Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/utils/TableGen/SubtargetEmitter.cpp
35258 views
1
//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This tablegen backend emits subtarget enumerations.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "Common/CodeGenHwModes.h"
14
#include "Common/CodeGenSchedule.h"
15
#include "Common/CodeGenTarget.h"
16
#include "Common/PredicateExpander.h"
17
#include "llvm/ADT/STLExtras.h"
18
#include "llvm/ADT/SmallPtrSet.h"
19
#include "llvm/ADT/StringExtras.h"
20
#include "llvm/ADT/StringRef.h"
21
#include "llvm/MC/MCInstrItineraries.h"
22
#include "llvm/MC/MCSchedule.h"
23
#include "llvm/Support/Debug.h"
24
#include "llvm/Support/Format.h"
25
#include "llvm/Support/raw_ostream.h"
26
#include "llvm/TableGen/Error.h"
27
#include "llvm/TableGen/Record.h"
28
#include "llvm/TableGen/TableGenBackend.h"
29
#include "llvm/TargetParser/SubtargetFeature.h"
30
#include <algorithm>
31
#include <cassert>
32
#include <cstdint>
33
#include <iterator>
34
#include <map>
35
#include <set>
36
#include <string>
37
#include <vector>
38
39
using namespace llvm;
40
41
#define DEBUG_TYPE "subtarget-emitter"
42
43
namespace {
44
45
/// Sorting predicate to sort record pointers by their
46
/// FieldName field.
47
struct LessRecordFieldFieldName {
48
bool operator()(const Record *Rec1, const Record *Rec2) const {
49
return Rec1->getValueAsString("FieldName") <
50
Rec2->getValueAsString("FieldName");
51
}
52
};
53
54
class SubtargetEmitter {
55
// Each processor has a SchedClassDesc table with an entry for each
56
// SchedClass. The SchedClassDesc table indexes into a global write resource
57
// table, write latency table, and read advance table.
58
struct SchedClassTables {
59
std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
60
std::vector<MCWriteProcResEntry> WriteProcResources;
61
std::vector<MCWriteLatencyEntry> WriteLatencies;
62
std::vector<std::string> WriterNames;
63
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
64
65
// Reserve an invalid entry at index 0
66
SchedClassTables() {
67
ProcSchedClasses.resize(1);
68
WriteProcResources.resize(1);
69
WriteLatencies.resize(1);
70
WriterNames.push_back("InvalidWrite");
71
ReadAdvanceEntries.resize(1);
72
}
73
};
74
75
struct LessWriteProcResources {
76
bool operator()(const MCWriteProcResEntry &LHS,
77
const MCWriteProcResEntry &RHS) {
78
return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
79
}
80
};
81
82
CodeGenTarget TGT;
83
RecordKeeper &Records;
84
CodeGenSchedModels &SchedModels;
85
std::string Target;
86
87
void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap);
88
void EmitSubtargetInfoMacroCalls(raw_ostream &OS);
89
unsigned FeatureKeyValues(raw_ostream &OS,
90
const DenseMap<Record *, unsigned> &FeatureMap);
91
unsigned CPUKeyValues(raw_ostream &OS,
92
const DenseMap<Record *, unsigned> &FeatureMap);
93
void FormItineraryStageString(const std::string &Names, Record *ItinData,
94
std::string &ItinString, unsigned &NStages);
95
void FormItineraryOperandCycleString(Record *ItinData,
96
std::string &ItinString,
97
unsigned &NOperandCycles);
98
void FormItineraryBypassString(const std::string &Names, Record *ItinData,
99
std::string &ItinString,
100
unsigned NOperandCycles);
101
void EmitStageAndOperandCycleData(
102
raw_ostream &OS, std::vector<std::vector<InstrItinerary>> &ProcItinLists);
103
void EmitItineraries(raw_ostream &OS,
104
std::vector<std::vector<InstrItinerary>> &ProcItinLists);
105
unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
106
raw_ostream &OS);
107
void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
108
raw_ostream &OS);
109
void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
110
raw_ostream &OS);
111
void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
112
char Separator);
113
void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
114
raw_ostream &OS);
115
void EmitProcessorResources(const CodeGenProcModel &ProcModel,
116
raw_ostream &OS);
117
Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
118
const CodeGenProcModel &ProcModel);
119
Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
120
const CodeGenProcModel &ProcModel);
121
void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
122
std::vector<int64_t> &AcquireAtCycles,
123
const CodeGenProcModel &ProcModel);
124
void GenSchedClassTables(const CodeGenProcModel &ProcModel,
125
SchedClassTables &SchedTables);
126
void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
127
void EmitProcessorModels(raw_ostream &OS);
128
void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
129
void emitSchedModelHelpersImpl(raw_ostream &OS,
130
bool OnlyExpandMCInstPredicates = false);
131
void emitGenMCSubtargetInfo(raw_ostream &OS);
132
void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
133
134
void EmitSchedModel(raw_ostream &OS);
135
void emitGetMacroFusions(const std::string &ClassName, raw_ostream &OS);
136
void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
137
void ParseFeaturesFunction(raw_ostream &OS);
138
139
public:
140
SubtargetEmitter(RecordKeeper &R)
141
: TGT(R), Records(R), SchedModels(TGT.getSchedModels()),
142
Target(TGT.getName()) {}
143
144
void run(raw_ostream &o);
145
};
146
147
} // end anonymous namespace
148
149
//
150
// Enumeration - Emit the specified class as an enumeration.
151
//
152
void SubtargetEmitter::Enumeration(raw_ostream &OS,
153
DenseMap<Record *, unsigned> &FeatureMap) {
154
// Get all records of class and sort
155
std::vector<Record *> DefList =
156
Records.getAllDerivedDefinitions("SubtargetFeature");
157
llvm::sort(DefList, LessRecord());
158
159
unsigned N = DefList.size();
160
if (N == 0)
161
return;
162
if (N + 1 > MAX_SUBTARGET_FEATURES)
163
PrintFatalError(
164
"Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
165
166
OS << "namespace " << Target << " {\n";
167
168
// Open enumeration.
169
OS << "enum {\n";
170
171
// For each record
172
for (unsigned i = 0; i < N; ++i) {
173
// Next record
174
Record *Def = DefList[i];
175
176
// Get and emit name
177
OS << " " << Def->getName() << " = " << i << ",\n";
178
179
// Save the index for this feature.
180
FeatureMap[Def] = i;
181
}
182
183
OS << " "
184
<< "NumSubtargetFeatures = " << N << "\n";
185
186
// Close enumeration and namespace
187
OS << "};\n";
188
OS << "} // end namespace " << Target << "\n";
189
}
190
191
static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList,
192
const DenseMap<Record *, unsigned> &FeatureMap) {
193
std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
194
for (const Record *Feature : FeatureList) {
195
unsigned Bit = FeatureMap.lookup(Feature);
196
Mask[Bit / 64] |= 1ULL << (Bit % 64);
197
}
198
199
OS << "{ { { ";
200
for (unsigned i = 0; i != Mask.size(); ++i) {
201
OS << "0x";
202
OS.write_hex(Mask[i]);
203
OS << "ULL, ";
204
}
205
OS << "} } }";
206
}
207
208
/// Emit some information about the SubtargetFeature as calls to a macro so
209
/// that they can be used from C++.
210
void SubtargetEmitter::EmitSubtargetInfoMacroCalls(raw_ostream &OS) {
211
OS << "\n#ifdef GET_SUBTARGETINFO_MACRO\n";
212
213
std::vector<Record *> FeatureList =
214
Records.getAllDerivedDefinitions("SubtargetFeature");
215
llvm::sort(FeatureList, LessRecordFieldFieldName());
216
217
for (const Record *Feature : FeatureList) {
218
const StringRef FieldName = Feature->getValueAsString("FieldName");
219
const StringRef Value = Feature->getValueAsString("Value");
220
221
// Only handle boolean features for now, excluding BitVectors and enums.
222
const bool IsBool = (Value == "false" || Value == "true") &&
223
!StringRef(FieldName).contains('[');
224
if (!IsBool)
225
continue;
226
227
// Some features default to true, with values set to false if enabled.
228
const char *Default = Value == "false" ? "true" : "false";
229
230
// Define the getter with lowercased first char: xxxYyy() { return XxxYyy; }
231
const std::string Getter =
232
FieldName.substr(0, 1).lower() + FieldName.substr(1).str();
233
234
OS << "GET_SUBTARGETINFO_MACRO(" << FieldName << ", " << Default << ", "
235
<< Getter << ")\n";
236
}
237
OS << "#undef GET_SUBTARGETINFO_MACRO\n";
238
OS << "#endif // GET_SUBTARGETINFO_MACRO\n\n";
239
240
OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
241
OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
242
243
if (Target == "AArch64")
244
OS << "#include \"llvm/TargetParser/AArch64TargetParser.h\"\n\n";
245
}
246
247
//
248
// FeatureKeyValues - Emit data of all the subtarget features. Used by the
249
// command line.
250
//
251
unsigned SubtargetEmitter::FeatureKeyValues(
252
raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) {
253
// Gather and sort all the features
254
std::vector<Record *> FeatureList =
255
Records.getAllDerivedDefinitions("SubtargetFeature");
256
257
if (FeatureList.empty())
258
return 0;
259
260
llvm::sort(FeatureList, LessRecordFieldName());
261
262
// Check that there are no duplicate keys
263
std::set<StringRef> UniqueKeys;
264
265
// Begin feature table
266
OS << "// Sorted (by key) array of values for CPU features.\n"
267
<< "extern const llvm::SubtargetFeatureKV " << Target
268
<< "FeatureKV[] = {\n";
269
270
// For each feature
271
unsigned NumFeatures = 0;
272
for (const Record *Feature : FeatureList) {
273
// Next feature
274
StringRef Name = Feature->getName();
275
StringRef CommandLineName = Feature->getValueAsString("Name");
276
StringRef Desc = Feature->getValueAsString("Desc");
277
278
if (CommandLineName.empty())
279
continue;
280
281
// Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in
282
// } }
283
OS << " { "
284
<< "\"" << CommandLineName << "\", "
285
<< "\"" << Desc << "\", " << Target << "::" << Name << ", ";
286
287
RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
288
289
printFeatureMask(OS, ImpliesList, FeatureMap);
290
291
OS << " },\n";
292
++NumFeatures;
293
294
if (!UniqueKeys.insert(CommandLineName).second)
295
PrintFatalError("Duplicate key in SubtargetFeatureKV: " +
296
CommandLineName);
297
}
298
299
// End feature table
300
OS << "};\n";
301
302
return NumFeatures;
303
}
304
305
//
306
// CPUKeyValues - Emit data of all the subtarget processors. Used by command
307
// line.
308
//
309
unsigned
310
SubtargetEmitter::CPUKeyValues(raw_ostream &OS,
311
const DenseMap<Record *, unsigned> &FeatureMap) {
312
// Gather and sort processor information
313
std::vector<Record *> ProcessorList =
314
Records.getAllDerivedDefinitions("Processor");
315
llvm::sort(ProcessorList, LessRecordFieldName());
316
317
// Begin processor table
318
OS << "// Sorted (by key) array of values for CPU subtype.\n"
319
<< "extern const llvm::SubtargetSubTypeKV " << Target
320
<< "SubTypeKV[] = {\n";
321
322
// For each processor
323
for (Record *Processor : ProcessorList) {
324
StringRef Name = Processor->getValueAsString("Name");
325
RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
326
RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures");
327
328
// Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } },
329
OS << " { "
330
<< "\"" << Name << "\", ";
331
332
printFeatureMask(OS, FeatureList, FeatureMap);
333
OS << ", ";
334
printFeatureMask(OS, TuneFeatureList, FeatureMap);
335
336
// Emit the scheduler model pointer.
337
const std::string &ProcModelName =
338
SchedModels.getModelForProc(Processor).ModelName;
339
OS << ", &" << ProcModelName << " },\n";
340
}
341
342
// End processor table
343
OS << "};\n";
344
345
return ProcessorList.size();
346
}
347
348
//
349
// FormItineraryStageString - Compose a string containing the stage
350
// data initialization for the specified itinerary. N is the number
351
// of stages.
352
//
353
void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
354
Record *ItinData,
355
std::string &ItinString,
356
unsigned &NStages) {
357
// Get states list
358
RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
359
360
// For each stage
361
unsigned N = NStages = StageList.size();
362
for (unsigned i = 0; i < N;) {
363
// Next stage
364
const Record *Stage = StageList[i];
365
366
// Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
367
int Cycles = Stage->getValueAsInt("Cycles");
368
ItinString += " { " + itostr(Cycles) + ", ";
369
370
// Get unit list
371
RecVec UnitList = Stage->getValueAsListOfDefs("Units");
372
373
// For each unit
374
for (unsigned j = 0, M = UnitList.size(); j < M;) {
375
// Add name and bitwise or
376
ItinString += Name + "FU::" + UnitList[j]->getName().str();
377
if (++j < M)
378
ItinString += " | ";
379
}
380
381
int TimeInc = Stage->getValueAsInt("TimeInc");
382
ItinString += ", " + itostr(TimeInc);
383
384
int Kind = Stage->getValueAsInt("Kind");
385
ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
386
387
// Close off stage
388
ItinString += " }";
389
if (++i < N)
390
ItinString += ", ";
391
}
392
}
393
394
//
395
// FormItineraryOperandCycleString - Compose a string containing the
396
// operand cycle initialization for the specified itinerary. N is the
397
// number of operands that has cycles specified.
398
//
399
void SubtargetEmitter::FormItineraryOperandCycleString(
400
Record *ItinData, std::string &ItinString, unsigned &NOperandCycles) {
401
// Get operand cycle list
402
std::vector<int64_t> OperandCycleList =
403
ItinData->getValueAsListOfInts("OperandCycles");
404
405
// For each operand cycle
406
NOperandCycles = OperandCycleList.size();
407
ListSeparator LS;
408
for (int OCycle : OperandCycleList) {
409
// Next operand cycle
410
ItinString += LS;
411
ItinString += " " + itostr(OCycle);
412
}
413
}
414
415
void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
416
Record *ItinData,
417
std::string &ItinString,
418
unsigned NOperandCycles) {
419
RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
420
unsigned N = BypassList.size();
421
unsigned i = 0;
422
ListSeparator LS;
423
for (; i < N; ++i) {
424
ItinString += LS;
425
ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
426
}
427
for (; i < NOperandCycles; ++i) {
428
ItinString += LS;
429
ItinString += " 0";
430
}
431
}
432
433
//
434
// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
435
// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
436
// by CodeGenSchedClass::Index.
437
//
438
void SubtargetEmitter::EmitStageAndOperandCycleData(
439
raw_ostream &OS, std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
440
// Multiple processor models may share an itinerary record. Emit it once.
441
SmallPtrSet<Record *, 8> ItinsDefSet;
442
443
// Emit functional units for all the itineraries.
444
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
445
446
if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
447
continue;
448
449
RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
450
if (FUs.empty())
451
continue;
452
453
StringRef Name = ProcModel.ItinsDef->getName();
454
OS << "\n// Functional units for \"" << Name << "\"\n"
455
<< "namespace " << Name << "FU {\n";
456
457
for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
458
OS << " const InstrStage::FuncUnits " << FUs[j]->getName()
459
<< " = 1ULL << " << j << ";\n";
460
461
OS << "} // end namespace " << Name << "FU\n";
462
463
RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
464
if (!BPs.empty()) {
465
OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
466
<< "\"\n"
467
<< "namespace " << Name << "Bypass {\n";
468
469
OS << " const unsigned NoBypass = 0;\n";
470
for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
471
OS << " const unsigned " << BPs[j]->getName() << " = 1 << " << j
472
<< ";\n";
473
474
OS << "} // end namespace " << Name << "Bypass\n";
475
}
476
}
477
478
// Begin stages table
479
std::string StageTable =
480
"\nextern const llvm::InstrStage " + Target + "Stages[] = {\n";
481
StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
482
483
// Begin operand cycle table
484
std::string OperandCycleTable =
485
"extern const unsigned " + Target + "OperandCycles[] = {\n";
486
OperandCycleTable += " 0, // No itinerary\n";
487
488
// Begin pipeline bypass table
489
std::string BypassTable =
490
"extern const unsigned " + Target + "ForwardingPaths[] = {\n";
491
BypassTable += " 0, // No itinerary\n";
492
493
// For each Itinerary across all processors, add a unique entry to the stages,
494
// operand cycles, and pipeline bypass tables. Then add the new Itinerary
495
// object with computed offsets to the ProcItinLists result.
496
unsigned StageCount = 1, OperandCycleCount = 1;
497
std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
498
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
499
// Add process itinerary to the list.
500
std::vector<InstrItinerary> &ItinList = ProcItinLists.emplace_back();
501
502
// If this processor defines no itineraries, then leave the itinerary list
503
// empty.
504
if (!ProcModel.hasItineraries())
505
continue;
506
507
StringRef Name = ProcModel.ItinsDef->getName();
508
509
ItinList.resize(SchedModels.numInstrSchedClasses());
510
assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
511
512
for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
513
SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
514
515
// Next itinerary data
516
Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
517
518
// Get string and stage count
519
std::string ItinStageString;
520
unsigned NStages = 0;
521
if (ItinData)
522
FormItineraryStageString(std::string(Name), ItinData, ItinStageString,
523
NStages);
524
525
// Get string and operand cycle count
526
std::string ItinOperandCycleString;
527
unsigned NOperandCycles = 0;
528
std::string ItinBypassString;
529
if (ItinData) {
530
FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
531
NOperandCycles);
532
533
FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString,
534
NOperandCycles);
535
}
536
537
// Check to see if stage already exists and create if it doesn't
538
uint16_t FindStage = 0;
539
if (NStages > 0) {
540
FindStage = ItinStageMap[ItinStageString];
541
if (FindStage == 0) {
542
// Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
543
StageTable += ItinStageString + ", // " + itostr(StageCount);
544
if (NStages > 1)
545
StageTable += "-" + itostr(StageCount + NStages - 1);
546
StageTable += "\n";
547
// Record Itin class number.
548
ItinStageMap[ItinStageString] = FindStage = StageCount;
549
StageCount += NStages;
550
}
551
}
552
553
// Check to see if operand cycle already exists and create if it doesn't
554
uint16_t FindOperandCycle = 0;
555
if (NOperandCycles > 0) {
556
std::string ItinOperandString =
557
ItinOperandCycleString + ItinBypassString;
558
FindOperandCycle = ItinOperandMap[ItinOperandString];
559
if (FindOperandCycle == 0) {
560
// Emit as cycle, // index
561
OperandCycleTable += ItinOperandCycleString + ", // ";
562
std::string OperandIdxComment = itostr(OperandCycleCount);
563
if (NOperandCycles > 1)
564
OperandIdxComment +=
565
"-" + itostr(OperandCycleCount + NOperandCycles - 1);
566
OperandCycleTable += OperandIdxComment + "\n";
567
// Record Itin class number.
568
ItinOperandMap[ItinOperandCycleString] = FindOperandCycle =
569
OperandCycleCount;
570
// Emit as bypass, // index
571
BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
572
OperandCycleCount += NOperandCycles;
573
}
574
}
575
576
// Set up itinerary as location and location + stage count
577
int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
578
InstrItinerary Intinerary = {
579
NumUOps,
580
FindStage,
581
uint16_t(FindStage + NStages),
582
FindOperandCycle,
583
uint16_t(FindOperandCycle + NOperandCycles),
584
};
585
586
// Inject - empty slots will be 0, 0
587
ItinList[SchedClassIdx] = Intinerary;
588
}
589
}
590
591
// Closing stage
592
StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
593
StageTable += "};\n";
594
595
// Closing operand cycles
596
OperandCycleTable += " 0 // End operand cycles\n";
597
OperandCycleTable += "};\n";
598
599
BypassTable += " 0 // End bypass tables\n";
600
BypassTable += "};\n";
601
602
// Emit tables.
603
OS << StageTable;
604
OS << OperandCycleTable;
605
OS << BypassTable;
606
}
607
608
//
609
// EmitProcessorData - Generate data for processor itineraries that were
610
// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
611
// Itineraries for each processor. The Itinerary lists are indexed on
612
// CodeGenSchedClass::Index.
613
//
614
void SubtargetEmitter::EmitItineraries(
615
raw_ostream &OS, std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
616
// Multiple processor models may share an itinerary record. Emit it once.
617
SmallPtrSet<Record *, 8> ItinsDefSet;
618
619
// For each processor's machine model
620
std::vector<std::vector<InstrItinerary>>::iterator ProcItinListsIter =
621
ProcItinLists.begin();
622
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
623
PE = SchedModels.procModelEnd();
624
PI != PE; ++PI, ++ProcItinListsIter) {
625
626
Record *ItinsDef = PI->ItinsDef;
627
if (!ItinsDefSet.insert(ItinsDef).second)
628
continue;
629
630
// Get the itinerary list for the processor.
631
assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
632
std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
633
634
// Empty itineraries aren't referenced anywhere in the tablegen output
635
// so don't emit them.
636
if (ItinList.empty())
637
continue;
638
639
OS << "\n";
640
OS << "static const llvm::InstrItinerary ";
641
642
// Begin processor itinerary table
643
OS << ItinsDef->getName() << "[] = {\n";
644
645
// For each itinerary class in CodeGenSchedClass::Index order.
646
for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
647
InstrItinerary &Intinerary = ItinList[j];
648
649
// Emit Itinerary in the form of
650
// { firstStage, lastStage, firstCycle, lastCycle } // index
651
OS << " { " << Intinerary.NumMicroOps << ", " << Intinerary.FirstStage
652
<< ", " << Intinerary.LastStage << ", " << Intinerary.FirstOperandCycle
653
<< ", " << Intinerary.LastOperandCycle << " }"
654
<< ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
655
}
656
// End processor itinerary table
657
OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
658
"// end marker\n";
659
OS << "};\n";
660
}
661
}
662
663
// Emit either the value defined in the TableGen Record, or the default
664
// value defined in the C++ header. The Record is null if the processor does not
665
// define a model.
666
void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
667
StringRef Name, char Separator) {
668
OS << " ";
669
int V = R ? R->getValueAsInt(Name) : -1;
670
if (V >= 0)
671
OS << V << Separator << " // " << Name;
672
else
673
OS << "MCSchedModel::Default" << Name << Separator;
674
OS << '\n';
675
}
676
677
void SubtargetEmitter::EmitProcessorResourceSubUnits(
678
const CodeGenProcModel &ProcModel, raw_ostream &OS) {
679
OS << "\nstatic const unsigned " << ProcModel.ModelName
680
<< "ProcResourceSubUnits[] = {\n"
681
<< " 0, // Invalid\n";
682
683
for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
684
Record *PRDef = ProcModel.ProcResourceDefs[i];
685
if (!PRDef->isSubClassOf("ProcResGroup"))
686
continue;
687
RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
688
for (Record *RUDef : ResUnits) {
689
Record *const RU =
690
SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
691
for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
692
OS << " " << ProcModel.getProcResourceIdx(RU) << ", ";
693
}
694
}
695
OS << " // " << PRDef->getName() << "\n";
696
}
697
OS << "};\n";
698
}
699
700
static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
701
raw_ostream &OS) {
702
int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
703
if (Record *RCU = ProcModel.RetireControlUnit) {
704
ReorderBufferSize =
705
std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
706
MaxRetirePerCycle =
707
std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
708
}
709
710
OS << ReorderBufferSize << ", // ReorderBufferSize\n ";
711
OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n ";
712
}
713
714
static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
715
unsigned NumRegisterFiles,
716
unsigned NumCostEntries, raw_ostream &OS) {
717
if (NumRegisterFiles)
718
OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles);
719
else
720
OS << "nullptr,\n 0";
721
722
OS << ", // Number of register files.\n ";
723
if (NumCostEntries)
724
OS << ProcModel.ModelName << "RegisterCosts,\n ";
725
else
726
OS << "nullptr,\n ";
727
OS << NumCostEntries << ", // Number of register cost entries.\n";
728
}
729
730
unsigned
731
SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
732
raw_ostream &OS) {
733
if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
734
return RF.hasDefaultCosts();
735
}))
736
return 0;
737
738
// Print the RegisterCost table first.
739
OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
740
OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
741
<< "RegisterCosts"
742
<< "[] = {\n";
743
744
for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
745
// Skip register files with a default cost table.
746
if (RF.hasDefaultCosts())
747
continue;
748
// Add entries to the cost table.
749
for (const CodeGenRegisterCost &RC : RF.Costs) {
750
OS << " { ";
751
Record *Rec = RC.RCDef;
752
if (Rec->getValue("Namespace"))
753
OS << Rec->getValueAsString("Namespace") << "::";
754
OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
755
<< RC.AllowMoveElimination << "},\n";
756
}
757
}
758
OS << "};\n";
759
760
// Now generate a table with register file info.
761
OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
762
<< "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
763
OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
764
<< "RegisterFiles"
765
<< "[] = {\n"
766
<< " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
767
unsigned CostTblIndex = 0;
768
769
for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
770
OS << " { ";
771
OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
772
unsigned NumCostEntries = RD.Costs.size();
773
OS << NumCostEntries << ", " << CostTblIndex << ", "
774
<< RD.MaxMovesEliminatedPerCycle << ", "
775
<< RD.AllowZeroMoveEliminationOnly << "},\n";
776
CostTblIndex += NumCostEntries;
777
}
778
OS << "};\n";
779
780
return CostTblIndex;
781
}
782
783
void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
784
raw_ostream &OS) {
785
unsigned QueueID = 0;
786
if (ProcModel.LoadQueue) {
787
const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
788
QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
789
find(ProcModel.ProcResourceDefs, Queue));
790
}
791
OS << " " << QueueID << ", // Resource Descriptor for the Load Queue\n";
792
793
QueueID = 0;
794
if (ProcModel.StoreQueue) {
795
const Record *Queue =
796
ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
797
QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
798
find(ProcModel.ProcResourceDefs, Queue));
799
}
800
OS << " " << QueueID << ", // Resource Descriptor for the Store Queue\n";
801
}
802
803
void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
804
raw_ostream &OS) {
805
// Generate a table of register file descriptors (one entry per each user
806
// defined register file), and a table of register costs.
807
unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
808
809
// Now generate a table for the extra processor info.
810
OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
811
<< "ExtraInfo = {\n ";
812
813
// Add information related to the retire control unit.
814
EmitRetireControlUnitInfo(ProcModel, OS);
815
816
// Add information related to the register files (i.e. where to find register
817
// file descriptors and register costs).
818
EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
819
NumCostEntries, OS);
820
821
// Add information about load/store queues.
822
EmitLoadStoreQueueInfo(ProcModel, OS);
823
824
OS << "};\n";
825
}
826
827
void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
828
raw_ostream &OS) {
829
EmitProcessorResourceSubUnits(ProcModel, OS);
830
831
OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
832
OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
833
<< "ProcResources"
834
<< "[] = {\n"
835
<< " {\"InvalidUnit\", 0, 0, 0, 0},\n";
836
837
unsigned SubUnitsOffset = 1;
838
for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
839
Record *PRDef = ProcModel.ProcResourceDefs[i];
840
841
Record *SuperDef = nullptr;
842
unsigned SuperIdx = 0;
843
unsigned NumUnits = 0;
844
const unsigned SubUnitsBeginOffset = SubUnitsOffset;
845
int BufferSize = PRDef->getValueAsInt("BufferSize");
846
if (PRDef->isSubClassOf("ProcResGroup")) {
847
RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
848
for (Record *RU : ResUnits) {
849
NumUnits += RU->getValueAsInt("NumUnits");
850
SubUnitsOffset += RU->getValueAsInt("NumUnits");
851
}
852
} else {
853
// Find the SuperIdx
854
if (PRDef->getValueInit("Super")->isComplete()) {
855
SuperDef = SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
856
ProcModel, PRDef->getLoc());
857
SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
858
}
859
NumUnits = PRDef->getValueAsInt("NumUnits");
860
}
861
// Emit the ProcResourceDesc
862
OS << " {\"" << PRDef->getName() << "\", ";
863
if (PRDef->getName().size() < 15)
864
OS.indent(15 - PRDef->getName().size());
865
OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
866
if (SubUnitsBeginOffset != SubUnitsOffset) {
867
OS << ProcModel.ModelName << "ProcResourceSubUnits + "
868
<< SubUnitsBeginOffset;
869
} else {
870
OS << "nullptr";
871
}
872
OS << "}, // #" << i + 1;
873
if (SuperDef)
874
OS << ", Super=" << SuperDef->getName();
875
OS << "\n";
876
}
877
OS << "};\n";
878
}
879
880
// Find the WriteRes Record that defines processor resources for this
881
// SchedWrite.
882
Record *
883
SubtargetEmitter::FindWriteResources(const CodeGenSchedRW &SchedWrite,
884
const CodeGenProcModel &ProcModel) {
885
886
// Check if the SchedWrite is already subtarget-specific and directly
887
// specifies a set of processor resources.
888
if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
889
return SchedWrite.TheDef;
890
891
Record *AliasDef = nullptr;
892
for (Record *A : SchedWrite.Aliases) {
893
const CodeGenSchedRW &AliasRW =
894
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
895
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
896
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
897
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
898
continue;
899
}
900
if (AliasDef)
901
PrintFatalError(AliasRW.TheDef->getLoc(),
902
"Multiple aliases "
903
"defined for processor " +
904
ProcModel.ModelName +
905
" Ensure only one SchedAlias exists per RW.");
906
AliasDef = AliasRW.TheDef;
907
}
908
if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
909
return AliasDef;
910
911
// Check this processor's list of write resources.
912
Record *ResDef = nullptr;
913
for (Record *WR : ProcModel.WriteResDefs) {
914
if (!WR->isSubClassOf("WriteRes"))
915
continue;
916
Record *WRDef = WR->getValueAsDef("WriteType");
917
if (AliasDef == WRDef || SchedWrite.TheDef == WRDef) {
918
if (ResDef) {
919
PrintFatalError(WR->getLoc(), "Resources are defined for both "
920
"SchedWrite and its alias on processor " +
921
ProcModel.ModelName);
922
}
923
ResDef = WR;
924
// If there is no AliasDef and we find a match, we can early exit since
925
// there is no need to verify whether there are resources defined for both
926
// SchedWrite and its alias.
927
if (!AliasDef)
928
break;
929
}
930
}
931
// TODO: If ProcModel has a base model (previous generation processor),
932
// then call FindWriteResources recursively with that model here.
933
if (!ResDef) {
934
PrintFatalError(ProcModel.ModelDef->getLoc(),
935
Twine("Processor does not define resources for ") +
936
SchedWrite.TheDef->getName());
937
}
938
return ResDef;
939
}
940
941
/// Find the ReadAdvance record for the given SchedRead on this processor or
942
/// return NULL.
943
Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
944
const CodeGenProcModel &ProcModel) {
945
// Check for SchedReads that directly specify a ReadAdvance.
946
if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
947
return SchedRead.TheDef;
948
949
// Check this processor's list of aliases for SchedRead.
950
Record *AliasDef = nullptr;
951
for (Record *A : SchedRead.Aliases) {
952
const CodeGenSchedRW &AliasRW =
953
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
954
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
955
Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
956
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
957
continue;
958
}
959
if (AliasDef)
960
PrintFatalError(AliasRW.TheDef->getLoc(),
961
"Multiple aliases "
962
"defined for processor " +
963
ProcModel.ModelName +
964
" Ensure only one SchedAlias exists per RW.");
965
AliasDef = AliasRW.TheDef;
966
}
967
if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
968
return AliasDef;
969
970
// Check this processor's ReadAdvanceList.
971
Record *ResDef = nullptr;
972
for (Record *RA : ProcModel.ReadAdvanceDefs) {
973
if (!RA->isSubClassOf("ReadAdvance"))
974
continue;
975
Record *RADef = RA->getValueAsDef("ReadType");
976
if (AliasDef == RADef || SchedRead.TheDef == RADef) {
977
if (ResDef) {
978
PrintFatalError(RA->getLoc(), "Resources are defined for both "
979
"SchedRead and its alias on processor " +
980
ProcModel.ModelName);
981
}
982
ResDef = RA;
983
// If there is no AliasDef and we find a match, we can early exit since
984
// there is no need to verify whether there are resources defined for both
985
// SchedRead and its alias.
986
if (!AliasDef)
987
break;
988
}
989
}
990
// TODO: If ProcModel has a base model (previous generation processor),
991
// then call FindReadAdvance recursively with that model here.
992
if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
993
PrintFatalError(ProcModel.ModelDef->getLoc(),
994
Twine("Processor does not define resources for ") +
995
SchedRead.TheDef->getName());
996
}
997
return ResDef;
998
}
999
1000
// Expand an explicit list of processor resources into a full list of implied
1001
// resource groups and super resources that cover them.
1002
void SubtargetEmitter::ExpandProcResources(
1003
RecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
1004
std::vector<int64_t> &AcquireAtCycles, const CodeGenProcModel &PM) {
1005
assert(PRVec.size() == ReleaseAtCycles.size() && "failed precondition");
1006
for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
1007
Record *PRDef = PRVec[i];
1008
RecVec SubResources;
1009
if (PRDef->isSubClassOf("ProcResGroup"))
1010
SubResources = PRDef->getValueAsListOfDefs("Resources");
1011
else {
1012
SubResources.push_back(PRDef);
1013
PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
1014
for (Record *SubDef = PRDef;
1015
SubDef->getValueInit("Super")->isComplete();) {
1016
if (SubDef->isSubClassOf("ProcResGroup")) {
1017
// Disallow this for simplicitly.
1018
PrintFatalError(SubDef->getLoc(), "Processor resource group "
1019
" cannot be a super resources.");
1020
}
1021
Record *SuperDef = SchedModels.findProcResUnits(
1022
SubDef->getValueAsDef("Super"), PM, SubDef->getLoc());
1023
PRVec.push_back(SuperDef);
1024
ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
1025
AcquireAtCycles.push_back(AcquireAtCycles[i]);
1026
SubDef = SuperDef;
1027
}
1028
}
1029
for (Record *PR : PM.ProcResourceDefs) {
1030
if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
1031
continue;
1032
RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
1033
RecIter SubI = SubResources.begin(), SubE = SubResources.end();
1034
for (; SubI != SubE; ++SubI) {
1035
if (!is_contained(SuperResources, *SubI)) {
1036
break;
1037
}
1038
}
1039
if (SubI == SubE) {
1040
PRVec.push_back(PR);
1041
ReleaseAtCycles.push_back(ReleaseAtCycles[i]);
1042
AcquireAtCycles.push_back(AcquireAtCycles[i]);
1043
}
1044
}
1045
}
1046
}
1047
1048
// Generate the SchedClass table for this processor and update global
1049
// tables. Must be called for each processor in order.
1050
void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
1051
SchedClassTables &SchedTables) {
1052
std::vector<MCSchedClassDesc> &SCTab =
1053
SchedTables.ProcSchedClasses.emplace_back();
1054
if (!ProcModel.hasInstrSchedModel())
1055
return;
1056
1057
LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
1058
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1059
LLVM_DEBUG(SC.dump(&SchedModels));
1060
1061
MCSchedClassDesc &SCDesc = SCTab.emplace_back();
1062
// SCDesc.Name is guarded by NDEBUG
1063
SCDesc.NumMicroOps = 0;
1064
SCDesc.BeginGroup = false;
1065
SCDesc.EndGroup = false;
1066
SCDesc.RetireOOO = false;
1067
SCDesc.WriteProcResIdx = 0;
1068
SCDesc.WriteLatencyIdx = 0;
1069
SCDesc.ReadAdvanceIdx = 0;
1070
1071
// A Variant SchedClass has no resources of its own.
1072
bool HasVariants = false;
1073
for (const CodeGenSchedTransition &CGT :
1074
make_range(SC.Transitions.begin(), SC.Transitions.end())) {
1075
if (CGT.ProcIndex == ProcModel.Index) {
1076
HasVariants = true;
1077
break;
1078
}
1079
}
1080
if (HasVariants) {
1081
SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
1082
continue;
1083
}
1084
1085
// Determine if the SchedClass is actually reachable on this processor. If
1086
// not don't try to locate the processor resources, it will fail.
1087
// If ProcIndices contains 0, this class applies to all processors.
1088
assert(!SC.ProcIndices.empty() && "expect at least one procidx");
1089
if (SC.ProcIndices[0] != 0) {
1090
if (!is_contained(SC.ProcIndices, ProcModel.Index))
1091
continue;
1092
}
1093
IdxVec Writes = SC.Writes;
1094
IdxVec Reads = SC.Reads;
1095
if (!SC.InstRWs.empty()) {
1096
// This class has a default ReadWrite list which can be overridden by
1097
// InstRW definitions.
1098
Record *RWDef = nullptr;
1099
for (Record *RW : SC.InstRWs) {
1100
Record *RWModelDef = RW->getValueAsDef("SchedModel");
1101
if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1102
RWDef = RW;
1103
break;
1104
}
1105
}
1106
if (RWDef) {
1107
Writes.clear();
1108
Reads.clear();
1109
SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1110
Writes, Reads);
1111
}
1112
}
1113
if (Writes.empty()) {
1114
// Check this processor's itinerary class resources.
1115
for (Record *I : ProcModel.ItinRWDefs) {
1116
RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1117
if (is_contained(Matched, SC.ItinClassDef)) {
1118
SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1119
Writes, Reads);
1120
break;
1121
}
1122
}
1123
if (Writes.empty()) {
1124
LLVM_DEBUG(dbgs() << ProcModel.ModelName
1125
<< " does not have resources for class " << SC.Name
1126
<< '\n');
1127
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1128
}
1129
}
1130
// Sum resources across all operand writes.
1131
std::vector<MCWriteProcResEntry> WriteProcResources;
1132
std::vector<MCWriteLatencyEntry> WriteLatencies;
1133
std::vector<std::string> WriterNames;
1134
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1135
for (unsigned W : Writes) {
1136
IdxVec WriteSeq;
1137
SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, ProcModel);
1138
1139
// For each operand, create a latency entry.
1140
MCWriteLatencyEntry WLEntry;
1141
WLEntry.Cycles = 0;
1142
unsigned WriteID = WriteSeq.back();
1143
WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1144
// If this Write is not referenced by a ReadAdvance, don't distinguish it
1145
// from other WriteLatency entries.
1146
if (!ProcModel.hasReadOfWrite(SchedModels.getSchedWrite(WriteID).TheDef))
1147
WriteID = 0;
1148
WLEntry.WriteResourceID = WriteID;
1149
1150
for (unsigned WS : WriteSeq) {
1151
1152
Record *WriteRes =
1153
FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1154
1155
// Mark the parent class as invalid for unsupported write types.
1156
if (WriteRes->getValueAsBit("Unsupported")) {
1157
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1158
break;
1159
}
1160
WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1161
SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1162
SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1163
SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1164
SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1165
SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1166
SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO");
1167
1168
// Create an entry for each ProcResource listed in WriteRes.
1169
RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1170
std::vector<int64_t> ReleaseAtCycles =
1171
WriteRes->getValueAsListOfInts("ReleaseAtCycles");
1172
1173
std::vector<int64_t> AcquireAtCycles =
1174
WriteRes->getValueAsListOfInts("AcquireAtCycles");
1175
1176
// Check consistency of the two vectors carrying the start and
1177
// stop cycles of the resources.
1178
if (!ReleaseAtCycles.empty() &&
1179
ReleaseAtCycles.size() != PRVec.size()) {
1180
// If ReleaseAtCycles is provided, check consistency.
1181
PrintFatalError(
1182
WriteRes->getLoc(),
1183
Twine("Inconsistent release at cycles: size(ReleaseAtCycles) != "
1184
"size(ProcResources): ")
1185
.concat(Twine(PRVec.size()))
1186
.concat(" vs ")
1187
.concat(Twine(ReleaseAtCycles.size())));
1188
}
1189
1190
if (!AcquireAtCycles.empty() &&
1191
AcquireAtCycles.size() != PRVec.size()) {
1192
PrintFatalError(
1193
WriteRes->getLoc(),
1194
Twine("Inconsistent resource cycles: size(AcquireAtCycles) != "
1195
"size(ProcResources): ")
1196
.concat(Twine(AcquireAtCycles.size()))
1197
.concat(" vs ")
1198
.concat(Twine(PRVec.size())));
1199
}
1200
1201
if (ReleaseAtCycles.empty()) {
1202
// If ReleaseAtCycles is not provided, default to one cycle
1203
// per resource.
1204
ReleaseAtCycles.resize(PRVec.size(), 1);
1205
}
1206
1207
if (AcquireAtCycles.empty()) {
1208
// If AcquireAtCycles is not provided, reserve the resource
1209
// starting from cycle 0.
1210
AcquireAtCycles.resize(PRVec.size(), 0);
1211
}
1212
1213
assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
1214
1215
ExpandProcResources(PRVec, ReleaseAtCycles, AcquireAtCycles, ProcModel);
1216
assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
1217
1218
for (unsigned PRIdx = 0, PREnd = PRVec.size(); PRIdx != PREnd;
1219
++PRIdx) {
1220
MCWriteProcResEntry WPREntry;
1221
WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1222
assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1223
WPREntry.ReleaseAtCycle = ReleaseAtCycles[PRIdx];
1224
WPREntry.AcquireAtCycle = AcquireAtCycles[PRIdx];
1225
if (AcquireAtCycles[PRIdx] > ReleaseAtCycles[PRIdx]) {
1226
PrintFatalError(
1227
WriteRes->getLoc(),
1228
Twine("Inconsistent resource cycles: AcquireAtCycles "
1229
"< ReleaseAtCycles must hold."));
1230
}
1231
if (AcquireAtCycles[PRIdx] < 0) {
1232
PrintFatalError(WriteRes->getLoc(),
1233
Twine("Invalid value: AcquireAtCycle "
1234
"must be a non-negative value."));
1235
}
1236
// If this resource is already used in this sequence, add the current
1237
// entry's cycles so that the same resource appears to be used
1238
// serially, rather than multiple parallel uses. This is important for
1239
// in-order machine where the resource consumption is a hazard.
1240
unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1241
for (; WPRIdx != WPREnd; ++WPRIdx) {
1242
if (WriteProcResources[WPRIdx].ProcResourceIdx ==
1243
WPREntry.ProcResourceIdx) {
1244
// TODO: multiple use of the same resources would
1245
// require either 1. thinking of how to handle multiple
1246
// intervals for the same resource in
1247
// `<Target>WriteProcResTable` (see
1248
// `SubtargetEmitter::EmitSchedClassTables`), or
1249
// 2. thinking how to merge multiple intervals into a
1250
// single interval.
1251
assert(WPREntry.AcquireAtCycle == 0 &&
1252
"multiple use ofthe same resource is not yet handled");
1253
WriteProcResources[WPRIdx].ReleaseAtCycle +=
1254
WPREntry.ReleaseAtCycle;
1255
break;
1256
}
1257
}
1258
if (WPRIdx == WPREnd)
1259
WriteProcResources.push_back(WPREntry);
1260
}
1261
}
1262
WriteLatencies.push_back(WLEntry);
1263
}
1264
// Create an entry for each operand Read in this SchedClass.
1265
// Entries must be sorted first by UseIdx then by WriteResourceID.
1266
for (unsigned UseIdx = 0, EndIdx = Reads.size(); UseIdx != EndIdx;
1267
++UseIdx) {
1268
Record *ReadAdvance =
1269
FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1270
if (!ReadAdvance)
1271
continue;
1272
1273
// Mark the parent class as invalid for unsupported write types.
1274
if (ReadAdvance->getValueAsBit("Unsupported")) {
1275
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1276
break;
1277
}
1278
RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1279
IdxVec WriteIDs;
1280
if (ValidWrites.empty())
1281
WriteIDs.push_back(0);
1282
else {
1283
for (Record *VW : ValidWrites) {
1284
unsigned WriteID = SchedModels.getSchedRWIdx(VW, /*IsRead=*/false);
1285
assert(WriteID != 0 &&
1286
"Expected a valid SchedRW in the list of ValidWrites");
1287
WriteIDs.push_back(WriteID);
1288
}
1289
}
1290
llvm::sort(WriteIDs);
1291
for (unsigned W : WriteIDs) {
1292
MCReadAdvanceEntry RAEntry;
1293
RAEntry.UseIdx = UseIdx;
1294
RAEntry.WriteResourceID = W;
1295
RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1296
ReadAdvanceEntries.push_back(RAEntry);
1297
}
1298
}
1299
if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1300
WriteProcResources.clear();
1301
WriteLatencies.clear();
1302
ReadAdvanceEntries.clear();
1303
}
1304
// Add the information for this SchedClass to the global tables using basic
1305
// compression.
1306
//
1307
// WritePrecRes entries are sorted by ProcResIdx.
1308
llvm::sort(WriteProcResources, LessWriteProcResources());
1309
1310
SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1311
std::vector<MCWriteProcResEntry>::iterator WPRPos =
1312
std::search(SchedTables.WriteProcResources.begin(),
1313
SchedTables.WriteProcResources.end(),
1314
WriteProcResources.begin(), WriteProcResources.end());
1315
if (WPRPos != SchedTables.WriteProcResources.end())
1316
SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1317
else {
1318
SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1319
SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1320
WriteProcResources.end());
1321
}
1322
// Latency entries must remain in operand order.
1323
SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1324
std::vector<MCWriteLatencyEntry>::iterator WLPos = std::search(
1325
SchedTables.WriteLatencies.begin(), SchedTables.WriteLatencies.end(),
1326
WriteLatencies.begin(), WriteLatencies.end());
1327
if (WLPos != SchedTables.WriteLatencies.end()) {
1328
unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1329
SCDesc.WriteLatencyIdx = idx;
1330
for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1331
if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1332
std::string::npos) {
1333
SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1334
}
1335
} else {
1336
SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1337
llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
1338
llvm::append_range(SchedTables.WriterNames, WriterNames);
1339
}
1340
// ReadAdvanceEntries must remain in operand order.
1341
SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1342
std::vector<MCReadAdvanceEntry>::iterator RAPos =
1343
std::search(SchedTables.ReadAdvanceEntries.begin(),
1344
SchedTables.ReadAdvanceEntries.end(),
1345
ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1346
if (RAPos != SchedTables.ReadAdvanceEntries.end())
1347
SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1348
else {
1349
SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1350
llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
1351
}
1352
}
1353
}
1354
1355
// Emit SchedClass tables for all processors and associated global tables.
1356
void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1357
raw_ostream &OS) {
1358
// Emit global WriteProcResTable.
1359
OS << "\n// {ProcResourceIdx, ReleaseAtCycle, AcquireAtCycle}\n"
1360
<< "extern const llvm::MCWriteProcResEntry " << Target
1361
<< "WriteProcResTable[] = {\n"
1362
<< " { 0, 0, 0 }, // Invalid\n";
1363
for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1364
WPRIdx != WPREnd; ++WPRIdx) {
1365
MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1366
OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1367
<< format("%2d", WPREntry.ReleaseAtCycle) << ", "
1368
<< format("%2d", WPREntry.AcquireAtCycle) << "}";
1369
if (WPRIdx + 1 < WPREnd)
1370
OS << ',';
1371
OS << " // #" << WPRIdx << '\n';
1372
}
1373
OS << "}; // " << Target << "WriteProcResTable\n";
1374
1375
// Emit global WriteLatencyTable.
1376
OS << "\n// {Cycles, WriteResourceID}\n"
1377
<< "extern const llvm::MCWriteLatencyEntry " << Target
1378
<< "WriteLatencyTable[] = {\n"
1379
<< " { 0, 0}, // Invalid\n";
1380
for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1381
WLIdx != WLEnd; ++WLIdx) {
1382
MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1383
OS << " {" << format("%2d", WLEntry.Cycles) << ", "
1384
<< format("%2d", WLEntry.WriteResourceID) << "}";
1385
if (WLIdx + 1 < WLEnd)
1386
OS << ',';
1387
OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1388
}
1389
OS << "}; // " << Target << "WriteLatencyTable\n";
1390
1391
// Emit global ReadAdvanceTable.
1392
OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1393
<< "extern const llvm::MCReadAdvanceEntry " << Target
1394
<< "ReadAdvanceTable[] = {\n"
1395
<< " {0, 0, 0}, // Invalid\n";
1396
for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1397
RAIdx != RAEnd; ++RAIdx) {
1398
MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1399
OS << " {" << RAEntry.UseIdx << ", "
1400
<< format("%2d", RAEntry.WriteResourceID) << ", "
1401
<< format("%2d", RAEntry.Cycles) << "}";
1402
if (RAIdx + 1 < RAEnd)
1403
OS << ',';
1404
OS << " // #" << RAIdx << '\n';
1405
}
1406
OS << "}; // " << Target << "ReadAdvanceTable\n";
1407
1408
// Emit a SchedClass table for each processor.
1409
for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1410
PE = SchedModels.procModelEnd();
1411
PI != PE; ++PI) {
1412
if (!PI->hasInstrSchedModel())
1413
continue;
1414
1415
std::vector<MCSchedClassDesc> &SCTab =
1416
SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1417
1418
OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup, RetireOOO,"
1419
<< " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1420
OS << "static const llvm::MCSchedClassDesc " << PI->ModelName
1421
<< "SchedClasses[] = {\n";
1422
1423
// The first class is always invalid. We no way to distinguish it except by
1424
// name and position.
1425
assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" &&
1426
"invalid class not first");
1427
OS << " {DBGFIELD(\"InvalidSchedClass\") "
1428
<< MCSchedClassDesc::InvalidNumMicroOps
1429
<< ", false, false, false, 0, 0, 0, 0, 0, 0},\n";
1430
1431
for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1432
MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1433
const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1434
OS << " {DBGFIELD(\"" << SchedClass.Name << "\") ";
1435
if (SchedClass.Name.size() < 18)
1436
OS.indent(18 - SchedClass.Name.size());
1437
OS << MCDesc.NumMicroOps << ", " << (MCDesc.BeginGroup ? "true" : "false")
1438
<< ", " << (MCDesc.EndGroup ? "true" : "false") << ", "
1439
<< (MCDesc.RetireOOO ? "true" : "false") << ", "
1440
<< format("%2d", MCDesc.WriteProcResIdx) << ", "
1441
<< MCDesc.NumWriteProcResEntries << ", "
1442
<< format("%2d", MCDesc.WriteLatencyIdx) << ", "
1443
<< MCDesc.NumWriteLatencyEntries << ", "
1444
<< format("%2d", MCDesc.ReadAdvanceIdx) << ", "
1445
<< MCDesc.NumReadAdvanceEntries << "}, // #" << SCIdx << '\n';
1446
}
1447
OS << "}; // " << PI->ModelName << "SchedClasses\n";
1448
}
1449
}
1450
1451
void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1452
// For each processor model.
1453
for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1454
// Emit extra processor info if available.
1455
if (PM.hasExtraProcessorInfo())
1456
EmitExtraProcessorInfo(PM, OS);
1457
// Emit processor resource table.
1458
if (PM.hasInstrSchedModel())
1459
EmitProcessorResources(PM, OS);
1460
else if (!PM.ProcResourceDefs.empty())
1461
PrintFatalError(PM.ModelDef->getLoc(),
1462
"SchedMachineModel defines "
1463
"ProcResources without defining WriteRes SchedWriteRes");
1464
1465
// Begin processor itinerary properties
1466
OS << "\n";
1467
OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1468
EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1469
EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1470
EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1471
EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1472
EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1473
EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1474
1475
bool PostRAScheduler =
1476
(PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1477
1478
OS << " " << (PostRAScheduler ? "true" : "false") << ", // "
1479
<< "PostRAScheduler\n";
1480
1481
bool CompleteModel =
1482
(PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1483
1484
OS << " " << (CompleteModel ? "true" : "false") << ", // "
1485
<< "CompleteModel\n";
1486
1487
bool EnableIntervals =
1488
(PM.ModelDef ? PM.ModelDef->getValueAsBit("EnableIntervals") : false);
1489
1490
OS << " " << (EnableIntervals ? "true" : "false") << ", // "
1491
<< "EnableIntervals\n";
1492
1493
OS << " " << PM.Index << ", // Processor ID\n";
1494
if (PM.hasInstrSchedModel())
1495
OS << " " << PM.ModelName << "ProcResources"
1496
<< ",\n"
1497
<< " " << PM.ModelName << "SchedClasses"
1498
<< ",\n"
1499
<< " " << PM.ProcResourceDefs.size() + 1 << ",\n"
1500
<< " "
1501
<< (SchedModels.schedClassEnd() - SchedModels.schedClassBegin())
1502
<< ",\n";
1503
else
1504
OS << " nullptr, nullptr, 0, 0,"
1505
<< " // No instruction-level machine model.\n";
1506
if (PM.hasItineraries())
1507
OS << " " << PM.ItinsDef->getName() << ",\n";
1508
else
1509
OS << " nullptr, // No Itinerary\n";
1510
if (PM.hasExtraProcessorInfo())
1511
OS << " &" << PM.ModelName << "ExtraInfo,\n";
1512
else
1513
OS << " nullptr // No extra processor descriptor\n";
1514
OS << "};\n";
1515
}
1516
}
1517
1518
//
1519
// EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1520
//
1521
void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1522
OS << "#ifdef DBGFIELD\n"
1523
<< "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1524
<< "#endif\n"
1525
<< "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1526
<< "#define DBGFIELD(x) x,\n"
1527
<< "#else\n"
1528
<< "#define DBGFIELD(x)\n"
1529
<< "#endif\n";
1530
1531
if (SchedModels.hasItineraries()) {
1532
std::vector<std::vector<InstrItinerary>> ProcItinLists;
1533
// Emit the stage data
1534
EmitStageAndOperandCycleData(OS, ProcItinLists);
1535
EmitItineraries(OS, ProcItinLists);
1536
}
1537
OS << "\n// ===============================================================\n"
1538
<< "// Data tables for the new per-operand machine model.\n";
1539
1540
SchedClassTables SchedTables;
1541
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1542
GenSchedClassTables(ProcModel, SchedTables);
1543
}
1544
EmitSchedClassTables(SchedTables, OS);
1545
1546
OS << "\n#undef DBGFIELD\n";
1547
1548
// Emit the processor machine model
1549
EmitProcessorModels(OS);
1550
}
1551
1552
static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1553
std::string Buffer;
1554
raw_string_ostream Stream(Buffer);
1555
1556
// Collect all the PredicateProlog records and print them to the output
1557
// stream.
1558
std::vector<Record *> Prologs =
1559
Records.getAllDerivedDefinitions("PredicateProlog");
1560
llvm::sort(Prologs, LessRecord());
1561
for (Record *P : Prologs)
1562
Stream << P->getValueAsString("Code") << '\n';
1563
1564
OS << Buffer;
1565
}
1566
1567
static bool isTruePredicate(const Record *Rec) {
1568
return Rec->isSubClassOf("MCSchedPredicate") &&
1569
Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1570
}
1571
1572
static void emitPredicates(const CodeGenSchedTransition &T,
1573
const CodeGenSchedClass &SC, PredicateExpander &PE,
1574
raw_ostream &OS) {
1575
std::string Buffer;
1576
raw_string_ostream SS(Buffer);
1577
1578
// If not all predicates are MCTrue, then we need an if-stmt.
1579
unsigned NumNonTruePreds =
1580
T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate);
1581
1582
SS.indent(PE.getIndentLevel() * 2);
1583
1584
if (NumNonTruePreds) {
1585
bool FirstNonTruePredicate = true;
1586
SS << "if (";
1587
1588
PE.setIndentLevel(PE.getIndentLevel() + 2);
1589
1590
for (const Record *Rec : T.PredTerm) {
1591
// Skip predicates that evaluate to "true".
1592
if (isTruePredicate(Rec))
1593
continue;
1594
1595
if (FirstNonTruePredicate) {
1596
FirstNonTruePredicate = false;
1597
} else {
1598
SS << "\n";
1599
SS.indent(PE.getIndentLevel() * 2);
1600
SS << "&& ";
1601
}
1602
1603
if (Rec->isSubClassOf("MCSchedPredicate")) {
1604
PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1605
continue;
1606
}
1607
1608
// Expand this legacy predicate and wrap it around braces if there is more
1609
// than one predicate to expand.
1610
SS << ((NumNonTruePreds > 1) ? "(" : "")
1611
<< Rec->getValueAsString("Predicate")
1612
<< ((NumNonTruePreds > 1) ? ")" : "");
1613
}
1614
1615
SS << ")\n"; // end of if-stmt
1616
PE.decreaseIndentLevel();
1617
SS.indent(PE.getIndentLevel() * 2);
1618
PE.decreaseIndentLevel();
1619
}
1620
1621
SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1622
OS << Buffer;
1623
}
1624
1625
// Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1626
// epilogue code for the auto-generated helper.
1627
static void emitSchedModelHelperEpilogue(raw_ostream &OS,
1628
bool ShouldReturnZero) {
1629
if (ShouldReturnZero) {
1630
OS << " // Don't know how to resolve this scheduling class.\n"
1631
<< " return 0;\n";
1632
return;
1633
}
1634
1635
OS << " report_fatal_error(\"Expected a variant SchedClass\");\n";
1636
}
1637
1638
static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1639
return all_of(T.PredTerm, [](const Record *Rec) {
1640
return Rec->isSubClassOf("MCSchedPredicate");
1641
});
1642
}
1643
1644
static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1645
IdxVec &VariantClasses,
1646
bool OnlyExpandMCInstPredicates) {
1647
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1648
// Ignore non-variant scheduling classes.
1649
if (SC.Transitions.empty())
1650
continue;
1651
1652
if (OnlyExpandMCInstPredicates) {
1653
// Ignore this variant scheduling class no transitions use any meaningful
1654
// MCSchedPredicate definitions.
1655
if (llvm::none_of(SC.Transitions, hasMCSchedPredicates))
1656
continue;
1657
}
1658
1659
VariantClasses.push_back(SC.Index);
1660
}
1661
}
1662
1663
static void collectProcessorIndices(const CodeGenSchedClass &SC,
1664
IdxVec &ProcIndices) {
1665
// A variant scheduling class may define transitions for multiple
1666
// processors. This function identifies wich processors are associated with
1667
// transition rules specified by variant class `SC`.
1668
for (const CodeGenSchedTransition &T : SC.Transitions) {
1669
IdxVec PI;
1670
std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
1671
ProcIndices.end(), std::back_inserter(PI));
1672
ProcIndices = std::move(PI);
1673
}
1674
}
1675
1676
static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
1677
return llvm::all_of(T.PredTerm, isTruePredicate);
1678
}
1679
1680
void SubtargetEmitter::emitSchedModelHelpersImpl(
1681
raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1682
IdxVec VariantClasses;
1683
collectVariantClasses(SchedModels, VariantClasses,
1684
OnlyExpandMCInstPredicates);
1685
1686
if (VariantClasses.empty()) {
1687
emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1688
return;
1689
}
1690
1691
// Construct a switch statement where the condition is a check on the
1692
// scheduling class identifier. There is a `case` for every variant class
1693
// defined by the processor models of this target.
1694
// Each `case` implements a number of rules to resolve (i.e. to transition
1695
// from) a variant scheduling class to another scheduling class. Rules are
1696
// described by instances of CodeGenSchedTransition. Note that transitions may
1697
// not be valid for all processors.
1698
OS << " switch (SchedClass) {\n";
1699
for (unsigned VC : VariantClasses) {
1700
IdxVec ProcIndices;
1701
const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1702
collectProcessorIndices(SC, ProcIndices);
1703
1704
OS << " case " << VC << ": // " << SC.Name << '\n';
1705
1706
PredicateExpander PE(Target);
1707
PE.setByRef(false);
1708
PE.setExpandForMC(OnlyExpandMCInstPredicates);
1709
for (unsigned PI : ProcIndices) {
1710
OS << " ";
1711
1712
// Emit a guard on the processor ID.
1713
if (PI != 0) {
1714
OS << (OnlyExpandMCInstPredicates
1715
? "if (CPUID == "
1716
: "if (SchedModel->getProcessorID() == ");
1717
OS << PI << ") ";
1718
OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1719
}
1720
1721
// Now emit transitions associated with processor PI.
1722
const CodeGenSchedTransition *FinalT = nullptr;
1723
for (const CodeGenSchedTransition &T : SC.Transitions) {
1724
if (PI != 0 && T.ProcIndex != PI)
1725
continue;
1726
1727
// Emit only transitions based on MCSchedPredicate, if it's the case.
1728
// At least the transition specified by NoSchedPred is emitted,
1729
// which becomes the default transition for those variants otherwise
1730
// not based on MCSchedPredicate.
1731
// FIXME: preferably, llvm-mca should instead assume a reasonable
1732
// default when a variant transition is not based on MCSchedPredicate
1733
// for a given processor.
1734
if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
1735
continue;
1736
1737
// If transition is folded to 'return X' it should be the last one.
1738
if (isAlwaysTrue(T)) {
1739
FinalT = &T;
1740
continue;
1741
}
1742
PE.setIndentLevel(3);
1743
emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1744
}
1745
if (FinalT)
1746
emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
1747
PE, OS);
1748
1749
OS << " }\n";
1750
1751
if (PI == 0)
1752
break;
1753
}
1754
1755
if (SC.isInferred())
1756
OS << " return " << SC.Index << ";\n";
1757
OS << " break;\n";
1758
}
1759
1760
OS << " };\n";
1761
1762
emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1763
}
1764
1765
void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1766
raw_ostream &OS) {
1767
OS << "unsigned " << ClassName
1768
<< "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1769
<< " const TargetSchedModel *SchedModel) const {\n";
1770
1771
// Emit the predicate prolog code.
1772
emitPredicateProlog(Records, OS);
1773
1774
// Emit target predicates.
1775
emitSchedModelHelpersImpl(OS);
1776
1777
OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1778
1779
OS << "unsigned " << ClassName
1780
<< "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1781
<< " const MCInstrInfo *MCII, unsigned CPUID) const {\n"
1782
<< " return " << Target << "_MC"
1783
<< "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"
1784
<< "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1785
1786
STIPredicateExpander PE(Target);
1787
PE.setClassPrefix(ClassName);
1788
PE.setExpandDefinition(true);
1789
PE.setByRef(false);
1790
PE.setIndentLevel(0);
1791
1792
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1793
PE.expandSTIPredicate(OS, Fn);
1794
}
1795
1796
void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1797
raw_ostream &OS) {
1798
const CodeGenHwModes &CGH = TGT.getHwModes();
1799
assert(CGH.getNumModeIds() > 0);
1800
if (CGH.getNumModeIds() == 1)
1801
return;
1802
1803
// Collect all HwModes and related features defined in the TD files,
1804
// and store them as a bit set.
1805
unsigned ValueTypeModes = 0;
1806
unsigned RegInfoModes = 0;
1807
unsigned EncodingInfoModes = 0;
1808
for (const auto &MS : CGH.getHwModeSelects()) {
1809
for (const HwModeSelect::PairType &P : MS.second.Items) {
1810
if (P.first == DefaultMode)
1811
continue;
1812
if (P.second->isSubClassOf("ValueType")) {
1813
ValueTypeModes |= (1 << (P.first - 1));
1814
} else if (P.second->isSubClassOf("RegInfo") ||
1815
P.second->isSubClassOf("SubRegRange")) {
1816
RegInfoModes |= (1 << (P.first - 1));
1817
} else if (P.second->isSubClassOf("InstructionEncoding")) {
1818
EncodingInfoModes |= (1 << (P.first - 1));
1819
}
1820
}
1821
}
1822
1823
// Start emitting for getHwModeSet().
1824
OS << "unsigned " << ClassName << "::getHwModeSet() const {\n";
1825
OS << " // Collect HwModes and store them as a bit set.\n";
1826
OS << " unsigned Modes = 0;\n";
1827
for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1828
const HwMode &HM = CGH.getMode(M);
1829
OS << " if (checkFeatures(\"" << HM.Features << "\")) Modes |= (1 << "
1830
<< (M - 1) << ");\n";
1831
}
1832
OS << " return Modes;\n}\n";
1833
// End emitting for getHwModeSet().
1834
1835
auto handlePerMode = [&](std::string ModeType, unsigned ModeInBitSet) {
1836
OS << " case HwMode_" << ModeType << ":\n"
1837
<< " Modes &= " << ModeInBitSet << ";\n"
1838
<< " if (!Modes)\n return Modes;\n"
1839
<< " if (!llvm::has_single_bit<unsigned>(Modes))\n"
1840
<< " llvm_unreachable(\"Two or more HwModes for " << ModeType
1841
<< " were found!\");\n"
1842
<< " return llvm::countr_zero(Modes) + 1;\n";
1843
};
1844
1845
// Start emitting for getHwMode().
1846
OS << "unsigned " << ClassName
1847
<< "::getHwMode(enum HwModeType type) const {\n";
1848
OS << " unsigned Modes = getHwModeSet();\n\n";
1849
OS << " if (!Modes)\n return Modes;\n\n";
1850
OS << " switch (type) {\n";
1851
OS << " case HwMode_Default:\n return llvm::countr_zero(Modes) + 1;\n";
1852
handlePerMode("ValueType", ValueTypeModes);
1853
handlePerMode("RegInfo", RegInfoModes);
1854
handlePerMode("EncodingInfo", EncodingInfoModes);
1855
OS << " }\n";
1856
OS << " llvm_unreachable(\"unexpected HwModeType\");\n"
1857
<< " return 0; // should not get here\n}\n";
1858
// End emitting for getHwMode().
1859
}
1860
1861
void SubtargetEmitter::emitGetMacroFusions(const std::string &ClassName,
1862
raw_ostream &OS) {
1863
if (!TGT.hasMacroFusion())
1864
return;
1865
1866
OS << "std::vector<MacroFusionPredTy> " << ClassName
1867
<< "::getMacroFusions() const {\n";
1868
OS.indent(2) << "std::vector<MacroFusionPredTy> Fusions;\n";
1869
for (auto *Fusion : TGT.getMacroFusions()) {
1870
std::string Name = Fusion->getNameInitAsString();
1871
OS.indent(2) << "if (hasFeature(" << Target << "::" << Name
1872
<< ")) Fusions.push_back(llvm::is" << Name << ");\n";
1873
}
1874
1875
OS.indent(2) << "return Fusions;\n";
1876
OS << "}\n";
1877
}
1878
1879
// Produces a subtarget specific function for parsing
1880
// the subtarget features string.
1881
void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS) {
1882
std::vector<Record *> Features =
1883
Records.getAllDerivedDefinitions("SubtargetFeature");
1884
llvm::sort(Features, LessRecord());
1885
1886
OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1887
<< "// subtarget options.\n"
1888
<< "void llvm::";
1889
OS << Target;
1890
OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, "
1891
<< "StringRef FS) {\n"
1892
<< " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1893
<< " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n"
1894
<< " LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n";
1895
1896
if (Features.empty()) {
1897
OS << "}\n";
1898
return;
1899
}
1900
1901
if (Target == "AArch64")
1902
OS << " CPU = AArch64::resolveCPUAlias(CPU);\n"
1903
<< " TuneCPU = AArch64::resolveCPUAlias(TuneCPU);\n";
1904
1905
OS << " InitMCProcessorInfo(CPU, TuneCPU, FS);\n"
1906
<< " const FeatureBitset &Bits = getFeatureBits();\n";
1907
1908
for (Record *R : Features) {
1909
// Next record
1910
StringRef Instance = R->getName();
1911
StringRef Value = R->getValueAsString("Value");
1912
StringRef FieldName = R->getValueAsString("FieldName");
1913
1914
if (Value == "true" || Value == "false")
1915
OS << " if (Bits[" << Target << "::" << Instance << "]) " << FieldName
1916
<< " = " << Value << ";\n";
1917
else
1918
OS << " if (Bits[" << Target << "::" << Instance << "] && " << FieldName
1919
<< " < " << Value << ") " << FieldName << " = " << Value << ";\n";
1920
}
1921
1922
OS << "}\n";
1923
}
1924
1925
void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1926
OS << "namespace " << Target << "_MC {\n"
1927
<< "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1928
<< " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n";
1929
emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1930
OS << "}\n";
1931
OS << "} // end namespace " << Target << "_MC\n\n";
1932
1933
OS << "struct " << Target
1934
<< "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1935
OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT,\n"
1936
<< " StringRef CPU, StringRef TuneCPU, StringRef FS,\n"
1937
<< " ArrayRef<SubtargetFeatureKV> PF,\n"
1938
<< " ArrayRef<SubtargetSubTypeKV> PD,\n"
1939
<< " const MCWriteProcResEntry *WPR,\n"
1940
<< " const MCWriteLatencyEntry *WL,\n"
1941
<< " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1942
<< " const unsigned *OC, const unsigned *FP) :\n"
1943
<< " MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n"
1944
<< " WPR, WL, RA, IS, OC, FP) { }\n\n"
1945
<< " unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1946
<< " const MCInst *MI, const MCInstrInfo *MCII,\n"
1947
<< " unsigned CPUID) const override {\n"
1948
<< " return " << Target << "_MC"
1949
<< "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n";
1950
OS << " }\n";
1951
if (TGT.getHwModes().getNumModeIds() > 1) {
1952
OS << " unsigned getHwModeSet() const override;\n";
1953
OS << " unsigned getHwMode(enum HwModeType type = HwMode_Default) const "
1954
"override;\n";
1955
}
1956
if (Target == "AArch64")
1957
OS << " bool isCPUStringValid(StringRef CPU) const override {\n"
1958
<< " CPU = AArch64::resolveCPUAlias(CPU);\n"
1959
<< " return MCSubtargetInfo::isCPUStringValid(CPU);\n"
1960
<< " }\n";
1961
OS << "};\n";
1962
EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS);
1963
}
1964
1965
void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1966
OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1967
OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1968
1969
STIPredicateExpander PE(Target);
1970
PE.setExpandForMC(true);
1971
PE.setByRef(true);
1972
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1973
PE.expandSTIPredicate(OS, Fn);
1974
1975
OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1976
1977
OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1978
OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1979
1980
std::string ClassPrefix = Target + "MCInstrAnalysis";
1981
PE.setExpandDefinition(true);
1982
PE.setClassPrefix(ClassPrefix);
1983
PE.setIndentLevel(0);
1984
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1985
PE.expandSTIPredicate(OS, Fn);
1986
1987
OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1988
}
1989
1990
//
1991
// SubtargetEmitter::run - Main subtarget enumeration emitter.
1992
//
1993
void SubtargetEmitter::run(raw_ostream &OS) {
1994
emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1995
1996
OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1997
OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1998
1999
DenseMap<Record *, unsigned> FeatureMap;
2000
2001
OS << "namespace llvm {\n";
2002
Enumeration(OS, FeatureMap);
2003
OS << "} // end namespace llvm\n\n";
2004
OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
2005
2006
EmitSubtargetInfoMacroCalls(OS);
2007
2008
OS << "namespace llvm {\n";
2009
#if 0
2010
OS << "namespace {\n";
2011
#endif
2012
unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap);
2013
OS << "\n";
2014
EmitSchedModel(OS);
2015
OS << "\n";
2016
unsigned NumProcs = CPUKeyValues(OS, FeatureMap);
2017
OS << "\n";
2018
#if 0
2019
OS << "} // end anonymous namespace\n\n";
2020
#endif
2021
2022
// MCInstrInfo initialization routine.
2023
emitGenMCSubtargetInfo(OS);
2024
2025
OS << "\nstatic inline MCSubtargetInfo *create" << Target
2026
<< "MCSubtargetInfoImpl("
2027
<< "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n";
2028
if (Target == "AArch64")
2029
OS << " CPU = AArch64::resolveCPUAlias(CPU);\n"
2030
<< " TuneCPU = AArch64::resolveCPUAlias(TuneCPU);\n";
2031
OS << " return new " << Target
2032
<< "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, ";
2033
if (NumFeatures)
2034
OS << Target << "FeatureKV, ";
2035
else
2036
OS << "std::nullopt, ";
2037
if (NumProcs)
2038
OS << Target << "SubTypeKV, ";
2039
else
2040
OS << "std::nullopt, ";
2041
OS << '\n';
2042
OS.indent(22);
2043
OS << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, "
2044
<< Target << "ReadAdvanceTable, ";
2045
OS << '\n';
2046
OS.indent(22);
2047
if (SchedModels.hasItineraries()) {
2048
OS << Target << "Stages, " << Target << "OperandCycles, " << Target
2049
<< "ForwardingPaths";
2050
} else
2051
OS << "nullptr, nullptr, nullptr";
2052
OS << ");\n}\n\n";
2053
2054
OS << "} // end namespace llvm\n\n";
2055
2056
OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
2057
2058
OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
2059
OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
2060
2061
OS << "#include \"llvm/Support/Debug.h\"\n";
2062
OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
2063
if (Target == "AArch64")
2064
OS << "#include \"llvm/TargetParser/AArch64TargetParser.h\"\n\n";
2065
ParseFeaturesFunction(OS);
2066
2067
OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
2068
2069
// Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
2070
OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
2071
OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
2072
2073
std::string ClassName = Target + "GenSubtargetInfo";
2074
OS << "namespace llvm {\n";
2075
OS << "class DFAPacketizer;\n";
2076
OS << "namespace " << Target << "_MC {\n"
2077
<< "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
2078
<< " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n"
2079
<< "} // end namespace " << Target << "_MC\n\n";
2080
OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
2081
<< " explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
2082
<< "StringRef TuneCPU, StringRef FS);\n"
2083
<< "public:\n"
2084
<< " unsigned resolveSchedClass(unsigned SchedClass, "
2085
<< " const MachineInstr *DefMI,"
2086
<< " const TargetSchedModel *SchedModel) const override;\n"
2087
<< " unsigned resolveVariantSchedClass(unsigned SchedClass,"
2088
<< " const MCInst *MI, const MCInstrInfo *MCII,"
2089
<< " unsigned CPUID) const override;\n"
2090
<< " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
2091
<< " const;\n";
2092
if (TGT.getHwModes().getNumModeIds() > 1) {
2093
OS << " unsigned getHwModeSet() const override;\n";
2094
OS << " unsigned getHwMode(enum HwModeType type = HwMode_Default) const "
2095
"override;\n";
2096
}
2097
if (TGT.hasMacroFusion())
2098
OS << " std::vector<MacroFusionPredTy> getMacroFusions() const "
2099
"override;\n";
2100
2101
STIPredicateExpander PE(Target);
2102
PE.setByRef(false);
2103
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
2104
PE.expandSTIPredicate(OS, Fn);
2105
2106
OS << "};\n"
2107
<< "} // end namespace llvm\n\n";
2108
2109
OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
2110
2111
OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
2112
OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
2113
2114
OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
2115
OS << "namespace llvm {\n";
2116
OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
2117
OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
2118
OS << "extern const llvm::MCWriteProcResEntry " << Target
2119
<< "WriteProcResTable[];\n";
2120
OS << "extern const llvm::MCWriteLatencyEntry " << Target
2121
<< "WriteLatencyTable[];\n";
2122
OS << "extern const llvm::MCReadAdvanceEntry " << Target
2123
<< "ReadAdvanceTable[];\n";
2124
2125
if (SchedModels.hasItineraries()) {
2126
OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
2127
OS << "extern const unsigned " << Target << "OperandCycles[];\n";
2128
OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
2129
}
2130
2131
OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
2132
<< "StringRef TuneCPU, StringRef FS)\n";
2133
2134
if (Target == "AArch64")
2135
OS << " : TargetSubtargetInfo(TT, AArch64::resolveCPUAlias(CPU),\n"
2136
<< " AArch64::resolveCPUAlias(TuneCPU), FS, ";
2137
else
2138
OS << " : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, ";
2139
if (NumFeatures)
2140
OS << "ArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
2141
else
2142
OS << "std::nullopt, ";
2143
if (NumProcs)
2144
OS << "ArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
2145
else
2146
OS << "std::nullopt, ";
2147
OS << '\n';
2148
OS.indent(24);
2149
OS << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, "
2150
<< Target << "ReadAdvanceTable, ";
2151
OS << '\n';
2152
OS.indent(24);
2153
if (SchedModels.hasItineraries()) {
2154
OS << Target << "Stages, " << Target << "OperandCycles, " << Target
2155
<< "ForwardingPaths";
2156
} else
2157
OS << "nullptr, nullptr, nullptr";
2158
OS << ") {}\n\n";
2159
2160
EmitSchedModelHelpers(ClassName, OS);
2161
EmitHwModeCheck(ClassName, OS);
2162
emitGetMacroFusions(ClassName, OS);
2163
2164
OS << "} // end namespace llvm\n\n";
2165
2166
OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
2167
2168
EmitMCInstrAnalysisPredicateFunctions(OS);
2169
}
2170
2171
static TableGen::Emitter::OptClass<SubtargetEmitter>
2172
X("gen-subtarget", "Generate subtarget enumerations");
2173
2174