Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/utils/TableGen/FastISelEmitter.cpp
35258 views
1
///===- FastISelEmitter.cpp - Generate an instruction selector ------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This tablegen backend emits code for use by the "fast" instruction
10
// selection algorithm. See the comments at the top of
11
// lib/CodeGen/SelectionDAG/FastISel.cpp for background.
12
//
13
// This file scans through the target's tablegen instruction-info files
14
// and extracts instructions with obvious-looking patterns, and it emits
15
// code to look up these instructions by type and operator.
16
//
17
//===----------------------------------------------------------------------===//
18
19
#include "Common/CodeGenDAGPatterns.h"
20
#include "Common/CodeGenInstruction.h"
21
#include "Common/CodeGenRegisters.h"
22
#include "Common/CodeGenTarget.h"
23
#include "Common/InfoByHwMode.h"
24
#include "llvm/ADT/StringSwitch.h"
25
#include "llvm/Support/ErrorHandling.h"
26
#include "llvm/TableGen/Error.h"
27
#include "llvm/TableGen/Record.h"
28
#include "llvm/TableGen/TableGenBackend.h"
29
#include <set>
30
#include <utility>
31
using namespace llvm;
32
33
/// InstructionMemo - This class holds additional information about an
34
/// instruction needed to emit code for it.
35
///
36
namespace {
37
struct InstructionMemo {
38
std::string Name;
39
const CodeGenRegisterClass *RC;
40
std::string SubRegNo;
41
std::vector<std::string> PhysRegs;
42
std::string PredicateCheck;
43
44
InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
45
std::string SubRegNo, std::vector<std::string> PhysRegs,
46
std::string PredicateCheck)
47
: Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
48
PhysRegs(std::move(PhysRegs)),
49
PredicateCheck(std::move(PredicateCheck)) {}
50
51
// Make sure we do not copy InstructionMemo.
52
InstructionMemo(const InstructionMemo &Other) = delete;
53
InstructionMemo(InstructionMemo &&Other) = default;
54
};
55
} // End anonymous namespace
56
57
/// ImmPredicateSet - This uniques predicates (represented as a string) and
58
/// gives them unique (small) integer ID's that start at 0.
59
namespace {
60
class ImmPredicateSet {
61
DenseMap<TreePattern *, unsigned> ImmIDs;
62
std::vector<TreePredicateFn> PredsByName;
63
64
public:
65
unsigned getIDFor(TreePredicateFn Pred) {
66
unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
67
if (Entry == 0) {
68
PredsByName.push_back(Pred);
69
Entry = PredsByName.size();
70
}
71
return Entry - 1;
72
}
73
74
const TreePredicateFn &getPredicate(unsigned i) {
75
assert(i < PredsByName.size());
76
return PredsByName[i];
77
}
78
79
typedef std::vector<TreePredicateFn>::const_iterator iterator;
80
iterator begin() const { return PredsByName.begin(); }
81
iterator end() const { return PredsByName.end(); }
82
};
83
} // End anonymous namespace
84
85
/// OperandsSignature - This class holds a description of a list of operand
86
/// types. It has utility methods for emitting text based on the operands.
87
///
88
namespace {
89
struct OperandsSignature {
90
class OpKind {
91
enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
92
char Repr;
93
94
public:
95
OpKind() : Repr(OK_Invalid) {}
96
97
bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
98
bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
99
100
static OpKind getReg() {
101
OpKind K;
102
K.Repr = OK_Reg;
103
return K;
104
}
105
static OpKind getFP() {
106
OpKind K;
107
K.Repr = OK_FP;
108
return K;
109
}
110
static OpKind getImm(unsigned V) {
111
assert((unsigned)OK_Imm + V < 128 &&
112
"Too many integer predicates for the 'Repr' char");
113
OpKind K;
114
K.Repr = OK_Imm + V;
115
return K;
116
}
117
118
bool isReg() const { return Repr == OK_Reg; }
119
bool isFP() const { return Repr == OK_FP; }
120
bool isImm() const { return Repr >= OK_Imm; }
121
122
unsigned getImmCode() const {
123
assert(isImm());
124
return Repr - OK_Imm;
125
}
126
127
void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
128
bool StripImmCodes) const {
129
if (isReg())
130
OS << 'r';
131
else if (isFP())
132
OS << 'f';
133
else {
134
OS << 'i';
135
if (!StripImmCodes)
136
if (unsigned Code = getImmCode())
137
OS << "_" << ImmPredicates.getPredicate(Code - 1).getFnName();
138
}
139
}
140
};
141
142
SmallVector<OpKind, 3> Operands;
143
144
bool operator<(const OperandsSignature &O) const {
145
return Operands < O.Operands;
146
}
147
bool operator==(const OperandsSignature &O) const {
148
return Operands == O.Operands;
149
}
150
151
bool empty() const { return Operands.empty(); }
152
153
bool hasAnyImmediateCodes() const {
154
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
155
if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
156
return true;
157
return false;
158
}
159
160
/// getWithoutImmCodes - Return a copy of this with any immediate codes forced
161
/// to zero.
162
OperandsSignature getWithoutImmCodes() const {
163
OperandsSignature Result;
164
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
165
if (!Operands[i].isImm())
166
Result.Operands.push_back(Operands[i]);
167
else
168
Result.Operands.push_back(OpKind::getImm(0));
169
return Result;
170
}
171
172
void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
173
bool EmittedAnything = false;
174
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
175
if (!Operands[i].isImm())
176
continue;
177
178
unsigned Code = Operands[i].getImmCode();
179
if (Code == 0)
180
continue;
181
182
if (EmittedAnything)
183
OS << " &&\n ";
184
185
TreePredicateFn PredFn = ImmPredicates.getPredicate(Code - 1);
186
187
// Emit the type check.
188
TreePattern *TP = PredFn.getOrigPatFragRecord();
189
ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
190
assert(VVT.isSimple() &&
191
"Cannot use variable value types with fast isel");
192
OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
193
194
OS << PredFn.getFnName() << "(imm" << i << ')';
195
EmittedAnything = true;
196
}
197
}
198
199
/// initialize - Examine the given pattern and initialize the contents
200
/// of the Operands array accordingly. Return true if all the operands
201
/// are supported, false otherwise.
202
///
203
bool initialize(TreePatternNode &InstPatNode, const CodeGenTarget &Target,
204
MVT::SimpleValueType VT, ImmPredicateSet &ImmediatePredicates,
205
const CodeGenRegisterClass *OrigDstRC) {
206
if (InstPatNode.isLeaf())
207
return false;
208
209
if (InstPatNode.getOperator()->getName() == "imm") {
210
Operands.push_back(OpKind::getImm(0));
211
return true;
212
}
213
214
if (InstPatNode.getOperator()->getName() == "fpimm") {
215
Operands.push_back(OpKind::getFP());
216
return true;
217
}
218
219
const CodeGenRegisterClass *DstRC = nullptr;
220
221
for (unsigned i = 0, e = InstPatNode.getNumChildren(); i != e; ++i) {
222
TreePatternNode &Op = InstPatNode.getChild(i);
223
224
// Handle imm operands specially.
225
if (!Op.isLeaf() && Op.getOperator()->getName() == "imm") {
226
unsigned PredNo = 0;
227
if (!Op.getPredicateCalls().empty()) {
228
TreePredicateFn PredFn = Op.getPredicateCalls()[0].Fn;
229
// If there is more than one predicate weighing in on this operand
230
// then we don't handle it. This doesn't typically happen for
231
// immediates anyway.
232
if (Op.getPredicateCalls().size() > 1 ||
233
!PredFn.isImmediatePattern() || PredFn.usesOperands())
234
return false;
235
// Ignore any instruction with 'FastIselShouldIgnore', these are
236
// not needed and just bloat the fast instruction selector. For
237
// example, X86 doesn't need to generate code to match ADD16ri8 since
238
// ADD16ri will do just fine.
239
Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
240
if (Rec->getValueAsBit("FastIselShouldIgnore"))
241
return false;
242
243
PredNo = ImmediatePredicates.getIDFor(PredFn) + 1;
244
}
245
246
Operands.push_back(OpKind::getImm(PredNo));
247
continue;
248
}
249
250
// For now, filter out any operand with a predicate.
251
// For now, filter out any operand with multiple values.
252
if (!Op.getPredicateCalls().empty() || Op.getNumTypes() != 1)
253
return false;
254
255
if (!Op.isLeaf()) {
256
if (Op.getOperator()->getName() == "fpimm") {
257
Operands.push_back(OpKind::getFP());
258
continue;
259
}
260
// For now, ignore other non-leaf nodes.
261
return false;
262
}
263
264
assert(Op.hasConcreteType(0) && "Type infererence not done?");
265
266
// For now, all the operands must have the same type (if they aren't
267
// immediates). Note that this causes us to reject variable sized shifts
268
// on X86.
269
if (Op.getSimpleType(0) != VT)
270
return false;
271
272
DefInit *OpDI = dyn_cast<DefInit>(Op.getLeafValue());
273
if (!OpDI)
274
return false;
275
Record *OpLeafRec = OpDI->getDef();
276
277
// For now, the only other thing we accept is register operands.
278
const CodeGenRegisterClass *RC = nullptr;
279
if (OpLeafRec->isSubClassOf("RegisterOperand"))
280
OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
281
if (OpLeafRec->isSubClassOf("RegisterClass"))
282
RC = &Target.getRegisterClass(OpLeafRec);
283
else if (OpLeafRec->isSubClassOf("Register"))
284
RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
285
else if (OpLeafRec->isSubClassOf("ValueType")) {
286
RC = OrigDstRC;
287
} else
288
return false;
289
290
// For now, this needs to be a register class of some sort.
291
if (!RC)
292
return false;
293
294
// For now, all the operands must have the same register class or be
295
// a strict subclass of the destination.
296
if (DstRC) {
297
if (DstRC != RC && !DstRC->hasSubClass(RC))
298
return false;
299
} else
300
DstRC = RC;
301
Operands.push_back(OpKind::getReg());
302
}
303
return true;
304
}
305
306
void PrintParameters(raw_ostream &OS) const {
307
ListSeparator LS;
308
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
309
OS << LS;
310
if (Operands[i].isReg()) {
311
OS << "unsigned Op" << i;
312
} else if (Operands[i].isImm()) {
313
OS << "uint64_t imm" << i;
314
} else if (Operands[i].isFP()) {
315
OS << "const ConstantFP *f" << i;
316
} else {
317
llvm_unreachable("Unknown operand kind!");
318
}
319
}
320
}
321
322
void PrintArguments(raw_ostream &OS,
323
const std::vector<std::string> &PR) const {
324
assert(PR.size() == Operands.size());
325
ListSeparator LS;
326
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
327
if (PR[i] != "")
328
// Implicit physical register operand.
329
continue;
330
331
OS << LS;
332
if (Operands[i].isReg()) {
333
OS << "Op" << i;
334
} else if (Operands[i].isImm()) {
335
OS << "imm" << i;
336
} else if (Operands[i].isFP()) {
337
OS << "f" << i;
338
} else {
339
llvm_unreachable("Unknown operand kind!");
340
}
341
}
342
}
343
344
void PrintArguments(raw_ostream &OS) const {
345
ListSeparator LS;
346
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
347
OS << LS;
348
if (Operands[i].isReg()) {
349
OS << "Op" << i;
350
} else if (Operands[i].isImm()) {
351
OS << "imm" << i;
352
} else if (Operands[i].isFP()) {
353
OS << "f" << i;
354
} else {
355
llvm_unreachable("Unknown operand kind!");
356
}
357
}
358
}
359
360
void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
361
ImmPredicateSet &ImmPredicates,
362
bool StripImmCodes = false) const {
363
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
364
if (PR[i] != "")
365
// Implicit physical register operand. e.g. Instruction::Mul expect to
366
// select to a binary op. On x86, mul may take a single operand with
367
// the other operand being implicit. We must emit something that looks
368
// like a binary instruction except for the very inner fastEmitInst_*
369
// call.
370
continue;
371
Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
372
}
373
}
374
375
void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
376
bool StripImmCodes = false) const {
377
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
378
Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
379
}
380
};
381
} // End anonymous namespace
382
383
namespace {
384
class FastISelMap {
385
// A multimap is needed instead of a "plain" map because the key is
386
// the instruction's complexity (an int) and they are not unique.
387
typedef std::multimap<int, InstructionMemo> PredMap;
388
typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
389
typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
390
typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
391
typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
392
OperandsOpcodeTypeRetPredMap;
393
394
OperandsOpcodeTypeRetPredMap SimplePatterns;
395
396
// This is used to check that there are no duplicate predicates
397
std::set<std::tuple<OperandsSignature, std::string, MVT::SimpleValueType,
398
MVT::SimpleValueType, std::string>>
399
SimplePatternsCheck;
400
401
std::map<OperandsSignature, std::vector<OperandsSignature>>
402
SignaturesWithConstantForms;
403
404
StringRef InstNS;
405
ImmPredicateSet ImmediatePredicates;
406
407
public:
408
explicit FastISelMap(StringRef InstNS);
409
410
void collectPatterns(CodeGenDAGPatterns &CGP);
411
void printImmediatePredicates(raw_ostream &OS);
412
void printFunctionDefinitions(raw_ostream &OS);
413
414
private:
415
void emitInstructionCode(raw_ostream &OS, const OperandsSignature &Operands,
416
const PredMap &PM, const std::string &RetVTName);
417
};
418
} // End anonymous namespace
419
420
static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
421
return std::string(CGP.getSDNodeInfo(Op).getEnumName());
422
}
423
424
static std::string getLegalCName(std::string OpName) {
425
std::string::size_type pos = OpName.find("::");
426
if (pos != std::string::npos)
427
OpName.replace(pos, 2, "_");
428
return OpName;
429
}
430
431
FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
432
433
static std::string PhyRegForNode(TreePatternNode &Op,
434
const CodeGenTarget &Target) {
435
std::string PhysReg;
436
437
if (!Op.isLeaf())
438
return PhysReg;
439
440
Record *OpLeafRec = cast<DefInit>(Op.getLeafValue())->getDef();
441
if (!OpLeafRec->isSubClassOf("Register"))
442
return PhysReg;
443
444
PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
445
->getValue();
446
PhysReg += "::";
447
PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
448
return PhysReg;
449
}
450
451
void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
452
const CodeGenTarget &Target = CGP.getTargetInfo();
453
454
// Scan through all the patterns and record the simple ones.
455
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
456
I != E; ++I) {
457
const PatternToMatch &Pattern = *I;
458
459
// For now, just look at Instructions, so that we don't have to worry
460
// about emitting multiple instructions for a pattern.
461
TreePatternNode &Dst = Pattern.getDstPattern();
462
if (Dst.isLeaf())
463
continue;
464
Record *Op = Dst.getOperator();
465
if (!Op->isSubClassOf("Instruction"))
466
continue;
467
CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
468
if (II.Operands.empty())
469
continue;
470
471
// Allow instructions to be marked as unavailable for FastISel for
472
// certain cases, i.e. an ISA has two 'and' instruction which differ
473
// by what registers they can use but are otherwise identical for
474
// codegen purposes.
475
if (II.FastISelShouldIgnore)
476
continue;
477
478
// For now, ignore multi-instruction patterns.
479
bool MultiInsts = false;
480
for (unsigned i = 0, e = Dst.getNumChildren(); i != e; ++i) {
481
TreePatternNode &ChildOp = Dst.getChild(i);
482
if (ChildOp.isLeaf())
483
continue;
484
if (ChildOp.getOperator()->isSubClassOf("Instruction")) {
485
MultiInsts = true;
486
break;
487
}
488
}
489
if (MultiInsts)
490
continue;
491
492
// For now, ignore instructions where the first operand is not an
493
// output register.
494
const CodeGenRegisterClass *DstRC = nullptr;
495
std::string SubRegNo;
496
if (Op->getName() != "EXTRACT_SUBREG") {
497
Record *Op0Rec = II.Operands[0].Rec;
498
if (Op0Rec->isSubClassOf("RegisterOperand"))
499
Op0Rec = Op0Rec->getValueAsDef("RegClass");
500
if (!Op0Rec->isSubClassOf("RegisterClass"))
501
continue;
502
DstRC = &Target.getRegisterClass(Op0Rec);
503
if (!DstRC)
504
continue;
505
} else {
506
// If this isn't a leaf, then continue since the register classes are
507
// a bit too complicated for now.
508
if (!Dst.getChild(1).isLeaf())
509
continue;
510
511
DefInit *SR = dyn_cast<DefInit>(Dst.getChild(1).getLeafValue());
512
if (SR)
513
SubRegNo = getQualifiedName(SR->getDef());
514
else
515
SubRegNo = Dst.getChild(1).getLeafValue()->getAsString();
516
}
517
518
// Inspect the pattern.
519
TreePatternNode &InstPatNode = Pattern.getSrcPattern();
520
if (InstPatNode.isLeaf())
521
continue;
522
523
// Ignore multiple result nodes for now.
524
if (InstPatNode.getNumTypes() > 1)
525
continue;
526
527
Record *InstPatOp = InstPatNode.getOperator();
528
std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
529
MVT::SimpleValueType RetVT = MVT::isVoid;
530
if (InstPatNode.getNumTypes())
531
RetVT = InstPatNode.getSimpleType(0);
532
MVT::SimpleValueType VT = RetVT;
533
if (InstPatNode.getNumChildren()) {
534
assert(InstPatNode.getChild(0).getNumTypes() == 1);
535
VT = InstPatNode.getChild(0).getSimpleType(0);
536
}
537
538
// For now, filter out any instructions with predicates.
539
if (!InstPatNode.getPredicateCalls().empty())
540
continue;
541
542
// Check all the operands.
543
OperandsSignature Operands;
544
if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
545
DstRC))
546
continue;
547
548
std::vector<std::string> PhysRegInputs;
549
if (InstPatNode.getOperator()->getName() == "imm" ||
550
InstPatNode.getOperator()->getName() == "fpimm")
551
PhysRegInputs.push_back("");
552
else {
553
// Compute the PhysRegs used by the given pattern, and check that
554
// the mapping from the src to dst patterns is simple.
555
bool FoundNonSimplePattern = false;
556
unsigned DstIndex = 0;
557
for (unsigned i = 0, e = InstPatNode.getNumChildren(); i != e; ++i) {
558
std::string PhysReg = PhyRegForNode(InstPatNode.getChild(i), Target);
559
if (PhysReg.empty()) {
560
if (DstIndex >= Dst.getNumChildren() ||
561
Dst.getChild(DstIndex).getName() !=
562
InstPatNode.getChild(i).getName()) {
563
FoundNonSimplePattern = true;
564
break;
565
}
566
++DstIndex;
567
}
568
569
PhysRegInputs.push_back(PhysReg);
570
}
571
572
if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst.getNumChildren())
573
FoundNonSimplePattern = true;
574
575
if (FoundNonSimplePattern)
576
continue;
577
}
578
579
// Check if the operands match one of the patterns handled by FastISel.
580
std::string ManglingSuffix;
581
raw_string_ostream SuffixOS(ManglingSuffix);
582
Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
583
if (!StringSwitch<bool>(ManglingSuffix)
584
.Cases("", "r", "rr", "ri", "i", "f", true)
585
.Default(false))
586
continue;
587
588
// Get the predicate that guards this pattern.
589
std::string PredicateCheck = Pattern.getPredicateCheck();
590
591
// Ok, we found a pattern that we can handle. Remember it.
592
InstructionMemo Memo(Pattern.getDstPattern().getOperator()->getName(),
593
DstRC, SubRegNo, PhysRegInputs, PredicateCheck);
594
595
int complexity = Pattern.getPatternComplexity(CGP);
596
597
auto inserted_simple_pattern = SimplePatternsCheck.insert(
598
std::tuple(Operands, OpcodeName, VT, RetVT, PredicateCheck));
599
if (!inserted_simple_pattern.second) {
600
PrintFatalError(Pattern.getSrcRecord()->getLoc(),
601
"Duplicate predicate in FastISel table!");
602
}
603
604
// Note: Instructions with the same complexity will appear in the order
605
// that they are encountered.
606
SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
607
std::move(Memo));
608
609
// If any of the operands were immediates with predicates on them, strip
610
// them down to a signature that doesn't have predicates so that we can
611
// associate them with the stripped predicate version.
612
if (Operands.hasAnyImmediateCodes()) {
613
SignaturesWithConstantForms[Operands.getWithoutImmCodes()].push_back(
614
Operands);
615
}
616
}
617
}
618
619
void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
620
if (ImmediatePredicates.begin() == ImmediatePredicates.end())
621
return;
622
623
OS << "\n// FastEmit Immediate Predicate functions.\n";
624
for (auto ImmediatePredicate : ImmediatePredicates) {
625
OS << "static bool " << ImmediatePredicate.getFnName()
626
<< "(int64_t Imm) {\n";
627
OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n";
628
}
629
630
OS << "\n\n";
631
}
632
633
void FastISelMap::emitInstructionCode(raw_ostream &OS,
634
const OperandsSignature &Operands,
635
const PredMap &PM,
636
const std::string &RetVTName) {
637
// Emit code for each possible instruction. There may be
638
// multiple if there are subtarget concerns. A reverse iterator
639
// is used to produce the ones with highest complexity first.
640
641
bool OneHadNoPredicate = false;
642
for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
643
PI != PE; ++PI) {
644
const InstructionMemo &Memo = PI->second;
645
std::string PredicateCheck = Memo.PredicateCheck;
646
647
if (PredicateCheck.empty()) {
648
assert(!OneHadNoPredicate &&
649
"Multiple instructions match and more than one had "
650
"no predicate!");
651
OneHadNoPredicate = true;
652
} else {
653
if (OneHadNoPredicate) {
654
PrintFatalError("Multiple instructions match and one with no "
655
"predicate came before one with a predicate! "
656
"name:" +
657
Memo.Name + " predicate: " + PredicateCheck);
658
}
659
OS << " if (" + PredicateCheck + ") {\n";
660
OS << " ";
661
}
662
663
for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
664
if (Memo.PhysRegs[i] != "")
665
OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, "
666
<< "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
667
<< ").addReg(Op" << i << ");\n";
668
}
669
670
OS << " return fastEmitInst_";
671
if (Memo.SubRegNo.empty()) {
672
Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
673
true);
674
OS << "(" << InstNS << "::" << Memo.Name << ", ";
675
OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
676
if (!Operands.empty())
677
OS << ", ";
678
Operands.PrintArguments(OS, Memo.PhysRegs);
679
OS << ");\n";
680
} else {
681
OS << "extractsubreg(" << RetVTName << ", Op0, " << Memo.SubRegNo
682
<< ");\n";
683
}
684
685
if (!PredicateCheck.empty()) {
686
OS << " }\n";
687
}
688
}
689
// Return 0 if all of the possibilities had predicates but none
690
// were satisfied.
691
if (!OneHadNoPredicate)
692
OS << " return 0;\n";
693
OS << "}\n";
694
OS << "\n";
695
}
696
697
void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
698
// Now emit code for all the patterns that we collected.
699
for (const auto &SimplePattern : SimplePatterns) {
700
const OperandsSignature &Operands = SimplePattern.first;
701
const OpcodeTypeRetPredMap &OTM = SimplePattern.second;
702
703
for (const auto &I : OTM) {
704
const std::string &Opcode = I.first;
705
const TypeRetPredMap &TM = I.second;
706
707
OS << "// FastEmit functions for " << Opcode << ".\n";
708
OS << "\n";
709
710
// Emit one function for each opcode,type pair.
711
for (const auto &TI : TM) {
712
MVT::SimpleValueType VT = TI.first;
713
const RetPredMap &RM = TI.second;
714
if (RM.size() != 1) {
715
for (const auto &RI : RM) {
716
MVT::SimpleValueType RetVT = RI.first;
717
const PredMap &PM = RI.second;
718
719
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
720
<< getLegalCName(std::string(getName(VT))) << "_"
721
<< getLegalCName(std::string(getName(RetVT))) << "_";
722
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
723
OS << "(";
724
Operands.PrintParameters(OS);
725
OS << ") {\n";
726
727
emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
728
}
729
730
// Emit one function for the type that demultiplexes on return type.
731
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
732
<< getLegalCName(std::string(getName(VT))) << "_";
733
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
734
OS << "(MVT RetVT";
735
if (!Operands.empty())
736
OS << ", ";
737
Operands.PrintParameters(OS);
738
OS << ") {\nswitch (RetVT.SimpleTy) {\n";
739
for (const auto &RI : RM) {
740
MVT::SimpleValueType RetVT = RI.first;
741
OS << " case " << getName(RetVT) << ": return fastEmit_"
742
<< getLegalCName(Opcode) << "_"
743
<< getLegalCName(std::string(getName(VT))) << "_"
744
<< getLegalCName(std::string(getName(RetVT))) << "_";
745
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
746
OS << "(";
747
Operands.PrintArguments(OS);
748
OS << ");\n";
749
}
750
OS << " default: return 0;\n}\n}\n\n";
751
752
} else {
753
// Non-variadic return type.
754
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
755
<< getLegalCName(std::string(getName(VT))) << "_";
756
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
757
OS << "(MVT RetVT";
758
if (!Operands.empty())
759
OS << ", ";
760
Operands.PrintParameters(OS);
761
OS << ") {\n";
762
763
OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first)
764
<< ")\n return 0;\n";
765
766
const PredMap &PM = RM.begin()->second;
767
768
emitInstructionCode(OS, Operands, PM, "RetVT");
769
}
770
}
771
772
// Emit one function for the opcode that demultiplexes based on the type.
773
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_";
774
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
775
OS << "(MVT VT, MVT RetVT";
776
if (!Operands.empty())
777
OS << ", ";
778
Operands.PrintParameters(OS);
779
OS << ") {\n";
780
OS << " switch (VT.SimpleTy) {\n";
781
for (const auto &TI : TM) {
782
MVT::SimpleValueType VT = TI.first;
783
std::string TypeName = std::string(getName(VT));
784
OS << " case " << TypeName << ": return fastEmit_"
785
<< getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
786
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
787
OS << "(RetVT";
788
if (!Operands.empty())
789
OS << ", ";
790
Operands.PrintArguments(OS);
791
OS << ");\n";
792
}
793
OS << " default: return 0;\n";
794
OS << " }\n";
795
OS << "}\n";
796
OS << "\n";
797
}
798
799
OS << "// Top-level FastEmit function.\n";
800
OS << "\n";
801
802
// Emit one function for the operand signature that demultiplexes based
803
// on opcode and type.
804
OS << "unsigned fastEmit_";
805
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
806
OS << "(MVT VT, MVT RetVT, unsigned Opcode";
807
if (!Operands.empty())
808
OS << ", ";
809
Operands.PrintParameters(OS);
810
OS << ") ";
811
if (!Operands.hasAnyImmediateCodes())
812
OS << "override ";
813
OS << "{\n";
814
815
// If there are any forms of this signature available that operate on
816
// constrained forms of the immediate (e.g., 32-bit sext immediate in a
817
// 64-bit operand), check them first.
818
819
std::map<OperandsSignature, std::vector<OperandsSignature>>::iterator MI =
820
SignaturesWithConstantForms.find(Operands);
821
if (MI != SignaturesWithConstantForms.end()) {
822
// Unique any duplicates out of the list.
823
llvm::sort(MI->second);
824
MI->second.erase(llvm::unique(MI->second), MI->second.end());
825
826
// Check each in order it was seen. It would be nice to have a good
827
// relative ordering between them, but we're not going for optimality
828
// here.
829
for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
830
OS << " if (";
831
MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
832
OS << ")\n if (unsigned Reg = fastEmit_";
833
MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
834
OS << "(VT, RetVT, Opcode";
835
if (!MI->second[i].empty())
836
OS << ", ";
837
MI->second[i].PrintArguments(OS);
838
OS << "))\n return Reg;\n\n";
839
}
840
841
// Done with this, remove it.
842
SignaturesWithConstantForms.erase(MI);
843
}
844
845
OS << " switch (Opcode) {\n";
846
for (const auto &I : OTM) {
847
const std::string &Opcode = I.first;
848
849
OS << " case " << Opcode << ": return fastEmit_" << getLegalCName(Opcode)
850
<< "_";
851
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
852
OS << "(VT, RetVT";
853
if (!Operands.empty())
854
OS << ", ";
855
Operands.PrintArguments(OS);
856
OS << ");\n";
857
}
858
OS << " default: return 0;\n";
859
OS << " }\n";
860
OS << "}\n";
861
OS << "\n";
862
}
863
864
// TODO: SignaturesWithConstantForms should be empty here.
865
}
866
867
static void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
868
CodeGenDAGPatterns CGP(RK);
869
const CodeGenTarget &Target = CGP.getTargetInfo();
870
emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
871
Target.getName().str() + " target",
872
OS);
873
874
// Determine the target's namespace name.
875
StringRef InstNS = Target.getInstNamespace();
876
assert(!InstNS.empty() && "Can't determine target-specific namespace!");
877
878
FastISelMap F(InstNS);
879
F.collectPatterns(CGP);
880
F.printImmediatePredicates(OS);
881
F.printFunctionDefinitions(OS);
882
}
883
884
static TableGen::Emitter::Opt X("gen-fast-isel", EmitFastISel,
885
"Generate a \"fast\" instruction selector");
886
887