Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/utils/TableGen/X86FoldTablesEmitter.cpp
35258 views
1
//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This tablegen backend is responsible for emitting the memory fold tables of
10
// the X86 backend instructions.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "Common/CodeGenInstruction.h"
15
#include "Common/CodeGenTarget.h"
16
#include "X86RecognizableInstr.h"
17
#include "llvm/ADT/StringSwitch.h"
18
#include "llvm/Support/X86FoldTablesUtils.h"
19
#include "llvm/TableGen/Record.h"
20
#include "llvm/TableGen/TableGenBackend.h"
21
#include <set>
22
23
using namespace llvm;
24
using namespace X86Disassembler;
25
26
namespace {
27
// Represents an entry in the manual mapped instructions set.
28
struct ManualMapEntry {
29
const char *RegInstStr;
30
const char *MemInstStr;
31
uint16_t Strategy;
32
};
33
34
// List of instructions requiring explicitly aligned memory.
35
const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
36
"MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
37
38
// List of instructions NOT requiring explicit memory alignment.
39
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
40
"PCMPESTRM", "PCMPESTRI", "PCMPISTRM",
41
"PCMPISTRI"};
42
43
const ManualMapEntry ManualMapSet[] = {
44
#define ENTRY(REG, MEM, FLAGS) {#REG, #MEM, FLAGS},
45
#include "X86ManualFoldTables.def"
46
};
47
48
const std::set<StringRef> NoFoldSet = {
49
#define NOFOLD(INSN) #INSN,
50
#include "X86ManualFoldTables.def"
51
};
52
53
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
54
return any_of(ExplicitAlign, [Inst](const char *InstStr) {
55
return Inst->TheDef->getName().contains(InstStr);
56
});
57
}
58
59
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
60
return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
61
return Inst->TheDef->getName().contains(InstStr);
62
});
63
}
64
65
class X86FoldTablesEmitter {
66
RecordKeeper &Records;
67
CodeGenTarget Target;
68
69
// Represents an entry in the folding table
70
class X86FoldTableEntry {
71
const CodeGenInstruction *RegInst;
72
const CodeGenInstruction *MemInst;
73
74
public:
75
bool NoReverse = false;
76
bool NoForward = false;
77
bool FoldLoad = false;
78
bool FoldStore = false;
79
enum BcastType {
80
BCAST_NONE,
81
BCAST_W,
82
BCAST_D,
83
BCAST_Q,
84
BCAST_SS,
85
BCAST_SD,
86
BCAST_SH,
87
};
88
BcastType BroadcastKind = BCAST_NONE;
89
90
Align Alignment;
91
92
X86FoldTableEntry() = default;
93
X86FoldTableEntry(const CodeGenInstruction *RegInst,
94
const CodeGenInstruction *MemInst)
95
: RegInst(RegInst), MemInst(MemInst) {}
96
97
void print(raw_ostream &OS) const {
98
OS.indent(2);
99
OS << "{X86::" << RegInst->TheDef->getName() << ", ";
100
OS << "X86::" << MemInst->TheDef->getName() << ", ";
101
102
std::string Attrs;
103
if (FoldLoad)
104
Attrs += "TB_FOLDED_LOAD|";
105
if (FoldStore)
106
Attrs += "TB_FOLDED_STORE|";
107
if (NoReverse)
108
Attrs += "TB_NO_REVERSE|";
109
if (NoForward)
110
Attrs += "TB_NO_FORWARD|";
111
if (Alignment != Align(1))
112
Attrs += "TB_ALIGN_" + std::to_string(Alignment.value()) + "|";
113
switch (BroadcastKind) {
114
case BCAST_NONE:
115
break;
116
case BCAST_W:
117
Attrs += "TB_BCAST_W|";
118
break;
119
case BCAST_D:
120
Attrs += "TB_BCAST_D|";
121
break;
122
case BCAST_Q:
123
Attrs += "TB_BCAST_Q|";
124
break;
125
case BCAST_SS:
126
Attrs += "TB_BCAST_SS|";
127
break;
128
case BCAST_SD:
129
Attrs += "TB_BCAST_SD|";
130
break;
131
case BCAST_SH:
132
Attrs += "TB_BCAST_SH|";
133
break;
134
}
135
136
StringRef SimplifiedAttrs = StringRef(Attrs).rtrim("|");
137
if (SimplifiedAttrs.empty())
138
SimplifiedAttrs = "0";
139
140
OS << SimplifiedAttrs << "},\n";
141
}
142
143
#ifndef NDEBUG
144
// Check that Uses and Defs are same after memory fold.
145
void checkCorrectness() const {
146
auto &RegInstRec = *RegInst->TheDef;
147
auto &MemInstRec = *MemInst->TheDef;
148
auto ListOfUsesReg = RegInstRec.getValueAsListOfDefs("Uses");
149
auto ListOfUsesMem = MemInstRec.getValueAsListOfDefs("Uses");
150
auto ListOfDefsReg = RegInstRec.getValueAsListOfDefs("Defs");
151
auto ListOfDefsMem = MemInstRec.getValueAsListOfDefs("Defs");
152
if (ListOfUsesReg != ListOfUsesMem || ListOfDefsReg != ListOfDefsMem)
153
report_fatal_error("Uses/Defs couldn't be changed after folding " +
154
RegInstRec.getName() + " to " +
155
MemInstRec.getName());
156
}
157
#endif
158
};
159
160
// NOTE: We check the fold tables are sorted in X86InstrFoldTables.cpp by the
161
// enum of the instruction, which is computed in
162
// CodeGenTarget::ComputeInstrsByEnum. So we should use the same comparator
163
// here.
164
// FIXME: Could we share the code with CodeGenTarget::ComputeInstrsByEnum?
165
struct CompareInstrsByEnum {
166
bool operator()(const CodeGenInstruction *LHS,
167
const CodeGenInstruction *RHS) const {
168
assert(LHS && RHS && "LHS and RHS shouldn't be nullptr");
169
const auto &D1 = *LHS->TheDef;
170
const auto &D2 = *RHS->TheDef;
171
return std::tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
172
std::tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
173
}
174
};
175
176
typedef std::map<const CodeGenInstruction *, X86FoldTableEntry,
177
CompareInstrsByEnum>
178
FoldTable;
179
// Table2Addr - Holds instructions which their memory form performs
180
// load+store.
181
//
182
// Table#i - Holds instructions which the their memory form
183
// performs a load OR a store, and their #i'th operand is folded.
184
//
185
// BroadcastTable#i - Holds instructions which the their memory form performs
186
// a broadcast load and their #i'th operand is folded.
187
FoldTable Table2Addr;
188
FoldTable Table0;
189
FoldTable Table1;
190
FoldTable Table2;
191
FoldTable Table3;
192
FoldTable Table4;
193
FoldTable BroadcastTable1;
194
FoldTable BroadcastTable2;
195
FoldTable BroadcastTable3;
196
FoldTable BroadcastTable4;
197
198
public:
199
X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
200
201
// run - Generate the 6 X86 memory fold tables.
202
void run(raw_ostream &OS);
203
204
private:
205
// Decides to which table to add the entry with the given instructions.
206
// S sets the strategy of adding the TB_NO_REVERSE flag.
207
void updateTables(const CodeGenInstruction *RegInst,
208
const CodeGenInstruction *MemInst, uint16_t S = 0,
209
bool IsManual = false, bool IsBroadcast = false);
210
211
// Generates X86FoldTableEntry with the given instructions and fill it with
212
// the appropriate flags, then adds it to a memory fold table.
213
void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInst,
214
const CodeGenInstruction *MemInst, uint16_t S,
215
unsigned FoldedIdx, bool IsManual);
216
// Generates X86FoldTableEntry with the given instructions and adds it to a
217
// broadcast table.
218
void addBroadcastEntry(FoldTable &Table, const CodeGenInstruction *RegInst,
219
const CodeGenInstruction *MemInst);
220
221
// Print the given table as a static const C++ array of type
222
// X86FoldTableEntry.
223
void printTable(const FoldTable &Table, StringRef TableName,
224
raw_ostream &OS) {
225
OS << "static const X86FoldTableEntry " << TableName << "[] = {\n";
226
227
for (auto &E : Table)
228
E.second.print(OS);
229
230
OS << "};\n\n";
231
}
232
};
233
234
// Return true if one of the instruction's operands is a RST register class
235
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
236
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
237
return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
238
});
239
}
240
241
// Return true if one of the instruction's operands is a ptr_rc_tailcall
242
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
243
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
244
return OpIn.Rec->getName() == "ptr_rc_tailcall";
245
});
246
}
247
248
static uint8_t byteFromBitsInit(const BitsInit *B) {
249
unsigned N = B->getNumBits();
250
assert(N <= 8 && "Field is too large for uint8_t!");
251
252
uint8_t Value = 0;
253
for (unsigned I = 0; I != N; ++I) {
254
BitInit *Bit = cast<BitInit>(B->getBit(I));
255
Value |= Bit->getValue() << I;
256
}
257
return Value;
258
}
259
260
static bool mayFoldFromForm(uint8_t Form) {
261
switch (Form) {
262
default:
263
return Form >= X86Local::MRM0r && Form <= X86Local::MRM7r;
264
case X86Local::MRMXr:
265
case X86Local::MRMXrCC:
266
case X86Local::MRMDestReg:
267
case X86Local::MRMSrcReg:
268
case X86Local::MRMSrcReg4VOp3:
269
case X86Local::MRMSrcRegOp4:
270
case X86Local::MRMSrcRegCC:
271
return true;
272
}
273
}
274
275
static bool mayFoldToForm(uint8_t Form) {
276
switch (Form) {
277
default:
278
return Form >= X86Local::MRM0m && Form <= X86Local::MRM7m;
279
case X86Local::MRMXm:
280
case X86Local::MRMXmCC:
281
case X86Local::MRMDestMem:
282
case X86Local::MRMSrcMem:
283
case X86Local::MRMSrcMem4VOp3:
284
case X86Local::MRMSrcMemOp4:
285
case X86Local::MRMSrcMemCC:
286
return true;
287
}
288
}
289
290
static bool mayFoldFromLeftToRight(uint8_t LHS, uint8_t RHS) {
291
switch (LHS) {
292
default:
293
llvm_unreachable("Unexpected Form!");
294
case X86Local::MRM0r:
295
return RHS == X86Local::MRM0m;
296
case X86Local::MRM1r:
297
return RHS == X86Local::MRM1m;
298
case X86Local::MRM2r:
299
return RHS == X86Local::MRM2m;
300
case X86Local::MRM3r:
301
return RHS == X86Local::MRM3m;
302
case X86Local::MRM4r:
303
return RHS == X86Local::MRM4m;
304
case X86Local::MRM5r:
305
return RHS == X86Local::MRM5m;
306
case X86Local::MRM6r:
307
return RHS == X86Local::MRM6m;
308
case X86Local::MRM7r:
309
return RHS == X86Local::MRM7m;
310
case X86Local::MRMXr:
311
return RHS == X86Local::MRMXm;
312
case X86Local::MRMXrCC:
313
return RHS == X86Local::MRMXmCC;
314
case X86Local::MRMDestReg:
315
return RHS == X86Local::MRMDestMem;
316
case X86Local::MRMSrcReg:
317
return RHS == X86Local::MRMSrcMem;
318
case X86Local::MRMSrcReg4VOp3:
319
return RHS == X86Local::MRMSrcMem4VOp3;
320
case X86Local::MRMSrcRegOp4:
321
return RHS == X86Local::MRMSrcMemOp4;
322
case X86Local::MRMSrcRegCC:
323
return RHS == X86Local::MRMSrcMemCC;
324
}
325
}
326
327
static bool isNOREXRegClass(const Record *Op) {
328
return Op->getName().contains("_NOREX");
329
}
330
331
// Function object - Operator() returns true if the given Reg instruction
332
// matches the Mem instruction of this object.
333
class IsMatch {
334
const CodeGenInstruction *MemInst;
335
const X86Disassembler::RecognizableInstrBase MemRI;
336
bool IsBroadcast;
337
const unsigned Variant;
338
339
public:
340
IsMatch(const CodeGenInstruction *Inst, bool IsBroadcast, unsigned V)
341
: MemInst(Inst), MemRI(*MemInst), IsBroadcast(IsBroadcast), Variant(V) {}
342
343
bool operator()(const CodeGenInstruction *RegInst) {
344
X86Disassembler::RecognizableInstrBase RegRI(*RegInst);
345
const Record *RegRec = RegInst->TheDef;
346
const Record *MemRec = MemInst->TheDef;
347
348
// EVEX_B means different things for memory and register forms.
349
// register form: rounding control or SAE
350
// memory form: broadcast
351
if (IsBroadcast && (RegRI.HasEVEX_B || !MemRI.HasEVEX_B))
352
return false;
353
// EVEX_B indicates NDD for MAP4 instructions
354
if (!IsBroadcast && (RegRI.HasEVEX_B || MemRI.HasEVEX_B) &&
355
RegRI.OpMap != X86Local::T_MAP4)
356
return false;
357
358
if (!mayFoldFromLeftToRight(RegRI.Form, MemRI.Form))
359
return false;
360
361
// X86 encoding is crazy, e.g
362
//
363
// f3 0f c7 30 vmxon (%rax)
364
// f3 0f c7 f0 senduipi %rax
365
//
366
// This two instruction have similiar encoding fields but are unrelated
367
if (X86Disassembler::getMnemonic(MemInst, Variant) !=
368
X86Disassembler::getMnemonic(RegInst, Variant))
369
return false;
370
371
// Return false if any of the following fields of does not match.
372
if (std::tuple(RegRI.Encoding, RegRI.Opcode, RegRI.OpPrefix, RegRI.OpMap,
373
RegRI.OpSize, RegRI.AdSize, RegRI.HasREX_W, RegRI.HasVEX_4V,
374
RegRI.HasVEX_L, RegRI.IgnoresVEX_L, RegRI.IgnoresW,
375
RegRI.HasEVEX_K, RegRI.HasEVEX_KZ, RegRI.HasEVEX_L2,
376
RegRI.HasEVEX_NF, RegRec->getValueAsBit("hasEVEX_RC"),
377
RegRec->getValueAsBit("hasLockPrefix"),
378
RegRec->getValueAsBit("hasNoTrackPrefix")) !=
379
std::tuple(MemRI.Encoding, MemRI.Opcode, MemRI.OpPrefix, MemRI.OpMap,
380
MemRI.OpSize, MemRI.AdSize, MemRI.HasREX_W, MemRI.HasVEX_4V,
381
MemRI.HasVEX_L, MemRI.IgnoresVEX_L, MemRI.IgnoresW,
382
MemRI.HasEVEX_K, MemRI.HasEVEX_KZ, MemRI.HasEVEX_L2,
383
MemRI.HasEVEX_NF, MemRec->getValueAsBit("hasEVEX_RC"),
384
MemRec->getValueAsBit("hasLockPrefix"),
385
MemRec->getValueAsBit("hasNoTrackPrefix")))
386
return false;
387
388
// Make sure the sizes of the operands of both instructions suit each other.
389
// This is needed for instructions with intrinsic version (_Int).
390
// Where the only difference is the size of the operands.
391
// For example: VUCOMISDZrm and VUCOMISDrm_Int
392
// Also for instructions that their EVEX version was upgraded to work with
393
// k-registers. For example VPCMPEQBrm (xmm output register) and
394
// VPCMPEQBZ128rm (k register output register).
395
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
396
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
397
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
398
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
399
400
// Instructions with one output in their memory form use the memory folded
401
// operand as source and destination (Read-Modify-Write).
402
unsigned RegStartIdx =
403
(MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
404
405
bool FoundFoldedOp = false;
406
for (unsigned I = 0, E = MemInst->Operands.size(); I != E; I++) {
407
Record *MemOpRec = MemInst->Operands[I].Rec;
408
Record *RegOpRec = RegInst->Operands[I + RegStartIdx].Rec;
409
410
if (MemOpRec == RegOpRec)
411
continue;
412
413
if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec) &&
414
((getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec)) ||
415
(isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))))
416
return false;
417
418
if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec) &&
419
(getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)))
420
return false;
421
422
if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec) &&
423
(MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")))
424
return false;
425
426
// Only one operand can be folded.
427
if (FoundFoldedOp)
428
return false;
429
430
assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
431
FoundFoldedOp = true;
432
}
433
434
return FoundFoldedOp;
435
}
436
};
437
438
} // end anonymous namespace
439
440
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
441
const CodeGenInstruction *RegInst,
442
const CodeGenInstruction *MemInst,
443
uint16_t S, unsigned FoldedIdx,
444
bool IsManual) {
445
446
assert((IsManual || Table.find(RegInst) == Table.end()) &&
447
"Override entry unexpectedly");
448
X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
449
Record *RegRec = RegInst->TheDef;
450
Result.NoReverse = S & TB_NO_REVERSE;
451
Result.NoForward = S & TB_NO_FORWARD;
452
Result.FoldLoad = S & TB_FOLDED_LOAD;
453
Result.FoldStore = S & TB_FOLDED_STORE;
454
Result.Alignment = Align(1ULL << ((S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT));
455
if (IsManual) {
456
Table[RegInst] = Result;
457
return;
458
}
459
460
Record *RegOpRec = RegInst->Operands[FoldedIdx].Rec;
461
Record *MemOpRec = MemInst->Operands[FoldedIdx].Rec;
462
463
// Unfolding code generates a load/store instruction according to the size of
464
// the register in the register form instruction.
465
// If the register's size is greater than the memory's operand size, do not
466
// allow unfolding.
467
468
// the unfolded load size will be based on the register size. If that’s bigger
469
// than the memory operand size, the unfolded load will load more memory and
470
// potentially cause a memory fault.
471
if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
472
Result.NoReverse = true;
473
474
// Check no-kz version's isMoveReg
475
StringRef RegInstName = RegRec->getName();
476
unsigned DropLen =
477
RegInstName.ends_with("rkz") ? 2 : (RegInstName.ends_with("rk") ? 1 : 0);
478
Record *BaseDef =
479
DropLen ? Records.getDef(RegInstName.drop_back(DropLen)) : nullptr;
480
bool IsMoveReg =
481
BaseDef ? Target.getInstruction(BaseDef).isMoveReg : RegInst->isMoveReg;
482
// A masked load can not be unfolded to a full load, otherwise it would access
483
// unexpected memory. A simple store can not be unfolded.
484
if (IsMoveReg && (BaseDef || Result.FoldStore))
485
Result.NoReverse = true;
486
487
uint8_t Enc = byteFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
488
if (isExplicitAlign(RegInst)) {
489
// The instruction require explicitly aligned memory.
490
BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
491
Result.Alignment = Align(byteFromBitsInit(VectSize));
492
} else if (!Enc && !isExplicitUnalign(RegInst) &&
493
getMemOperandSize(MemOpRec) > 64) {
494
// Instructions with XOP/VEX/EVEX encoding do not require alignment while
495
// SSE packed vector instructions require a 16 byte alignment.
496
Result.Alignment = Align(16);
497
}
498
// Expand is only ever created as a masked instruction. It is not safe to
499
// unfold a masked expand because we don't know if it came from an expand load
500
// intrinsic or folding a plain load. If it is from a expand load intrinsic,
501
// Unfolding to plain load would read more elements and could trigger a fault.
502
if (RegRec->getName().contains("EXPAND"))
503
Result.NoReverse = true;
504
505
Table[RegInst] = Result;
506
}
507
508
void X86FoldTablesEmitter::addBroadcastEntry(
509
FoldTable &Table, const CodeGenInstruction *RegInst,
510
const CodeGenInstruction *MemInst) {
511
512
assert(Table.find(RegInst) == Table.end() && "Override entry unexpectedly");
513
X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
514
515
DagInit *In = MemInst->TheDef->getValueAsDag("InOperandList");
516
for (unsigned I = 0, E = In->getNumArgs(); I != E; ++I) {
517
Result.BroadcastKind =
518
StringSwitch<X86FoldTableEntry::BcastType>(In->getArg(I)->getAsString())
519
.Case("i16mem", X86FoldTableEntry::BCAST_W)
520
.Case("i32mem", X86FoldTableEntry::BCAST_D)
521
.Case("i64mem", X86FoldTableEntry::BCAST_Q)
522
.Case("f16mem", X86FoldTableEntry::BCAST_SH)
523
.Case("f32mem", X86FoldTableEntry::BCAST_SS)
524
.Case("f64mem", X86FoldTableEntry::BCAST_SD)
525
.Default(X86FoldTableEntry::BCAST_NONE);
526
if (Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE)
527
break;
528
}
529
assert(Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE &&
530
"Unknown memory operand for broadcast");
531
532
Table[RegInst] = Result;
533
}
534
535
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInst,
536
const CodeGenInstruction *MemInst,
537
uint16_t S, bool IsManual,
538
bool IsBroadcast) {
539
540
Record *RegRec = RegInst->TheDef;
541
Record *MemRec = MemInst->TheDef;
542
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
543
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
544
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
545
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
546
547
// Instructions which Read-Modify-Write should be added to Table2Addr.
548
if (!MemOutSize && RegOutSize == 1 && MemInSize == RegInSize) {
549
assert(!IsBroadcast && "Read-Modify-Write can not be broadcast");
550
// X86 would not unfold Read-Modify-Write instructions so add TB_NO_REVERSE.
551
addEntryWithFlags(Table2Addr, RegInst, MemInst, S | TB_NO_REVERSE, 0,
552
IsManual);
553
return;
554
}
555
556
// Only table0 entries should explicitly specify a load or store flag.
557
// If the instruction writes to the folded operand, it will appear as
558
// an output in the register form instruction and as an input in the
559
// memory form instruction. If the instruction reads from the folded
560
// operand, it will appear as in input in both forms.
561
if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
562
// Load-Folding cases.
563
// If the i'th register form operand is a register and the i'th memory form
564
// operand is a memory operand, add instructions to Table#i.
565
for (unsigned I = RegOutSize, E = RegInst->Operands.size(); I < E; I++) {
566
Record *RegOpRec = RegInst->Operands[I].Rec;
567
Record *MemOpRec = MemInst->Operands[I].Rec;
568
// PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64,
569
// TAILJMPr64_REX
570
if ((isRegisterOperand(RegOpRec) ||
571
RegOpRec->isSubClassOf("PointerLikeRegClass")) &&
572
isMemoryOperand(MemOpRec)) {
573
switch (I) {
574
case 0:
575
assert(!IsBroadcast && "BroadcastTable0 needs to be added");
576
addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_LOAD, 0,
577
IsManual);
578
return;
579
case 1:
580
IsBroadcast
581
? addBroadcastEntry(BroadcastTable1, RegInst, MemInst)
582
: addEntryWithFlags(Table1, RegInst, MemInst, S, 1, IsManual);
583
return;
584
case 2:
585
IsBroadcast
586
? addBroadcastEntry(BroadcastTable2, RegInst, MemInst)
587
: addEntryWithFlags(Table2, RegInst, MemInst, S, 2, IsManual);
588
return;
589
case 3:
590
IsBroadcast
591
? addBroadcastEntry(BroadcastTable3, RegInst, MemInst)
592
: addEntryWithFlags(Table3, RegInst, MemInst, S, 3, IsManual);
593
return;
594
case 4:
595
IsBroadcast
596
? addBroadcastEntry(BroadcastTable4, RegInst, MemInst)
597
: addEntryWithFlags(Table4, RegInst, MemInst, S, 4, IsManual);
598
return;
599
}
600
}
601
}
602
} else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
603
// Store-Folding cases.
604
// If the memory form instruction performs a store, the *output*
605
// register of the register form instructions disappear and instead a
606
// memory *input* operand appears in the memory form instruction.
607
// For example:
608
// MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
609
// MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
610
Record *RegOpRec = RegInst->Operands[RegOutSize - 1].Rec;
611
Record *MemOpRec = MemInst->Operands[RegOutSize - 1].Rec;
612
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
613
getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) {
614
assert(!IsBroadcast && "Store can not be broadcast");
615
addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_STORE, 0,
616
IsManual);
617
}
618
}
619
}
620
621
void X86FoldTablesEmitter::run(raw_ostream &OS) {
622
// Holds all memory instructions
623
std::vector<const CodeGenInstruction *> MemInsts;
624
// Holds all register instructions - divided according to opcode.
625
std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
626
627
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
628
Target.getInstructionsByEnumValue();
629
630
for (const CodeGenInstruction *Inst : NumberedInstructions) {
631
const Record *Rec = Inst->TheDef;
632
if (!Rec->isSubClassOf("X86Inst") || Rec->getValueAsBit("isAsmParserOnly"))
633
continue;
634
635
if (NoFoldSet.find(Rec->getName()) != NoFoldSet.end())
636
continue;
637
638
// Promoted legacy instruction is in EVEX space, and has REX2-encoding
639
// alternative. It's added due to HW design and never emitted by compiler.
640
if (byteFromBitsInit(Rec->getValueAsBitsInit("OpMapBits")) ==
641
X86Local::T_MAP4 &&
642
byteFromBitsInit(Rec->getValueAsBitsInit("explicitOpPrefixBits")) ==
643
X86Local::ExplicitEVEX)
644
continue;
645
646
// - Instructions including RST register class operands are not relevant
647
// for memory folding (for further details check the explanation in
648
// lib/Target/X86/X86InstrFPStack.td file).
649
// - Some instructions (listed in the manual map above) use the register
650
// class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
651
// safe mapping of these instruction we manually map them and exclude
652
// them from the automation.
653
if (hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
654
continue;
655
656
// Add all the memory form instructions to MemInsts, and all the register
657
// form instructions to RegInsts[Opc], where Opc is the opcode of each
658
// instructions. this helps reducing the runtime of the backend.
659
const BitsInit *FormBits = Rec->getValueAsBitsInit("FormBits");
660
uint8_t Form = byteFromBitsInit(FormBits);
661
if (mayFoldToForm(Form))
662
MemInsts.push_back(Inst);
663
else if (mayFoldFromForm(Form)) {
664
uint8_t Opc = byteFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
665
RegInsts[Opc].push_back(Inst);
666
}
667
}
668
669
// Create a copy b/c the register instruction will removed when a new entry is
670
// added into memory fold tables.
671
auto RegInstsForBroadcast = RegInsts;
672
673
Record *AsmWriter = Target.getAsmWriter();
674
unsigned Variant = AsmWriter->getValueAsInt("Variant");
675
auto FixUp = [&](const CodeGenInstruction *RegInst) {
676
StringRef RegInstName = RegInst->TheDef->getName();
677
if (RegInstName.ends_with("_REV") || RegInstName.ends_with("_alt"))
678
if (auto *RegAltRec = Records.getDef(RegInstName.drop_back(4)))
679
RegInst = &Target.getInstruction(RegAltRec);
680
return RegInst;
681
};
682
// For each memory form instruction, try to find its register form
683
// instruction.
684
for (const CodeGenInstruction *MemInst : MemInsts) {
685
uint8_t Opc =
686
byteFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
687
688
auto RegInstsIt = RegInsts.find(Opc);
689
if (RegInstsIt == RegInsts.end())
690
continue;
691
692
// Two forms (memory & register) of the same instruction must have the same
693
// opcode.
694
std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;
695
696
// Memory fold tables
697
auto Match =
698
find_if(OpcRegInsts, IsMatch(MemInst, /*IsBroadcast=*/false, Variant));
699
if (Match != OpcRegInsts.end()) {
700
updateTables(FixUp(*Match), MemInst);
701
OpcRegInsts.erase(Match);
702
}
703
704
// Broadcast tables
705
StringRef MemInstName = MemInst->TheDef->getName();
706
if (!MemInstName.contains("mb") && !MemInstName.contains("mib"))
707
continue;
708
RegInstsIt = RegInstsForBroadcast.find(Opc);
709
assert(RegInstsIt != RegInstsForBroadcast.end() &&
710
"Unexpected control flow");
711
std::vector<const CodeGenInstruction *> &OpcRegInstsForBroadcast =
712
RegInstsIt->second;
713
Match = find_if(OpcRegInstsForBroadcast,
714
IsMatch(MemInst, /*IsBroadcast=*/true, Variant));
715
if (Match != OpcRegInstsForBroadcast.end()) {
716
updateTables(FixUp(*Match), MemInst, 0, /*IsManual=*/false,
717
/*IsBroadcast=*/true);
718
OpcRegInstsForBroadcast.erase(Match);
719
}
720
}
721
722
// Add the manually mapped instructions listed above.
723
for (const ManualMapEntry &Entry : ManualMapSet) {
724
Record *RegInstIter = Records.getDef(Entry.RegInstStr);
725
Record *MemInstIter = Records.getDef(Entry.MemInstStr);
726
727
updateTables(&(Target.getInstruction(RegInstIter)),
728
&(Target.getInstruction(MemInstIter)), Entry.Strategy, true);
729
}
730
731
#ifndef NDEBUG
732
auto CheckMemFoldTable = [](const FoldTable &Table) -> void {
733
for (const auto &Record : Table) {
734
auto &FoldEntry = Record.second;
735
FoldEntry.checkCorrectness();
736
}
737
};
738
CheckMemFoldTable(Table2Addr);
739
CheckMemFoldTable(Table0);
740
CheckMemFoldTable(Table1);
741
CheckMemFoldTable(Table2);
742
CheckMemFoldTable(Table3);
743
CheckMemFoldTable(Table4);
744
CheckMemFoldTable(BroadcastTable1);
745
CheckMemFoldTable(BroadcastTable2);
746
CheckMemFoldTable(BroadcastTable3);
747
CheckMemFoldTable(BroadcastTable4);
748
#endif
749
#define PRINT_TABLE(TABLE) printTable(TABLE, #TABLE, OS);
750
// Print all tables.
751
PRINT_TABLE(Table2Addr)
752
PRINT_TABLE(Table0)
753
PRINT_TABLE(Table1)
754
PRINT_TABLE(Table2)
755
PRINT_TABLE(Table3)
756
PRINT_TABLE(Table4)
757
PRINT_TABLE(BroadcastTable1)
758
PRINT_TABLE(BroadcastTable2)
759
PRINT_TABLE(BroadcastTable3)
760
PRINT_TABLE(BroadcastTable4)
761
}
762
763
static TableGen::Emitter::OptClass<X86FoldTablesEmitter>
764
X("gen-x86-fold-tables", "Generate X86 fold tables");
765
766