Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/utils/TableGen/Common/CodeGenDAGPatterns.cpp
35290 views
1
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the CodeGenDAGPatterns class, which is used to read and
10
// represent the patterns present in a .td file for instructions.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "CodeGenDAGPatterns.h"
15
#include "CodeGenInstruction.h"
16
#include "CodeGenRegisters.h"
17
#include "llvm/ADT/DenseSet.h"
18
#include "llvm/ADT/MapVector.h"
19
#include "llvm/ADT/STLExtras.h"
20
#include "llvm/ADT/SmallSet.h"
21
#include "llvm/ADT/SmallString.h"
22
#include "llvm/ADT/StringExtras.h"
23
#include "llvm/ADT/StringMap.h"
24
#include "llvm/ADT/Twine.h"
25
#include "llvm/Support/Debug.h"
26
#include "llvm/Support/ErrorHandling.h"
27
#include "llvm/Support/TypeSize.h"
28
#include "llvm/TableGen/Error.h"
29
#include "llvm/TableGen/Record.h"
30
#include <algorithm>
31
#include <cstdio>
32
#include <iterator>
33
#include <set>
34
using namespace llvm;
35
36
#define DEBUG_TYPE "dag-patterns"
37
38
static inline bool isIntegerOrPtr(MVT VT) {
39
return VT.isInteger() || VT == MVT::iPTR;
40
}
41
static inline bool isFloatingPoint(MVT VT) { return VT.isFloatingPoint(); }
42
static inline bool isVector(MVT VT) { return VT.isVector(); }
43
static inline bool isScalar(MVT VT) { return !VT.isVector(); }
44
45
template <typename Predicate>
46
static bool berase_if(MachineValueTypeSet &S, Predicate P) {
47
bool Erased = false;
48
// It is ok to iterate over MachineValueTypeSet and remove elements from it
49
// at the same time.
50
for (MVT T : S) {
51
if (!P(T))
52
continue;
53
Erased = true;
54
S.erase(T);
55
}
56
return Erased;
57
}
58
59
void MachineValueTypeSet::writeToStream(raw_ostream &OS) const {
60
SmallVector<MVT, 4> Types(begin(), end());
61
array_pod_sort(Types.begin(), Types.end());
62
63
OS << '[';
64
ListSeparator LS(" ");
65
for (const MVT &T : Types)
66
OS << LS << ValueTypeByHwMode::getMVTName(T);
67
OS << ']';
68
}
69
70
// --- TypeSetByHwMode
71
72
// This is a parameterized type-set class. For each mode there is a list
73
// of types that are currently possible for a given tree node. Type
74
// inference will apply to each mode separately.
75
76
TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
77
// Take the address space from the first type in the list.
78
if (!VTList.empty())
79
AddrSpace = VTList[0].PtrAddrSpace;
80
81
for (const ValueTypeByHwMode &VVT : VTList)
82
insert(VVT);
83
}
84
85
bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
86
for (const auto &I : *this) {
87
if (I.second.size() > 1)
88
return false;
89
if (!AllowEmpty && I.second.empty())
90
return false;
91
}
92
return true;
93
}
94
95
ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
96
assert(isValueTypeByHwMode(true) &&
97
"The type set has multiple types for at least one HW mode");
98
ValueTypeByHwMode VVT;
99
VVT.PtrAddrSpace = AddrSpace;
100
101
for (const auto &I : *this) {
102
MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
103
VVT.getOrCreateTypeForMode(I.first, T);
104
}
105
return VVT;
106
}
107
108
bool TypeSetByHwMode::isPossible() const {
109
for (const auto &I : *this)
110
if (!I.second.empty())
111
return true;
112
return false;
113
}
114
115
bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
116
bool Changed = false;
117
bool ContainsDefault = false;
118
MVT DT = MVT::Other;
119
120
for (const auto &P : VVT) {
121
unsigned M = P.first;
122
// Make sure there exists a set for each specific mode from VVT.
123
Changed |= getOrCreate(M).insert(P.second).second;
124
// Cache VVT's default mode.
125
if (DefaultMode == M) {
126
ContainsDefault = true;
127
DT = P.second;
128
}
129
}
130
131
// If VVT has a default mode, add the corresponding type to all
132
// modes in "this" that do not exist in VVT.
133
if (ContainsDefault)
134
for (auto &I : *this)
135
if (!VVT.hasMode(I.first))
136
Changed |= I.second.insert(DT).second;
137
138
return Changed;
139
}
140
141
// Constrain the type set to be the intersection with VTS.
142
bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
143
bool Changed = false;
144
if (hasDefault()) {
145
for (const auto &I : VTS) {
146
unsigned M = I.first;
147
if (M == DefaultMode || hasMode(M))
148
continue;
149
Map.insert({M, Map.at(DefaultMode)});
150
Changed = true;
151
}
152
}
153
154
for (auto &I : *this) {
155
unsigned M = I.first;
156
SetType &S = I.second;
157
if (VTS.hasMode(M) || VTS.hasDefault()) {
158
Changed |= intersect(I.second, VTS.get(M));
159
} else if (!S.empty()) {
160
S.clear();
161
Changed = true;
162
}
163
}
164
return Changed;
165
}
166
167
template <typename Predicate> bool TypeSetByHwMode::constrain(Predicate P) {
168
bool Changed = false;
169
for (auto &I : *this)
170
Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
171
return Changed;
172
}
173
174
template <typename Predicate>
175
bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
176
assert(empty());
177
for (const auto &I : VTS) {
178
SetType &S = getOrCreate(I.first);
179
for (auto J : I.second)
180
if (P(J))
181
S.insert(J);
182
}
183
return !empty();
184
}
185
186
void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
187
SmallVector<unsigned, 4> Modes;
188
Modes.reserve(Map.size());
189
190
for (const auto &I : *this)
191
Modes.push_back(I.first);
192
if (Modes.empty()) {
193
OS << "{}";
194
return;
195
}
196
array_pod_sort(Modes.begin(), Modes.end());
197
198
OS << '{';
199
for (unsigned M : Modes) {
200
OS << ' ' << getModeName(M) << ':';
201
get(M).writeToStream(OS);
202
}
203
OS << " }";
204
}
205
206
bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
207
// The isSimple call is much quicker than hasDefault - check this first.
208
bool IsSimple = isSimple();
209
bool VTSIsSimple = VTS.isSimple();
210
if (IsSimple && VTSIsSimple)
211
return getSimple() == VTS.getSimple();
212
213
// Speedup: We have a default if the set is simple.
214
bool HaveDefault = IsSimple || hasDefault();
215
bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
216
if (HaveDefault != VTSHaveDefault)
217
return false;
218
219
SmallSet<unsigned, 4> Modes;
220
for (auto &I : *this)
221
Modes.insert(I.first);
222
for (const auto &I : VTS)
223
Modes.insert(I.first);
224
225
if (HaveDefault) {
226
// Both sets have default mode.
227
for (unsigned M : Modes) {
228
if (get(M) != VTS.get(M))
229
return false;
230
}
231
} else {
232
// Neither set has default mode.
233
for (unsigned M : Modes) {
234
// If there is no default mode, an empty set is equivalent to not having
235
// the corresponding mode.
236
bool NoModeThis = !hasMode(M) || get(M).empty();
237
bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
238
if (NoModeThis != NoModeVTS)
239
return false;
240
if (!NoModeThis)
241
if (get(M) != VTS.get(M))
242
return false;
243
}
244
}
245
246
return true;
247
}
248
249
namespace llvm {
250
raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) {
251
T.writeToStream(OS);
252
return OS;
253
}
254
raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
255
T.writeToStream(OS);
256
return OS;
257
}
258
} // namespace llvm
259
260
LLVM_DUMP_METHOD
261
void TypeSetByHwMode::dump() const { dbgs() << *this << '\n'; }
262
263
bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
264
auto IntersectP = [&](std::optional<MVT> WildVT, function_ref<bool(MVT)> P) {
265
// Complement of In within this partition.
266
auto CompIn = [&](MVT T) -> bool { return !In.count(T) && P(T); };
267
268
if (!WildVT)
269
return berase_if(Out, CompIn);
270
271
bool OutW = Out.count(*WildVT), InW = In.count(*WildVT);
272
if (OutW == InW)
273
return berase_if(Out, CompIn);
274
275
// Compute the intersection of scalars separately to account for only one
276
// set containing WildVT.
277
// The intersection of WildVT with a set of corresponding types that does
278
// not include WildVT will result in the most specific type:
279
// - WildVT is more specific than any set with two elements or more
280
// - WildVT is less specific than any single type.
281
// For example, for iPTR and scalar integer types
282
// { iPTR } * { i32 } -> { i32 }
283
// { iPTR } * { i32 i64 } -> { iPTR }
284
// and
285
// { iPTR i32 } * { i32 } -> { i32 }
286
// { iPTR i32 } * { i32 i64 } -> { i32 i64 }
287
// { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
288
289
// Looking at just this partition, let In' = elements only in In,
290
// Out' = elements only in Out, and IO = elements common to both. Normally
291
// IO would be returned as the result of the intersection, but we need to
292
// account for WildVT being a "wildcard" of sorts. Since elements in IO are
293
// those that match both sets exactly, they will all belong to the output.
294
// If any of the "leftovers" (i.e. In' or Out') contain WildVT, it means
295
// that the other set doesn't have it, but it could have (1) a more
296
// specific type, or (2) a set of types that is less specific. The
297
// "leftovers" from the other set is what we want to examine more closely.
298
299
auto Leftovers = [&](const SetType &A, const SetType &B) {
300
SetType Diff = A;
301
berase_if(Diff, [&](MVT T) { return B.count(T) || !P(T); });
302
return Diff;
303
};
304
305
if (InW) {
306
SetType OutLeftovers = Leftovers(Out, In);
307
if (OutLeftovers.size() < 2) {
308
// WildVT not added to Out. Keep the possible single leftover.
309
return false;
310
}
311
// WildVT replaces the leftovers.
312
berase_if(Out, CompIn);
313
Out.insert(*WildVT);
314
return true;
315
}
316
317
// OutW == true
318
SetType InLeftovers = Leftovers(In, Out);
319
unsigned SizeOut = Out.size();
320
berase_if(Out, CompIn); // This will remove at least the WildVT.
321
if (InLeftovers.size() < 2) {
322
// WildVT deleted from Out. Add back the possible single leftover.
323
Out.insert(InLeftovers);
324
return true;
325
}
326
327
// Keep the WildVT in Out.
328
Out.insert(*WildVT);
329
// If WildVT was the only element initially removed from Out, then Out
330
// has not changed.
331
return SizeOut != Out.size();
332
};
333
334
// Note: must be non-overlapping
335
using WildPartT = std::pair<MVT, std::function<bool(MVT)>>;
336
static const WildPartT WildParts[] = {
337
{MVT::iPTR, [](MVT T) { return T.isScalarInteger() || T == MVT::iPTR; }},
338
};
339
340
bool Changed = false;
341
for (const auto &I : WildParts)
342
Changed |= IntersectP(I.first, I.second);
343
344
Changed |= IntersectP(std::nullopt, [&](MVT T) {
345
return !any_of(WildParts, [=](const WildPartT &I) { return I.second(T); });
346
});
347
348
return Changed;
349
}
350
351
bool TypeSetByHwMode::validate() const {
352
if (empty())
353
return true;
354
bool AllEmpty = true;
355
for (const auto &I : *this)
356
AllEmpty &= I.second.empty();
357
return !AllEmpty;
358
}
359
360
// --- TypeInfer
361
362
bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
363
const TypeSetByHwMode &In) const {
364
ValidateOnExit _1(Out, *this);
365
In.validate();
366
if (In.empty() || Out == In || TP.hasError())
367
return false;
368
if (Out.empty()) {
369
Out = In;
370
return true;
371
}
372
373
bool Changed = Out.constrain(In);
374
if (Changed && Out.empty())
375
TP.error("Type contradiction");
376
377
return Changed;
378
}
379
380
bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
381
ValidateOnExit _1(Out, *this);
382
if (TP.hasError())
383
return false;
384
assert(!Out.empty() && "cannot pick from an empty set");
385
386
bool Changed = false;
387
for (auto &I : Out) {
388
TypeSetByHwMode::SetType &S = I.second;
389
if (S.size() <= 1)
390
continue;
391
MVT T = *S.begin(); // Pick the first element.
392
S.clear();
393
S.insert(T);
394
Changed = true;
395
}
396
return Changed;
397
}
398
399
bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
400
ValidateOnExit _1(Out, *this);
401
if (TP.hasError())
402
return false;
403
if (!Out.empty())
404
return Out.constrain(isIntegerOrPtr);
405
406
return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
407
}
408
409
bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
410
ValidateOnExit _1(Out, *this);
411
if (TP.hasError())
412
return false;
413
if (!Out.empty())
414
return Out.constrain(isFloatingPoint);
415
416
return Out.assign_if(getLegalTypes(), isFloatingPoint);
417
}
418
419
bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
420
ValidateOnExit _1(Out, *this);
421
if (TP.hasError())
422
return false;
423
if (!Out.empty())
424
return Out.constrain(isScalar);
425
426
return Out.assign_if(getLegalTypes(), isScalar);
427
}
428
429
bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
430
ValidateOnExit _1(Out, *this);
431
if (TP.hasError())
432
return false;
433
if (!Out.empty())
434
return Out.constrain(isVector);
435
436
return Out.assign_if(getLegalTypes(), isVector);
437
}
438
439
bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
440
ValidateOnExit _1(Out, *this);
441
if (TP.hasError() || !Out.empty())
442
return false;
443
444
Out = getLegalTypes();
445
return true;
446
}
447
448
template <typename Iter, typename Pred, typename Less>
449
static Iter min_if(Iter B, Iter E, Pred P, Less L) {
450
if (B == E)
451
return E;
452
Iter Min = E;
453
for (Iter I = B; I != E; ++I) {
454
if (!P(*I))
455
continue;
456
if (Min == E || L(*I, *Min))
457
Min = I;
458
}
459
return Min;
460
}
461
462
template <typename Iter, typename Pred, typename Less>
463
static Iter max_if(Iter B, Iter E, Pred P, Less L) {
464
if (B == E)
465
return E;
466
Iter Max = E;
467
for (Iter I = B; I != E; ++I) {
468
if (!P(*I))
469
continue;
470
if (Max == E || L(*Max, *I))
471
Max = I;
472
}
473
return Max;
474
}
475
476
/// Make sure that for each type in Small, there exists a larger type in Big.
477
bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
478
bool SmallIsVT) {
479
ValidateOnExit _1(Small, *this), _2(Big, *this);
480
if (TP.hasError())
481
return false;
482
bool Changed = false;
483
484
assert((!SmallIsVT || !Small.empty()) &&
485
"Small should not be empty for SDTCisVTSmallerThanOp");
486
487
if (Small.empty())
488
Changed |= EnforceAny(Small);
489
if (Big.empty())
490
Changed |= EnforceAny(Big);
491
492
assert(Small.hasDefault() && Big.hasDefault());
493
494
SmallVector<unsigned, 4> Modes;
495
union_modes(Small, Big, Modes);
496
497
// 1. Only allow integer or floating point types and make sure that
498
// both sides are both integer or both floating point.
499
// 2. Make sure that either both sides have vector types, or neither
500
// of them does.
501
for (unsigned M : Modes) {
502
TypeSetByHwMode::SetType &S = Small.get(M);
503
TypeSetByHwMode::SetType &B = Big.get(M);
504
505
assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
506
507
if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
508
auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
509
Changed |= berase_if(S, NotInt);
510
Changed |= berase_if(B, NotInt);
511
} else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
512
auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
513
Changed |= berase_if(S, NotFP);
514
Changed |= berase_if(B, NotFP);
515
} else if (SmallIsVT && B.empty()) {
516
// B is empty and since S is a specific VT, it will never be empty. Don't
517
// report this as a change, just clear S and continue. This prevents an
518
// infinite loop.
519
S.clear();
520
} else if (S.empty() || B.empty()) {
521
Changed = !S.empty() || !B.empty();
522
S.clear();
523
B.clear();
524
} else {
525
TP.error("Incompatible types");
526
return Changed;
527
}
528
529
if (none_of(S, isVector) || none_of(B, isVector)) {
530
Changed |= berase_if(S, isVector);
531
Changed |= berase_if(B, isVector);
532
}
533
}
534
535
auto LT = [](MVT A, MVT B) -> bool {
536
// Always treat non-scalable MVTs as smaller than scalable MVTs for the
537
// purposes of ordering.
538
auto ASize = std::tuple(A.isScalableVector(), A.getScalarSizeInBits(),
539
A.getSizeInBits().getKnownMinValue());
540
auto BSize = std::tuple(B.isScalableVector(), B.getScalarSizeInBits(),
541
B.getSizeInBits().getKnownMinValue());
542
return ASize < BSize;
543
};
544
auto SameKindLE = [](MVT A, MVT B) -> bool {
545
// This function is used when removing elements: when a vector is compared
546
// to a non-vector or a scalable vector to any non-scalable MVT, it should
547
// return false (to avoid removal).
548
if (std::tuple(A.isVector(), A.isScalableVector()) !=
549
std::tuple(B.isVector(), B.isScalableVector()))
550
return false;
551
552
return std::tuple(A.getScalarSizeInBits(),
553
A.getSizeInBits().getKnownMinValue()) <=
554
std::tuple(B.getScalarSizeInBits(),
555
B.getSizeInBits().getKnownMinValue());
556
};
557
558
for (unsigned M : Modes) {
559
TypeSetByHwMode::SetType &S = Small.get(M);
560
TypeSetByHwMode::SetType &B = Big.get(M);
561
// MinS = min scalar in Small, remove all scalars from Big that are
562
// smaller-or-equal than MinS.
563
auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
564
if (MinS != S.end())
565
Changed |=
566
berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinS));
567
568
// MaxS = max scalar in Big, remove all scalars from Small that are
569
// larger than MaxS.
570
auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
571
if (MaxS != B.end())
572
Changed |=
573
berase_if(S, std::bind(SameKindLE, *MaxS, std::placeholders::_1));
574
575
// MinV = min vector in Small, remove all vectors from Big that are
576
// smaller-or-equal than MinV.
577
auto MinV = min_if(S.begin(), S.end(), isVector, LT);
578
if (MinV != S.end())
579
Changed |=
580
berase_if(B, std::bind(SameKindLE, std::placeholders::_1, *MinV));
581
582
// MaxV = max vector in Big, remove all vectors from Small that are
583
// larger than MaxV.
584
auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
585
if (MaxV != B.end())
586
Changed |=
587
berase_if(S, std::bind(SameKindLE, *MaxV, std::placeholders::_1));
588
}
589
590
return Changed;
591
}
592
593
/// 1. Ensure that for each type T in Vec, T is a vector type, and that
594
/// for each type U in Elem, U is a scalar type.
595
/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
596
/// type T in Vec, such that U is the element type of T.
597
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
598
TypeSetByHwMode &Elem) {
599
ValidateOnExit _1(Vec, *this), _2(Elem, *this);
600
if (TP.hasError())
601
return false;
602
bool Changed = false;
603
604
if (Vec.empty())
605
Changed |= EnforceVector(Vec);
606
if (Elem.empty())
607
Changed |= EnforceScalar(Elem);
608
609
SmallVector<unsigned, 4> Modes;
610
union_modes(Vec, Elem, Modes);
611
for (unsigned M : Modes) {
612
TypeSetByHwMode::SetType &V = Vec.get(M);
613
TypeSetByHwMode::SetType &E = Elem.get(M);
614
615
Changed |= berase_if(V, isScalar); // Scalar = !vector
616
Changed |= berase_if(E, isVector); // Vector = !scalar
617
assert(!V.empty() && !E.empty());
618
619
MachineValueTypeSet VT, ST;
620
// Collect element types from the "vector" set.
621
for (MVT T : V)
622
VT.insert(T.getVectorElementType());
623
// Collect scalar types from the "element" set.
624
for (MVT T : E)
625
ST.insert(T);
626
627
// Remove from V all (vector) types whose element type is not in S.
628
Changed |= berase_if(V, [&ST](MVT T) -> bool {
629
return !ST.count(T.getVectorElementType());
630
});
631
// Remove from E all (scalar) types, for which there is no corresponding
632
// type in V.
633
Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
634
}
635
636
return Changed;
637
}
638
639
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
640
const ValueTypeByHwMode &VVT) {
641
TypeSetByHwMode Tmp(VVT);
642
ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
643
return EnforceVectorEltTypeIs(Vec, Tmp);
644
}
645
646
/// Ensure that for each type T in Sub, T is a vector type, and there
647
/// exists a type U in Vec such that U is a vector type with the same
648
/// element type as T and at least as many elements as T.
649
bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
650
TypeSetByHwMode &Sub) {
651
ValidateOnExit _1(Vec, *this), _2(Sub, *this);
652
if (TP.hasError())
653
return false;
654
655
/// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
656
auto IsSubVec = [](MVT B, MVT P) -> bool {
657
if (!B.isVector() || !P.isVector())
658
return false;
659
// Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
660
// but until there are obvious use-cases for this, keep the
661
// types separate.
662
if (B.isScalableVector() != P.isScalableVector())
663
return false;
664
if (B.getVectorElementType() != P.getVectorElementType())
665
return false;
666
return B.getVectorMinNumElements() < P.getVectorMinNumElements();
667
};
668
669
/// Return true if S has no element (vector type) that T is a sub-vector of,
670
/// i.e. has the same element type as T and more elements.
671
auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
672
for (auto I : S)
673
if (IsSubVec(T, I))
674
return false;
675
return true;
676
};
677
678
/// Return true if S has no element (vector type) that T is a super-vector
679
/// of, i.e. has the same element type as T and fewer elements.
680
auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
681
for (auto I : S)
682
if (IsSubVec(I, T))
683
return false;
684
return true;
685
};
686
687
bool Changed = false;
688
689
if (Vec.empty())
690
Changed |= EnforceVector(Vec);
691
if (Sub.empty())
692
Changed |= EnforceVector(Sub);
693
694
SmallVector<unsigned, 4> Modes;
695
union_modes(Vec, Sub, Modes);
696
for (unsigned M : Modes) {
697
TypeSetByHwMode::SetType &S = Sub.get(M);
698
TypeSetByHwMode::SetType &V = Vec.get(M);
699
700
Changed |= berase_if(S, isScalar);
701
702
// Erase all types from S that are not sub-vectors of a type in V.
703
Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
704
705
// Erase all types from V that are not super-vectors of a type in S.
706
Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
707
}
708
709
return Changed;
710
}
711
712
/// 1. Ensure that V has a scalar type iff W has a scalar type.
713
/// 2. Ensure that for each vector type T in V, there exists a vector
714
/// type U in W, such that T and U have the same number of elements.
715
/// 3. Ensure that for each vector type U in W, there exists a vector
716
/// type T in V, such that T and U have the same number of elements
717
/// (reverse of 2).
718
bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
719
ValidateOnExit _1(V, *this), _2(W, *this);
720
if (TP.hasError())
721
return false;
722
723
bool Changed = false;
724
if (V.empty())
725
Changed |= EnforceAny(V);
726
if (W.empty())
727
Changed |= EnforceAny(W);
728
729
// An actual vector type cannot have 0 elements, so we can treat scalars
730
// as zero-length vectors. This way both vectors and scalars can be
731
// processed identically.
732
auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
733
MVT T) -> bool {
734
return !Lengths.count(T.isVector() ? T.getVectorElementCount()
735
: ElementCount());
736
};
737
738
SmallVector<unsigned, 4> Modes;
739
union_modes(V, W, Modes);
740
for (unsigned M : Modes) {
741
TypeSetByHwMode::SetType &VS = V.get(M);
742
TypeSetByHwMode::SetType &WS = W.get(M);
743
744
SmallDenseSet<ElementCount> VN, WN;
745
for (MVT T : VS)
746
VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
747
for (MVT T : WS)
748
WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
749
750
Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
751
Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
752
}
753
return Changed;
754
}
755
756
namespace {
757
struct TypeSizeComparator {
758
bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
759
return std::tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
760
std::tuple(RHS.isScalable(), RHS.getKnownMinValue());
761
}
762
};
763
} // end anonymous namespace
764
765
/// 1. Ensure that for each type T in A, there exists a type U in B,
766
/// such that T and U have equal size in bits.
767
/// 2. Ensure that for each type U in B, there exists a type T in A
768
/// such that T and U have equal size in bits (reverse of 1).
769
bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
770
ValidateOnExit _1(A, *this), _2(B, *this);
771
if (TP.hasError())
772
return false;
773
bool Changed = false;
774
if (A.empty())
775
Changed |= EnforceAny(A);
776
if (B.empty())
777
Changed |= EnforceAny(B);
778
779
typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
780
781
auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
782
return !Sizes.count(T.getSizeInBits());
783
};
784
785
SmallVector<unsigned, 4> Modes;
786
union_modes(A, B, Modes);
787
for (unsigned M : Modes) {
788
TypeSetByHwMode::SetType &AS = A.get(M);
789
TypeSetByHwMode::SetType &BS = B.get(M);
790
TypeSizeSet AN, BN;
791
792
for (MVT T : AS)
793
AN.insert(T.getSizeInBits());
794
for (MVT T : BS)
795
BN.insert(T.getSizeInBits());
796
797
Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
798
Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
799
}
800
801
return Changed;
802
}
803
804
void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const {
805
ValidateOnExit _1(VTS, *this);
806
const TypeSetByHwMode &Legal = getLegalTypes();
807
assert(Legal.isSimple() && "Default-mode only expected");
808
const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple();
809
810
for (auto &I : VTS)
811
expandOverloads(I.second, LegalTypes);
812
}
813
814
void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
815
const TypeSetByHwMode::SetType &Legal) const {
816
if (Out.count(MVT::iPTRAny)) {
817
Out.erase(MVT::iPTRAny);
818
Out.insert(MVT::iPTR);
819
} else if (Out.count(MVT::iAny)) {
820
Out.erase(MVT::iAny);
821
for (MVT T : MVT::integer_valuetypes())
822
if (Legal.count(T))
823
Out.insert(T);
824
for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
825
if (Legal.count(T))
826
Out.insert(T);
827
for (MVT T : MVT::integer_scalable_vector_valuetypes())
828
if (Legal.count(T))
829
Out.insert(T);
830
} else if (Out.count(MVT::fAny)) {
831
Out.erase(MVT::fAny);
832
for (MVT T : MVT::fp_valuetypes())
833
if (Legal.count(T))
834
Out.insert(T);
835
for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
836
if (Legal.count(T))
837
Out.insert(T);
838
for (MVT T : MVT::fp_scalable_vector_valuetypes())
839
if (Legal.count(T))
840
Out.insert(T);
841
} else if (Out.count(MVT::vAny)) {
842
Out.erase(MVT::vAny);
843
for (MVT T : MVT::vector_valuetypes())
844
if (Legal.count(T))
845
Out.insert(T);
846
} else if (Out.count(MVT::Any)) {
847
Out.erase(MVT::Any);
848
for (MVT T : MVT::all_valuetypes())
849
if (Legal.count(T))
850
Out.insert(T);
851
}
852
}
853
854
const TypeSetByHwMode &TypeInfer::getLegalTypes() const {
855
if (!LegalTypesCached) {
856
TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
857
// Stuff all types from all modes into the default mode.
858
const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
859
for (const auto &I : LTS)
860
LegalTypes.insert(I.second);
861
LegalTypesCached = true;
862
}
863
assert(LegalCache.isSimple() && "Default-mode only expected");
864
return LegalCache;
865
}
866
867
TypeInfer::ValidateOnExit::~ValidateOnExit() {
868
if (Infer.Validate && !VTS.validate()) {
869
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
870
errs() << "Type set is empty for each HW mode:\n"
871
"possible type contradiction in the pattern below "
872
"(use -print-records with llvm-tblgen to see all "
873
"expanded records).\n";
874
Infer.TP.dump();
875
errs() << "Generated from record:\n";
876
Infer.TP.getRecord()->dump();
877
#endif
878
PrintFatalError(Infer.TP.getRecord()->getLoc(),
879
"Type set is empty for each HW mode in '" +
880
Infer.TP.getRecord()->getName() + "'");
881
}
882
}
883
884
//===----------------------------------------------------------------------===//
885
// ScopedName Implementation
886
//===----------------------------------------------------------------------===//
887
888
bool ScopedName::operator==(const ScopedName &o) const {
889
return Scope == o.Scope && Identifier == o.Identifier;
890
}
891
892
bool ScopedName::operator!=(const ScopedName &o) const { return !(*this == o); }
893
894
//===----------------------------------------------------------------------===//
895
// TreePredicateFn Implementation
896
//===----------------------------------------------------------------------===//
897
898
/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
899
TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
900
assert(
901
(!hasPredCode() || !hasImmCode()) &&
902
".td file corrupt: can't have a node predicate *and* an imm predicate");
903
}
904
905
bool TreePredicateFn::hasPredCode() const {
906
return isLoad() || isStore() || isAtomic() || hasNoUse() || hasOneUse() ||
907
!PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
908
}
909
910
std::string TreePredicateFn::getPredCode() const {
911
std::string Code;
912
913
if (!isLoad() && !isStore() && !isAtomic()) {
914
Record *MemoryVT = getMemoryVT();
915
916
if (MemoryVT)
917
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
918
"MemoryVT requires IsLoad or IsStore");
919
}
920
921
if (!isLoad() && !isStore()) {
922
if (isUnindexed())
923
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
924
"IsUnindexed requires IsLoad or IsStore");
925
926
Record *ScalarMemoryVT = getScalarMemoryVT();
927
928
if (ScalarMemoryVT)
929
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
930
"ScalarMemoryVT requires IsLoad or IsStore");
931
}
932
933
if (isLoad() + isStore() + isAtomic() > 1)
934
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935
"IsLoad, IsStore, and IsAtomic are mutually exclusive");
936
937
if (isLoad()) {
938
if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
939
!isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
940
getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
941
getMinAlignment() < 1)
942
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
943
"IsLoad cannot be used by itself");
944
} else {
945
if (isNonExtLoad())
946
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947
"IsNonExtLoad requires IsLoad");
948
if (isAnyExtLoad())
949
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950
"IsAnyExtLoad requires IsLoad");
951
952
if (!isAtomic()) {
953
if (isSignExtLoad())
954
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955
"IsSignExtLoad requires IsLoad or IsAtomic");
956
if (isZeroExtLoad())
957
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
958
"IsZeroExtLoad requires IsLoad or IsAtomic");
959
}
960
}
961
962
if (isStore()) {
963
if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
964
getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
965
getAddressSpaces() == nullptr && getMinAlignment() < 1)
966
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967
"IsStore cannot be used by itself");
968
} else {
969
if (isNonTruncStore())
970
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
971
"IsNonTruncStore requires IsStore");
972
if (isTruncStore())
973
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
974
"IsTruncStore requires IsStore");
975
}
976
977
if (isAtomic()) {
978
if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
979
getAddressSpaces() == nullptr &&
980
// FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
981
!isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
982
!isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
983
!isAtomicOrderingSequentiallyConsistent() &&
984
!isAtomicOrderingAcquireOrStronger() &&
985
!isAtomicOrderingReleaseOrStronger() &&
986
!isAtomicOrderingWeakerThanAcquire() &&
987
!isAtomicOrderingWeakerThanRelease())
988
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
989
"IsAtomic cannot be used by itself");
990
} else {
991
if (isAtomicOrderingMonotonic())
992
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993
"IsAtomicOrderingMonotonic requires IsAtomic");
994
if (isAtomicOrderingAcquire())
995
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
996
"IsAtomicOrderingAcquire requires IsAtomic");
997
if (isAtomicOrderingRelease())
998
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
999
"IsAtomicOrderingRelease requires IsAtomic");
1000
if (isAtomicOrderingAcquireRelease())
1001
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1002
"IsAtomicOrderingAcquireRelease requires IsAtomic");
1003
if (isAtomicOrderingSequentiallyConsistent())
1004
PrintFatalError(
1005
getOrigPatFragRecord()->getRecord()->getLoc(),
1006
"IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1007
if (isAtomicOrderingAcquireOrStronger())
1008
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009
"IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1010
if (isAtomicOrderingReleaseOrStronger())
1011
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1012
"IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1013
if (isAtomicOrderingWeakerThanAcquire())
1014
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1015
"IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1016
}
1017
1018
if (isLoad() || isStore() || isAtomic()) {
1019
if (ListInit *AddressSpaces = getAddressSpaces()) {
1020
Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1021
" if (";
1022
1023
ListSeparator LS(" && ");
1024
for (Init *Val : AddressSpaces->getValues()) {
1025
Code += LS;
1026
1027
IntInit *IntVal = dyn_cast<IntInit>(Val);
1028
if (!IntVal) {
1029
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1030
"AddressSpaces element must be integer");
1031
}
1032
1033
Code += "AddrSpace != " + utostr(IntVal->getValue());
1034
}
1035
1036
Code += ")\nreturn false;\n";
1037
}
1038
1039
int64_t MinAlign = getMinAlignment();
1040
if (MinAlign > 0) {
1041
Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1042
Code += utostr(MinAlign);
1043
Code += "))\nreturn false;\n";
1044
}
1045
1046
Record *MemoryVT = getMemoryVT();
1047
1048
if (MemoryVT)
1049
Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1050
MemoryVT->getName() + ") return false;\n")
1051
.str();
1052
}
1053
1054
if (isAtomic() && isAtomicOrderingMonotonic())
1055
Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1056
"AtomicOrdering::Monotonic) return false;\n";
1057
if (isAtomic() && isAtomicOrderingAcquire())
1058
Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1059
"AtomicOrdering::Acquire) return false;\n";
1060
if (isAtomic() && isAtomicOrderingRelease())
1061
Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1062
"AtomicOrdering::Release) return false;\n";
1063
if (isAtomic() && isAtomicOrderingAcquireRelease())
1064
Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1065
"AtomicOrdering::AcquireRelease) return false;\n";
1066
if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1067
Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1068
"AtomicOrdering::SequentiallyConsistent) return false;\n";
1069
1070
if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1071
Code +=
1072
"if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1073
"return false;\n";
1074
if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1075
Code +=
1076
"if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1077
"return false;\n";
1078
1079
if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1080
Code +=
1081
"if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1082
"return false;\n";
1083
if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1084
Code +=
1085
"if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1086
"return false;\n";
1087
1088
// TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1089
if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1090
Code += "return false;\n";
1091
1092
if (isLoad() || isStore()) {
1093
StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1094
1095
if (isUnindexed())
1096
Code += ("if (cast<" + SDNodeName +
1097
">(N)->getAddressingMode() != ISD::UNINDEXED) "
1098
"return false;\n")
1099
.str();
1100
1101
if (isLoad()) {
1102
if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1103
isZeroExtLoad()) > 1)
1104
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1105
"IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1106
"IsZeroExtLoad are mutually exclusive");
1107
if (isNonExtLoad())
1108
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1109
"ISD::NON_EXTLOAD) return false;\n";
1110
if (isAnyExtLoad())
1111
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1112
"return false;\n";
1113
if (isSignExtLoad())
1114
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1115
"return false;\n";
1116
if (isZeroExtLoad())
1117
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1118
"return false;\n";
1119
} else {
1120
if ((isNonTruncStore() + isTruncStore()) > 1)
1121
PrintFatalError(
1122
getOrigPatFragRecord()->getRecord()->getLoc(),
1123
"IsNonTruncStore, and IsTruncStore are mutually exclusive");
1124
if (isNonTruncStore())
1125
Code +=
1126
" if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1127
if (isTruncStore())
1128
Code +=
1129
" if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1130
}
1131
1132
Record *ScalarMemoryVT = getScalarMemoryVT();
1133
1134
if (ScalarMemoryVT)
1135
Code += ("if (cast<" + SDNodeName +
1136
">(N)->getMemoryVT().getScalarType() != MVT::" +
1137
ScalarMemoryVT->getName() + ") return false;\n")
1138
.str();
1139
}
1140
1141
if (hasNoUse())
1142
Code += "if (!SDValue(N, 0).use_empty()) return false;\n";
1143
if (hasOneUse())
1144
Code += "if (!SDValue(N, 0).hasOneUse()) return false;\n";
1145
1146
std::string PredicateCode =
1147
std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1148
1149
Code += PredicateCode;
1150
1151
if (PredicateCode.empty() && !Code.empty())
1152
Code += "return true;\n";
1153
1154
return Code;
1155
}
1156
1157
bool TreePredicateFn::hasImmCode() const {
1158
return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1159
}
1160
1161
std::string TreePredicateFn::getImmCode() const {
1162
return std::string(
1163
PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1164
}
1165
1166
bool TreePredicateFn::immCodeUsesAPInt() const {
1167
return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1168
}
1169
1170
bool TreePredicateFn::immCodeUsesAPFloat() const {
1171
bool Unset;
1172
// The return value will be false when IsAPFloat is unset.
1173
return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1174
Unset);
1175
}
1176
1177
bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1178
bool Value) const {
1179
bool Unset;
1180
bool Result =
1181
getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1182
if (Unset)
1183
return false;
1184
return Result == Value;
1185
}
1186
bool TreePredicateFn::usesOperands() const {
1187
return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1188
}
1189
bool TreePredicateFn::hasNoUse() const {
1190
return isPredefinedPredicateEqualTo("HasNoUse", true);
1191
}
1192
bool TreePredicateFn::hasOneUse() const {
1193
return isPredefinedPredicateEqualTo("HasOneUse", true);
1194
}
1195
bool TreePredicateFn::isLoad() const {
1196
return isPredefinedPredicateEqualTo("IsLoad", true);
1197
}
1198
bool TreePredicateFn::isStore() const {
1199
return isPredefinedPredicateEqualTo("IsStore", true);
1200
}
1201
bool TreePredicateFn::isAtomic() const {
1202
return isPredefinedPredicateEqualTo("IsAtomic", true);
1203
}
1204
bool TreePredicateFn::isUnindexed() const {
1205
return isPredefinedPredicateEqualTo("IsUnindexed", true);
1206
}
1207
bool TreePredicateFn::isNonExtLoad() const {
1208
return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1209
}
1210
bool TreePredicateFn::isAnyExtLoad() const {
1211
return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1212
}
1213
bool TreePredicateFn::isSignExtLoad() const {
1214
return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1215
}
1216
bool TreePredicateFn::isZeroExtLoad() const {
1217
return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1218
}
1219
bool TreePredicateFn::isNonTruncStore() const {
1220
return isPredefinedPredicateEqualTo("IsTruncStore", false);
1221
}
1222
bool TreePredicateFn::isTruncStore() const {
1223
return isPredefinedPredicateEqualTo("IsTruncStore", true);
1224
}
1225
bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1226
return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1227
}
1228
bool TreePredicateFn::isAtomicOrderingAcquire() const {
1229
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1230
}
1231
bool TreePredicateFn::isAtomicOrderingRelease() const {
1232
return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1233
}
1234
bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1235
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1236
}
1237
bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1238
return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1239
true);
1240
}
1241
bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1242
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1243
true);
1244
}
1245
bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1246
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger",
1247
false);
1248
}
1249
bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1250
return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1251
true);
1252
}
1253
bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1254
return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger",
1255
false);
1256
}
1257
Record *TreePredicateFn::getMemoryVT() const {
1258
Record *R = getOrigPatFragRecord()->getRecord();
1259
if (R->isValueUnset("MemoryVT"))
1260
return nullptr;
1261
return R->getValueAsDef("MemoryVT");
1262
}
1263
1264
ListInit *TreePredicateFn::getAddressSpaces() const {
1265
Record *R = getOrigPatFragRecord()->getRecord();
1266
if (R->isValueUnset("AddressSpaces"))
1267
return nullptr;
1268
return R->getValueAsListInit("AddressSpaces");
1269
}
1270
1271
int64_t TreePredicateFn::getMinAlignment() const {
1272
Record *R = getOrigPatFragRecord()->getRecord();
1273
if (R->isValueUnset("MinAlignment"))
1274
return 0;
1275
return R->getValueAsInt("MinAlignment");
1276
}
1277
1278
Record *TreePredicateFn::getScalarMemoryVT() const {
1279
Record *R = getOrigPatFragRecord()->getRecord();
1280
if (R->isValueUnset("ScalarMemoryVT"))
1281
return nullptr;
1282
return R->getValueAsDef("ScalarMemoryVT");
1283
}
1284
bool TreePredicateFn::hasGISelPredicateCode() const {
1285
return !PatFragRec->getRecord()
1286
->getValueAsString("GISelPredicateCode")
1287
.empty();
1288
}
1289
std::string TreePredicateFn::getGISelPredicateCode() const {
1290
return std::string(
1291
PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1292
}
1293
1294
StringRef TreePredicateFn::getImmType() const {
1295
if (immCodeUsesAPInt())
1296
return "const APInt &";
1297
if (immCodeUsesAPFloat())
1298
return "const APFloat &";
1299
return "int64_t";
1300
}
1301
1302
StringRef TreePredicateFn::getImmTypeIdentifier() const {
1303
if (immCodeUsesAPInt())
1304
return "APInt";
1305
if (immCodeUsesAPFloat())
1306
return "APFloat";
1307
return "I64";
1308
}
1309
1310
/// isAlwaysTrue - Return true if this is a noop predicate.
1311
bool TreePredicateFn::isAlwaysTrue() const {
1312
return !hasPredCode() && !hasImmCode();
1313
}
1314
1315
/// Return the name to use in the generated code to reference this, this is
1316
/// "Predicate_foo" if from a pattern fragment "foo".
1317
std::string TreePredicateFn::getFnName() const {
1318
return "Predicate_" + PatFragRec->getRecord()->getName().str();
1319
}
1320
1321
/// getCodeToRunOnSDNode - Return the code for the function body that
1322
/// evaluates this predicate. The argument is expected to be in "Node",
1323
/// not N. This handles casting and conversion to a concrete node type as
1324
/// appropriate.
1325
std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1326
// Handle immediate predicates first.
1327
std::string ImmCode = getImmCode();
1328
if (!ImmCode.empty()) {
1329
if (isLoad())
1330
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1331
"IsLoad cannot be used with ImmLeaf or its subclasses");
1332
if (isStore())
1333
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1334
"IsStore cannot be used with ImmLeaf or its subclasses");
1335
if (isUnindexed())
1336
PrintFatalError(
1337
getOrigPatFragRecord()->getRecord()->getLoc(),
1338
"IsUnindexed cannot be used with ImmLeaf or its subclasses");
1339
if (isNonExtLoad())
1340
PrintFatalError(
1341
getOrigPatFragRecord()->getRecord()->getLoc(),
1342
"IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1343
if (isAnyExtLoad())
1344
PrintFatalError(
1345
getOrigPatFragRecord()->getRecord()->getLoc(),
1346
"IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1347
if (isSignExtLoad())
1348
PrintFatalError(
1349
getOrigPatFragRecord()->getRecord()->getLoc(),
1350
"IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1351
if (isZeroExtLoad())
1352
PrintFatalError(
1353
getOrigPatFragRecord()->getRecord()->getLoc(),
1354
"IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1355
if (isNonTruncStore())
1356
PrintFatalError(
1357
getOrigPatFragRecord()->getRecord()->getLoc(),
1358
"IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1359
if (isTruncStore())
1360
PrintFatalError(
1361
getOrigPatFragRecord()->getRecord()->getLoc(),
1362
"IsTruncStore cannot be used with ImmLeaf or its subclasses");
1363
if (getMemoryVT())
1364
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1365
"MemoryVT cannot be used with ImmLeaf or its subclasses");
1366
if (getScalarMemoryVT())
1367
PrintFatalError(
1368
getOrigPatFragRecord()->getRecord()->getLoc(),
1369
"ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1370
1371
std::string Result = (" " + getImmType() + " Imm = ").str();
1372
if (immCodeUsesAPFloat())
1373
Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1374
else if (immCodeUsesAPInt())
1375
Result += "Node->getAsAPIntVal();\n";
1376
else
1377
Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1378
return Result + ImmCode;
1379
}
1380
1381
// Handle arbitrary node predicates.
1382
assert(hasPredCode() && "Don't have any predicate code!");
1383
1384
// If this is using PatFrags, there are multiple trees to search. They should
1385
// all have the same class. FIXME: Is there a way to find a common
1386
// superclass?
1387
StringRef ClassName;
1388
for (const auto &Tree : PatFragRec->getTrees()) {
1389
StringRef TreeClassName;
1390
if (Tree->isLeaf())
1391
TreeClassName = "SDNode";
1392
else {
1393
Record *Op = Tree->getOperator();
1394
const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1395
TreeClassName = Info.getSDClassName();
1396
}
1397
1398
if (ClassName.empty())
1399
ClassName = TreeClassName;
1400
else if (ClassName != TreeClassName) {
1401
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1402
"PatFrags trees do not have consistent class");
1403
}
1404
}
1405
1406
std::string Result;
1407
if (ClassName == "SDNode")
1408
Result = " SDNode *N = Node;\n";
1409
else
1410
Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1411
1412
return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
1413
}
1414
1415
//===----------------------------------------------------------------------===//
1416
// PatternToMatch implementation
1417
//
1418
1419
static bool isImmAllOnesAllZerosMatch(const TreePatternNode &P) {
1420
if (!P.isLeaf())
1421
return false;
1422
DefInit *DI = dyn_cast<DefInit>(P.getLeafValue());
1423
if (!DI)
1424
return false;
1425
1426
Record *R = DI->getDef();
1427
return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1428
}
1429
1430
/// getPatternSize - Return the 'size' of this pattern. We want to match large
1431
/// patterns before small ones. This is used to determine the size of a
1432
/// pattern.
1433
static unsigned getPatternSize(const TreePatternNode &P,
1434
const CodeGenDAGPatterns &CGP) {
1435
unsigned Size = 3; // The node itself.
1436
// If the root node is a ConstantSDNode, increases its size.
1437
// e.g. (set R32:$dst, 0).
1438
if (P.isLeaf() && isa<IntInit>(P.getLeafValue()))
1439
Size += 2;
1440
1441
if (const ComplexPattern *AM = P.getComplexPatternInfo(CGP)) {
1442
Size += AM->getComplexity();
1443
// We don't want to count any children twice, so return early.
1444
return Size;
1445
}
1446
1447
// If this node has some predicate function that must match, it adds to the
1448
// complexity of this node.
1449
if (!P.getPredicateCalls().empty())
1450
++Size;
1451
1452
// Count children in the count if they are also nodes.
1453
for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i) {
1454
const TreePatternNode &Child = P.getChild(i);
1455
if (!Child.isLeaf() && Child.getNumTypes()) {
1456
const TypeSetByHwMode &T0 = Child.getExtType(0);
1457
// At this point, all variable type sets should be simple, i.e. only
1458
// have a default mode.
1459
if (T0.getMachineValueType() != MVT::Other) {
1460
Size += getPatternSize(Child, CGP);
1461
continue;
1462
}
1463
}
1464
if (Child.isLeaf()) {
1465
if (isa<IntInit>(Child.getLeafValue()))
1466
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1467
else if (Child.getComplexPatternInfo(CGP))
1468
Size += getPatternSize(Child, CGP);
1469
else if (isImmAllOnesAllZerosMatch(Child))
1470
Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1471
else if (!Child.getPredicateCalls().empty())
1472
++Size;
1473
}
1474
}
1475
1476
return Size;
1477
}
1478
1479
/// Compute the complexity metric for the input pattern. This roughly
1480
/// corresponds to the number of nodes that are covered.
1481
int PatternToMatch::getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1482
return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1483
}
1484
1485
void PatternToMatch::getPredicateRecords(
1486
SmallVectorImpl<Record *> &PredicateRecs) const {
1487
for (Init *I : Predicates->getValues()) {
1488
if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1489
Record *Def = Pred->getDef();
1490
if (!Def->isSubClassOf("Predicate")) {
1491
#ifndef NDEBUG
1492
Def->dump();
1493
#endif
1494
llvm_unreachable("Unknown predicate type!");
1495
}
1496
PredicateRecs.push_back(Def);
1497
}
1498
}
1499
// Sort so that different orders get canonicalized to the same string.
1500
llvm::sort(PredicateRecs, LessRecord());
1501
// Remove duplicate predicates.
1502
PredicateRecs.erase(llvm::unique(PredicateRecs), PredicateRecs.end());
1503
}
1504
1505
/// getPredicateCheck - Return a single string containing all of this
1506
/// pattern's predicates concatenated with "&&" operators.
1507
///
1508
std::string PatternToMatch::getPredicateCheck() const {
1509
SmallVector<Record *, 4> PredicateRecs;
1510
getPredicateRecords(PredicateRecs);
1511
1512
SmallString<128> PredicateCheck;
1513
raw_svector_ostream OS(PredicateCheck);
1514
ListSeparator LS(" && ");
1515
for (Record *Pred : PredicateRecs) {
1516
StringRef CondString = Pred->getValueAsString("CondString");
1517
if (CondString.empty())
1518
continue;
1519
OS << LS << '(' << CondString << ')';
1520
}
1521
1522
if (!HwModeFeatures.empty())
1523
OS << LS << HwModeFeatures;
1524
1525
return std::string(PredicateCheck);
1526
}
1527
1528
//===----------------------------------------------------------------------===//
1529
// SDTypeConstraint implementation
1530
//
1531
1532
SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1533
OperandNo = R->getValueAsInt("OperandNum");
1534
1535
if (R->isSubClassOf("SDTCisVT")) {
1536
ConstraintType = SDTCisVT;
1537
VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1538
for (const auto &P : VVT)
1539
if (P.second == MVT::isVoid)
1540
PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1541
} else if (R->isSubClassOf("SDTCisPtrTy")) {
1542
ConstraintType = SDTCisPtrTy;
1543
} else if (R->isSubClassOf("SDTCisInt")) {
1544
ConstraintType = SDTCisInt;
1545
} else if (R->isSubClassOf("SDTCisFP")) {
1546
ConstraintType = SDTCisFP;
1547
} else if (R->isSubClassOf("SDTCisVec")) {
1548
ConstraintType = SDTCisVec;
1549
} else if (R->isSubClassOf("SDTCisSameAs")) {
1550
ConstraintType = SDTCisSameAs;
1551
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1552
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1553
ConstraintType = SDTCisVTSmallerThanOp;
1554
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1555
R->getValueAsInt("OtherOperandNum");
1556
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1557
ConstraintType = SDTCisOpSmallerThanOp;
1558
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1559
R->getValueAsInt("BigOperandNum");
1560
} else if (R->isSubClassOf("SDTCisEltOfVec")) {
1561
ConstraintType = SDTCisEltOfVec;
1562
x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1563
} else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1564
ConstraintType = SDTCisSubVecOfVec;
1565
x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1566
} else if (R->isSubClassOf("SDTCVecEltisVT")) {
1567
ConstraintType = SDTCVecEltisVT;
1568
VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1569
for (const auto &P : VVT) {
1570
MVT T = P.second;
1571
if (T.isVector())
1572
PrintFatalError(R->getLoc(),
1573
"Cannot use vector type as SDTCVecEltisVT");
1574
if (!T.isInteger() && !T.isFloatingPoint())
1575
PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1576
"as SDTCVecEltisVT");
1577
}
1578
} else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1579
ConstraintType = SDTCisSameNumEltsAs;
1580
x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1581
R->getValueAsInt("OtherOperandNum");
1582
} else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1583
ConstraintType = SDTCisSameSizeAs;
1584
x.SDTCisSameSizeAs_Info.OtherOperandNum =
1585
R->getValueAsInt("OtherOperandNum");
1586
} else {
1587
PrintFatalError(R->getLoc(),
1588
"Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1589
}
1590
}
1591
1592
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
1593
/// N, and the result number in ResNo.
1594
static TreePatternNode &getOperandNum(unsigned OpNo, TreePatternNode &N,
1595
const SDNodeInfo &NodeInfo,
1596
unsigned &ResNo) {
1597
unsigned NumResults = NodeInfo.getNumResults();
1598
if (OpNo < NumResults) {
1599
ResNo = OpNo;
1600
return N;
1601
}
1602
1603
OpNo -= NumResults;
1604
1605
if (OpNo >= N.getNumChildren()) {
1606
std::string S;
1607
raw_string_ostream OS(S);
1608
OS << "Invalid operand number in type constraint " << (OpNo + NumResults)
1609
<< " ";
1610
N.print(OS);
1611
PrintFatalError(S);
1612
}
1613
1614
return N.getChild(OpNo);
1615
}
1616
1617
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
1618
/// constraint to the nodes operands. This returns true if it makes a
1619
/// change, false otherwise. If a type contradiction is found, flag an error.
1620
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode &N,
1621
const SDNodeInfo &NodeInfo,
1622
TreePattern &TP) const {
1623
if (TP.hasError())
1624
return false;
1625
1626
unsigned ResNo = 0; // The result number being referenced.
1627
TreePatternNode &NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1628
TypeInfer &TI = TP.getInfer();
1629
1630
switch (ConstraintType) {
1631
case SDTCisVT:
1632
// Operand must be a particular type.
1633
return NodeToApply.UpdateNodeType(ResNo, VVT, TP);
1634
case SDTCisPtrTy:
1635
// Operand must be same as target pointer type.
1636
return NodeToApply.UpdateNodeType(ResNo, MVT::iPTR, TP);
1637
case SDTCisInt:
1638
// Require it to be one of the legal integer VTs.
1639
return TI.EnforceInteger(NodeToApply.getExtType(ResNo));
1640
case SDTCisFP:
1641
// Require it to be one of the legal fp VTs.
1642
return TI.EnforceFloatingPoint(NodeToApply.getExtType(ResNo));
1643
case SDTCisVec:
1644
// Require it to be one of the legal vector VTs.
1645
return TI.EnforceVector(NodeToApply.getExtType(ResNo));
1646
case SDTCisSameAs: {
1647
unsigned OResNo = 0;
1648
TreePatternNode &OtherNode =
1649
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1650
return (int)NodeToApply.UpdateNodeType(ResNo, OtherNode.getExtType(OResNo),
1651
TP) |
1652
(int)OtherNode.UpdateNodeType(OResNo, NodeToApply.getExtType(ResNo),
1653
TP);
1654
}
1655
case SDTCisVTSmallerThanOp: {
1656
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1657
// have an integer type that is smaller than the VT.
1658
if (!NodeToApply.isLeaf() || !isa<DefInit>(NodeToApply.getLeafValue()) ||
1659
!cast<DefInit>(NodeToApply.getLeafValue())
1660
->getDef()
1661
->isSubClassOf("ValueType")) {
1662
TP.error(N.getOperator()->getName() + " expects a VT operand!");
1663
return false;
1664
}
1665
DefInit *DI = cast<DefInit>(NodeToApply.getLeafValue());
1666
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1667
auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1668
TypeSetByHwMode TypeListTmp(VVT);
1669
1670
unsigned OResNo = 0;
1671
TreePatternNode &OtherNode = getOperandNum(
1672
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo);
1673
1674
return TI.EnforceSmallerThan(TypeListTmp, OtherNode.getExtType(OResNo),
1675
/*SmallIsVT*/ true);
1676
}
1677
case SDTCisOpSmallerThanOp: {
1678
unsigned BResNo = 0;
1679
TreePatternNode &BigOperand = getOperandNum(
1680
x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo);
1681
return TI.EnforceSmallerThan(NodeToApply.getExtType(ResNo),
1682
BigOperand.getExtType(BResNo));
1683
}
1684
case SDTCisEltOfVec: {
1685
unsigned VResNo = 0;
1686
TreePatternNode &VecOperand = getOperandNum(
1687
x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1688
// Filter vector types out of VecOperand that don't have the right element
1689
// type.
1690
return TI.EnforceVectorEltTypeIs(VecOperand.getExtType(VResNo),
1691
NodeToApply.getExtType(ResNo));
1692
}
1693
case SDTCisSubVecOfVec: {
1694
unsigned VResNo = 0;
1695
TreePatternNode &BigVecOperand = getOperandNum(
1696
x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo);
1697
1698
// Filter vector types out of BigVecOperand that don't have the
1699
// right subvector type.
1700
return TI.EnforceVectorSubVectorTypeIs(BigVecOperand.getExtType(VResNo),
1701
NodeToApply.getExtType(ResNo));
1702
}
1703
case SDTCVecEltisVT: {
1704
return TI.EnforceVectorEltTypeIs(NodeToApply.getExtType(ResNo), VVT);
1705
}
1706
case SDTCisSameNumEltsAs: {
1707
unsigned OResNo = 0;
1708
TreePatternNode &OtherNode = getOperandNum(
1709
x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1710
return TI.EnforceSameNumElts(OtherNode.getExtType(OResNo),
1711
NodeToApply.getExtType(ResNo));
1712
}
1713
case SDTCisSameSizeAs: {
1714
unsigned OResNo = 0;
1715
TreePatternNode &OtherNode = getOperandNum(
1716
x.SDTCisSameSizeAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1717
return TI.EnforceSameSize(OtherNode.getExtType(OResNo),
1718
NodeToApply.getExtType(ResNo));
1719
}
1720
}
1721
llvm_unreachable("Invalid ConstraintType!");
1722
}
1723
1724
// Update the node type to match an instruction operand or result as specified
1725
// in the ins or outs lists on the instruction definition. Return true if the
1726
// type was actually changed.
1727
bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand,
1728
TreePattern &TP) {
1729
// The 'unknown' operand indicates that types should be inferred from the
1730
// context.
1731
if (Operand->isSubClassOf("unknown_class"))
1732
return false;
1733
1734
// The Operand class specifies a type directly.
1735
if (Operand->isSubClassOf("Operand")) {
1736
Record *R = Operand->getValueAsDef("Type");
1737
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1738
return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1739
}
1740
1741
// PointerLikeRegClass has a type that is determined at runtime.
1742
if (Operand->isSubClassOf("PointerLikeRegClass"))
1743
return UpdateNodeType(ResNo, MVT::iPTR, TP);
1744
1745
// Both RegisterClass and RegisterOperand operands derive their types from a
1746
// register class def.
1747
Record *RC = nullptr;
1748
if (Operand->isSubClassOf("RegisterClass"))
1749
RC = Operand;
1750
else if (Operand->isSubClassOf("RegisterOperand"))
1751
RC = Operand->getValueAsDef("RegClass");
1752
1753
assert(RC && "Unknown operand type");
1754
CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1755
return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1756
}
1757
1758
bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1759
for (unsigned i = 0, e = Types.size(); i != e; ++i)
1760
if (!TP.getInfer().isConcrete(Types[i], true))
1761
return true;
1762
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1763
if (getChild(i).ContainsUnresolvedType(TP))
1764
return true;
1765
return false;
1766
}
1767
1768
bool TreePatternNode::hasProperTypeByHwMode() const {
1769
for (const TypeSetByHwMode &S : Types)
1770
if (!S.isSimple())
1771
return true;
1772
for (const TreePatternNodePtr &C : Children)
1773
if (C->hasProperTypeByHwMode())
1774
return true;
1775
return false;
1776
}
1777
1778
bool TreePatternNode::hasPossibleType() const {
1779
for (const TypeSetByHwMode &S : Types)
1780
if (!S.isPossible())
1781
return false;
1782
for (const TreePatternNodePtr &C : Children)
1783
if (!C->hasPossibleType())
1784
return false;
1785
return true;
1786
}
1787
1788
bool TreePatternNode::setDefaultMode(unsigned Mode) {
1789
for (TypeSetByHwMode &S : Types) {
1790
S.makeSimple(Mode);
1791
// Check if the selected mode had a type conflict.
1792
if (S.get(DefaultMode).empty())
1793
return false;
1794
}
1795
for (const TreePatternNodePtr &C : Children)
1796
if (!C->setDefaultMode(Mode))
1797
return false;
1798
return true;
1799
}
1800
1801
//===----------------------------------------------------------------------===//
1802
// SDNodeInfo implementation
1803
//
1804
SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1805
EnumName = R->getValueAsString("Opcode");
1806
SDClassName = R->getValueAsString("SDClass");
1807
Record *TypeProfile = R->getValueAsDef("TypeProfile");
1808
NumResults = TypeProfile->getValueAsInt("NumResults");
1809
NumOperands = TypeProfile->getValueAsInt("NumOperands");
1810
1811
// Parse the properties.
1812
Properties = parseSDPatternOperatorProperties(R);
1813
1814
// Parse the type constraints.
1815
std::vector<Record *> ConstraintList =
1816
TypeProfile->getValueAsListOfDefs("Constraints");
1817
for (Record *R : ConstraintList)
1818
TypeConstraints.emplace_back(R, CGH);
1819
}
1820
1821
/// getKnownType - If the type constraints on this node imply a fixed type
1822
/// (e.g. all stores return void, etc), then return it as an
1823
/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1824
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1825
unsigned NumResults = getNumResults();
1826
assert(NumResults <= 1 &&
1827
"We only work with nodes with zero or one result so far!");
1828
assert(ResNo == 0 && "Only handles single result nodes so far");
1829
1830
for (const SDTypeConstraint &Constraint : TypeConstraints) {
1831
// Make sure that this applies to the correct node result.
1832
if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1833
continue;
1834
1835
switch (Constraint.ConstraintType) {
1836
default:
1837
break;
1838
case SDTypeConstraint::SDTCisVT:
1839
if (Constraint.VVT.isSimple())
1840
return Constraint.VVT.getSimple().SimpleTy;
1841
break;
1842
case SDTypeConstraint::SDTCisPtrTy:
1843
return MVT::iPTR;
1844
}
1845
}
1846
return MVT::Other;
1847
}
1848
1849
//===----------------------------------------------------------------------===//
1850
// TreePatternNode implementation
1851
//
1852
1853
static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1854
if (Operator->getName() == "set" || Operator->getName() == "implicit")
1855
return 0; // All return nothing.
1856
1857
if (Operator->isSubClassOf("Intrinsic"))
1858
return CDP.getIntrinsic(Operator).IS.RetTys.size();
1859
1860
if (Operator->isSubClassOf("SDNode"))
1861
return CDP.getSDNodeInfo(Operator).getNumResults();
1862
1863
if (Operator->isSubClassOf("PatFrags")) {
1864
// If we've already parsed this pattern fragment, get it. Otherwise, handle
1865
// the forward reference case where one pattern fragment references another
1866
// before it is processed.
1867
if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1868
// The number of results of a fragment with alternative records is the
1869
// maximum number of results across all alternatives.
1870
unsigned NumResults = 0;
1871
for (const auto &T : PFRec->getTrees())
1872
NumResults = std::max(NumResults, T->getNumTypes());
1873
return NumResults;
1874
}
1875
1876
ListInit *LI = Operator->getValueAsListInit("Fragments");
1877
assert(LI && "Invalid Fragment");
1878
unsigned NumResults = 0;
1879
for (Init *I : LI->getValues()) {
1880
Record *Op = nullptr;
1881
if (DagInit *Dag = dyn_cast<DagInit>(I))
1882
if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1883
Op = DI->getDef();
1884
assert(Op && "Invalid Fragment");
1885
NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1886
}
1887
return NumResults;
1888
}
1889
1890
if (Operator->isSubClassOf("Instruction")) {
1891
CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1892
1893
unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1894
1895
// Subtract any defaulted outputs.
1896
for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1897
Record *OperandNode = InstInfo.Operands[i].Rec;
1898
1899
if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1900
!CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1901
--NumDefsToAdd;
1902
}
1903
1904
// Add on one implicit def if it has a resolvable type.
1905
if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=
1906
MVT::Other)
1907
++NumDefsToAdd;
1908
return NumDefsToAdd;
1909
}
1910
1911
if (Operator->isSubClassOf("SDNodeXForm"))
1912
return 1; // FIXME: Generalize SDNodeXForm
1913
1914
if (Operator->isSubClassOf("ValueType"))
1915
return 1; // A type-cast of one result.
1916
1917
if (Operator->isSubClassOf("ComplexPattern"))
1918
return 1;
1919
1920
errs() << *Operator;
1921
PrintFatalError("Unhandled node in GetNumNodeResults");
1922
}
1923
1924
void TreePatternNode::print(raw_ostream &OS) const {
1925
if (isLeaf())
1926
OS << *getLeafValue();
1927
else
1928
OS << '(' << getOperator()->getName();
1929
1930
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1931
OS << ':';
1932
getExtType(i).writeToStream(OS);
1933
}
1934
1935
if (!isLeaf()) {
1936
if (getNumChildren() != 0) {
1937
OS << " ";
1938
ListSeparator LS;
1939
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1940
OS << LS;
1941
getChild(i).print(OS);
1942
}
1943
}
1944
OS << ")";
1945
}
1946
1947
for (const TreePredicateCall &Pred : PredicateCalls) {
1948
OS << "<<P:";
1949
if (Pred.Scope)
1950
OS << Pred.Scope << ":";
1951
OS << Pred.Fn.getFnName() << ">>";
1952
}
1953
if (TransformFn)
1954
OS << "<<X:" << TransformFn->getName() << ">>";
1955
if (!getName().empty())
1956
OS << ":$" << getName();
1957
1958
for (const ScopedName &Name : NamesAsPredicateArg)
1959
OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1960
}
1961
void TreePatternNode::dump() const { print(errs()); }
1962
1963
/// isIsomorphicTo - Return true if this node is recursively
1964
/// isomorphic to the specified node. For this comparison, the node's
1965
/// entire state is considered. The assigned name is ignored, since
1966
/// nodes with differing names are considered isomorphic. However, if
1967
/// the assigned name is present in the dependent variable set, then
1968
/// the assigned name is considered significant and the node is
1969
/// isomorphic if the names match.
1970
bool TreePatternNode::isIsomorphicTo(const TreePatternNode &N,
1971
const MultipleUseVarSet &DepVars) const {
1972
if (&N == this)
1973
return true;
1974
if (N.isLeaf() != isLeaf())
1975
return false;
1976
1977
// Check operator of non-leaves early since it can be cheaper than checking
1978
// types.
1979
if (!isLeaf())
1980
if (N.getOperator() != getOperator() ||
1981
N.getNumChildren() != getNumChildren())
1982
return false;
1983
1984
if (getExtTypes() != N.getExtTypes() ||
1985
getPredicateCalls() != N.getPredicateCalls() ||
1986
getTransformFn() != N.getTransformFn())
1987
return false;
1988
1989
if (isLeaf()) {
1990
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1991
if (DefInit *NDI = dyn_cast<DefInit>(N.getLeafValue())) {
1992
return ((DI->getDef() == NDI->getDef()) &&
1993
(!DepVars.contains(getName()) || getName() == N.getName()));
1994
}
1995
}
1996
return getLeafValue() == N.getLeafValue();
1997
}
1998
1999
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2000
if (!getChild(i).isIsomorphicTo(N.getChild(i), DepVars))
2001
return false;
2002
return true;
2003
}
2004
2005
/// clone - Make a copy of this tree and all of its children.
2006
///
2007
TreePatternNodePtr TreePatternNode::clone() const {
2008
TreePatternNodePtr New;
2009
if (isLeaf()) {
2010
New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes());
2011
} else {
2012
std::vector<TreePatternNodePtr> CChildren;
2013
CChildren.reserve(Children.size());
2014
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2015
CChildren.push_back(getChild(i).clone());
2016
New = makeIntrusiveRefCnt<TreePatternNode>(
2017
getOperator(), std::move(CChildren), getNumTypes());
2018
}
2019
New->setName(getName());
2020
New->setNamesAsPredicateArg(getNamesAsPredicateArg());
2021
New->Types = Types;
2022
New->setPredicateCalls(getPredicateCalls());
2023
New->setGISelFlagsRecord(getGISelFlagsRecord());
2024
New->setTransformFn(getTransformFn());
2025
return New;
2026
}
2027
2028
/// RemoveAllTypes - Recursively strip all the types of this tree.
2029
void TreePatternNode::RemoveAllTypes() {
2030
// Reset to unknown type.
2031
std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2032
if (isLeaf())
2033
return;
2034
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2035
getChild(i).RemoveAllTypes();
2036
}
2037
2038
/// SubstituteFormalArguments - Replace the formal arguments in this tree
2039
/// with actual values specified by ArgMap.
2040
void TreePatternNode::SubstituteFormalArguments(
2041
std::map<std::string, TreePatternNodePtr> &ArgMap) {
2042
if (isLeaf())
2043
return;
2044
2045
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2046
TreePatternNode &Child = getChild(i);
2047
if (Child.isLeaf()) {
2048
Init *Val = Child.getLeafValue();
2049
// Note that, when substituting into an output pattern, Val might be an
2050
// UnsetInit.
2051
if (isa<UnsetInit>(Val) ||
2052
(isa<DefInit>(Val) &&
2053
cast<DefInit>(Val)->getDef()->getName() == "node")) {
2054
// We found a use of a formal argument, replace it with its value.
2055
TreePatternNodePtr NewChild = ArgMap[Child.getName()];
2056
assert(NewChild && "Couldn't find formal argument!");
2057
assert((Child.getPredicateCalls().empty() ||
2058
NewChild->getPredicateCalls() == Child.getPredicateCalls()) &&
2059
"Non-empty child predicate clobbered!");
2060
setChild(i, std::move(NewChild));
2061
}
2062
} else {
2063
getChild(i).SubstituteFormalArguments(ArgMap);
2064
}
2065
}
2066
}
2067
2068
/// InlinePatternFragments - If this pattern refers to any pattern
2069
/// fragments, return the set of inlined versions (this can be more than
2070
/// one if a PatFrags record has multiple alternatives).
2071
void TreePatternNode::InlinePatternFragments(
2072
TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) {
2073
2074
if (TP.hasError())
2075
return;
2076
2077
if (isLeaf()) {
2078
OutAlternatives.push_back(this); // nothing to do.
2079
return;
2080
}
2081
2082
Record *Op = getOperator();
2083
2084
if (!Op->isSubClassOf("PatFrags")) {
2085
if (getNumChildren() == 0) {
2086
OutAlternatives.push_back(this);
2087
return;
2088
}
2089
2090
// Recursively inline children nodes.
2091
std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives(
2092
getNumChildren());
2093
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2094
TreePatternNodePtr Child = getChildShared(i);
2095
Child->InlinePatternFragments(TP, ChildAlternatives[i]);
2096
// If there are no alternatives for any child, there are no
2097
// alternatives for this expression as whole.
2098
if (ChildAlternatives[i].empty())
2099
return;
2100
2101
assert((Child->getPredicateCalls().empty() ||
2102
llvm::all_of(ChildAlternatives[i],
2103
[&](const TreePatternNodePtr &NewChild) {
2104
return NewChild->getPredicateCalls() ==
2105
Child->getPredicateCalls();
2106
})) &&
2107
"Non-empty child predicate clobbered!");
2108
}
2109
2110
// The end result is an all-pairs construction of the resultant pattern.
2111
std::vector<unsigned> Idxs(ChildAlternatives.size());
2112
bool NotDone;
2113
do {
2114
// Create the variant and add it to the output list.
2115
std::vector<TreePatternNodePtr> NewChildren;
2116
NewChildren.reserve(ChildAlternatives.size());
2117
for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2118
NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2119
TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
2120
getOperator(), std::move(NewChildren), getNumTypes());
2121
2122
// Copy over properties.
2123
R->setName(getName());
2124
R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2125
R->setPredicateCalls(getPredicateCalls());
2126
R->setGISelFlagsRecord(getGISelFlagsRecord());
2127
R->setTransformFn(getTransformFn());
2128
for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2129
R->setType(i, getExtType(i));
2130
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2131
R->setResultIndex(i, getResultIndex(i));
2132
2133
// Register alternative.
2134
OutAlternatives.push_back(R);
2135
2136
// Increment indices to the next permutation by incrementing the
2137
// indices from last index backward, e.g., generate the sequence
2138
// [0, 0], [0, 1], [1, 0], [1, 1].
2139
int IdxsIdx;
2140
for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2141
if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2142
Idxs[IdxsIdx] = 0;
2143
else
2144
break;
2145
}
2146
NotDone = (IdxsIdx >= 0);
2147
} while (NotDone);
2148
2149
return;
2150
}
2151
2152
// Otherwise, we found a reference to a fragment. First, look up its
2153
// TreePattern record.
2154
TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2155
2156
// Verify that we are passing the right number of operands.
2157
if (Frag->getNumArgs() != getNumChildren()) {
2158
TP.error("'" + Op->getName() + "' fragment requires " +
2159
Twine(Frag->getNumArgs()) + " operands!");
2160
return;
2161
}
2162
2163
TreePredicateFn PredFn(Frag);
2164
unsigned Scope = 0;
2165
if (TreePredicateFn(Frag).usesOperands())
2166
Scope = TP.getDAGPatterns().allocateScope();
2167
2168
// Compute the map of formal to actual arguments.
2169
std::map<std::string, TreePatternNodePtr> ArgMap;
2170
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2171
TreePatternNodePtr Child = getChildShared(i);
2172
if (Scope != 0) {
2173
Child = Child->clone();
2174
Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2175
}
2176
ArgMap[Frag->getArgName(i)] = Child;
2177
}
2178
2179
// Loop over all fragment alternatives.
2180
for (const auto &Alternative : Frag->getTrees()) {
2181
TreePatternNodePtr FragTree = Alternative->clone();
2182
2183
if (!PredFn.isAlwaysTrue())
2184
FragTree->addPredicateCall(PredFn, Scope);
2185
2186
// Resolve formal arguments to their actual value.
2187
if (Frag->getNumArgs())
2188
FragTree->SubstituteFormalArguments(ArgMap);
2189
2190
// Transfer types. Note that the resolved alternative may have fewer
2191
// (but not more) results than the PatFrags node.
2192
FragTree->setName(getName());
2193
for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2194
FragTree->UpdateNodeType(i, getExtType(i), TP);
2195
2196
if (Op->isSubClassOf("GISelFlags"))
2197
FragTree->setGISelFlagsRecord(Op);
2198
2199
// Transfer in the old predicates.
2200
for (const TreePredicateCall &Pred : getPredicateCalls())
2201
FragTree->addPredicateCall(Pred);
2202
2203
// The fragment we inlined could have recursive inlining that is needed. See
2204
// if there are any pattern fragments in it and inline them as needed.
2205
FragTree->InlinePatternFragments(TP, OutAlternatives);
2206
}
2207
}
2208
2209
/// getImplicitType - Check to see if the specified record has an implicit
2210
/// type which should be applied to it. This will infer the type of register
2211
/// references from the register file information, for example.
2212
///
2213
/// When Unnamed is set, return the type of a DAG operand with no name, such as
2214
/// the F8RC register class argument in:
2215
///
2216
/// (COPY_TO_REGCLASS GPR:$src, F8RC)
2217
///
2218
/// When Unnamed is false, return the type of a named DAG operand such as the
2219
/// GPR:$src operand above.
2220
///
2221
static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2222
bool NotRegisters, bool Unnamed,
2223
TreePattern &TP) {
2224
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2225
2226
// Check to see if this is a register operand.
2227
if (R->isSubClassOf("RegisterOperand")) {
2228
assert(ResNo == 0 && "Regoperand ref only has one result!");
2229
if (NotRegisters)
2230
return TypeSetByHwMode(); // Unknown.
2231
Record *RegClass = R->getValueAsDef("RegClass");
2232
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2233
return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2234
}
2235
2236
// Check to see if this is a register or a register class.
2237
if (R->isSubClassOf("RegisterClass")) {
2238
assert(ResNo == 0 && "Regclass ref only has one result!");
2239
// An unnamed register class represents itself as an i32 immediate, for
2240
// example on a COPY_TO_REGCLASS instruction.
2241
if (Unnamed)
2242
return TypeSetByHwMode(MVT::i32);
2243
2244
// In a named operand, the register class provides the possible set of
2245
// types.
2246
if (NotRegisters)
2247
return TypeSetByHwMode(); // Unknown.
2248
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2249
return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2250
}
2251
2252
if (R->isSubClassOf("PatFrags")) {
2253
assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2254
// Pattern fragment types will be resolved when they are inlined.
2255
return TypeSetByHwMode(); // Unknown.
2256
}
2257
2258
if (R->isSubClassOf("Register")) {
2259
assert(ResNo == 0 && "Registers only produce one result!");
2260
if (NotRegisters)
2261
return TypeSetByHwMode(); // Unknown.
2262
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2263
return TypeSetByHwMode(T.getRegisterVTs(R));
2264
}
2265
2266
if (R->isSubClassOf("SubRegIndex")) {
2267
assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2268
return TypeSetByHwMode(MVT::i32);
2269
}
2270
2271
if (R->isSubClassOf("ValueType")) {
2272
assert(ResNo == 0 && "This node only has one result!");
2273
// An unnamed VTSDNode represents itself as an MVT::Other immediate.
2274
//
2275
// (sext_inreg GPR:$src, i16)
2276
// ~~~
2277
if (Unnamed)
2278
return TypeSetByHwMode(MVT::Other);
2279
// With a name, the ValueType simply provides the type of the named
2280
// variable.
2281
//
2282
// (sext_inreg i32:$src, i16)
2283
// ~~~~~~~~
2284
if (NotRegisters)
2285
return TypeSetByHwMode(); // Unknown.
2286
const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2287
return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2288
}
2289
2290
if (R->isSubClassOf("CondCode")) {
2291
assert(ResNo == 0 && "This node only has one result!");
2292
// Using a CondCodeSDNode.
2293
return TypeSetByHwMode(MVT::Other);
2294
}
2295
2296
if (R->isSubClassOf("ComplexPattern")) {
2297
assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2298
if (NotRegisters)
2299
return TypeSetByHwMode(); // Unknown.
2300
Record *T = CDP.getComplexPattern(R).getValueType();
2301
const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2302
return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2303
}
2304
if (R->isSubClassOf("PointerLikeRegClass")) {
2305
assert(ResNo == 0 && "Regclass can only have one result!");
2306
TypeSetByHwMode VTS(MVT::iPTR);
2307
TP.getInfer().expandOverloads(VTS);
2308
return VTS;
2309
}
2310
2311
if (R->getName() == "node" || R->getName() == "srcvalue" ||
2312
R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2313
R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2314
// Placeholder.
2315
return TypeSetByHwMode(); // Unknown.
2316
}
2317
2318
if (R->isSubClassOf("Operand")) {
2319
const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2320
Record *T = R->getValueAsDef("Type");
2321
return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2322
}
2323
2324
TP.error("Unknown node flavor used in pattern: " + R->getName());
2325
return TypeSetByHwMode(MVT::Other);
2326
}
2327
2328
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2329
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
2330
const CodeGenIntrinsic *
2331
TreePatternNode::getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2332
if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2333
getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2334
getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2335
return nullptr;
2336
2337
unsigned IID = cast<IntInit>(getChild(0).getLeafValue())->getValue();
2338
return &CDP.getIntrinsicInfo(IID);
2339
}
2340
2341
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2342
/// return the ComplexPattern information, otherwise return null.
2343
const ComplexPattern *
2344
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2345
Record *Rec;
2346
if (isLeaf()) {
2347
DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2348
if (!DI)
2349
return nullptr;
2350
Rec = DI->getDef();
2351
} else
2352
Rec = getOperator();
2353
2354
if (!Rec->isSubClassOf("ComplexPattern"))
2355
return nullptr;
2356
return &CGP.getComplexPattern(Rec);
2357
}
2358
2359
unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2360
// A ComplexPattern specifically declares how many results it fills in.
2361
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2362
return CP->getNumOperands();
2363
2364
// If MIOperandInfo is specified, that gives the count.
2365
if (isLeaf()) {
2366
DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2367
if (DI && DI->getDef()->isSubClassOf("Operand")) {
2368
DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2369
if (MIOps->getNumArgs())
2370
return MIOps->getNumArgs();
2371
}
2372
}
2373
2374
// Otherwise there is just one result.
2375
return 1;
2376
}
2377
2378
/// NodeHasProperty - Return true if this node has the specified property.
2379
bool TreePatternNode::NodeHasProperty(SDNP Property,
2380
const CodeGenDAGPatterns &CGP) const {
2381
if (isLeaf()) {
2382
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2383
return CP->hasProperty(Property);
2384
2385
return false;
2386
}
2387
2388
if (Property != SDNPHasChain) {
2389
// The chain proprety is already present on the different intrinsic node
2390
// types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2391
// on the intrinsic. Anything else is specific to the individual intrinsic.
2392
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2393
return Int->hasProperty(Property);
2394
}
2395
2396
if (!getOperator()->isSubClassOf("SDPatternOperator"))
2397
return false;
2398
2399
return CGP.getSDNodeInfo(getOperator()).hasProperty(Property);
2400
}
2401
2402
/// TreeHasProperty - Return true if any node in this tree has the specified
2403
/// property.
2404
bool TreePatternNode::TreeHasProperty(SDNP Property,
2405
const CodeGenDAGPatterns &CGP) const {
2406
if (NodeHasProperty(Property, CGP))
2407
return true;
2408
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2409
if (getChild(i).TreeHasProperty(Property, CGP))
2410
return true;
2411
return false;
2412
}
2413
2414
/// isCommutativeIntrinsic - Return true if the node corresponds to a
2415
/// commutative intrinsic.
2416
bool TreePatternNode::isCommutativeIntrinsic(
2417
const CodeGenDAGPatterns &CDP) const {
2418
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2419
return Int->isCommutative;
2420
return false;
2421
}
2422
2423
static bool isOperandClass(const TreePatternNode &N, StringRef Class) {
2424
if (!N.isLeaf())
2425
return N.getOperator()->isSubClassOf(Class);
2426
2427
DefInit *DI = dyn_cast<DefInit>(N.getLeafValue());
2428
if (DI && DI->getDef()->isSubClassOf(Class))
2429
return true;
2430
2431
return false;
2432
}
2433
2434
static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName,
2435
unsigned Expected, unsigned Actual) {
2436
TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2437
" operands but expected only " + Twine(Expected) + "!");
2438
}
2439
2440
static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName,
2441
unsigned Actual) {
2442
TP.error("Instruction '" + InstName + "' expects more than the provided " +
2443
Twine(Actual) + " operands!");
2444
}
2445
2446
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
2447
/// this node and its children in the tree. This returns true if it makes a
2448
/// change, false otherwise. If a type contradiction is found, flag an error.
2449
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2450
if (TP.hasError())
2451
return false;
2452
2453
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2454
if (isLeaf()) {
2455
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2456
// If it's a regclass or something else known, include the type.
2457
bool MadeChange = false;
2458
for (unsigned i = 0, e = Types.size(); i != e; ++i)
2459
MadeChange |= UpdateNodeType(
2460
i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP),
2461
TP);
2462
return MadeChange;
2463
}
2464
2465
if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2466
assert(Types.size() == 1 && "Invalid IntInit");
2467
2468
// Int inits are always integers. :)
2469
bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2470
2471
if (!TP.getInfer().isConcrete(Types[0], false))
2472
return MadeChange;
2473
2474
ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2475
for (auto &P : VVT) {
2476
MVT::SimpleValueType VT = P.second.SimpleTy;
2477
if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2478
continue;
2479
unsigned Size = MVT(VT).getFixedSizeInBits();
2480
// Make sure that the value is representable for this type.
2481
if (Size >= 32)
2482
continue;
2483
// Check that the value doesn't use more bits than we have. It must
2484
// either be a sign- or zero-extended equivalent of the original.
2485
int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2486
if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2487
SignBitAndAbove == 1)
2488
continue;
2489
2490
TP.error("Integer value '" + Twine(II->getValue()) +
2491
"' is out of range for type '" + getEnumName(VT) + "'!");
2492
break;
2493
}
2494
return MadeChange;
2495
}
2496
2497
return false;
2498
}
2499
2500
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2501
bool MadeChange = false;
2502
2503
// Apply the result type to the node.
2504
unsigned NumRetVTs = Int->IS.RetTys.size();
2505
unsigned NumParamVTs = Int->IS.ParamTys.size();
2506
2507
for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2508
MadeChange |= UpdateNodeType(
2509
i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP);
2510
2511
if (getNumChildren() != NumParamVTs + 1) {
2512
TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2513
" operands, not " + Twine(getNumChildren() - 1) + " operands!");
2514
return false;
2515
}
2516
2517
// Apply type info to the intrinsic ID.
2518
MadeChange |= getChild(0).UpdateNodeType(0, MVT::iPTR, TP);
2519
2520
for (unsigned i = 0, e = getNumChildren() - 1; i != e; ++i) {
2521
MadeChange |= getChild(i + 1).ApplyTypeConstraints(TP, NotRegisters);
2522
2523
MVT::SimpleValueType OpVT =
2524
getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT"));
2525
assert(getChild(i + 1).getNumTypes() == 1 && "Unhandled case");
2526
MadeChange |= getChild(i + 1).UpdateNodeType(0, OpVT, TP);
2527
}
2528
return MadeChange;
2529
}
2530
2531
if (getOperator()->isSubClassOf("SDNode")) {
2532
const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2533
2534
// Check that the number of operands is sane. Negative operands -> varargs.
2535
if (NI.getNumOperands() >= 0 &&
2536
getNumChildren() != (unsigned)NI.getNumOperands()) {
2537
TP.error(getOperator()->getName() + " node requires exactly " +
2538
Twine(NI.getNumOperands()) + " operands!");
2539
return false;
2540
}
2541
2542
bool MadeChange = false;
2543
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2544
MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2545
MadeChange |= NI.ApplyTypeConstraints(*this, TP);
2546
return MadeChange;
2547
}
2548
2549
if (getOperator()->isSubClassOf("Instruction")) {
2550
const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2551
CodeGenInstruction &InstInfo =
2552
CDP.getTargetInfo().getInstruction(getOperator());
2553
2554
bool MadeChange = false;
2555
2556
// Apply the result types to the node, these come from the things in the
2557
// (outs) list of the instruction.
2558
unsigned NumResultsToAdd =
2559
std::min(InstInfo.Operands.NumDefs, Inst.getNumResults());
2560
for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2561
MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2562
2563
// If the instruction has implicit defs, we apply the first one as a result.
2564
// FIXME: This sucks, it should apply all implicit defs.
2565
if (!InstInfo.ImplicitDefs.empty()) {
2566
unsigned ResNo = NumResultsToAdd;
2567
2568
// FIXME: Generalize to multiple possible types and multiple possible
2569
// ImplicitDefs.
2570
MVT::SimpleValueType VT =
2571
InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2572
2573
if (VT != MVT::Other)
2574
MadeChange |= UpdateNodeType(ResNo, VT, TP);
2575
}
2576
2577
// If this is an INSERT_SUBREG, constrain the source and destination VTs to
2578
// be the same.
2579
if (getOperator()->getName() == "INSERT_SUBREG") {
2580
assert(getChild(0).getNumTypes() == 1 && "FIXME: Unhandled");
2581
MadeChange |= UpdateNodeType(0, getChild(0).getExtType(0), TP);
2582
MadeChange |= getChild(0).UpdateNodeType(0, getExtType(0), TP);
2583
} else if (getOperator()->getName() == "REG_SEQUENCE") {
2584
// We need to do extra, custom typechecking for REG_SEQUENCE since it is
2585
// variadic.
2586
2587
unsigned NChild = getNumChildren();
2588
if (NChild < 3) {
2589
TP.error("REG_SEQUENCE requires at least 3 operands!");
2590
return false;
2591
}
2592
2593
if (NChild % 2 == 0) {
2594
TP.error("REG_SEQUENCE requires an odd number of operands!");
2595
return false;
2596
}
2597
2598
if (!isOperandClass(getChild(0), "RegisterClass")) {
2599
TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2600
return false;
2601
}
2602
2603
for (unsigned I = 1; I < NChild; I += 2) {
2604
TreePatternNode &SubIdxChild = getChild(I + 1);
2605
if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2606
TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2607
Twine(I + 1) + "!");
2608
return false;
2609
}
2610
}
2611
}
2612
2613
unsigned NumResults = Inst.getNumResults();
2614
unsigned NumFixedOperands = InstInfo.Operands.size();
2615
2616
// If one or more operands with a default value appear at the end of the
2617
// formal operand list for an instruction, we allow them to be overridden
2618
// by optional operands provided in the pattern.
2619
//
2620
// But if an operand B without a default appears at any point after an
2621
// operand A with a default, then we don't allow A to be overridden,
2622
// because there would be no way to specify whether the next operand in
2623
// the pattern was intended to override A or skip it.
2624
unsigned NonOverridableOperands = NumFixedOperands;
2625
while (NonOverridableOperands > NumResults &&
2626
CDP.operandHasDefault(
2627
InstInfo.Operands[NonOverridableOperands - 1].Rec))
2628
--NonOverridableOperands;
2629
2630
unsigned ChildNo = 0;
2631
assert(NumResults <= NumFixedOperands);
2632
for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2633
Record *OperandNode = InstInfo.Operands[i].Rec;
2634
2635
// If the operand has a default value, do we use it? We must use the
2636
// default if we've run out of children of the pattern DAG to consume,
2637
// or if the operand is followed by a non-defaulted one.
2638
if (CDP.operandHasDefault(OperandNode) &&
2639
(i < NonOverridableOperands || ChildNo >= getNumChildren()))
2640
continue;
2641
2642
// If we have run out of child nodes and there _isn't_ a default
2643
// value we can use for the next operand, give an error.
2644
if (ChildNo >= getNumChildren()) {
2645
emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2646
return false;
2647
}
2648
2649
TreePatternNode *Child = &getChild(ChildNo++);
2650
unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2651
2652
// If the operand has sub-operands, they may be provided by distinct
2653
// child patterns, so attempt to match each sub-operand separately.
2654
if (OperandNode->isSubClassOf("Operand")) {
2655
DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2656
if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2657
// But don't do that if the whole operand is being provided by
2658
// a single ComplexPattern-related Operand.
2659
2660
if (Child->getNumMIResults(CDP) < NumArgs) {
2661
// Match first sub-operand against the child we already have.
2662
Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2663
MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2664
2665
// And the remaining sub-operands against subsequent children.
2666
for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2667
if (ChildNo >= getNumChildren()) {
2668
emitTooFewOperandsError(TP, getOperator()->getName(),
2669
getNumChildren());
2670
return false;
2671
}
2672
Child = &getChild(ChildNo++);
2673
2674
SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2675
MadeChange |=
2676
Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2677
}
2678
continue;
2679
}
2680
}
2681
}
2682
2683
// If we didn't match by pieces above, attempt to match the whole
2684
// operand now.
2685
MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2686
}
2687
2688
if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2689
emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo,
2690
getNumChildren());
2691
return false;
2692
}
2693
2694
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2695
MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2696
return MadeChange;
2697
}
2698
2699
if (getOperator()->isSubClassOf("ComplexPattern")) {
2700
bool MadeChange = false;
2701
2702
if (!NotRegisters) {
2703
assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2704
Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2705
const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2706
const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2707
// TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2708
// exclusively use those as non-leaf nodes with explicit type casts, so
2709
// for backwards compatibility we do no inference in that case. This is
2710
// not supported when the ComplexPattern is used as a leaf value,
2711
// however; this inconsistency should be resolved, either by adding this
2712
// case there or by altering the backends to not do this (e.g. using Any
2713
// instead may work).
2714
if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2715
MadeChange |= UpdateNodeType(0, VVT, TP);
2716
}
2717
2718
for (unsigned i = 0; i < getNumChildren(); ++i)
2719
MadeChange |= getChild(i).ApplyTypeConstraints(TP, NotRegisters);
2720
2721
return MadeChange;
2722
}
2723
2724
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2725
2726
// Node transforms always take one operand.
2727
if (getNumChildren() != 1) {
2728
TP.error("Node transform '" + getOperator()->getName() +
2729
"' requires one operand!");
2730
return false;
2731
}
2732
2733
bool MadeChange = getChild(0).ApplyTypeConstraints(TP, NotRegisters);
2734
return MadeChange;
2735
}
2736
2737
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2738
/// RHS of a commutative operation, not the on LHS.
2739
static bool OnlyOnRHSOfCommutative(TreePatternNode &N) {
2740
if (!N.isLeaf() && N.getOperator()->getName() == "imm")
2741
return true;
2742
if (N.isLeaf() && isa<IntInit>(N.getLeafValue()))
2743
return true;
2744
if (isImmAllOnesAllZerosMatch(N))
2745
return true;
2746
return false;
2747
}
2748
2749
/// canPatternMatch - If it is impossible for this pattern to match on this
2750
/// target, fill in Reason and return false. Otherwise, return true. This is
2751
/// used as a sanity check for .td files (to prevent people from writing stuff
2752
/// that can never possibly work), and to prevent the pattern permuter from
2753
/// generating stuff that is useless.
2754
bool TreePatternNode::canPatternMatch(std::string &Reason,
2755
const CodeGenDAGPatterns &CDP) {
2756
if (isLeaf())
2757
return true;
2758
2759
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2760
if (!getChild(i).canPatternMatch(Reason, CDP))
2761
return false;
2762
2763
// If this is an intrinsic, handle cases that would make it not match. For
2764
// example, if an operand is required to be an immediate.
2765
if (getOperator()->isSubClassOf("Intrinsic")) {
2766
// TODO:
2767
return true;
2768
}
2769
2770
if (getOperator()->isSubClassOf("ComplexPattern"))
2771
return true;
2772
2773
// If this node is a commutative operator, check that the LHS isn't an
2774
// immediate.
2775
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2776
bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2777
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2778
// Scan all of the operands of the node and make sure that only the last one
2779
// is a constant node, unless the RHS also is.
2780
if (!OnlyOnRHSOfCommutative(getChild(getNumChildren() - 1))) {
2781
unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2782
for (unsigned i = Skip, e = getNumChildren() - 1; i != e; ++i)
2783
if (OnlyOnRHSOfCommutative(getChild(i))) {
2784
Reason =
2785
"Immediate value must be on the RHS of commutative operators!";
2786
return false;
2787
}
2788
}
2789
}
2790
2791
return true;
2792
}
2793
2794
//===----------------------------------------------------------------------===//
2795
// TreePattern implementation
2796
//
2797
2798
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2799
CodeGenDAGPatterns &cdp)
2800
: TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2801
Infer(*this) {
2802
for (Init *I : RawPat->getValues())
2803
Trees.push_back(ParseTreePattern(I, ""));
2804
}
2805
2806
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2807
CodeGenDAGPatterns &cdp)
2808
: TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2809
Infer(*this) {
2810
Trees.push_back(ParseTreePattern(Pat, ""));
2811
}
2812
2813
TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2814
CodeGenDAGPatterns &cdp)
2815
: TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2816
Infer(*this) {
2817
Trees.push_back(Pat);
2818
}
2819
2820
void TreePattern::error(const Twine &Msg) {
2821
if (HasError)
2822
return;
2823
dump();
2824
PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2825
HasError = true;
2826
}
2827
2828
void TreePattern::ComputeNamedNodes() {
2829
for (TreePatternNodePtr &Tree : Trees)
2830
ComputeNamedNodes(*Tree);
2831
}
2832
2833
void TreePattern::ComputeNamedNodes(TreePatternNode &N) {
2834
if (!N.getName().empty())
2835
NamedNodes[N.getName()].push_back(&N);
2836
2837
for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
2838
ComputeNamedNodes(N.getChild(i));
2839
}
2840
2841
TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2842
StringRef OpName) {
2843
RecordKeeper &RK = TheInit->getRecordKeeper();
2844
if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2845
Record *R = DI->getDef();
2846
2847
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
2848
// TreePatternNode of its own. For example:
2849
/// (foo GPR, imm) -> (foo GPR, (imm))
2850
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2851
return ParseTreePattern(
2852
DagInit::get(DI, nullptr,
2853
std::vector<std::pair<Init *, StringInit *>>()),
2854
OpName);
2855
2856
// Input argument?
2857
TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1);
2858
if (R->getName() == "node" && !OpName.empty()) {
2859
if (OpName.empty())
2860
error("'node' argument requires a name to match with operand list");
2861
Args.push_back(std::string(OpName));
2862
}
2863
2864
Res->setName(OpName);
2865
return Res;
2866
}
2867
2868
// ?:$name or just $name.
2869
if (isa<UnsetInit>(TheInit)) {
2870
if (OpName.empty())
2871
error("'?' argument requires a name to match with operand list");
2872
TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2873
Args.push_back(std::string(OpName));
2874
Res->setName(OpName);
2875
return Res;
2876
}
2877
2878
if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2879
if (!OpName.empty())
2880
error("Constant int or bit argument should not have a name!");
2881
if (isa<BitInit>(TheInit))
2882
TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2883
return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2884
}
2885
2886
if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2887
// Turn this into an IntInit.
2888
Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2889
if (!II || !isa<IntInit>(II))
2890
error("Bits value must be constants!");
2891
return II ? ParseTreePattern(II, OpName) : nullptr;
2892
}
2893
2894
DagInit *Dag = dyn_cast<DagInit>(TheInit);
2895
if (!Dag) {
2896
TheInit->print(errs());
2897
error("Pattern has unexpected init kind!");
2898
return nullptr;
2899
}
2900
DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2901
if (!OpDef) {
2902
error("Pattern has unexpected operator type!");
2903
return nullptr;
2904
}
2905
Record *Operator = OpDef->getDef();
2906
2907
if (Operator->isSubClassOf("ValueType")) {
2908
// If the operator is a ValueType, then this must be "type cast" of a leaf
2909
// node.
2910
if (Dag->getNumArgs() != 1)
2911
error("Type cast only takes one operand!");
2912
2913
TreePatternNodePtr New =
2914
ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2915
2916
// Apply the type cast.
2917
if (New->getNumTypes() != 1)
2918
error("Type cast can only have one type!");
2919
const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2920
New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2921
2922
if (!OpName.empty())
2923
error("ValueType cast should not have a name!");
2924
return New;
2925
}
2926
2927
// Verify that this is something that makes sense for an operator.
2928
if (!Operator->isSubClassOf("PatFrags") &&
2929
!Operator->isSubClassOf("SDNode") &&
2930
!Operator->isSubClassOf("Instruction") &&
2931
!Operator->isSubClassOf("SDNodeXForm") &&
2932
!Operator->isSubClassOf("Intrinsic") &&
2933
!Operator->isSubClassOf("ComplexPattern") &&
2934
Operator->getName() != "set" && Operator->getName() != "implicit")
2935
error("Unrecognized node '" + Operator->getName() + "'!");
2936
2937
// Check to see if this is something that is illegal in an input pattern.
2938
if (isInputPattern) {
2939
if (Operator->isSubClassOf("Instruction") ||
2940
Operator->isSubClassOf("SDNodeXForm"))
2941
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2942
} else {
2943
if (Operator->isSubClassOf("Intrinsic"))
2944
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2945
2946
if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" &&
2947
Operator->getName() != "timm" && Operator->getName() != "fpimm" &&
2948
Operator->getName() != "tglobaltlsaddr" &&
2949
Operator->getName() != "tconstpool" &&
2950
Operator->getName() != "tjumptable" &&
2951
Operator->getName() != "tframeindex" &&
2952
Operator->getName() != "texternalsym" &&
2953
Operator->getName() != "tblockaddress" &&
2954
Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" &&
2955
Operator->getName() != "vt" && Operator->getName() != "mcsym")
2956
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2957
}
2958
2959
std::vector<TreePatternNodePtr> Children;
2960
2961
// Parse all the operands.
2962
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2963
Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2964
2965
// Get the actual number of results before Operator is converted to an
2966
// intrinsic node (which is hard-coded to have either zero or one result).
2967
unsigned NumResults = GetNumNodeResults(Operator, CDP);
2968
2969
// If the operator is an intrinsic, then this is just syntactic sugar for
2970
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2971
// convert the intrinsic name to a number.
2972
if (Operator->isSubClassOf("Intrinsic")) {
2973
const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2974
unsigned IID = getDAGPatterns().getIntrinsicID(Operator) + 1;
2975
2976
// If this intrinsic returns void, it must have side-effects and thus a
2977
// chain.
2978
if (Int.IS.RetTys.empty())
2979
Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2980
else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects)
2981
// Has side-effects, requires chain.
2982
Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2983
else // Otherwise, no chain.
2984
Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2985
2986
Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>(
2987
IntInit::get(RK, IID), 1));
2988
}
2989
2990
if (Operator->isSubClassOf("ComplexPattern")) {
2991
for (unsigned i = 0; i < Children.size(); ++i) {
2992
TreePatternNodePtr Child = Children[i];
2993
2994
if (Child->getName().empty())
2995
error("All arguments to a ComplexPattern must be named");
2996
2997
// Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2998
// and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2999
// neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
3000
auto OperandId = std::pair(Operator, i);
3001
auto PrevOp = ComplexPatternOperands.find(Child->getName());
3002
if (PrevOp != ComplexPatternOperands.end()) {
3003
if (PrevOp->getValue() != OperandId)
3004
error("All ComplexPattern operands must appear consistently: "
3005
"in the same order in just one ComplexPattern instance.");
3006
} else
3007
ComplexPatternOperands[Child->getName()] = OperandId;
3008
}
3009
}
3010
3011
TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>(
3012
Operator, std::move(Children), NumResults);
3013
Result->setName(OpName);
3014
3015
if (Dag->getName()) {
3016
assert(Result->getName().empty());
3017
Result->setName(Dag->getNameStr());
3018
}
3019
return Result;
3020
}
3021
3022
/// SimplifyTree - See if we can simplify this tree to eliminate something that
3023
/// will never match in favor of something obvious that will. This is here
3024
/// strictly as a convenience to target authors because it allows them to write
3025
/// more type generic things and have useless type casts fold away.
3026
///
3027
/// This returns true if any change is made.
3028
static bool SimplifyTree(TreePatternNodePtr &N) {
3029
if (N->isLeaf())
3030
return false;
3031
3032
// If we have a bitconvert with a resolved type and if the source and
3033
// destination types are the same, then the bitconvert is useless, remove it.
3034
//
3035
// We make an exception if the types are completely empty. This can come up
3036
// when the pattern being simplified is in the Fragments list of a PatFrags,
3037
// so that the operand is just an untyped "node". In that situation we leave
3038
// bitconverts unsimplified, and simplify them later once the fragment is
3039
// expanded into its true context.
3040
if (N->getOperator()->getName() == "bitconvert" &&
3041
N->getExtType(0).isValueTypeByHwMode(false) &&
3042
!N->getExtType(0).empty() &&
3043
N->getExtType(0) == N->getChild(0).getExtType(0) &&
3044
N->getName().empty()) {
3045
if (!N->getPredicateCalls().empty()) {
3046
std::string Str;
3047
raw_string_ostream OS(Str);
3048
OS << *N
3049
<< "\n trivial bitconvert node should not have predicate calls\n";
3050
PrintFatalError(Str);
3051
return false;
3052
}
3053
N = N->getChildShared(0);
3054
SimplifyTree(N);
3055
return true;
3056
}
3057
3058
// Walk all children.
3059
bool MadeChange = false;
3060
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3061
MadeChange |= SimplifyTree(N->getChildSharedPtr(i));
3062
3063
return MadeChange;
3064
}
3065
3066
/// InferAllTypes - Infer/propagate as many types throughout the expression
3067
/// patterns as possible. Return true if all types are inferred, false
3068
/// otherwise. Flags an error if a type contradiction is found.
3069
bool TreePattern::InferAllTypes(
3070
const StringMap<SmallVector<TreePatternNode *, 1>> *InNamedTypes) {
3071
if (NamedNodes.empty())
3072
ComputeNamedNodes();
3073
3074
bool MadeChange = true;
3075
while (MadeChange) {
3076
MadeChange = false;
3077
for (TreePatternNodePtr &Tree : Trees) {
3078
MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3079
MadeChange |= SimplifyTree(Tree);
3080
}
3081
3082
// If there are constraints on our named nodes, apply them.
3083
for (auto &Entry : NamedNodes) {
3084
SmallVectorImpl<TreePatternNode *> &Nodes = Entry.second;
3085
3086
// If we have input named node types, propagate their types to the named
3087
// values here.
3088
if (InNamedTypes) {
3089
if (!InNamedTypes->count(Entry.getKey())) {
3090
error("Node '" + std::string(Entry.getKey()) +
3091
"' in output pattern but not input pattern");
3092
return true;
3093
}
3094
3095
const SmallVectorImpl<TreePatternNode *> &InNodes =
3096
InNamedTypes->find(Entry.getKey())->second;
3097
3098
// The input types should be fully resolved by now.
3099
for (TreePatternNode *Node : Nodes) {
3100
// If this node is a register class, and it is the root of the pattern
3101
// then we're mapping something onto an input register. We allow
3102
// changing the type of the input register in this case. This allows
3103
// us to match things like:
3104
// def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3105
if (Node == Trees[0].get() && Node->isLeaf()) {
3106
DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3107
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3108
DI->getDef()->isSubClassOf("RegisterOperand")))
3109
continue;
3110
}
3111
3112
assert(Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 &&
3113
"FIXME: cannot name multiple result nodes yet");
3114
MadeChange |=
3115
Node->UpdateNodeType(0, InNodes[0]->getExtType(0), *this);
3116
}
3117
}
3118
3119
// If there are multiple nodes with the same name, they must all have the
3120
// same type.
3121
if (Entry.second.size() > 1) {
3122
for (unsigned i = 0, e = Nodes.size() - 1; i != e; ++i) {
3123
TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i + 1];
3124
assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3125
"FIXME: cannot name multiple result nodes yet");
3126
3127
MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3128
MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3129
}
3130
}
3131
}
3132
}
3133
3134
bool HasUnresolvedTypes = false;
3135
for (const TreePatternNodePtr &Tree : Trees)
3136
HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3137
return !HasUnresolvedTypes;
3138
}
3139
3140
void TreePattern::print(raw_ostream &OS) const {
3141
OS << getRecord()->getName();
3142
if (!Args.empty()) {
3143
OS << "(";
3144
ListSeparator LS;
3145
for (const std::string &Arg : Args)
3146
OS << LS << Arg;
3147
OS << ")";
3148
}
3149
OS << ": ";
3150
3151
if (Trees.size() > 1)
3152
OS << "[\n";
3153
for (const TreePatternNodePtr &Tree : Trees) {
3154
OS << "\t";
3155
Tree->print(OS);
3156
OS << "\n";
3157
}
3158
3159
if (Trees.size() > 1)
3160
OS << "]\n";
3161
}
3162
3163
void TreePattern::dump() const { print(errs()); }
3164
3165
//===----------------------------------------------------------------------===//
3166
// CodeGenDAGPatterns implementation
3167
//
3168
3169
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3170
PatternRewriterFn PatternRewriter)
3171
: Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3172
PatternRewriter(PatternRewriter) {
3173
3174
Intrinsics = CodeGenIntrinsicTable(Records);
3175
ParseNodeInfo();
3176
ParseNodeTransforms();
3177
ParseComplexPatterns();
3178
ParsePatternFragments();
3179
ParseDefaultOperands();
3180
ParseInstructions();
3181
ParsePatternFragments(/*OutFrags*/ true);
3182
ParsePatterns();
3183
3184
// Generate variants. For example, commutative patterns can match
3185
// multiple ways. Add them to PatternsToMatch as well.
3186
GenerateVariants();
3187
3188
// Break patterns with parameterized types into a series of patterns,
3189
// where each one has a fixed type and is predicated on the conditions
3190
// of the associated HW mode.
3191
ExpandHwModeBasedTypes();
3192
3193
// Infer instruction flags. For example, we can detect loads,
3194
// stores, and side effects in many cases by examining an
3195
// instruction's pattern.
3196
InferInstructionFlags();
3197
3198
// Verify that instruction flags match the patterns.
3199
VerifyInstructionFlags();
3200
}
3201
3202
Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3203
Record *N = Records.getDef(Name);
3204
if (!N || !N->isSubClassOf("SDNode"))
3205
PrintFatalError("Error getting SDNode '" + Name + "'!");
3206
3207
return N;
3208
}
3209
3210
// Parse all of the SDNode definitions for the target, populating SDNodes.
3211
void CodeGenDAGPatterns::ParseNodeInfo() {
3212
std::vector<Record *> Nodes = Records.getAllDerivedDefinitions("SDNode");
3213
const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3214
3215
while (!Nodes.empty()) {
3216
Record *R = Nodes.back();
3217
SDNodes.insert(std::pair(R, SDNodeInfo(R, CGH)));
3218
Nodes.pop_back();
3219
}
3220
3221
// Get the builtin intrinsic nodes.
3222
intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3223
intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3224
intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3225
}
3226
3227
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3228
/// map, and emit them to the file as functions.
3229
void CodeGenDAGPatterns::ParseNodeTransforms() {
3230
std::vector<Record *> Xforms =
3231
Records.getAllDerivedDefinitions("SDNodeXForm");
3232
while (!Xforms.empty()) {
3233
Record *XFormNode = Xforms.back();
3234
Record *SDNode = XFormNode->getValueAsDef("Opcode");
3235
StringRef Code = XFormNode->getValueAsString("XFormFunction");
3236
SDNodeXForms.insert(
3237
std::pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3238
3239
Xforms.pop_back();
3240
}
3241
}
3242
3243
void CodeGenDAGPatterns::ParseComplexPatterns() {
3244
std::vector<Record *> AMs =
3245
Records.getAllDerivedDefinitions("ComplexPattern");
3246
while (!AMs.empty()) {
3247
ComplexPatterns.insert(std::pair(AMs.back(), AMs.back()));
3248
AMs.pop_back();
3249
}
3250
}
3251
3252
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3253
/// file, building up the PatternFragments map. After we've collected them all,
3254
/// inline fragments together as necessary, so that there are no references left
3255
/// inside a pattern fragment to a pattern fragment.
3256
///
3257
void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3258
std::vector<Record *> Fragments =
3259
Records.getAllDerivedDefinitions("PatFrags");
3260
3261
// First step, parse all of the fragments.
3262
for (Record *Frag : Fragments) {
3263
if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3264
continue;
3265
3266
ListInit *LI = Frag->getValueAsListInit("Fragments");
3267
TreePattern *P = (PatternFragments[Frag] = std::make_unique<TreePattern>(
3268
Frag, LI, !Frag->isSubClassOf("OutPatFrag"), *this))
3269
.get();
3270
3271
// Validate the argument list, converting it to set, to discard duplicates.
3272
std::vector<std::string> &Args = P->getArgList();
3273
// Copy the args so we can take StringRefs to them.
3274
auto ArgsCopy = Args;
3275
SmallDenseSet<StringRef, 4> OperandsSet;
3276
OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3277
3278
if (OperandsSet.count(""))
3279
P->error("Cannot have unnamed 'node' values in pattern fragment!");
3280
3281
// Parse the operands list.
3282
DagInit *OpsList = Frag->getValueAsDag("Operands");
3283
DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3284
// Special cases: ops == outs == ins. Different names are used to
3285
// improve readability.
3286
if (!OpsOp || (OpsOp->getDef()->getName() != "ops" &&
3287
OpsOp->getDef()->getName() != "outs" &&
3288
OpsOp->getDef()->getName() != "ins"))
3289
P->error("Operands list should start with '(ops ... '!");
3290
3291
// Copy over the arguments.
3292
Args.clear();
3293
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3294
if (!isa<DefInit>(OpsList->getArg(j)) ||
3295
cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3296
P->error("Operands list should all be 'node' values.");
3297
if (!OpsList->getArgName(j))
3298
P->error("Operands list should have names for each operand!");
3299
StringRef ArgNameStr = OpsList->getArgNameStr(j);
3300
if (!OperandsSet.count(ArgNameStr))
3301
P->error("'" + ArgNameStr +
3302
"' does not occur in pattern or was multiply specified!");
3303
OperandsSet.erase(ArgNameStr);
3304
Args.push_back(std::string(ArgNameStr));
3305
}
3306
3307
if (!OperandsSet.empty())
3308
P->error("Operands list does not contain an entry for operand '" +
3309
*OperandsSet.begin() + "'!");
3310
3311
// If there is a node transformation corresponding to this, keep track of
3312
// it.
3313
Record *Transform = Frag->getValueAsDef("OperandTransform");
3314
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3315
for (const auto &T : P->getTrees())
3316
T->setTransformFn(Transform);
3317
}
3318
3319
// Now that we've parsed all of the tree fragments, do a closure on them so
3320
// that there are not references to PatFrags left inside of them.
3321
for (Record *Frag : Fragments) {
3322
if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3323
continue;
3324
3325
TreePattern &ThePat = *PatternFragments[Frag];
3326
ThePat.InlinePatternFragments();
3327
3328
// Infer as many types as possible. Don't worry about it if we don't infer
3329
// all of them, some may depend on the inputs of the pattern. Also, don't
3330
// validate type sets; validation may cause spurious failures e.g. if a
3331
// fragment needs floating-point types but the current target does not have
3332
// any (this is only an error if that fragment is ever used!).
3333
{
3334
TypeInfer::SuppressValidation SV(ThePat.getInfer());
3335
ThePat.InferAllTypes();
3336
ThePat.resetError();
3337
}
3338
3339
// If debugging, print out the pattern fragment result.
3340
LLVM_DEBUG(ThePat.dump());
3341
}
3342
}
3343
3344
void CodeGenDAGPatterns::ParseDefaultOperands() {
3345
std::vector<Record *> DefaultOps;
3346
DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3347
3348
// Find some SDNode.
3349
assert(!SDNodes.empty() && "No SDNodes parsed?");
3350
Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3351
3352
for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3353
DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3354
3355
// Clone the DefaultInfo dag node, changing the operator from 'ops' to
3356
// SomeSDnode so that we can parse this.
3357
std::vector<std::pair<Init *, StringInit *>> Ops;
3358
for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3359
Ops.push_back(
3360
std::pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op)));
3361
DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3362
3363
// Create a TreePattern to parse this.
3364
TreePattern P(DefaultOps[i], DI, false, *this);
3365
assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3366
3367
// Copy the operands over into a DAGDefaultOperand.
3368
DAGDefaultOperand DefaultOpInfo;
3369
3370
const TreePatternNodePtr &T = P.getTree(0);
3371
for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3372
TreePatternNodePtr TPN = T->getChildShared(op);
3373
while (TPN->ApplyTypeConstraints(P, false))
3374
/* Resolve all types */;
3375
3376
if (TPN->ContainsUnresolvedType(P)) {
3377
PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3378
DefaultOps[i]->getName() +
3379
"' doesn't have a concrete type!");
3380
}
3381
DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3382
}
3383
3384
// Insert it into the DefaultOperands map so we can find it later.
3385
DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3386
}
3387
}
3388
3389
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3390
/// instruction input. Return true if this is a real use.
3391
static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3392
std::map<std::string, TreePatternNodePtr> &InstInputs) {
3393
// No name -> not interesting.
3394
if (Pat->getName().empty()) {
3395
if (Pat->isLeaf()) {
3396
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3397
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3398
DI->getDef()->isSubClassOf("RegisterOperand")))
3399
I.error("Input " + DI->getDef()->getName() + " must be named!");
3400
}
3401
return false;
3402
}
3403
3404
Record *Rec;
3405
if (Pat->isLeaf()) {
3406
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3407
if (!DI)
3408
I.error("Input $" + Pat->getName() + " must be an identifier!");
3409
Rec = DI->getDef();
3410
} else {
3411
Rec = Pat->getOperator();
3412
}
3413
3414
// SRCVALUE nodes are ignored.
3415
if (Rec->getName() == "srcvalue")
3416
return false;
3417
3418
TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3419
if (!Slot) {
3420
Slot = Pat;
3421
return true;
3422
}
3423
Record *SlotRec;
3424
if (Slot->isLeaf()) {
3425
SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3426
} else {
3427
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3428
SlotRec = Slot->getOperator();
3429
}
3430
3431
// Ensure that the inputs agree if we've already seen this input.
3432
if (Rec != SlotRec)
3433
I.error("All $" + Pat->getName() + " inputs must agree with each other");
3434
// Ensure that the types can agree as well.
3435
Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3436
Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3437
if (Slot->getExtTypes() != Pat->getExtTypes())
3438
I.error("All $" + Pat->getName() + " inputs must agree with each other");
3439
return true;
3440
}
3441
3442
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3443
/// part of "I", the instruction), computing the set of inputs and outputs of
3444
/// the pattern. Report errors if we see anything naughty.
3445
void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3446
TreePattern &I, TreePatternNodePtr Pat,
3447
std::map<std::string, TreePatternNodePtr> &InstInputs,
3448
MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3449
&InstResults,
3450
std::vector<Record *> &InstImpResults) {
3451
3452
// The instruction pattern still has unresolved fragments. For *named*
3453
// nodes we must resolve those here. This may not result in multiple
3454
// alternatives.
3455
if (!Pat->getName().empty()) {
3456
TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3457
SrcPattern.InlinePatternFragments();
3458
SrcPattern.InferAllTypes();
3459
Pat = SrcPattern.getOnlyTree();
3460
}
3461
3462
if (Pat->isLeaf()) {
3463
bool isUse = HandleUse(I, Pat, InstInputs);
3464
if (!isUse && Pat->getTransformFn())
3465
I.error("Cannot specify a transform function for a non-input value!");
3466
return;
3467
}
3468
3469
if (Pat->getOperator()->getName() == "implicit") {
3470
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3471
TreePatternNode &Dest = Pat->getChild(i);
3472
if (!Dest.isLeaf())
3473
I.error("implicitly defined value should be a register!");
3474
3475
DefInit *Val = dyn_cast<DefInit>(Dest.getLeafValue());
3476
if (!Val || !Val->getDef()->isSubClassOf("Register"))
3477
I.error("implicitly defined value should be a register!");
3478
if (Val)
3479
InstImpResults.push_back(Val->getDef());
3480
}
3481
return;
3482
}
3483
3484
if (Pat->getOperator()->getName() != "set") {
3485
// If this is not a set, verify that the children nodes are not void typed,
3486
// and recurse.
3487
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3488
if (Pat->getChild(i).getNumTypes() == 0)
3489
I.error("Cannot have void nodes inside of patterns!");
3490
FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3491
InstResults, InstImpResults);
3492
}
3493
3494
// If this is a non-leaf node with no children, treat it basically as if
3495
// it were a leaf. This handles nodes like (imm).
3496
bool isUse = HandleUse(I, Pat, InstInputs);
3497
3498
if (!isUse && Pat->getTransformFn())
3499
I.error("Cannot specify a transform function for a non-input value!");
3500
return;
3501
}
3502
3503
// Otherwise, this is a set, validate and collect instruction results.
3504
if (Pat->getNumChildren() == 0)
3505
I.error("set requires operands!");
3506
3507
if (Pat->getTransformFn())
3508
I.error("Cannot specify a transform function on a set node!");
3509
3510
// Check the set destinations.
3511
unsigned NumDests = Pat->getNumChildren() - 1;
3512
for (unsigned i = 0; i != NumDests; ++i) {
3513
TreePatternNodePtr Dest = Pat->getChildShared(i);
3514
// For set destinations we also must resolve fragments here.
3515
TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3516
DestPattern.InlinePatternFragments();
3517
DestPattern.InferAllTypes();
3518
Dest = DestPattern.getOnlyTree();
3519
3520
if (!Dest->isLeaf())
3521
I.error("set destination should be a register!");
3522
3523
DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3524
if (!Val) {
3525
I.error("set destination should be a register!");
3526
continue;
3527
}
3528
3529
if (Val->getDef()->isSubClassOf("RegisterClass") ||
3530
Val->getDef()->isSubClassOf("ValueType") ||
3531
Val->getDef()->isSubClassOf("RegisterOperand") ||
3532
Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3533
if (Dest->getName().empty())
3534
I.error("set destination must have a name!");
3535
if (InstResults.count(Dest->getName()))
3536
I.error("cannot set '" + Dest->getName() + "' multiple times");
3537
InstResults[Dest->getName()] = Dest;
3538
} else if (Val->getDef()->isSubClassOf("Register")) {
3539
InstImpResults.push_back(Val->getDef());
3540
} else {
3541
I.error("set destination should be a register!");
3542
}
3543
}
3544
3545
// Verify and collect info from the computation.
3546
FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3547
InstResults, InstImpResults);
3548
}
3549
3550
//===----------------------------------------------------------------------===//
3551
// Instruction Analysis
3552
//===----------------------------------------------------------------------===//
3553
3554
class InstAnalyzer {
3555
const CodeGenDAGPatterns &CDP;
3556
3557
public:
3558
bool hasSideEffects;
3559
bool mayStore;
3560
bool mayLoad;
3561
bool isBitcast;
3562
bool isVariadic;
3563
bool hasChain;
3564
3565
InstAnalyzer(const CodeGenDAGPatterns &cdp)
3566
: CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3567
isBitcast(false), isVariadic(false), hasChain(false) {}
3568
3569
void Analyze(const PatternToMatch &Pat) {
3570
const TreePatternNode &N = Pat.getSrcPattern();
3571
AnalyzeNode(N);
3572
// These properties are detected only on the root node.
3573
isBitcast = IsNodeBitcast(N);
3574
}
3575
3576
private:
3577
bool IsNodeBitcast(const TreePatternNode &N) const {
3578
if (hasSideEffects || mayLoad || mayStore || isVariadic)
3579
return false;
3580
3581
if (N.isLeaf())
3582
return false;
3583
if (N.getNumChildren() != 1 || !N.getChild(0).isLeaf())
3584
return false;
3585
3586
if (N.getOperator()->isSubClassOf("ComplexPattern"))
3587
return false;
3588
3589
const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N.getOperator());
3590
if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3591
return false;
3592
return OpInfo.getEnumName() == "ISD::BITCAST";
3593
}
3594
3595
public:
3596
void AnalyzeNode(const TreePatternNode &N) {
3597
if (N.isLeaf()) {
3598
if (DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) {
3599
Record *LeafRec = DI->getDef();
3600
// Handle ComplexPattern leaves.
3601
if (LeafRec->isSubClassOf("ComplexPattern")) {
3602
const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3603
if (CP.hasProperty(SDNPMayStore))
3604
mayStore = true;
3605
if (CP.hasProperty(SDNPMayLoad))
3606
mayLoad = true;
3607
if (CP.hasProperty(SDNPSideEffect))
3608
hasSideEffects = true;
3609
}
3610
}
3611
return;
3612
}
3613
3614
// Analyze children.
3615
for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
3616
AnalyzeNode(N.getChild(i));
3617
3618
// Notice properties of the node.
3619
if (N.NodeHasProperty(SDNPMayStore, CDP))
3620
mayStore = true;
3621
if (N.NodeHasProperty(SDNPMayLoad, CDP))
3622
mayLoad = true;
3623
if (N.NodeHasProperty(SDNPSideEffect, CDP))
3624
hasSideEffects = true;
3625
if (N.NodeHasProperty(SDNPVariadic, CDP))
3626
isVariadic = true;
3627
if (N.NodeHasProperty(SDNPHasChain, CDP))
3628
hasChain = true;
3629
3630
if (const CodeGenIntrinsic *IntInfo = N.getIntrinsicInfo(CDP)) {
3631
ModRefInfo MR = IntInfo->ME.getModRef();
3632
// If this is an intrinsic, analyze it.
3633
if (isRefSet(MR))
3634
mayLoad = true; // These may load memory.
3635
3636
if (isModSet(MR))
3637
mayStore = true; // Intrinsics that can write to memory are 'mayStore'.
3638
3639
// Consider intrinsics that don't specify any restrictions on memory
3640
// effects as having a side-effect.
3641
if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects)
3642
hasSideEffects = true;
3643
}
3644
}
3645
};
3646
3647
static bool InferFromPattern(CodeGenInstruction &InstInfo,
3648
const InstAnalyzer &PatInfo, Record *PatDef) {
3649
bool Error = false;
3650
3651
// Remember where InstInfo got its flags.
3652
if (InstInfo.hasUndefFlags())
3653
InstInfo.InferredFrom = PatDef;
3654
3655
// Check explicitly set flags for consistency.
3656
if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3657
!InstInfo.hasSideEffects_Unset) {
3658
// Allow explicitly setting hasSideEffects = 1 on instructions, even when
3659
// the pattern has no side effects. That could be useful for div/rem
3660
// instructions that may trap.
3661
if (!InstInfo.hasSideEffects) {
3662
Error = true;
3663
PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3664
Twine(InstInfo.hasSideEffects));
3665
}
3666
}
3667
3668
if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3669
Error = true;
3670
PrintError(PatDef->getLoc(),
3671
"Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore));
3672
}
3673
3674
if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3675
// Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3676
// Some targets translate immediates to loads.
3677
if (!InstInfo.mayLoad) {
3678
Error = true;
3679
PrintError(PatDef->getLoc(),
3680
"Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad));
3681
}
3682
}
3683
3684
// Transfer inferred flags.
3685
InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3686
InstInfo.mayStore |= PatInfo.mayStore;
3687
InstInfo.mayLoad |= PatInfo.mayLoad;
3688
3689
// These flags are silently added without any verification.
3690
// FIXME: To match historical behavior of TableGen, for now add those flags
3691
// only when we're inferring from the primary instruction pattern.
3692
if (PatDef->isSubClassOf("Instruction")) {
3693
InstInfo.isBitcast |= PatInfo.isBitcast;
3694
InstInfo.hasChain |= PatInfo.hasChain;
3695
InstInfo.hasChain_Inferred = true;
3696
}
3697
3698
// Don't infer isVariadic. This flag means something different on SDNodes and
3699
// instructions. For example, a CALL SDNode is variadic because it has the
3700
// call arguments as operands, but a CALL instruction is not variadic - it
3701
// has argument registers as implicit, not explicit uses.
3702
3703
return Error;
3704
}
3705
3706
/// hasNullFragReference - Return true if the DAG has any reference to the
3707
/// null_frag operator.
3708
static bool hasNullFragReference(DagInit *DI) {
3709
DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3710
if (!OpDef)
3711
return false;
3712
Record *Operator = OpDef->getDef();
3713
3714
// If this is the null fragment, return true.
3715
if (Operator->getName() == "null_frag")
3716
return true;
3717
// If any of the arguments reference the null fragment, return true.
3718
for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3719
if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3720
if (Arg->getDef()->getName() == "null_frag")
3721
return true;
3722
DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3723
if (Arg && hasNullFragReference(Arg))
3724
return true;
3725
}
3726
3727
return false;
3728
}
3729
3730
/// hasNullFragReference - Return true if any DAG in the list references
3731
/// the null_frag operator.
3732
static bool hasNullFragReference(ListInit *LI) {
3733
for (Init *I : LI->getValues()) {
3734
DagInit *DI = dyn_cast<DagInit>(I);
3735
assert(DI && "non-dag in an instruction Pattern list?!");
3736
if (hasNullFragReference(DI))
3737
return true;
3738
}
3739
return false;
3740
}
3741
3742
/// Get all the instructions in a tree.
3743
static void getInstructionsInTree(TreePatternNode &Tree,
3744
SmallVectorImpl<Record *> &Instrs) {
3745
if (Tree.isLeaf())
3746
return;
3747
if (Tree.getOperator()->isSubClassOf("Instruction"))
3748
Instrs.push_back(Tree.getOperator());
3749
for (unsigned i = 0, e = Tree.getNumChildren(); i != e; ++i)
3750
getInstructionsInTree(Tree.getChild(i), Instrs);
3751
}
3752
3753
/// Check the class of a pattern leaf node against the instruction operand it
3754
/// represents.
3755
static bool checkOperandClass(CGIOperandList::OperandInfo &OI, Record *Leaf) {
3756
if (OI.Rec == Leaf)
3757
return true;
3758
3759
// Allow direct value types to be used in instruction set patterns.
3760
// The type will be checked later.
3761
if (Leaf->isSubClassOf("ValueType"))
3762
return true;
3763
3764
// Patterns can also be ComplexPattern instances.
3765
if (Leaf->isSubClassOf("ComplexPattern"))
3766
return true;
3767
3768
return false;
3769
}
3770
3771
void CodeGenDAGPatterns::parseInstructionPattern(CodeGenInstruction &CGI,
3772
ListInit *Pat,
3773
DAGInstMap &DAGInsts) {
3774
3775
assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3776
3777
// Parse the instruction.
3778
TreePattern I(CGI.TheDef, Pat, true, *this);
3779
3780
// InstInputs - Keep track of all of the inputs of the instruction, along
3781
// with the record they are declared as.
3782
std::map<std::string, TreePatternNodePtr> InstInputs;
3783
3784
// InstResults - Keep track of all the virtual registers that are 'set'
3785
// in the instruction, including what reg class they are.
3786
MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3787
InstResults;
3788
3789
std::vector<Record *> InstImpResults;
3790
3791
// Verify that the top-level forms in the instruction are of void type, and
3792
// fill in the InstResults map.
3793
SmallString<32> TypesString;
3794
for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3795
TypesString.clear();
3796
TreePatternNodePtr Pat = I.getTree(j);
3797
if (Pat->getNumTypes() != 0) {
3798
raw_svector_ostream OS(TypesString);
3799
ListSeparator LS;
3800
for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3801
OS << LS;
3802
Pat->getExtType(k).writeToStream(OS);
3803
}
3804
I.error("Top-level forms in instruction pattern should have"
3805
" void types, has types " +
3806
OS.str());
3807
}
3808
3809
// Find inputs and outputs, and verify the structure of the uses/defs.
3810
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3811
InstImpResults);
3812
}
3813
3814
// Now that we have inputs and outputs of the pattern, inspect the operands
3815
// list for the instruction. This determines the order that operands are
3816
// added to the machine instruction the node corresponds to.
3817
unsigned NumResults = InstResults.size();
3818
3819
// Parse the operands list from the (ops) list, validating it.
3820
assert(I.getArgList().empty() && "Args list should still be empty here!");
3821
3822
// Check that all of the results occur first in the list.
3823
std::vector<Record *> Results;
3824
std::vector<unsigned> ResultIndices;
3825
SmallVector<TreePatternNodePtr, 2> ResNodes;
3826
for (unsigned i = 0; i != NumResults; ++i) {
3827
if (i == CGI.Operands.size()) {
3828
const std::string &OpName =
3829
llvm::find_if(
3830
InstResults,
3831
[](const std::pair<std::string, TreePatternNodePtr> &P) {
3832
return P.second;
3833
})
3834
->first;
3835
3836
I.error("'" + OpName + "' set but does not appear in operand list!");
3837
}
3838
3839
const std::string &OpName = CGI.Operands[i].Name;
3840
3841
// Check that it exists in InstResults.
3842
auto InstResultIter = InstResults.find(OpName);
3843
if (InstResultIter == InstResults.end() || !InstResultIter->second)
3844
I.error("Operand $" + OpName + " does not exist in operand list!");
3845
3846
TreePatternNodePtr RNode = InstResultIter->second;
3847
Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3848
ResNodes.push_back(std::move(RNode));
3849
if (!R)
3850
I.error("Operand $" + OpName +
3851
" should be a set destination: all "
3852
"outputs must occur before inputs in operand list!");
3853
3854
if (!checkOperandClass(CGI.Operands[i], R))
3855
I.error("Operand $" + OpName + " class mismatch!");
3856
3857
// Remember the return type.
3858
Results.push_back(CGI.Operands[i].Rec);
3859
3860
// Remember the result index.
3861
ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3862
3863
// Okay, this one checks out.
3864
InstResultIter->second = nullptr;
3865
}
3866
3867
// Loop over the inputs next.
3868
std::vector<TreePatternNodePtr> ResultNodeOperands;
3869
std::vector<Record *> Operands;
3870
for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3871
CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3872
const std::string &OpName = Op.Name;
3873
if (OpName.empty()) {
3874
I.error("Operand #" + Twine(i) + " in operands list has no name!");
3875
continue;
3876
}
3877
3878
if (!InstInputs.count(OpName)) {
3879
// If this is an operand with a DefaultOps set filled in, we can ignore
3880
// this. When we codegen it, we will do so as always executed.
3881
if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3882
// Does it have a non-empty DefaultOps field? If so, ignore this
3883
// operand.
3884
if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3885
continue;
3886
}
3887
I.error("Operand $" + OpName +
3888
" does not appear in the instruction pattern");
3889
continue;
3890
}
3891
TreePatternNodePtr InVal = InstInputs[OpName];
3892
InstInputs.erase(OpName); // It occurred, remove from map.
3893
3894
if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3895
Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3896
if (!checkOperandClass(Op, InRec)) {
3897
I.error("Operand $" + OpName +
3898
"'s register class disagrees"
3899
" between the operand and pattern");
3900
continue;
3901
}
3902
}
3903
Operands.push_back(Op.Rec);
3904
3905
// Construct the result for the dest-pattern operand list.
3906
TreePatternNodePtr OpNode = InVal->clone();
3907
3908
// No predicate is useful on the result.
3909
OpNode->clearPredicateCalls();
3910
3911
// Promote the xform function to be an explicit node if set.
3912
if (Record *Xform = OpNode->getTransformFn()) {
3913
OpNode->setTransformFn(nullptr);
3914
std::vector<TreePatternNodePtr> Children;
3915
Children.push_back(OpNode);
3916
OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
3917
OpNode->getNumTypes());
3918
}
3919
3920
ResultNodeOperands.push_back(std::move(OpNode));
3921
}
3922
3923
if (!InstInputs.empty())
3924
I.error("Input operand $" + InstInputs.begin()->first +
3925
" occurs in pattern but not in operands list!");
3926
3927
TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>(
3928
I.getRecord(), std::move(ResultNodeOperands),
3929
GetNumNodeResults(I.getRecord(), *this));
3930
// Copy fully inferred output node types to instruction result pattern.
3931
for (unsigned i = 0; i != NumResults; ++i) {
3932
assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3933
ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3934
ResultPattern->setResultIndex(i, ResultIndices[i]);
3935
}
3936
3937
// FIXME: Assume only the first tree is the pattern. The others are clobber
3938
// nodes.
3939
TreePatternNodePtr Pattern = I.getTree(0);
3940
TreePatternNodePtr SrcPattern;
3941
if (Pattern->getOperator()->getName() == "set") {
3942
SrcPattern = Pattern->getChild(Pattern->getNumChildren() - 1).clone();
3943
} else {
3944
// Not a set (store or something?)
3945
SrcPattern = Pattern;
3946
}
3947
3948
// Create and insert the instruction.
3949
// FIXME: InstImpResults should not be part of DAGInstruction.
3950
Record *R = I.getRecord();
3951
DAGInsts.try_emplace(R, std::move(Results), std::move(Operands),
3952
std::move(InstImpResults), SrcPattern, ResultPattern);
3953
3954
LLVM_DEBUG(I.dump());
3955
}
3956
3957
/// ParseInstructions - Parse all of the instructions, inlining and resolving
3958
/// any fragments involved. This populates the Instructions list with fully
3959
/// resolved instructions.
3960
void CodeGenDAGPatterns::ParseInstructions() {
3961
std::vector<Record *> Instrs =
3962
Records.getAllDerivedDefinitions("Instruction");
3963
3964
for (Record *Instr : Instrs) {
3965
ListInit *LI = nullptr;
3966
3967
if (isa<ListInit>(Instr->getValueInit("Pattern")))
3968
LI = Instr->getValueAsListInit("Pattern");
3969
3970
// If there is no pattern, only collect minimal information about the
3971
// instruction for its operand list. We have to assume that there is one
3972
// result, as we have no detailed info. A pattern which references the
3973
// null_frag operator is as-if no pattern were specified. Normally this
3974
// is from a multiclass expansion w/ a SDPatternOperator passed in as
3975
// null_frag.
3976
if (!LI || LI->empty() || hasNullFragReference(LI)) {
3977
std::vector<Record *> Results;
3978
std::vector<Record *> Operands;
3979
3980
CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3981
3982
if (InstInfo.Operands.size() != 0) {
3983
for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3984
Results.push_back(InstInfo.Operands[j].Rec);
3985
3986
// The rest are inputs.
3987
for (unsigned j = InstInfo.Operands.NumDefs,
3988
e = InstInfo.Operands.size();
3989
j < e; ++j)
3990
Operands.push_back(InstInfo.Operands[j].Rec);
3991
}
3992
3993
// Create and insert the instruction.
3994
Instructions.try_emplace(Instr, std::move(Results), std::move(Operands),
3995
std::vector<Record *>());
3996
continue; // no pattern.
3997
}
3998
3999
CodeGenInstruction &CGI = Target.getInstruction(Instr);
4000
parseInstructionPattern(CGI, LI, Instructions);
4001
}
4002
4003
// If we can, convert the instructions to be patterns that are matched!
4004
for (auto &Entry : Instructions) {
4005
Record *Instr = Entry.first;
4006
DAGInstruction &TheInst = Entry.second;
4007
TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
4008
TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
4009
4010
if (SrcPattern && ResultPattern) {
4011
TreePattern Pattern(Instr, SrcPattern, true, *this);
4012
TreePattern Result(Instr, ResultPattern, false, *this);
4013
ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
4014
}
4015
}
4016
}
4017
4018
typedef std::pair<TreePatternNode *, unsigned> NameRecord;
4019
4020
static void FindNames(TreePatternNode &P,
4021
std::map<std::string, NameRecord> &Names,
4022
TreePattern *PatternTop) {
4023
if (!P.getName().empty()) {
4024
NameRecord &Rec = Names[P.getName()];
4025
// If this is the first instance of the name, remember the node.
4026
if (Rec.second++ == 0)
4027
Rec.first = &P;
4028
else if (Rec.first->getExtTypes() != P.getExtTypes())
4029
PatternTop->error("repetition of value: $" + P.getName() +
4030
" where different uses have different types!");
4031
}
4032
4033
if (!P.isLeaf()) {
4034
for (unsigned i = 0, e = P.getNumChildren(); i != e; ++i)
4035
FindNames(P.getChild(i), Names, PatternTop);
4036
}
4037
}
4038
4039
void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
4040
PatternToMatch &&PTM) {
4041
// Do some sanity checking on the pattern we're about to match.
4042
std::string Reason;
4043
if (!PTM.getSrcPattern().canPatternMatch(Reason, *this)) {
4044
PrintWarning(Pattern->getRecord()->getLoc(),
4045
Twine("Pattern can never match: ") + Reason);
4046
return;
4047
}
4048
4049
// If the source pattern's root is a complex pattern, that complex pattern
4050
// must specify the nodes it can potentially match.
4051
if (const ComplexPattern *CP =
4052
PTM.getSrcPattern().getComplexPatternInfo(*this))
4053
if (CP->getRootNodes().empty())
4054
Pattern->error("ComplexPattern at root must specify list of opcodes it"
4055
" could match");
4056
4057
// Find all of the named values in the input and output, ensure they have the
4058
// same type.
4059
std::map<std::string, NameRecord> SrcNames, DstNames;
4060
FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4061
FindNames(PTM.getDstPattern(), DstNames, Pattern);
4062
4063
// Scan all of the named values in the destination pattern, rejecting them if
4064
// they don't exist in the input pattern.
4065
for (const auto &Entry : DstNames) {
4066
if (SrcNames[Entry.first].first == nullptr)
4067
Pattern->error("Pattern has input without matching name in output: $" +
4068
Entry.first);
4069
}
4070
4071
// Scan all of the named values in the source pattern, rejecting them if the
4072
// name isn't used in the dest, and isn't used to tie two values together.
4073
for (const auto &Entry : SrcNames)
4074
if (DstNames[Entry.first].first == nullptr &&
4075
SrcNames[Entry.first].second == 1)
4076
Pattern->error("Pattern has dead named input: $" + Entry.first);
4077
4078
PatternsToMatch.push_back(std::move(PTM));
4079
}
4080
4081
void CodeGenDAGPatterns::InferInstructionFlags() {
4082
ArrayRef<const CodeGenInstruction *> Instructions =
4083
Target.getInstructionsByEnumValue();
4084
4085
unsigned Errors = 0;
4086
4087
// Try to infer flags from all patterns in PatternToMatch. These include
4088
// both the primary instruction patterns (which always come first) and
4089
// patterns defined outside the instruction.
4090
for (const PatternToMatch &PTM : ptms()) {
4091
// We can only infer from single-instruction patterns, otherwise we won't
4092
// know which instruction should get the flags.
4093
SmallVector<Record *, 8> PatInstrs;
4094
getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4095
if (PatInstrs.size() != 1)
4096
continue;
4097
4098
// Get the single instruction.
4099
CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4100
4101
// Only infer properties from the first pattern. We'll verify the others.
4102
if (InstInfo.InferredFrom)
4103
continue;
4104
4105
InstAnalyzer PatInfo(*this);
4106
PatInfo.Analyze(PTM);
4107
Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4108
}
4109
4110
if (Errors)
4111
PrintFatalError("pattern conflicts");
4112
4113
// If requested by the target, guess any undefined properties.
4114
if (Target.guessInstructionProperties()) {
4115
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4116
CodeGenInstruction *InstInfo =
4117
const_cast<CodeGenInstruction *>(Instructions[i]);
4118
if (InstInfo->InferredFrom)
4119
continue;
4120
// The mayLoad and mayStore flags default to false.
4121
// Conservatively assume hasSideEffects if it wasn't explicit.
4122
if (InstInfo->hasSideEffects_Unset)
4123
InstInfo->hasSideEffects = true;
4124
}
4125
return;
4126
}
4127
4128
// Complain about any flags that are still undefined.
4129
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4130
CodeGenInstruction *InstInfo =
4131
const_cast<CodeGenInstruction *>(Instructions[i]);
4132
if (InstInfo->InferredFrom)
4133
continue;
4134
if (InstInfo->hasSideEffects_Unset)
4135
PrintError(InstInfo->TheDef->getLoc(),
4136
"Can't infer hasSideEffects from patterns");
4137
if (InstInfo->mayStore_Unset)
4138
PrintError(InstInfo->TheDef->getLoc(),
4139
"Can't infer mayStore from patterns");
4140
if (InstInfo->mayLoad_Unset)
4141
PrintError(InstInfo->TheDef->getLoc(),
4142
"Can't infer mayLoad from patterns");
4143
}
4144
}
4145
4146
/// Verify instruction flags against pattern node properties.
4147
void CodeGenDAGPatterns::VerifyInstructionFlags() {
4148
unsigned Errors = 0;
4149
for (const PatternToMatch &PTM : ptms()) {
4150
SmallVector<Record *, 8> Instrs;
4151
getInstructionsInTree(PTM.getDstPattern(), Instrs);
4152
if (Instrs.empty())
4153
continue;
4154
4155
// Count the number of instructions with each flag set.
4156
unsigned NumSideEffects = 0;
4157
unsigned NumStores = 0;
4158
unsigned NumLoads = 0;
4159
for (const Record *Instr : Instrs) {
4160
const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4161
NumSideEffects += InstInfo.hasSideEffects;
4162
NumStores += InstInfo.mayStore;
4163
NumLoads += InstInfo.mayLoad;
4164
}
4165
4166
// Analyze the source pattern.
4167
InstAnalyzer PatInfo(*this);
4168
PatInfo.Analyze(PTM);
4169
4170
// Collect error messages.
4171
SmallVector<std::string, 4> Msgs;
4172
4173
// Check for missing flags in the output.
4174
// Permit extra flags for now at least.
4175
if (PatInfo.hasSideEffects && !NumSideEffects)
4176
Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4177
4178
// Don't verify store flags on instructions with side effects. At least for
4179
// intrinsics, side effects implies mayStore.
4180
if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4181
Msgs.push_back("pattern may store, but mayStore isn't set");
4182
4183
// Similarly, mayStore implies mayLoad on intrinsics.
4184
if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4185
Msgs.push_back("pattern may load, but mayLoad isn't set");
4186
4187
// Print error messages.
4188
if (Msgs.empty())
4189
continue;
4190
++Errors;
4191
4192
for (const std::string &Msg : Msgs)
4193
PrintError(
4194
PTM.getSrcRecord()->getLoc(),
4195
Twine(Msg) + " on the " +
4196
(Instrs.size() == 1 ? "instruction" : "output instructions"));
4197
// Provide the location of the relevant instruction definitions.
4198
for (const Record *Instr : Instrs) {
4199
if (Instr != PTM.getSrcRecord())
4200
PrintError(Instr->getLoc(), "defined here");
4201
const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4202
if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef &&
4203
InstInfo.InferredFrom != PTM.getSrcRecord())
4204
PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4205
}
4206
}
4207
if (Errors)
4208
PrintFatalError("Errors in DAG patterns");
4209
}
4210
4211
/// Given a pattern result with an unresolved type, see if we can find one
4212
/// instruction with an unresolved result type. Force this result type to an
4213
/// arbitrary element if it's possible types to converge results.
4214
static bool ForceArbitraryInstResultType(TreePatternNode &N, TreePattern &TP) {
4215
if (N.isLeaf())
4216
return false;
4217
4218
// Analyze children.
4219
for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4220
if (ForceArbitraryInstResultType(N.getChild(i), TP))
4221
return true;
4222
4223
if (!N.getOperator()->isSubClassOf("Instruction"))
4224
return false;
4225
4226
// If this type is already concrete or completely unknown we can't do
4227
// anything.
4228
TypeInfer &TI = TP.getInfer();
4229
for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) {
4230
if (N.getExtType(i).empty() || TI.isConcrete(N.getExtType(i), false))
4231
continue;
4232
4233
// Otherwise, force its type to an arbitrary choice.
4234
if (TI.forceArbitrary(N.getExtType(i)))
4235
return true;
4236
}
4237
4238
return false;
4239
}
4240
4241
// Promote xform function to be an explicit node wherever set.
4242
static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4243
if (Record *Xform = N->getTransformFn()) {
4244
N->setTransformFn(nullptr);
4245
std::vector<TreePatternNodePtr> Children;
4246
Children.push_back(PromoteXForms(N));
4247
return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
4248
N->getNumTypes());
4249
}
4250
4251
if (!N->isLeaf())
4252
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4253
TreePatternNodePtr Child = N->getChildShared(i);
4254
N->setChild(i, PromoteXForms(Child));
4255
}
4256
return N;
4257
}
4258
4259
void CodeGenDAGPatterns::ParseOnePattern(
4260
Record *TheDef, TreePattern &Pattern, TreePattern &Result,
4261
const std::vector<Record *> &InstImpResults, bool ShouldIgnore) {
4262
4263
// Inline pattern fragments and expand multiple alternatives.
4264
Pattern.InlinePatternFragments();
4265
Result.InlinePatternFragments();
4266
4267
if (Result.getNumTrees() != 1)
4268
Result.error("Cannot use multi-alternative fragments in result pattern!");
4269
4270
// Infer types.
4271
bool IterateInference;
4272
bool InferredAllPatternTypes, InferredAllResultTypes;
4273
do {
4274
// Infer as many types as possible. If we cannot infer all of them, we
4275
// can never do anything with this pattern: report it to the user.
4276
InferredAllPatternTypes =
4277
Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4278
4279
// Infer as many types as possible. If we cannot infer all of them, we
4280
// can never do anything with this pattern: report it to the user.
4281
InferredAllResultTypes = Result.InferAllTypes(&Pattern.getNamedNodesMap());
4282
4283
IterateInference = false;
4284
4285
// Apply the type of the result to the source pattern. This helps us
4286
// resolve cases where the input type is known to be a pointer type (which
4287
// is considered resolved), but the result knows it needs to be 32- or
4288
// 64-bits. Infer the other way for good measure.
4289
for (const auto &T : Pattern.getTrees())
4290
for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4291
T->getNumTypes());
4292
i != e; ++i) {
4293
IterateInference |=
4294
T->UpdateNodeType(i, Result.getOnlyTree()->getExtType(i), Result);
4295
IterateInference |=
4296
Result.getOnlyTree()->UpdateNodeType(i, T->getExtType(i), Result);
4297
}
4298
4299
// If our iteration has converged and the input pattern's types are fully
4300
// resolved but the result pattern is not fully resolved, we may have a
4301
// situation where we have two instructions in the result pattern and
4302
// the instructions require a common register class, but don't care about
4303
// what actual MVT is used. This is actually a bug in our modelling:
4304
// output patterns should have register classes, not MVTs.
4305
//
4306
// In any case, to handle this, we just go through and disambiguate some
4307
// arbitrary types to the result pattern's nodes.
4308
if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes)
4309
IterateInference =
4310
ForceArbitraryInstResultType(*Result.getTree(0), Result);
4311
} while (IterateInference);
4312
4313
// Verify that we inferred enough types that we can do something with the
4314
// pattern and result. If these fire the user has to add type casts.
4315
if (!InferredAllPatternTypes)
4316
Pattern.error("Could not infer all types in pattern!");
4317
if (!InferredAllResultTypes) {
4318
Pattern.dump();
4319
Result.error("Could not infer all types in pattern result!");
4320
}
4321
4322
// Promote xform function to be an explicit node wherever set.
4323
TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4324
4325
TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4326
Temp.InferAllTypes();
4327
4328
ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4329
int Complexity = TheDef->getValueAsInt("AddedComplexity");
4330
4331
if (PatternRewriter)
4332
PatternRewriter(&Pattern);
4333
4334
// A pattern may end up with an "impossible" type, i.e. a situation
4335
// where all types have been eliminated for some node in this pattern.
4336
// This could occur for intrinsics that only make sense for a specific
4337
// value type, and use a specific register class. If, for some mode,
4338
// that register class does not accept that type, the type inference
4339
// will lead to a contradiction, which is not an error however, but
4340
// a sign that this pattern will simply never match.
4341
if (Temp.getOnlyTree()->hasPossibleType()) {
4342
for (const auto &T : Pattern.getTrees()) {
4343
if (T->hasPossibleType())
4344
AddPatternToMatch(&Pattern,
4345
PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4346
InstImpResults, Complexity,
4347
TheDef->getID(), ShouldIgnore));
4348
}
4349
} else {
4350
// Show a message about a dropped pattern with some info to make it
4351
// easier to identify it in the .td files.
4352
LLVM_DEBUG({
4353
dbgs() << "Dropping: ";
4354
Pattern.dump();
4355
Temp.getOnlyTree()->dump();
4356
dbgs() << "\n";
4357
});
4358
}
4359
}
4360
4361
void CodeGenDAGPatterns::ParsePatterns() {
4362
std::vector<Record *> Patterns = Records.getAllDerivedDefinitions("Pattern");
4363
4364
for (Record *CurPattern : Patterns) {
4365
DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4366
4367
// If the pattern references the null_frag, there's nothing to do.
4368
if (hasNullFragReference(Tree))
4369
continue;
4370
4371
TreePattern Pattern(CurPattern, Tree, true, *this);
4372
4373
ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4374
if (LI->empty())
4375
continue; // no pattern.
4376
4377
// Parse the instruction.
4378
TreePattern Result(CurPattern, LI, false, *this);
4379
4380
if (Result.getNumTrees() != 1)
4381
Result.error("Cannot handle instructions producing instructions "
4382
"with temporaries yet!");
4383
4384
// Validate that the input pattern is correct.
4385
std::map<std::string, TreePatternNodePtr> InstInputs;
4386
MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4387
InstResults;
4388
std::vector<Record *> InstImpResults;
4389
for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4390
FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4391
InstResults, InstImpResults);
4392
4393
ParseOnePattern(CurPattern, Pattern, Result, InstImpResults,
4394
CurPattern->getValueAsBit("GISelShouldIgnore"));
4395
}
4396
}
4397
4398
static void collectModes(std::set<unsigned> &Modes, const TreePatternNode &N) {
4399
for (const TypeSetByHwMode &VTS : N.getExtTypes())
4400
for (const auto &I : VTS)
4401
Modes.insert(I.first);
4402
4403
for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
4404
collectModes(Modes, N.getChild(i));
4405
}
4406
4407
void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4408
const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4409
if (CGH.getNumModeIds() == 1)
4410
return;
4411
4412
std::vector<PatternToMatch> Copy;
4413
PatternsToMatch.swap(Copy);
4414
4415
auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4416
StringRef Check) {
4417
TreePatternNodePtr NewSrc = P.getSrcPattern().clone();
4418
TreePatternNodePtr NewDst = P.getDstPattern().clone();
4419
if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4420
return;
4421
}
4422
4423
PatternsToMatch.emplace_back(
4424
P.getSrcRecord(), P.getPredicates(), std::move(NewSrc),
4425
std::move(NewDst), P.getDstRegs(), P.getAddedComplexity(),
4426
Record::getNewUID(Records), P.getGISelShouldIgnore(), Check);
4427
};
4428
4429
for (PatternToMatch &P : Copy) {
4430
const TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4431
if (P.getSrcPattern().hasProperTypeByHwMode())
4432
SrcP = &P.getSrcPattern();
4433
if (P.getDstPattern().hasProperTypeByHwMode())
4434
DstP = &P.getDstPattern();
4435
if (!SrcP && !DstP) {
4436
PatternsToMatch.push_back(P);
4437
continue;
4438
}
4439
4440
std::set<unsigned> Modes;
4441
if (SrcP)
4442
collectModes(Modes, *SrcP);
4443
if (DstP)
4444
collectModes(Modes, *DstP);
4445
4446
// The predicate for the default mode needs to be constructed for each
4447
// pattern separately.
4448
// Since not all modes must be present in each pattern, if a mode m is
4449
// absent, then there is no point in constructing a check for m. If such
4450
// a check was created, it would be equivalent to checking the default
4451
// mode, except not all modes' predicates would be a part of the checking
4452
// code. The subsequently generated check for the default mode would then
4453
// have the exact same patterns, but a different predicate code. To avoid
4454
// duplicated patterns with different predicate checks, construct the
4455
// default check as a negation of all predicates that are actually present
4456
// in the source/destination patterns.
4457
SmallString<128> DefaultCheck;
4458
4459
for (unsigned M : Modes) {
4460
if (M == DefaultMode)
4461
continue;
4462
4463
// Fill the map entry for this mode.
4464
const HwMode &HM = CGH.getMode(M);
4465
AppendPattern(P, M, HM.Predicates);
4466
4467
// Add negations of the HM's predicates to the default predicate.
4468
if (!DefaultCheck.empty())
4469
DefaultCheck += " && ";
4470
DefaultCheck += "!(";
4471
DefaultCheck += HM.Predicates;
4472
DefaultCheck += ")";
4473
}
4474
4475
bool HasDefault = Modes.count(DefaultMode);
4476
if (HasDefault)
4477
AppendPattern(P, DefaultMode, DefaultCheck);
4478
}
4479
}
4480
4481
/// Dependent variable map for CodeGenDAGPattern variant generation
4482
typedef StringMap<int> DepVarMap;
4483
4484
static void FindDepVarsOf(TreePatternNode &N, DepVarMap &DepMap) {
4485
if (N.isLeaf()) {
4486
if (N.hasName() && isa<DefInit>(N.getLeafValue()))
4487
DepMap[N.getName()]++;
4488
} else {
4489
for (size_t i = 0, e = N.getNumChildren(); i != e; ++i)
4490
FindDepVarsOf(N.getChild(i), DepMap);
4491
}
4492
}
4493
4494
/// Find dependent variables within child patterns
4495
static void FindDepVars(TreePatternNode &N, MultipleUseVarSet &DepVars) {
4496
DepVarMap depcounts;
4497
FindDepVarsOf(N, depcounts);
4498
for (const auto &Pair : depcounts) {
4499
if (Pair.getValue() > 1)
4500
DepVars.insert(Pair.getKey());
4501
}
4502
}
4503
4504
#ifndef NDEBUG
4505
/// Dump the dependent variable set:
4506
static void DumpDepVars(MultipleUseVarSet &DepVars) {
4507
if (DepVars.empty()) {
4508
LLVM_DEBUG(errs() << "<empty set>");
4509
} else {
4510
LLVM_DEBUG(errs() << "[ ");
4511
for (const auto &DepVar : DepVars) {
4512
LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4513
}
4514
LLVM_DEBUG(errs() << "]");
4515
}
4516
}
4517
#endif
4518
4519
/// CombineChildVariants - Given a bunch of permutations of each child of the
4520
/// 'operator' node, put them together in all possible ways.
4521
static void CombineChildVariants(
4522
TreePatternNodePtr Orig,
4523
const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4524
std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4525
const MultipleUseVarSet &DepVars) {
4526
// Make sure that each operand has at least one variant to choose from.
4527
for (const auto &Variants : ChildVariants)
4528
if (Variants.empty())
4529
return;
4530
4531
// The end result is an all-pairs construction of the resultant pattern.
4532
std::vector<unsigned> Idxs(ChildVariants.size());
4533
bool NotDone;
4534
do {
4535
#ifndef NDEBUG
4536
LLVM_DEBUG(if (!Idxs.empty()) {
4537
errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4538
for (unsigned Idx : Idxs) {
4539
errs() << Idx << " ";
4540
}
4541
errs() << "]\n";
4542
});
4543
#endif
4544
// Create the variant and add it to the output list.
4545
std::vector<TreePatternNodePtr> NewChildren;
4546
NewChildren.reserve(ChildVariants.size());
4547
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4548
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4549
TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
4550
Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4551
4552
// Copy over properties.
4553
R->setName(Orig->getName());
4554
R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4555
R->setPredicateCalls(Orig->getPredicateCalls());
4556
R->setGISelFlagsRecord(Orig->getGISelFlagsRecord());
4557
R->setTransformFn(Orig->getTransformFn());
4558
for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4559
R->setType(i, Orig->getExtType(i));
4560
4561
// If this pattern cannot match, do not include it as a variant.
4562
std::string ErrString;
4563
// Scan to see if this pattern has already been emitted. We can get
4564
// duplication due to things like commuting:
4565
// (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4566
// which are the same pattern. Ignore the dups.
4567
if (R->canPatternMatch(ErrString, CDP) &&
4568
none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4569
return R->isIsomorphicTo(*Variant, DepVars);
4570
}))
4571
OutVariants.push_back(R);
4572
4573
// Increment indices to the next permutation by incrementing the
4574
// indices from last index backward, e.g., generate the sequence
4575
// [0, 0], [0, 1], [1, 0], [1, 1].
4576
int IdxsIdx;
4577
for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4578
if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4579
Idxs[IdxsIdx] = 0;
4580
else
4581
break;
4582
}
4583
NotDone = (IdxsIdx >= 0);
4584
} while (NotDone);
4585
}
4586
4587
/// CombineChildVariants - A helper function for binary operators.
4588
///
4589
static void CombineChildVariants(TreePatternNodePtr Orig,
4590
const std::vector<TreePatternNodePtr> &LHS,
4591
const std::vector<TreePatternNodePtr> &RHS,
4592
std::vector<TreePatternNodePtr> &OutVariants,
4593
CodeGenDAGPatterns &CDP,
4594
const MultipleUseVarSet &DepVars) {
4595
std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4596
ChildVariants.push_back(LHS);
4597
ChildVariants.push_back(RHS);
4598
CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4599
}
4600
4601
static void
4602
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4603
std::vector<TreePatternNodePtr> &Children) {
4604
assert(N->getNumChildren() == 2 &&
4605
"Associative but doesn't have 2 children!");
4606
Record *Operator = N->getOperator();
4607
4608
// Only permit raw nodes.
4609
if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4610
N->getTransformFn()) {
4611
Children.push_back(N);
4612
return;
4613
}
4614
4615
if (N->getChild(0).isLeaf() || N->getChild(0).getOperator() != Operator)
4616
Children.push_back(N->getChildShared(0));
4617
else
4618
GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4619
4620
if (N->getChild(1).isLeaf() || N->getChild(1).getOperator() != Operator)
4621
Children.push_back(N->getChildShared(1));
4622
else
4623
GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4624
}
4625
4626
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4627
/// the (potentially recursive) pattern by using algebraic laws.
4628
///
4629
static void GenerateVariantsOf(TreePatternNodePtr N,
4630
std::vector<TreePatternNodePtr> &OutVariants,
4631
CodeGenDAGPatterns &CDP,
4632
const MultipleUseVarSet &DepVars) {
4633
// We cannot permute leaves or ComplexPattern uses.
4634
if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4635
OutVariants.push_back(N);
4636
return;
4637
}
4638
4639
// Look up interesting info about the node.
4640
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4641
4642
// If this node is associative, re-associate.
4643
if (NodeInfo.hasProperty(SDNPAssociative)) {
4644
// Re-associate by pulling together all of the linked operators
4645
std::vector<TreePatternNodePtr> MaximalChildren;
4646
GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4647
4648
// Only handle child sizes of 3. Otherwise we'll end up trying too many
4649
// permutations.
4650
if (MaximalChildren.size() == 3) {
4651
// Find the variants of all of our maximal children.
4652
std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4653
GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4654
GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4655
GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4656
4657
// There are only two ways we can permute the tree:
4658
// (A op B) op C and A op (B op C)
4659
// Within these forms, we can also permute A/B/C.
4660
4661
// Generate legal pair permutations of A/B/C.
4662
std::vector<TreePatternNodePtr> ABVariants;
4663
std::vector<TreePatternNodePtr> BAVariants;
4664
std::vector<TreePatternNodePtr> ACVariants;
4665
std::vector<TreePatternNodePtr> CAVariants;
4666
std::vector<TreePatternNodePtr> BCVariants;
4667
std::vector<TreePatternNodePtr> CBVariants;
4668
CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4669
CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4670
CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4671
CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4672
CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4673
CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4674
4675
// Combine those into the result: (x op x) op x
4676
CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4677
CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4678
CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4679
CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4680
CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4681
CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4682
4683
// Combine those into the result: x op (x op x)
4684
CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4685
CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4686
CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4687
CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4688
CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4689
CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4690
return;
4691
}
4692
}
4693
4694
// Compute permutations of all children.
4695
std::vector<std::vector<TreePatternNodePtr>> ChildVariants(
4696
N->getNumChildren());
4697
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4698
GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4699
4700
// Build all permutations based on how the children were formed.
4701
CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4702
4703
// If this node is commutative, consider the commuted order.
4704
bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4705
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4706
unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4707
assert(N->getNumChildren() >= (2 + Skip) &&
4708
"Commutative but doesn't have 2 children!");
4709
// Don't allow commuting children which are actually register references.
4710
bool NoRegisters = true;
4711
unsigned i = 0 + Skip;
4712
unsigned e = 2 + Skip;
4713
for (; i != e; ++i) {
4714
TreePatternNode &Child = N->getChild(i);
4715
if (Child.isLeaf())
4716
if (DefInit *DI = dyn_cast<DefInit>(Child.getLeafValue())) {
4717
Record *RR = DI->getDef();
4718
if (RR->isSubClassOf("Register"))
4719
NoRegisters = false;
4720
}
4721
}
4722
// Consider the commuted order.
4723
if (NoRegisters) {
4724
// Swap the first two operands after the intrinsic id, if present.
4725
unsigned i = isCommIntrinsic ? 1 : 0;
4726
std::swap(ChildVariants[i], ChildVariants[i + 1]);
4727
CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4728
}
4729
}
4730
}
4731
4732
// GenerateVariants - Generate variants. For example, commutative patterns can
4733
// match multiple ways. Add them to PatternsToMatch as well.
4734
void CodeGenDAGPatterns::GenerateVariants() {
4735
LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4736
4737
// Loop over all of the patterns we've collected, checking to see if we can
4738
// generate variants of the instruction, through the exploitation of
4739
// identities. This permits the target to provide aggressive matching without
4740
// the .td file having to contain tons of variants of instructions.
4741
//
4742
// Note that this loop adds new patterns to the PatternsToMatch list, but we
4743
// intentionally do not reconsider these. Any variants of added patterns have
4744
// already been added.
4745
//
4746
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4747
MultipleUseVarSet DepVars;
4748
std::vector<TreePatternNodePtr> Variants;
4749
FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4750
LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4751
LLVM_DEBUG(DumpDepVars(DepVars));
4752
LLVM_DEBUG(errs() << "\n");
4753
GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4754
*this, DepVars);
4755
4756
assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4757
"HwModes should not have been expanded yet!");
4758
4759
assert(!Variants.empty() && "Must create at least original variant!");
4760
if (Variants.size() == 1) // No additional variants for this pattern.
4761
continue;
4762
4763
LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4764
PatternsToMatch[i].getSrcPattern().dump(); errs() << "\n");
4765
4766
for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4767
TreePatternNodePtr Variant = Variants[v];
4768
4769
LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();
4770
errs() << "\n");
4771
4772
// Scan to see if an instruction or explicit pattern already matches this.
4773
bool AlreadyExists = false;
4774
for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4775
// Skip if the top level predicates do not match.
4776
if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4777
PatternsToMatch[p].getPredicates()))
4778
continue;
4779
// Check to see if this variant already exists.
4780
if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4781
DepVars)) {
4782
LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
4783
AlreadyExists = true;
4784
break;
4785
}
4786
}
4787
// If we already have it, ignore the variant.
4788
if (AlreadyExists)
4789
continue;
4790
4791
// Otherwise, add it to the list of patterns we have.
4792
PatternsToMatch.emplace_back(
4793
PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4794
Variant, PatternsToMatch[i].getDstPatternShared(),
4795
PatternsToMatch[i].getDstRegs(),
4796
PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records),
4797
PatternsToMatch[i].getGISelShouldIgnore(),
4798
PatternsToMatch[i].getHwModeFeatures());
4799
}
4800
4801
LLVM_DEBUG(errs() << "\n");
4802
}
4803
}
4804
4805