info.Target.getName() << "AsmParser::Match_"
2440
<< CI.DiagnosticType << ":\n";
2441
OS << " return \"" << CI.DiagnosticString << "\";\n";
2442
}
2443
}
2444
2445
OS << " default:\n";
2446
OS << " return nullptr;\n";
2447
2448
OS << " }\n";
2449
OS << "}\n\n";
2450
}
2451
2452
static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2453
OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2454
"RegisterClass) {\n";
2455
if (none_of(Info.Classes, [](const ClassInfo &CI) {
2456
return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2457
})) {
2458
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2459
} else {
2460
OS << " switch (RegisterClass) {\n";
2461
for (const auto &CI : Info.Classes) {
2462
if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2463
OS << " case " << CI.Name << ":\n";
2464
OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2465
<< CI.DiagnosticType << ";\n";
2466
}
2467
}
2468
2469
OS << " default:\n";
2470
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2471
2472
OS << " }\n";
2473
}
2474
OS << "}\n\n";
2475
}
2476
2477
/// emitValidateOperandClass - Emit the function to validate an operand class.
2478
static void emitValidateOperandClass(AsmMatcherInfo &Info, raw_ostream &OS) {
2479
OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2480
<< "MatchClassKind Kind) {\n";
2481
OS << " " << Info.Target.getName() << "Operand &Operand = ("
2482
<< Info.Target.getName() << "Operand &)GOp;\n";
2483
2484
// The InvalidMatchClass is not to match any operand.
2485
OS << " if (Kind == InvalidMatchClass)\n";
2486
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2487
2488
// Check for Token operands first.
2489
// FIXME: Use a more specific diagnostic type.
2490
OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2491
OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2492
<< " MCTargetAsmParser::Match_Success :\n"
2493
<< " MCTargetAsmParser::Match_InvalidOperand;\n\n";
2494
2495
// Check the user classes. We don't care what order since we're only
2496
// actually matching against one of them.
2497
OS << " switch (Kind) {\n"
2498
" default: break;\n";
2499
for (const auto &CI : Info.Classes) {
2500
if (!CI.isUserClass())
2501
continue;
2502
2503
OS << " // '" << CI.ClassName << "' class\n";
2504
OS << " case " << CI.Name << ": {\n";
2505
OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2506
<< "());\n";
2507
OS << " if (DP.isMatch())\n";
2508
OS << " return MCTargetAsmParser::Match_Success;\n";
2509
if (!CI.DiagnosticType.empty()) {
2510
OS << " if (DP.isNearMatch())\n";
2511
OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2512
<< CI.DiagnosticType << ";\n";
2513
OS << " break;\n";
2514
} else
2515
OS << " break;\n";
2516
OS << " }\n";
2517
}
2518
OS << " } // end switch (Kind)\n\n";
2519
2520
// Check for register operands, including sub-classes.
2521
OS << " if (Operand.isReg()) {\n";
2522
OS << " MatchClassKind OpKind;\n";
2523
OS << " switch (Operand.getReg().id()) {\n";
2524
OS << " default: OpKind = InvalidMatchClass; break;\n";
2525
for (const auto &RC : Info.RegisterClasses)
2526
OS << " case " << RC.first->getValueAsString("Namespace")
2527
<< "::" << RC.first->getName() << ": OpKind = " << RC.second->Name
2528
<< "; break;\n";
2529
OS << " }\n";
2530
OS << " return isSubclass(OpKind, Kind) ? "
2531
<< "(unsigned)MCTargetAsmParser::Match_Success :\n "
2532
<< " getDiagKindFromRegisterClass(Kind);\n }\n\n";
2533
2534
// Expected operand is a register, but actual is not.
2535
OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2536
OS << " return getDiagKindFromRegisterClass(Kind);\n\n";
2537
2538
// Generic fallthrough match failure case for operands that don't have
2539
// specialized diagnostic types.
2540
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2541
OS << "}\n\n";
2542
}
2543
2544
/// emitIsSubclass - Emit the subclass predicate function.
2545
static void emitIsSubclass(CodeGenTarget &Target,
2546
std::forward_list<ClassInfo> &Infos,
2547
raw_ostream &OS) {
2548
OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2549
OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2550
OS << " if (A == B)\n";
2551
OS << " return true;\n\n";
2552
2553
bool EmittedSwitch = false;
2554
for (const auto &A : Infos) {
2555
std::vector<StringRef> SuperClasses;
2556
if (A.IsOptional)
2557
SuperClasses.push_back("OptionalMatchClass");
2558
for (const auto &B : Infos) {
2559
if (&A != &B && A.isSubsetOf(B))
2560
SuperClasses.push_back(B.Name);
2561
}
2562
2563
if (SuperClasses.empty())
2564
continue;
2565
2566
// If this is the first SuperClass, emit the switch header.
2567
if (!EmittedSwitch) {
2568
OS << " switch (A) {\n";
2569
OS << " default:\n";
2570
OS << " return false;\n";
2571
EmittedSwitch = true;
2572
}
2573
2574
OS << "\n case " << A.Name << ":\n";
2575
2576
if (SuperClasses.size() == 1) {
2577
OS << " return B == " << SuperClasses.back() << ";\n";
2578
continue;
2579
}
2580
2581
if (!SuperClasses.empty()) {
2582
OS << " switch (B) {\n";
2583
OS << " default: return false;\n";
2584
for (StringRef SC : SuperClasses)
2585
OS << " case " << SC << ": return true;\n";
2586
OS << " }\n";
2587
} else {
2588
// No case statement to emit
2589
OS << " return false;\n";
2590
}
2591
}
2592
2593
// If there were case statements emitted into the string stream write the
2594
// default.
2595
if (EmittedSwitch)
2596
OS << " }\n";
2597
else
2598
OS << " return false;\n";
2599
2600
OS << "}\n\n";
2601
}
2602
2603
/// emitMatchTokenString - Emit the function to match a token string to the
2604
/// appropriate match class value.
2605
static void emitMatchTokenString(CodeGenTarget &Target,
2606
std::forward_list<ClassInfo> &Infos,
2607
raw_ostream &OS) {
2608
// Construct the match list.
2609
std::vector<StringMatcher::StringPair> Matches;
2610
for (const auto &CI : Infos) {
2611
if (CI.Kind == ClassInfo::Token)
2612
Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2613
}
2614
2615
OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2616
2617
StringMatcher("Name", Matches, OS).Emit();
2618
2619
OS << " return InvalidMatchClass;\n";
2620
OS << "}\n\n";
2621
}
2622
2623
/// emitMatchRegisterName - Emit the function to match a string to the target
2624
/// specific register enum.
2625
static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2626
raw_ostream &OS) {
2627
// Construct the match list.
2628
std::vector<StringMatcher::StringPair> Matches;
2629
const auto &Regs = Target.getRegBank().getRegisters();
2630
std::string Namespace =
2631
Regs.front().TheDef->getValueAsString("Namespace").str();
2632
for (const CodeGenRegister &Reg : Regs) {
2633
StringRef AsmName = Reg.TheDef->getValueAsString("AsmName");
2634
if (AsmName.empty())
2635
continue;
2636
2637
Matches.emplace_back(AsmName.str(), "return " + Namespace +
2638
"::" + Reg.getName().str() + ';');
2639
}
2640
2641
OS << "static MCRegister MatchRegisterName(StringRef Name) {\n";
2642
2643
bool IgnoreDuplicates =
2644
AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2645
StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2646
2647
OS << " return " << Namespace << "::NoRegister;\n";
2648
OS << "}\n\n";
2649
}
2650
2651
/// Emit the function to match a string to the target
2652
/// specific register enum.
2653
static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2654
raw_ostream &OS) {
2655
// Construct the match list.
2656
std::vector<StringMatcher::StringPair> Matches;
2657
const auto &Regs = Target.getRegBank().getRegisters();
2658
std::string Namespace =
2659
Regs.front().TheDef->getValueAsString("Namespace").str();
2660
for (const CodeGenRegister &Reg : Regs) {
2661
2662
auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2663
2664
for (auto AltName : AltNames) {
2665
AltName = StringRef(AltName).trim();
2666
2667
// don't handle empty alternative names
2668
if (AltName.empty())
2669
continue;
2670
2671
Matches.emplace_back(AltName.str(), "return " + Namespace +
2672
"::" + Reg.getName().str() + ';');
2673
}
2674
}
2675
2676
OS << "static MCRegister MatchRegisterAltName(StringRef Name) {\n";
2677
2678
bool IgnoreDuplicates =
2679
AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2680
StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2681
2682
OS << " return " << Namespace << "::NoRegister;\n";
2683
OS << "}\n\n";
2684
}
2685
2686
/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2687
static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2688
// Get the set of diagnostic types from all of the operand classes.
2689
std::set<StringRef> Types;
2690
for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2691
if (!OpClassEntry.second->DiagnosticType.empty())
2692
Types.insert(OpClassEntry.second->DiagnosticType);
2693
}
2694
for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2695
if (!OpClassEntry.second->DiagnosticType.empty())
2696
Types.insert(OpClassEntry.second->DiagnosticType);
2697
}
2698
2699
if (Types.empty())
2700
return;
2701
2702
// Now emit the enum entries.
2703
for (StringRef Type : Types)
2704
OS << " Match_" << Type << ",\n";
2705
OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
2706
}
2707
2708
/// emitGetSubtargetFeatureName - Emit the helper function to get the
2709
/// user-level name for a subtarget feature.
2710
static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2711
OS << "// User-level names for subtarget features that participate in\n"
2712
<< "// instruction matching.\n"
2713
<< "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2714
if (!Info.SubtargetFeatures.empty()) {
2715
OS << " switch(Val) {\n";
2716
for (const auto &SF : Info.SubtargetFeatures) {
2717
const SubtargetFeatureInfo &SFI = SF.second;
2718
// FIXME: Totally just a placeholder name to get the algorithm working.
2719
OS << " case " << SFI.getEnumBitName() << ": return \""
2720
<< SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2721
}
2722
OS << " default: return \"(unknown)\";\n";
2723
OS << " }\n";
2724
} else {
2725
// Nothing to emit, so skip the switch
2726
OS << " return \"(unknown)\";\n";
2727
}
2728
OS << "}\n\n";
2729
}
2730
2731
static std::string GetAliasRequiredFeatures(Record *R,
2732
const AsmMatcherInfo &Info) {
2733
std::vector<Record *> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2734
std::string Result;
2735
2736
if (ReqFeatures.empty())
2737
return Result;
2738
2739
for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2740
const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2741
2742
if (!F)
2743
PrintFatalError(R->getLoc(),
2744
"Predicate '" + ReqFeatures[i]->getName() +
2745
"' is not marked as an AssemblerPredicate!");
2746
2747
if (i)
2748
Result += " && ";
2749
2750
Result += "Features.test(" + F->getEnumBitName() + ')';
2751
}
2752
2753
return Result;
2754
}
2755
2756
static void
2757
emitMnemonicAliasVariant(raw_ostream &OS, const AsmMatcherInfo &Info,
2758
std::vector<Record *> &Aliases, unsigned Indent = 0,
2759
StringRef AsmParserVariantName = StringRef()) {
2760
// Keep track of all the aliases from a mnemonic. Use an std::map so that the
2761
// iteration order of the map is stable.
2762
std::map<std::string, std::vector<Record *>> AliasesFromMnemonic;
2763
2764
for (Record *R : Aliases) {
2765
// FIXME: Allow AssemblerVariantName to be a comma separated list.
2766
StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2767
if (AsmVariantName != AsmParserVariantName)
2768
continue;
2769
AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()].push_back(
2770
R);
2771
}
2772
if (AliasesFromMnemonic.empty())
2773
return;
2774
2775
// Process each alias a "from" mnemonic at a time, building the code executed
2776
// by the string remapper.
2777
std::vector<StringMatcher::StringPair> Cases;
2778
for (const auto &AliasEntry : AliasesFromMnemonic) {
2779
const std::vector<Record *> &ToVec = AliasEntry.second;
2780
2781
// Loop through each alias and emit code that handles each case. If there
2782
// are two instructions without predicates, emit an error. If there is one,
2783
// emit it last.
2784
std::string MatchCode;
2785
int AliasWithNoPredicate = -1;
2786
2787
for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2788
Record *R = ToVec[i];
2789
std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2790
2791
// If this unconditionally matches, remember it for later and diagnose
2792
// duplicates.
2793
if (FeatureMask.empty()) {
2794
if (AliasWithNoPredicate != -1 &&
2795
R->getValueAsString("ToMnemonic") !=
2796
ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) {
2797
// We can't have two different aliases from the same mnemonic with no
2798
// predicate.
2799
PrintError(
2800
ToVec[AliasWithNoPredicate]->getLoc(),
2801
"two different MnemonicAliases with the same 'from' mnemonic!");
2802
PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2803
}
2804
2805
AliasWithNoPredicate = i;
2806
continue;
2807
}
2808
if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2809
PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2810
2811
if (!MatchCode.empty())
2812
MatchCode += "else ";
2813
MatchCode += "if (" + FeatureMask + ")\n";
2814
MatchCode += " Mnemonic = \"";
2815
MatchCode += R->getValueAsString("ToMnemonic").lower();
2816
MatchCode += "\";\n";
2817
}
2818
2819
if (AliasWithNoPredicate != -1) {
2820
Record *R = ToVec[AliasWithNoPredicate];
2821
if (!MatchCode.empty())
2822
MatchCode += "else\n ";
2823
MatchCode += "Mnemonic = \"";
2824
MatchCode += R->getValueAsString("ToMnemonic").lower();
2825
MatchCode += "\";\n";
2826
}
2827
2828
MatchCode += "return;";
2829
2830
Cases.push_back(std::pair(AliasEntry.first, MatchCode));
2831
}
2832
StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2833
}
2834
2835
/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2836
/// emit a function for them and return true, otherwise return false.
2837
static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2838
CodeGenTarget &Target) {
2839
// Ignore aliases when match-prefix is set.
2840
if (!MatchPrefix.empty())
2841
return false;
2842
2843
std::vector<Record *> Aliases =
2844
Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2845
if (Aliases.empty())
2846
return false;
2847
2848
OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2849
"const FeatureBitset &Features, unsigned VariantID) {\n";
2850
OS << " switch (VariantID) {\n";
2851
unsigned VariantCount = Target.getAsmParserVariantCount();
2852
for (unsigned VC = 0; VC != VariantCount; ++VC) {
2853
Record *AsmVariant = Target.getAsmParserVariant(VC);
2854
int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2855
StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2856
OS << " case " << AsmParserVariantNo << ":\n";
2857
emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2858
AsmParserVariantName);
2859
OS << " break;\n";
2860
}
2861
OS << " }\n";
2862
2863
// Emit aliases that apply to all variants.
2864
emitMnemonicAliasVariant(OS, Info, Aliases);
2865
2866
OS << "}\n\n";
2867
2868
return true;
2869
}
2870
2871
static void
2872
emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2873
const AsmMatcherInfo &Info, StringRef ClassName,
2874
StringToOffsetTable &StringTable,
2875
unsigned MaxMnemonicIndex, unsigned MaxFeaturesIndex,
2876
bool HasMnemonicFirst, const Record &AsmParser) {
2877
unsigned MaxMask = 0;
2878
for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2879
MaxMask |= OMI.OperandMask;
2880
}
2881
2882
// Emit the static custom operand parsing table;
2883
OS << "namespace {\n";
2884
OS << " struct OperandMatchEntry {\n";
2885
OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n";
2886
OS << " " << getMinimalTypeForRange(MaxMask) << " OperandMask;\n";
2887
OS << " "
2888
<< getMinimalTypeForRange(
2889
std::distance(Info.Classes.begin(), Info.Classes.end()) +
2890
2 /* Include 'InvalidMatchClass' and 'OptionalMatchClass' */)
2891
<< " Class;\n";
2892
OS << " " << getMinimalTypeForRange(MaxFeaturesIndex)
2893
<< " RequiredFeaturesIdx;\n\n";
2894
OS << " StringRef getMnemonic() const {\n";
2895
OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2896
OS << " MnemonicTable[Mnemonic]);\n";
2897
OS << " }\n";
2898
OS << " };\n\n";
2899
2900
OS << " // Predicate for searching for an opcode.\n";
2901
OS << " struct LessOpcodeOperand {\n";
2902
OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2903
OS << " return LHS.getMnemonic() < RHS;\n";
2904
OS << " }\n";
2905
OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2906
OS << " return LHS < RHS.getMnemonic();\n";
2907
OS << " }\n";
2908
OS << " bool operator()(const OperandMatchEntry &LHS,";
2909
OS << " const OperandMatchEntry &RHS) {\n";
2910
OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2911
OS << " }\n";
2912
OS << " };\n";
2913
2914
OS << "} // end anonymous namespace\n\n";
2915
2916
OS << "static const OperandMatchEntry OperandMatchTable["
2917
<< Info.OperandMatchInfo.size() << "] = {\n";
2918
2919
OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
2920
for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2921
const MatchableInfo &II = *OMI.MI;
2922
2923
OS << " { ";
2924
2925
// Store a pascal-style length byte in the mnemonic.
2926
std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower();
2927
OS << StringTable.GetOrAddStringOffset(LenMnemonic, false) << " /* "
2928
<< II.Mnemonic << " */, ";
2929
2930
OS << OMI.OperandMask;
2931
OS << " /* ";
2932
ListSeparator LS;
2933
for (int i = 0, e = 31; i != e; ++i)
2934
if (OMI.OperandMask & (1 << i))
2935
OS << LS << i;
2936
OS << " */, ";
2937
2938
OS << OMI.CI->Name;
2939
2940
// Write the required features mask.
2941
OS << ", AMFBS";
2942
if (II.RequiredFeatures.empty())
2943
OS << "_None";
2944
else
2945
for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i)
2946
OS << '_' << II.RequiredFeatures[i]->TheDef->getName();
2947
2948
OS << " },\n";
2949
}
2950
OS << "};\n\n";
2951
2952
// Emit the operand class switch to call the correct custom parser for
2953
// the found operand class.
2954
OS << "ParseStatus " << Target.getName() << ClassName << "::\n"
2955
<< "tryCustomParseOperand(OperandVector"
2956
<< " &Operands,\n unsigned MCK) {\n\n"
2957
<< " switch(MCK) {\n";
2958
2959
for (const auto &CI : Info.Classes) {
2960
if (CI.ParserMethod.empty())
2961
continue;
2962
OS << " case " << CI.Name << ":\n"
2963
<< " return " << CI.ParserMethod << "(Operands);\n";
2964
}
2965
2966
OS << " default:\n";
2967
OS << " return ParseStatus::NoMatch;\n";
2968
OS << " }\n";
2969
OS << " return ParseStatus::NoMatch;\n";
2970
OS << "}\n\n";
2971
2972
// Emit the static custom operand parser. This code is very similar with
2973
// the other matcher. Also use MatchResultTy here just in case we go for
2974
// a better error handling.
2975
OS << "ParseStatus " << Target.getName() << ClassName << "::\n"
2976
<< "MatchOperandParserImpl(OperandVector"
2977
<< " &Operands,\n StringRef Mnemonic,\n"
2978
<< " bool ParseForAllFeatures) {\n";
2979
2980
// Emit code to get the available features.
2981
OS << " // Get the current feature set.\n";
2982
OS << " const FeatureBitset &AvailableFeatures = "
2983
"getAvailableFeatures();\n\n";
2984
2985
OS << " // Get the next operand index.\n";
2986
OS << " unsigned NextOpNum = Operands.size()"
2987
<< (HasMnemonicFirst ? " - 1" : "") << ";\n";
2988
2989
// Emit code to search the table.
2990
OS << " // Search the table.\n";
2991
if (HasMnemonicFirst) {
2992
OS << " auto MnemonicRange =\n";
2993
OS << " std::equal_range(std::begin(OperandMatchTable), "
2994
"std::end(OperandMatchTable),\n";
2995
OS << " Mnemonic, LessOpcodeOperand());\n\n";
2996
} else {
2997
OS << " auto MnemonicRange = std::pair(std::begin(OperandMatchTable),"
2998
" std::end(OperandMatchTable));\n";
2999
OS << " if (!Mnemonic.empty())\n";
3000
OS << " MnemonicRange =\n";
3001
OS << " std::equal_range(std::begin(OperandMatchTable), "
3002
"std::end(OperandMatchTable),\n";
3003
OS << " Mnemonic, LessOpcodeOperand());\n\n";
3004
}
3005
3006
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3007
OS << " return ParseStatus::NoMatch;\n\n";
3008
3009
OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
3010
<< " *ie = MnemonicRange.second; it != ie; ++it) {\n";
3011
3012
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
3013
OS << " assert(Mnemonic == it->getMnemonic());\n\n";
3014
3015
// Emit check that the required features are available.
3016
OS << " // check if the available features match\n";
3017
OS << " const FeatureBitset &RequiredFeatures = "
3018
"FeatureBitsets[it->RequiredFeaturesIdx];\n";
3019
OS << " if (!ParseForAllFeatures && (AvailableFeatures & "
3020
"RequiredFeatures) != RequiredFeatures)\n";
3021
OS << " continue;\n\n";
3022
3023
// Emit check to ensure the operand number matches.
3024
OS << " // check if the operand in question has a custom parser.\n";
3025
OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
3026
OS << " continue;\n\n";
3027
3028
// Emit call to the custom parser method
3029
StringRef ParserName = AsmParser.getValueAsString("OperandParserMethod");
3030
if (ParserName.empty())
3031
ParserName = "tryCustomParseOperand";
3032
OS << " // call custom parse method to handle the operand\n";
3033
OS << " ParseStatus Result = " << ParserName << "(Operands, it->Class);\n";
3034
OS << " if (!Result.isNoMatch())\n";
3035
OS << " return Result;\n";
3036
OS << " }\n\n";
3037
3038
OS << " // Okay, we had no match.\n";
3039
OS << " return ParseStatus::NoMatch;\n";
3040
OS << "}\n\n";
3041
}
3042
3043
static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
3044
AsmMatcherInfo &Info, raw_ostream &OS,
3045
bool HasOptionalOperands) {
3046
std::string AsmParserName =
3047
std::string(Info.AsmParser->getValueAsString("AsmParserClassName"));
3048
OS << "static bool ";
3049
OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
3050
<< AsmParserName << "&AsmParser,\n";
3051
OS << " unsigned Kind, const OperandVector "
3052
"&Operands,\n";
3053
if (HasOptionalOperands)
3054
OS << " ArrayRef<unsigned> DefaultsOffset,\n";
3055
OS << " uint64_t &ErrorInfo) {\n";
3056
OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3057
OS << " const uint8_t *Converter = ConversionTable[Kind];\n";
3058
OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
3059
OS << " switch (*p) {\n";
3060
OS << " case CVT_Tied: {\n";
3061
OS << " unsigned OpIdx = *(p + 1);\n";
3062
OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3063
OS << " std::begin(TiedAsmOperandTable)) &&\n";
3064
OS << " \"Tied operand not found\");\n";
3065
OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3066
OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3067
if (HasOptionalOperands) {
3068
// When optional operands are involved, formal and actual operand indices
3069
// may differ. Map the former to the latter by subtracting the number of
3070
// absent optional operands.
3071
OS << " OpndNum1 = OpndNum1 - DefaultsOffset[OpndNum1];\n";
3072
OS << " OpndNum2 = OpndNum2 - DefaultsOffset[OpndNum2];\n";
3073
}
3074
OS << " if (OpndNum1 != OpndNum2) {\n";
3075
OS << " auto &SrcOp1 = Operands[OpndNum1];\n";
3076
OS << " auto &SrcOp2 = Operands[OpndNum2];\n";
3077
OS << " if (!AsmParser.areEqualRegs(*SrcOp1, *SrcOp2)) {\n";
3078
OS << " ErrorInfo = OpndNum2;\n";
3079
OS << " return false;\n";
3080
OS << " }\n";
3081
OS << " }\n";
3082
OS << " break;\n";
3083
OS << " }\n";
3084
OS << " default:\n";
3085
OS << " break;\n";
3086
OS << " }\n";
3087
OS << " }\n";
3088
OS << " return true;\n";
3089
OS << "}\n\n";
3090
}
3091
3092
static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3093
unsigned VariantCount) {
3094
OS << "static std::string " << Target.getName()
3095
<< "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
3096
<< " unsigned VariantID) {\n";
3097
if (!VariantCount)
3098
OS << " return \"\";";
3099
else {
3100
OS << " const unsigned MaxEditDist = 2;\n";
3101
OS << " std::vector<StringRef> Candidates;\n";
3102
OS << " StringRef Prev = \"\";\n\n";
3103
3104
OS << " // Find the appropriate table for this asm variant.\n";
3105
OS << " const MatchEntry *Start, *End;\n";
3106
OS << " switch (VariantID) {\n";
3107
OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3108
for (unsigned VC = 0; VC != VariantCount; ++VC) {
3109
Record *AsmVariant = Target.getAsmParserVariant(VC);
3110
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3111
OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3112
<< "); End = std::end(MatchTable" << VC << "); break;\n";
3113
}
3114
OS << " }\n\n";
3115
OS << " for (auto I = Start; I < End; I++) {\n";
3116
OS << " // Ignore unsupported instructions.\n";
3117
OS << " const FeatureBitset &RequiredFeatures = "
3118
"FeatureBitsets[I->RequiredFeaturesIdx];\n";
3119
OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
3120
OS << " continue;\n";
3121
OS << "\n";
3122
OS << " StringRef T = I->getMnemonic();\n";
3123
OS << " // Avoid recomputing the edit distance for the same string.\n";
3124
OS << " if (T == Prev)\n";
3125
OS << " continue;\n";
3126
OS << "\n";
3127
OS << " Prev = T;\n";
3128
OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3129
OS << " if (Dist <= MaxEditDist)\n";
3130
OS << " Candidates.push_back(T);\n";
3131
OS << " }\n";
3132
OS << "\n";
3133
OS << " if (Candidates.empty())\n";
3134
OS << " return \"\";\n";
3135
OS << "\n";
3136
OS << " std::string Res = \", did you mean: \";\n";
3137
OS << " unsigned i = 0;\n";
3138
OS << " for (; i < Candidates.size() - 1; i++)\n";
3139
OS << " Res += Candidates[i].str() + \", \";\n";
3140
OS << " return Res + Candidates[i].str() + \"?\";\n";
3141
}
3142
OS << "}\n";
3143
OS << "\n";
3144
}
3145
3146
static void emitMnemonicChecker(raw_ostream &OS, CodeGenTarget &Target,
3147
unsigned VariantCount, bool HasMnemonicFirst,
3148
bool HasMnemonicAliases) {
3149
OS << "static bool " << Target.getName()
3150
<< "CheckMnemonic(StringRef Mnemonic,\n";
3151
OS << " "
3152
<< "const FeatureBitset &AvailableFeatures,\n";
3153
OS << " "
3154
<< "unsigned VariantID) {\n";
3155
3156
if (!VariantCount) {
3157
OS << " return false;\n";
3158
} else {
3159
if (HasMnemonicAliases) {
3160
OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3161
OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);";
3162
OS << "\n\n";
3163
}
3164
OS << " // Find the appropriate table for this asm variant.\n";
3165
OS << " const MatchEntry *Start, *End;\n";
3166
OS << " switch (VariantID) {\n";
3167
OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3168
for (unsigned VC = 0; VC != VariantCount; ++VC) {
3169
Record *AsmVariant = Target.getAsmParserVariant(VC);
3170
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3171
OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3172
<< "); End = std::end(MatchTable" << VC << "); break;\n";
3173
}
3174
OS << " }\n\n";
3175
3176
OS << " // Search the table.\n";
3177
if (HasMnemonicFirst) {
3178
OS << " auto MnemonicRange = "
3179
"std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3180
} else {
3181
OS << " auto MnemonicRange = std::pair(Start, End);\n";
3182
OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3183
OS << " if (!Mnemonic.empty())\n";
3184
OS << " MnemonicRange = "
3185
<< "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3186
}
3187
3188
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3189
OS << " return false;\n\n";
3190
3191
OS << " for (const MatchEntry *it = MnemonicRange.first, "
3192
<< "*ie = MnemonicRange.second;\n";
3193
OS << " it != ie; ++it) {\n";
3194
OS << " const FeatureBitset &RequiredFeatures =\n";
3195
OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n";
3196
OS << " if ((AvailableFeatures & RequiredFeatures) == ";
3197
OS << "RequiredFeatures)\n";
3198
OS << " return true;\n";
3199
OS << " }\n";
3200
OS << " return false;\n";
3201
}
3202
OS << "}\n";
3203
OS << "\n";
3204
}
3205
3206
// Emit a function mapping match classes to strings, for debugging.
3207
static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3208
raw_ostream &OS) {
3209
OS << "#ifndef NDEBUG\n";
3210
OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3211
OS << " switch (Kind) {\n";
3212
3213
OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3214
OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3215
for (const auto &CI : Infos) {
3216
OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3217
}
3218
OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3219
3220
OS << " }\n";
3221
OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3222
OS << "}\n\n";
3223
OS << "#endif // NDEBUG\n";
3224
}
3225
3226
static std::string
3227
getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
3228
std::string Name = "AMFBS";
3229
for (const auto &Feature : FeatureBitset)
3230
Name += ("_" + Feature->getName()).str();
3231
return Name;
3232
}
3233
3234
void AsmMatcherEmitter::run(raw_ostream &OS) {
3235
CodeGenTarget Target(Records);
3236
Record *AsmParser = Target.getAsmParser();
3237
StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3238
3239
emitSourceFileHeader("Assembly Matcher Source Fragment", OS, Records);
3240
3241
// Compute the information on the instructions to match.
3242
AsmMatcherInfo Info(AsmParser, Target, Records);
3243
Info.buildInfo();
3244
3245
bool PreferSmallerInstructions = getPreferSmallerInstructions(Target);
3246
// Sort the instruction table using the partial order on classes. We use
3247
// stable_sort to ensure that ambiguous instructions are still
3248
// deterministically ordered.
3249
llvm::stable_sort(
3250
Info.Matchables,
3251
[PreferSmallerInstructions](const std::unique_ptr<MatchableInfo> &A,
3252
const std::unique_ptr<MatchableInfo> &B) {
3253
return A->shouldBeMatchedBefore(*B, PreferSmallerInstructions);
3254
});
3255
3256
#ifdef EXPENSIVE_CHECKS
3257
// Verify that the table is sorted and operator < works transitively.
3258
for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3259
++I) {
3260
for (auto J = I; J != E; ++J) {
3261
assert(!(*J)->shouldBeMatchedBefore(**I, PreferSmallerInstructions));
3262
}
3263
}
3264
#endif
3265
3266
DEBUG_WITH_TYPE("instruction_info", {
3267
for (const auto &MI : Info.Matchables)
3268
MI->dump();
3269
});
3270
3271
// Check for ambiguous matchables.
3272
DEBUG_WITH_TYPE("ambiguous_instrs", {
3273
unsigned NumAmbiguous = 0;
3274
for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3275
++I) {
3276
for (auto J = std::next(I); J != E; ++J) {
3277
const MatchableInfo &A = **I;
3278
const MatchableInfo &B = **J;
3279
3280
if (A.couldMatchAmbiguouslyWith(B, PreferSmallerInstructions)) {
3281
errs() << "warning: ambiguous matchables:\n";
3282
A.dump();
3283
errs() << "\nis incomparable with:\n";
3284
B.dump();
3285
errs() << "\n\n";
3286
++NumAmbiguous;
3287
}
3288
}
3289
}
3290
if (NumAmbiguous)
3291
errs() << "warning: " << NumAmbiguous << " ambiguous matchables!\n";
3292
});
3293
3294
// Compute the information on the custom operand parsing.
3295
Info.buildOperandMatchInfo();
3296
3297
bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3298
bool HasOptionalOperands = Info.hasOptionalOperands();
3299
bool ReportMultipleNearMisses =
3300
AsmParser->getValueAsBit("ReportMultipleNearMisses");
3301
3302
// Write the output.
3303
3304
// Information for the class declaration.
3305
OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3306
OS << "#undef GET_ASSEMBLER_HEADER\n";
3307
OS << " // This should be included into the middle of the declaration of\n";
3308
OS << " // your subclasses implementation of MCTargetAsmParser.\n";
3309
OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) "
3310
"const;\n";
3311
if (HasOptionalOperands) {
3312
OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3313
<< "unsigned Opcode,\n"
3314
<< " const OperandVector &Operands,\n"
3315
<< " const SmallBitVector "
3316
"&OptionalOperandsMask,\n"
3317
<< " ArrayRef<unsigned> DefaultsOffset);\n";
3318
} else {
3319
OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3320
<< "unsigned Opcode,\n"
3321
<< " const OperandVector &Operands);\n";
3322
}
3323
OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
3324
OS << " const OperandVector &Operands) override;\n";
3325
OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3326
<< " MCInst &Inst,\n";
3327
if (ReportMultipleNearMisses)
3328
OS << " SmallVectorImpl<NearMissInfo> "
3329
"*NearMisses,\n";
3330
else
3331
OS << " uint64_t &ErrorInfo,\n"
3332
<< " FeatureBitset &MissingFeatures,\n";
3333
OS << " bool matchingInlineAsm,\n"
3334
<< " unsigned VariantID = 0);\n";
3335
if (!ReportMultipleNearMisses)
3336
OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3337
<< " MCInst &Inst,\n"
3338
<< " uint64_t &ErrorInfo,\n"
3339
<< " bool matchingInlineAsm,\n"
3340
<< " unsigned VariantID = 0) {\n"
3341
<< " FeatureBitset MissingFeatures;\n"
3342
<< " return MatchInstructionImpl(Operands, Inst, ErrorInfo, "
3343
"MissingFeatures,\n"
3344
<< " matchingInlineAsm, VariantID);\n"
3345
<< " }\n\n";
3346
3347
if (!Info.OperandMatchInfo.empty()) {
3348
OS << " ParseStatus MatchOperandParserImpl(\n";
3349
OS << " OperandVector &Operands,\n";
3350
OS << " StringRef Mnemonic,\n";
3351
OS << " bool ParseForAllFeatures = false);\n";
3352
3353
OS << " ParseStatus tryCustomParseOperand(\n";
3354
OS << " OperandVector &Operands,\n";
3355
OS << " unsigned MCK);\n\n";
3356
}
3357
3358
OS << "#endif // GET_ASSEMBLER_HEADER\n\n";
3359
3360
// Emit the operand match diagnostic enum names.
3361
OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3362
OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3363
emitOperandDiagnosticTypes(Info, OS);
3364
OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3365
3366
OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3367
OS << "#undef GET_REGISTER_MATCHER\n\n";
3368
3369
// Emit the subtarget feature enumeration.
3370
SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
3371
Info.SubtargetFeatures, OS);
3372
3373
// Emit the function to match a register name to number.
3374
// This should be omitted for Mips target
3375
if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3376
emitMatchRegisterName(Target, AsmParser, OS);
3377
3378
if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3379
emitMatchRegisterAltName(Target, AsmParser, OS);
3380
3381
OS << "#endif // GET_REGISTER_MATCHER\n\n";
3382
3383
OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3384
OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3385
3386
// Generate the helper function to get the names for subtarget features.
3387
emitGetSubtargetFeatureName(Info, OS);
3388
3389
OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3390
3391
OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3392
OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3393
3394
// Generate the function that remaps for mnemonic aliases.
3395
bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3396
3397
// Generate the convertToMCInst function to convert operands into an MCInst.
3398
// Also, generate the convertToMapAndConstraints function for MS-style inline
3399
// assembly. The latter doesn't actually generate a MCInst.
3400
unsigned NumConverters =
3401
emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
3402
HasOptionalOperands, OS);
3403
3404
// Emit the enumeration for classes which participate in matching.
3405
emitMatchClassEnumeration(Target, Info.Classes, OS);
3406
3407
// Emit a function to get the user-visible string to describe an operand
3408
// match failure in diagnostics.
3409
emitOperandMatchErrorDiagStrings(Info, OS);
3410
3411
// Emit a function to map register classes to operand match failure codes.
3412
emitRegisterMatchErrorFunc(Info, OS);
3413
3414
// Emit the routine to match token strings to their match class.
3415
emitMatchTokenString(Target, Info.Classes, OS);
3416
3417
// Emit the subclass predicate routine.
3418
emitIsSubclass(Target, Info.Classes, OS);
3419
3420
// Emit the routine to validate an operand against a match class.
3421
emitValidateOperandClass(Info, OS);
3422
3423
emitMatchClassKindNames(Info.Classes, OS);
3424
3425
// Emit the available features compute function.
3426
SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3427
Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3428
Info.SubtargetFeatures, OS);
3429
3430
if (!ReportMultipleNearMisses)
3431
emitAsmTiedOperandConstraints(Target, Info, OS, HasOptionalOperands);
3432
3433
StringToOffsetTable StringTable;
3434
3435
size_t MaxNumOperands = 0;
3436
unsigned MaxMnemonicIndex = 0;
3437
bool HasDeprecation = false;
3438
for (const auto &MI : Info.Matchables) {
3439
MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3440
HasDeprecation |= MI->HasDeprecation;
3441
3442
// Store a pascal-style length byte in the mnemonic.
3443
std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3444
MaxMnemonicIndex = std::max(
3445
MaxMnemonicIndex, StringTable.GetOrAddStringOffset(LenMnemonic, false));
3446
}
3447
3448
OS << "static const char MnemonicTable[] =\n";
3449
StringTable.EmitString(OS);
3450
OS << ";\n\n";
3451
3452
std::vector<std::vector<Record *>> FeatureBitsets;
3453
for (const auto &MI : Info.Matchables) {
3454
if (MI->RequiredFeatures.empty())
3455
continue;
3456
FeatureBitsets.emplace_back();
3457
for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I)
3458
FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef);
3459
}
3460
3461
llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
3462
const std::vector<Record *> &B) {
3463
if (A.size() < B.size())
3464
return true;
3465
if (A.size() > B.size())
3466
return false;
3467
for (auto Pair : zip(A, B)) {
3468
if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
3469
return true;
3470
if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
3471
return false;
3472
}
3473
return false;
3474
});
3475
FeatureBitsets.erase(llvm::unique(FeatureBitsets), FeatureBitsets.end());
3476
OS << "// Feature bitsets.\n"
3477
<< "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
3478
<< " AMFBS_None,\n";
3479
for (const auto &FeatureBitset : FeatureBitsets) {
3480
if (FeatureBitset.empty())
3481
continue;
3482
OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3483
}
3484
OS << "};\n\n"
3485
<< "static constexpr FeatureBitset FeatureBitsets[] = {\n"
3486
<< " {}, // AMFBS_None\n";
3487
for (const auto &FeatureBitset : FeatureBitsets) {
3488
if (FeatureBitset.empty())
3489
continue;
3490
OS << " {";
3491
for (const auto &Feature : FeatureBitset) {
3492
const auto &I = Info.SubtargetFeatures.find(Feature);
3493
assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
3494
OS << I->second.getEnumBitName() << ", ";
3495
}
3496
OS << "},\n";
3497
}
3498
OS << "};\n\n";
3499
3500
// Emit the static match table; unused classes get initialized to 0 which is
3501
// guaranteed to be InvalidMatchClass.
3502
//
3503
// FIXME: We can reduce the size of this table very easily. First, we change
3504
// it so that store the kinds in separate bit-fields for each index, which
3505
// only needs to be the max width used for classes at that index (we also need
3506
// to reject based on this during classification). If we then make sure to
3507
// order the match kinds appropriately (putting mnemonics last), then we
3508
// should only end up using a few bits for each class, especially the ones
3509
// following the mnemonic.
3510
OS << "namespace {\n";
3511
OS << " struct MatchEntry {\n";
3512
OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n";
3513
OS << " uint16_t Opcode;\n";
3514
OS << " " << getMinimalTypeForRange(NumConverters) << " ConvertFn;\n";
3515
OS << " " << getMinimalTypeForRange(FeatureBitsets.size())
3516
<< " RequiredFeaturesIdx;\n";
3517
OS << " "
3518
<< getMinimalTypeForRange(
3519
std::distance(Info.Classes.begin(), Info.Classes.end()) +
3520
2 /* Include 'InvalidMatchClass' and 'OptionalMatchClass' */)
3521
<< " Classes[" << MaxNumOperands << "];\n";
3522
OS << " StringRef getMnemonic() const {\n";
3523
OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
3524
OS << " MnemonicTable[Mnemonic]);\n";
3525
OS << " }\n";
3526
OS << " };\n\n";
3527
3528
OS << " // Predicate for searching for an opcode.\n";
3529
OS << " struct LessOpcode {\n";
3530
OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3531
OS << " return LHS.getMnemonic() < RHS;\n";
3532
OS << " }\n";
3533
OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3534
OS << " return LHS < RHS.getMnemonic();\n";
3535
OS << " }\n";
3536
OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3537
OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
3538
OS << " }\n";
3539
OS << " };\n";
3540
3541
OS << "} // end anonymous namespace\n\n";
3542
3543
unsigned VariantCount = Target.getAsmParserVariantCount();
3544
for (unsigned VC = 0; VC != VariantCount; ++VC) {
3545
Record *AsmVariant = Target.getAsmParserVariant(VC);
3546
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3547
3548
OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3549
3550
for (const auto &MI : Info.Matchables) {
3551
if (MI->AsmVariantID != AsmVariantNo)
3552
continue;
3553
3554
// Store a pascal-style length byte in the mnemonic.
3555
std::string LenMnemonic =
3556
char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3557
OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3558
<< " /* " << MI->Mnemonic << " */, " << Target.getInstNamespace()
3559
<< "::" << MI->getResultInst()->TheDef->getName() << ", "
3560
<< MI->ConversionFnKind << ", ";
3561
3562
// Write the required features mask.
3563
OS << "AMFBS";
3564
if (MI->RequiredFeatures.empty())
3565
OS << "_None";
3566
else
3567
for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i)
3568
OS << '_' << MI->RequiredFeatures[i]->TheDef->getName();
3569
3570
OS << ", { ";
3571
ListSeparator LS;
3572
for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands)
3573
OS << LS << Op.Class->Name;
3574
OS << " }, },\n";
3575
}
3576
3577
OS << "};\n\n";
3578
}
3579
3580
OS << "#include \"llvm/Support/Debug.h\"\n";
3581
OS << "#include \"llvm/Support/Format.h\"\n\n";
3582
3583
// Finally, build the match function.
3584
OS << "unsigned " << Target.getName() << ClassName << "::\n"
3585
<< "MatchInstructionImpl(const OperandVector &Operands,\n";
3586
OS << " MCInst &Inst,\n";
3587
if (ReportMultipleNearMisses)
3588
OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3589
else
3590
OS << " uint64_t &ErrorInfo,\n"
3591
<< " FeatureBitset &MissingFeatures,\n";
3592
OS << " bool matchingInlineAsm, unsigned VariantID) {\n";
3593
3594
if (!ReportMultipleNearMisses) {
3595
OS << " // Eliminate obvious mismatches.\n";
3596
OS << " if (Operands.size() > " << (MaxNumOperands + HasMnemonicFirst)
3597
<< ") {\n";
3598
OS << " ErrorInfo = " << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3599
OS << " return Match_InvalidOperand;\n";
3600
OS << " }\n\n";
3601
}
3602
3603
// Emit code to get the available features.
3604
OS << " // Get the current feature set.\n";
3605
OS << " const FeatureBitset &AvailableFeatures = "
3606
"getAvailableFeatures();\n\n";
3607
3608
OS << " // Get the instruction mnemonic, which is the first token.\n";
3609
if (HasMnemonicFirst) {
3610
OS << " StringRef Mnemonic = ((" << Target.getName()
3611
<< "Operand &)*Operands[0]).getToken();\n\n";
3612
} else {
3613
OS << " StringRef Mnemonic;\n";
3614
OS << " if (Operands[0]->isToken())\n";
3615
OS << " Mnemonic = ((" << Target.getName()
3616
<< "Operand &)*Operands[0]).getToken();\n\n";
3617
}
3618
3619
if (HasMnemonicAliases) {
3620
OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3621
OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3622
}
3623
3624
// Emit code to compute the class list for this operand vector.
3625
if (!ReportMultipleNearMisses) {
3626
OS << " // Some state to try to produce better error messages.\n";
3627
OS << " bool HadMatchOtherThanFeatures = false;\n";
3628
OS << " bool HadMatchOtherThanPredicate = false;\n";
3629
OS << " unsigned RetCode = Match_InvalidOperand;\n";
3630
OS << " MissingFeatures.set();\n";
3631
OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
3632
OS << " // wrong for all instances of the instruction.\n";
3633
OS << " ErrorInfo = ~0ULL;\n";
3634
}
3635
3636
if (HasOptionalOperands) {
3637
OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3638
}
3639
3640
// Emit code to search the table.
3641
OS << " // Find the appropriate table for this asm variant.\n";
3642
OS << " const MatchEntry *Start, *End;\n";
3643
OS << " switch (VariantID) {\n";
3644
OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3645
for (unsigned VC = 0; VC != VariantCount; ++VC) {
3646
Record *AsmVariant = Target.getAsmParserVariant(VC);
3647
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3648
OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3649
<< "); End = std::end(MatchTable" << VC << "); break;\n";
3650
}
3651
OS << " }\n";
3652
3653
OS << " // Search the table.\n";
3654
if (HasMnemonicFirst) {
3655
OS << " auto MnemonicRange = "
3656
"std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3657
} else {
3658
OS << " auto MnemonicRange = std::pair(Start, End);\n";
3659
OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3660
OS << " if (!Mnemonic.empty())\n";
3661
OS << " MnemonicRange = "
3662
"std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3663
}
3664
3665
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" "
3666
"<<\n"
3667
<< " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n"
3668
<< " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3669
3670
OS << " // Return a more specific error code if no mnemonics match.\n";
3671
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3672
OS << " return Match_MnemonicFail;\n\n";
3673
3674
OS << " for (const MatchEntry *it = MnemonicRange.first, "
3675
<< "*ie = MnemonicRange.second;\n";
3676
OS << " it != ie; ++it) {\n";
3677
OS << " const FeatureBitset &RequiredFeatures = "
3678
"FeatureBitsets[it->RequiredFeaturesIdx];\n";
3679
OS << " bool HasRequiredFeatures =\n";
3680
OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
3681
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match "
3682
"opcode \"\n";
3683
OS << " << MII.getName(it->Opcode) "
3684
"<< \"\\n\");\n";
3685
3686
if (ReportMultipleNearMisses) {
3687
OS << " // Some state to record ways in which this instruction did not "
3688
"match.\n";
3689
OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3690
OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3691
OS << " NearMissInfo EarlyPredicateNearMiss = "
3692
"NearMissInfo::getSuccess();\n";
3693
OS << " NearMissInfo LatePredicateNearMiss = "
3694
"NearMissInfo::getSuccess();\n";
3695
OS << " bool MultipleInvalidOperands = false;\n";
3696
}
3697
3698
if (HasMnemonicFirst) {
3699
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
3700
OS << " assert(Mnemonic == it->getMnemonic());\n";
3701
}
3702
3703
// Emit check that the subclasses match.
3704
if (!ReportMultipleNearMisses)
3705
OS << " bool OperandsValid = true;\n";
3706
if (HasOptionalOperands) {
3707
OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3708
}
3709
OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3710
<< ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3711
<< "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3712
OS << " auto Formal = "
3713
<< "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3714
OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3715
OS << " dbgs() << \" Matching formal operand class \" "
3716
"<< getMatchClassName(Formal)\n";
3717
OS << " << \" against actual operand at index \" "
3718
"<< ActualIdx);\n";
3719
OS << " if (ActualIdx < Operands.size())\n";
3720
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3721
OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << "
3722
"\"): \");\n";
3723
OS << " else\n";
3724
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3725
OS << " if (ActualIdx >= Operands.size()) {\n";
3726
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand "
3727
"index out of range\\n\");\n";
3728
if (ReportMultipleNearMisses) {
3729
OS << " bool ThisOperandValid = (Formal == "
3730
<< "InvalidMatchClass) || "
3731
"isSubclass(Formal, OptionalMatchClass);\n";
3732
OS << " if (!ThisOperandValid) {\n";
3733
OS << " if (!OperandNearMiss) {\n";
3734
OS << " // Record info about match failure for later use.\n";
3735
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording "
3736
"too-few-operands near miss\\n\");\n";
3737
OS << " OperandNearMiss =\n";
3738
OS << " NearMissInfo::getTooFewOperands(Formal, "
3739
"it->Opcode);\n";
3740
OS << " } else if (OperandNearMiss.getKind() != "
3741
"NearMissInfo::NearMissTooFewOperands) {\n";
3742
OS << " // If more than one operand is invalid, give up on this "
3743
"match entry.\n";
3744
OS << " DEBUG_WITH_TYPE(\n";
3745
OS << " \"asm-matcher\",\n";
3746
OS << " dbgs() << \"second invalid operand, giving up on "
3747
"this opcode\\n\");\n";
3748
OS << " MultipleInvalidOperands = true;\n";
3749
OS << " break;\n";
3750
OS << " }\n";
3751
OS << " } else {\n";
3752
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal "
3753
"operand not required\\n\");\n";
3754
OS << " if (isSubclass(Formal, OptionalMatchClass)) {\n";
3755
OS << " OptionalOperandsMask.set(FormalIdx);\n";
3756
OS << " }\n";
3757
OS << " }\n";
3758
OS << " continue;\n";
3759
} else {
3760
OS << " if (Formal == InvalidMatchClass) {\n";
3761
if (HasOptionalOperands) {
3762
OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3763
<< ");\n";
3764
}
3765
OS << " break;\n";
3766
OS << " }\n";
3767
OS << " if (isSubclass(Formal, OptionalMatchClass)) {\n";
3768
if (HasOptionalOperands) {
3769
OS << " OptionalOperandsMask.set(FormalIdx);\n";
3770
}
3771
OS << " continue;\n";
3772
OS << " }\n";
3773
OS << " OperandsValid = false;\n";
3774
OS << " ErrorInfo = ActualIdx;\n";
3775
OS << " break;\n";
3776
}
3777
OS << " }\n";
3778
OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3779
OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n";
3780
OS << " if (Diag == Match_Success) {\n";
3781
OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3782
OS << " dbgs() << \"match success using generic "
3783
"matcher\\n\");\n";
3784
OS << " ++ActualIdx;\n";
3785
OS << " continue;\n";
3786
OS << " }\n";
3787
OS << " // If the generic handler indicates an invalid operand\n";
3788
OS << " // failure, check for a special case.\n";
3789
OS << " if (Diag != Match_Success) {\n";
3790
OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, "
3791
"Formal);\n";
3792
OS << " if (TargetDiag == Match_Success) {\n";
3793
OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3794
OS << " dbgs() << \"match success using target "
3795
"matcher\\n\");\n";
3796
OS << " ++ActualIdx;\n";
3797
OS << " continue;\n";
3798
OS << " }\n";
3799
OS << " // If the target matcher returned a specific error code use\n";
3800
OS << " // that, else use the one from the generic matcher.\n";
3801
OS << " if (TargetDiag != Match_InvalidOperand && "
3802
"HasRequiredFeatures)\n";
3803
OS << " Diag = TargetDiag;\n";
3804
OS << " }\n";
3805
OS << " // If current formal operand wasn't matched and it is optional\n"
3806
<< " // then try to match next formal operand\n";
3807
OS << " if (Diag == Match_InvalidOperand "
3808
<< "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3809
if (HasOptionalOperands) {
3810
OS << " OptionalOperandsMask.set(FormalIdx);\n";
3811
}
3812
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring "
3813
"optional operand\\n\");\n";
3814
OS << " continue;\n";
3815
OS << " }\n";
3816
3817
if (ReportMultipleNearMisses) {
3818
OS << " if (!OperandNearMiss) {\n";
3819
OS << " // If this is the first invalid operand we have seen, "
3820
"record some\n";
3821
OS << " // information about it.\n";
3822
OS << " DEBUG_WITH_TYPE(\n";
3823
OS << " \"asm-matcher\",\n";
3824
OS << " dbgs()\n";
3825
OS << " << \"operand match failed, recording near-miss with "
3826
"diag code \"\n";
3827
OS << " << Diag << \"\\n\");\n";
3828
OS << " OperandNearMiss =\n";
3829
OS << " NearMissInfo::getMissedOperand(Diag, Formal, "
3830
"it->Opcode, ActualIdx);\n";
3831
OS << " ++ActualIdx;\n";
3832
OS << " } else {\n";
3833
OS << " // If more than one operand is invalid, give up on this "
3834
"match entry.\n";
3835
OS << " DEBUG_WITH_TYPE(\n";
3836
OS << " \"asm-matcher\",\n";
3837
OS << " dbgs() << \"second operand mismatch, skipping this "
3838
"opcode\\n\");\n";
3839
OS << " MultipleInvalidOperands = true;\n";
3840
OS << " break;\n";
3841
OS << " }\n";
3842
OS << " }\n\n";
3843
} else {
3844
OS << " // If this operand is broken for all of the instances of "
3845
"this\n";
3846
OS << " // mnemonic, keep track of it so we can report loc info.\n";
3847
OS << " // If we already had a match that only failed due to a\n";
3848
OS << " // target predicate, that diagnostic is preferred.\n";
3849
OS << " if (!HadMatchOtherThanPredicate &&\n";
3850
OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) "
3851
"{\n";
3852
OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3853
"!= Match_InvalidOperand))\n";
3854
OS << " RetCode = Diag;\n";
3855
OS << " ErrorInfo = ActualIdx;\n";
3856
OS << " }\n";
3857
OS << " // Otherwise, just reject this instance of the mnemonic.\n";
3858
OS << " OperandsValid = false;\n";
3859
OS << " break;\n";
3860
OS << " }\n\n";
3861
}
3862
3863
if (ReportMultipleNearMisses)
3864
OS << " if (MultipleInvalidOperands) {\n";
3865
else
3866
OS << " if (!OperandsValid) {\n";
3867
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
3868
"multiple \"\n";
3869
OS << " \"operand mismatches, "
3870
"ignoring \"\n";
3871
OS << " \"this opcode\\n\");\n";
3872
OS << " continue;\n";
3873
OS << " }\n";
3874
3875
// Emit check that the required features are available.
3876
OS << " if (!HasRequiredFeatures) {\n";
3877
if (!ReportMultipleNearMisses)
3878
OS << " HadMatchOtherThanFeatures = true;\n";
3879
OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & "
3880
"~AvailableFeatures;\n";
3881
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target "
3882
"features:\";\n";
3883
OS << " for (unsigned I = 0, E = "
3884
"NewMissingFeatures.size(); I != E; ++I)\n";
3885
OS << " if (NewMissingFeatures[I])\n";
3886
OS << " dbgs() << ' ' << I;\n";
3887
OS << " dbgs() << \"\\n\");\n";
3888
if (ReportMultipleNearMisses) {
3889
OS << " FeaturesNearMiss = "
3890
"NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3891
} else {
3892
OS << " if (NewMissingFeatures.count() <=\n"
3893
" MissingFeatures.count())\n";
3894
OS << " MissingFeatures = NewMissingFeatures;\n";
3895
OS << " continue;\n";
3896
}
3897
OS << " }\n";
3898
OS << "\n";
3899
OS << " Inst.clear();\n\n";
3900
OS << " Inst.setOpcode(it->Opcode);\n";
3901
// Verify the instruction with the target-specific match predicate function.
3902
OS << " // We have a potential match but have not rendered the operands.\n"
3903
<< " // Check the target predicate to handle any context sensitive\n"
3904
" // constraints.\n"
3905
<< " // For example, Ties that are referenced multiple times must be\n"
3906
" // checked here to ensure the input is the same for each match\n"
3907
" // constraints. If we leave it any later the ties will have been\n"
3908
" // canonicalized\n"
3909
<< " unsigned MatchResult;\n"
3910
<< " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3911
"Operands)) != Match_Success) {\n"
3912
<< " Inst.clear();\n";
3913
OS << " DEBUG_WITH_TYPE(\n";
3914
OS << " \"asm-matcher\",\n";
3915
OS << " dbgs() << \"Early target match predicate failed with diag "
3916
"code \"\n";
3917
OS << " << MatchResult << \"\\n\");\n";
3918
if (ReportMultipleNearMisses) {
3919
OS << " EarlyPredicateNearMiss = "
3920
"NearMissInfo::getMissedPredicate(MatchResult);\n";
3921
} else {
3922
OS << " RetCode = MatchResult;\n"
3923
<< " HadMatchOtherThanPredicate = true;\n"
3924
<< " continue;\n";
3925
}
3926
OS << " }\n\n";
3927
3928
if (ReportMultipleNearMisses) {
3929
OS << " // If we did not successfully match the operands, then we can't "
3930
"convert to\n";
3931
OS << " // an MCInst, so bail out on this instruction variant now.\n";
3932
OS << " if (OperandNearMiss) {\n";
3933
OS << " // If the operand mismatch was the only problem, reprrt it as "
3934
"a near-miss.\n";
3935
OS << " if (NearMisses && !FeaturesNearMiss && "
3936
"!EarlyPredicateNearMiss) {\n";
3937
OS << " DEBUG_WITH_TYPE(\n";
3938
OS << " \"asm-matcher\",\n";
3939
OS << " dbgs()\n";
3940
OS << " << \"Opcode result: one mismatched operand, adding "
3941
"near-miss\\n\");\n";
3942
OS << " NearMisses->push_back(OperandNearMiss);\n";
3943
OS << " } else {\n";
3944
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
3945
"multiple \"\n";
3946
OS << " \"types of "
3947
"mismatch, so not \"\n";
3948
OS << " \"reporting "
3949
"near-miss\\n\");\n";
3950
OS << " }\n";
3951
OS << " continue;\n";
3952
OS << " }\n\n";
3953
}
3954
3955
// When converting parsed operands to MCInst we need to know whether optional
3956
// operands were parsed or not so that we can choose the correct converter
3957
// function. We also need to know this when checking tied operand constraints.
3958
// DefaultsOffset is an array of deltas between the formal (MCInst) and the
3959
// actual (parsed operand array) operand indices. When all optional operands
3960
// are present, all elements of the array are zeros. If some of the optional
3961
// operands are absent, the array might look like '0, 0, 1, 1, 1, 2, 2, 3',
3962
// where each increment in value reflects the absence of an optional operand.
3963
if (HasOptionalOperands) {
3964
OS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1)
3965
<< "] = { 0 };\n";
3966
OS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
3967
<< ");\n";
3968
OS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
3969
<< "; ++i) {\n";
3970
OS << " DefaultsOffset[i + 1] = NumDefaults;\n";
3971
OS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
3972
OS << " }\n\n";
3973
}
3974
3975
OS << " if (matchingInlineAsm) {\n";
3976
OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3977
if (!ReportMultipleNearMisses) {
3978
if (HasOptionalOperands) {
3979
OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3980
"Operands,\n";
3981
OS << " DefaultsOffset, "
3982
"ErrorInfo))\n";
3983
} else {
3984
OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3985
"Operands,\n";
3986
OS << " ErrorInfo))\n";
3987
}
3988
OS << " return Match_InvalidTiedOperand;\n";
3989
OS << "\n";
3990
}
3991
OS << " return Match_Success;\n";
3992
OS << " }\n\n";
3993
OS << " // We have selected a definite instruction, convert the parsed\n"
3994
<< " // operands into the appropriate MCInst.\n";
3995
if (HasOptionalOperands) {
3996
OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3997
<< " OptionalOperandsMask, DefaultsOffset);\n";
3998
} else {
3999
OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
4000
}
4001
OS << "\n";
4002
4003
// Verify the instruction with the target-specific match predicate function.
4004
OS << " // We have a potential match. Check the target predicate to\n"
4005
<< " // handle any context sensitive constraints.\n"
4006
<< " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
4007
<< " Match_Success) {\n"
4008
<< " DEBUG_WITH_TYPE(\"asm-matcher\",\n"
4009
<< " dbgs() << \"Target match predicate failed with "
4010
"diag code \"\n"
4011
<< " << MatchResult << \"\\n\");\n"
4012
<< " Inst.clear();\n";
4013
if (ReportMultipleNearMisses) {
4014
OS << " LatePredicateNearMiss = "
4015
"NearMissInfo::getMissedPredicate(MatchResult);\n";
4016
} else {
4017
OS << " RetCode = MatchResult;\n"
4018
<< " HadMatchOtherThanPredicate = true;\n"
4019
<< " continue;\n";
4020
}
4021
OS << " }\n\n";
4022
4023
if (ReportMultipleNearMisses) {
4024
OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
4025
OS << " (int)(bool)FeaturesNearMiss +\n";
4026
OS << " (int)(bool)EarlyPredicateNearMiss +\n";
4027
OS << " (int)(bool)LatePredicateNearMiss);\n";
4028
OS << " if (NumNearMisses == 1) {\n";
4029
OS << " // We had exactly one type of near-miss, so add that to the "
4030
"list.\n";
4031
OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled "
4032
"earlier\");\n";
4033
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
4034
"found one type of \"\n";
4035
OS << " \"mismatch, so "
4036
"reporting a \"\n";
4037
OS << " \"near-miss\\n\");\n";
4038
OS << " if (NearMisses && FeaturesNearMiss)\n";
4039
OS << " NearMisses->push_back(FeaturesNearMiss);\n";
4040
OS << " else if (NearMisses && EarlyPredicateNearMiss)\n";
4041
OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n";
4042
OS << " else if (NearMisses && LatePredicateNearMiss)\n";
4043
OS << " NearMisses->push_back(LatePredicateNearMiss);\n";
4044
OS << "\n";
4045
OS << " continue;\n";
4046
OS << " } else if (NumNearMisses > 1) {\n";
4047
OS << " // This instruction missed in more than one way, so ignore "
4048
"it.\n";
4049
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
4050
"multiple \"\n";
4051
OS << " \"types of mismatch, "
4052
"so not \"\n";
4053
OS << " \"reporting "
4054
"near-miss\\n\");\n";
4055
OS << " continue;\n";
4056
OS << " }\n";
4057
}
4058
4059
// Call the post-processing function, if used.
4060
StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
4061
if (!InsnCleanupFn.empty())
4062
OS << " " << InsnCleanupFn << "(Inst);\n";
4063
4064
if (HasDeprecation) {
4065
OS << " std::string Info;\n";
4066
OS << " if "
4067
"(!getParser().getTargetParser().getTargetOptions()."
4068
"MCNoDeprecatedWarn &&\n";
4069
OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
4070
OS << " SMLoc Loc = ((" << Target.getName()
4071
<< "Operand &)*Operands[0]).getStartLoc();\n";
4072
OS << " getParser().Warning(Loc, Info, std::nullopt);\n";
4073
OS << " }\n";
4074
}
4075
4076
if (!ReportMultipleNearMisses) {
4077
if (HasOptionalOperands) {
4078
OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
4079
"Operands,\n";
4080
OS << " DefaultsOffset, "
4081
"ErrorInfo))\n";
4082
} else {
4083
OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
4084
"Operands,\n";
4085
OS << " ErrorInfo))\n";
4086
}
4087
OS << " return Match_InvalidTiedOperand;\n";
4088
OS << "\n";
4089
}
4090
4091
OS << " DEBUG_WITH_TYPE(\n";
4092
OS << " \"asm-matcher\",\n";
4093
OS << " dbgs() << \"Opcode result: complete match, selecting this "
4094
"opcode\\n\");\n";
4095
OS << " return Match_Success;\n";
4096
OS << " }\n\n";
4097
4098
if (ReportMultipleNearMisses) {
4099
OS << " // No instruction variants matched exactly.\n";
4100
OS << " return Match_NearMisses;\n";
4101
} else {
4102
OS << " // Okay, we had no match. Try to return a useful error code.\n";
4103
OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
4104
OS << " return RetCode;\n\n";
4105
OS << " ErrorInfo = 0;\n";
4106
OS << " return Match_MissingFeature;\n";
4107
}
4108
OS << "}\n\n";
4109
4110
if (!Info.OperandMatchInfo.empty())
4111
emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
4112
MaxMnemonicIndex, FeatureBitsets.size(),
4113
HasMnemonicFirst, *AsmParser);
4114
4115
OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
4116
4117
OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
4118
OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
4119
4120
emitMnemonicSpellChecker(OS, Target, VariantCount);
4121
4122
OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
4123
4124
OS << "\n#ifdef GET_MNEMONIC_CHECKER\n";
4125
OS << "#undef GET_MNEMONIC_CHECKER\n\n";
4126
4127
emitMnemonicChecker(OS, Target, VariantCount, HasMnemonicFirst,
4128
HasMnemonicAliases);
4129
4130
OS << "#endif // GET_MNEMONIC_CHECKER\n\n";
4131
}
4132
4133
static TableGen::Emitter::OptClass<AsmMatcherEmitter>
4134
X("gen-asm-matcher", "Generate assembly instruction matcher");
4135
4136