Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/openmp/runtime/src/kmp_affinity.cpp
35258 views
1
/*
2
* kmp_affinity.cpp -- affinity management
3
*/
4
5
//===----------------------------------------------------------------------===//
6
//
7
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8
// See https://llvm.org/LICENSE.txt for license information.
9
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "kmp.h"
14
#include "kmp_affinity.h"
15
#include "kmp_i18n.h"
16
#include "kmp_io.h"
17
#include "kmp_str.h"
18
#include "kmp_wrapper_getpid.h"
19
#if KMP_USE_HIER_SCHED
20
#include "kmp_dispatch_hier.h"
21
#endif
22
#if KMP_USE_HWLOC
23
// Copied from hwloc
24
#define HWLOC_GROUP_KIND_INTEL_MODULE 102
25
#define HWLOC_GROUP_KIND_INTEL_TILE 103
26
#define HWLOC_GROUP_KIND_INTEL_DIE 104
27
#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28
#endif
29
#include <ctype.h>
30
31
// The machine topology
32
kmp_topology_t *__kmp_topology = nullptr;
33
// KMP_HW_SUBSET environment variable
34
kmp_hw_subset_t *__kmp_hw_subset = nullptr;
35
36
// Store the real or imagined machine hierarchy here
37
static hierarchy_info machine_hierarchy;
38
39
void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
40
41
#if KMP_AFFINITY_SUPPORTED
42
// Helper class to see if place lists further restrict the fullMask
43
class kmp_full_mask_modifier_t {
44
kmp_affin_mask_t *mask;
45
46
public:
47
kmp_full_mask_modifier_t() {
48
KMP_CPU_ALLOC(mask);
49
KMP_CPU_ZERO(mask);
50
}
51
~kmp_full_mask_modifier_t() {
52
KMP_CPU_FREE(mask);
53
mask = nullptr;
54
}
55
void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); }
56
// If the new full mask is different from the current full mask,
57
// then switch them. Returns true if full mask was affected, false otherwise.
58
bool restrict_to_mask() {
59
// See if the new mask further restricts or changes the full mask
60
if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask))
61
return false;
62
return __kmp_topology->restrict_to_mask(mask);
63
}
64
};
65
66
static inline const char *
67
__kmp_get_affinity_env_var(const kmp_affinity_t &affinity,
68
bool for_binding = false) {
69
if (affinity.flags.omp_places) {
70
if (for_binding)
71
return "OMP_PROC_BIND";
72
return "OMP_PLACES";
73
}
74
return affinity.env_var;
75
}
76
#endif // KMP_AFFINITY_SUPPORTED
77
78
void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
79
kmp_uint32 depth;
80
// The test below is true if affinity is available, but set to "none". Need to
81
// init on first use of hierarchical barrier.
82
if (TCR_1(machine_hierarchy.uninitialized))
83
machine_hierarchy.init(nproc);
84
85
// Adjust the hierarchy in case num threads exceeds original
86
if (nproc > machine_hierarchy.base_num_threads)
87
machine_hierarchy.resize(nproc);
88
89
depth = machine_hierarchy.depth;
90
KMP_DEBUG_ASSERT(depth > 0);
91
92
thr_bar->depth = depth;
93
__kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
94
&(thr_bar->base_leaf_kids));
95
thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
96
}
97
98
static int nCoresPerPkg, nPackages;
99
static int __kmp_nThreadsPerCore;
100
#ifndef KMP_DFLT_NTH_CORES
101
static int __kmp_ncores;
102
#endif
103
104
const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
105
switch (type) {
106
case KMP_HW_SOCKET:
107
return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
108
case KMP_HW_DIE:
109
return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
110
case KMP_HW_MODULE:
111
return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
112
case KMP_HW_TILE:
113
return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
114
case KMP_HW_NUMA:
115
return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
116
case KMP_HW_L3:
117
return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
118
case KMP_HW_L2:
119
return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
120
case KMP_HW_L1:
121
return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
122
case KMP_HW_LLC:
123
return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
124
case KMP_HW_CORE:
125
return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
126
case KMP_HW_THREAD:
127
return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
128
case KMP_HW_PROC_GROUP:
129
return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
130
case KMP_HW_UNKNOWN:
131
case KMP_HW_LAST:
132
return KMP_I18N_STR(Unknown);
133
}
134
KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
135
KMP_BUILTIN_UNREACHABLE;
136
}
137
138
const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
139
switch (type) {
140
case KMP_HW_SOCKET:
141
return ((plural) ? "sockets" : "socket");
142
case KMP_HW_DIE:
143
return ((plural) ? "dice" : "die");
144
case KMP_HW_MODULE:
145
return ((plural) ? "modules" : "module");
146
case KMP_HW_TILE:
147
return ((plural) ? "tiles" : "tile");
148
case KMP_HW_NUMA:
149
return ((plural) ? "numa_domains" : "numa_domain");
150
case KMP_HW_L3:
151
return ((plural) ? "l3_caches" : "l3_cache");
152
case KMP_HW_L2:
153
return ((plural) ? "l2_caches" : "l2_cache");
154
case KMP_HW_L1:
155
return ((plural) ? "l1_caches" : "l1_cache");
156
case KMP_HW_LLC:
157
return ((plural) ? "ll_caches" : "ll_cache");
158
case KMP_HW_CORE:
159
return ((plural) ? "cores" : "core");
160
case KMP_HW_THREAD:
161
return ((plural) ? "threads" : "thread");
162
case KMP_HW_PROC_GROUP:
163
return ((plural) ? "proc_groups" : "proc_group");
164
case KMP_HW_UNKNOWN:
165
case KMP_HW_LAST:
166
return ((plural) ? "unknowns" : "unknown");
167
}
168
KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration");
169
KMP_BUILTIN_UNREACHABLE;
170
}
171
172
const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
173
switch (type) {
174
case KMP_HW_CORE_TYPE_UNKNOWN:
175
case KMP_HW_MAX_NUM_CORE_TYPES:
176
return "unknown";
177
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
178
case KMP_HW_CORE_TYPE_ATOM:
179
return "Intel Atom(R) processor";
180
case KMP_HW_CORE_TYPE_CORE:
181
return "Intel(R) Core(TM) processor";
182
#endif
183
}
184
KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration");
185
KMP_BUILTIN_UNREACHABLE;
186
}
187
188
#if KMP_AFFINITY_SUPPORTED
189
// If affinity is supported, check the affinity
190
// verbose and warning flags before printing warning
191
#define KMP_AFF_WARNING(s, ...) \
192
if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \
193
KMP_WARNING(__VA_ARGS__); \
194
}
195
#else
196
#define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__)
197
#endif
198
199
////////////////////////////////////////////////////////////////////////////////
200
// kmp_hw_thread_t methods
201
int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
202
const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
203
const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
204
int depth = __kmp_topology->get_depth();
205
for (int level = 0; level < depth; ++level) {
206
if (ahwthread->ids[level] < bhwthread->ids[level])
207
return -1;
208
else if (ahwthread->ids[level] > bhwthread->ids[level])
209
return 1;
210
}
211
if (ahwthread->os_id < bhwthread->os_id)
212
return -1;
213
else if (ahwthread->os_id > bhwthread->os_id)
214
return 1;
215
return 0;
216
}
217
218
#if KMP_AFFINITY_SUPPORTED
219
int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
220
int i;
221
const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
222
const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
223
int depth = __kmp_topology->get_depth();
224
int compact = __kmp_topology->compact;
225
KMP_DEBUG_ASSERT(compact >= 0);
226
KMP_DEBUG_ASSERT(compact <= depth);
227
for (i = 0; i < compact; i++) {
228
int j = depth - i - 1;
229
if (aa->sub_ids[j] < bb->sub_ids[j])
230
return -1;
231
if (aa->sub_ids[j] > bb->sub_ids[j])
232
return 1;
233
}
234
for (; i < depth; i++) {
235
int j = i - compact;
236
if (aa->sub_ids[j] < bb->sub_ids[j])
237
return -1;
238
if (aa->sub_ids[j] > bb->sub_ids[j])
239
return 1;
240
}
241
return 0;
242
}
243
#endif
244
245
void kmp_hw_thread_t::print() const {
246
int depth = __kmp_topology->get_depth();
247
printf("%4d ", os_id);
248
for (int i = 0; i < depth; ++i) {
249
printf("%4d ", ids[i]);
250
}
251
if (attrs) {
252
if (attrs.is_core_type_valid())
253
printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
254
if (attrs.is_core_eff_valid())
255
printf(" (eff=%d)", attrs.get_core_eff());
256
}
257
if (leader)
258
printf(" (leader)");
259
printf("\n");
260
}
261
262
////////////////////////////////////////////////////////////////////////////////
263
// kmp_topology_t methods
264
265
// Add a layer to the topology based on the ids. Assume the topology
266
// is perfectly nested (i.e., so no object has more than one parent)
267
void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
268
// Figure out where the layer should go by comparing the ids of the current
269
// layers with the new ids
270
int target_layer;
271
int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
272
int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
273
274
// Start from the highest layer and work down to find target layer
275
// If new layer is equal to another layer then put the new layer above
276
for (target_layer = 0; target_layer < depth; ++target_layer) {
277
bool layers_equal = true;
278
bool strictly_above_target_layer = false;
279
for (int i = 0; i < num_hw_threads; ++i) {
280
int id = hw_threads[i].ids[target_layer];
281
int new_id = ids[i];
282
if (id != previous_id && new_id == previous_new_id) {
283
// Found the layer we are strictly above
284
strictly_above_target_layer = true;
285
layers_equal = false;
286
break;
287
} else if (id == previous_id && new_id != previous_new_id) {
288
// Found a layer we are below. Move to next layer and check.
289
layers_equal = false;
290
break;
291
}
292
previous_id = id;
293
previous_new_id = new_id;
294
}
295
if (strictly_above_target_layer || layers_equal)
296
break;
297
}
298
299
// Found the layer we are above. Now move everything to accommodate the new
300
// layer. And put the new ids and type into the topology.
301
for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
302
types[j] = types[i];
303
types[target_layer] = type;
304
for (int k = 0; k < num_hw_threads; ++k) {
305
for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
306
hw_threads[k].ids[j] = hw_threads[k].ids[i];
307
hw_threads[k].ids[target_layer] = ids[k];
308
}
309
equivalent[type] = type;
310
depth++;
311
}
312
313
#if KMP_GROUP_AFFINITY
314
// Insert the Windows Processor Group structure into the topology
315
void kmp_topology_t::_insert_windows_proc_groups() {
316
// Do not insert the processor group structure for a single group
317
if (__kmp_num_proc_groups == 1)
318
return;
319
kmp_affin_mask_t *mask;
320
int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
321
KMP_CPU_ALLOC(mask);
322
for (int i = 0; i < num_hw_threads; ++i) {
323
KMP_CPU_ZERO(mask);
324
KMP_CPU_SET(hw_threads[i].os_id, mask);
325
ids[i] = __kmp_get_proc_group(mask);
326
}
327
KMP_CPU_FREE(mask);
328
_insert_layer(KMP_HW_PROC_GROUP, ids);
329
__kmp_free(ids);
330
331
// sort topology after adding proc groups
332
__kmp_topology->sort_ids();
333
}
334
#endif
335
336
// Remove layers that don't add information to the topology.
337
// This is done by having the layer take on the id = UNKNOWN_ID (-1)
338
void kmp_topology_t::_remove_radix1_layers() {
339
int preference[KMP_HW_LAST];
340
int top_index1, top_index2;
341
// Set up preference associative array
342
preference[KMP_HW_SOCKET] = 110;
343
preference[KMP_HW_PROC_GROUP] = 100;
344
preference[KMP_HW_CORE] = 95;
345
preference[KMP_HW_THREAD] = 90;
346
preference[KMP_HW_NUMA] = 85;
347
preference[KMP_HW_DIE] = 80;
348
preference[KMP_HW_TILE] = 75;
349
preference[KMP_HW_MODULE] = 73;
350
preference[KMP_HW_L3] = 70;
351
preference[KMP_HW_L2] = 65;
352
preference[KMP_HW_L1] = 60;
353
preference[KMP_HW_LLC] = 5;
354
top_index1 = 0;
355
top_index2 = 1;
356
while (top_index1 < depth - 1 && top_index2 < depth) {
357
kmp_hw_t type1 = types[top_index1];
358
kmp_hw_t type2 = types[top_index2];
359
KMP_ASSERT_VALID_HW_TYPE(type1);
360
KMP_ASSERT_VALID_HW_TYPE(type2);
361
// Do not allow the three main topology levels (sockets, cores, threads) to
362
// be compacted down
363
if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
364
type1 == KMP_HW_SOCKET) &&
365
(type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
366
type2 == KMP_HW_SOCKET)) {
367
top_index1 = top_index2++;
368
continue;
369
}
370
bool radix1 = true;
371
bool all_same = true;
372
int id1 = hw_threads[0].ids[top_index1];
373
int id2 = hw_threads[0].ids[top_index2];
374
int pref1 = preference[type1];
375
int pref2 = preference[type2];
376
for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
377
if (hw_threads[hwidx].ids[top_index1] == id1 &&
378
hw_threads[hwidx].ids[top_index2] != id2) {
379
radix1 = false;
380
break;
381
}
382
if (hw_threads[hwidx].ids[top_index2] != id2)
383
all_same = false;
384
id1 = hw_threads[hwidx].ids[top_index1];
385
id2 = hw_threads[hwidx].ids[top_index2];
386
}
387
if (radix1) {
388
// Select the layer to remove based on preference
389
kmp_hw_t remove_type, keep_type;
390
int remove_layer, remove_layer_ids;
391
if (pref1 > pref2) {
392
remove_type = type2;
393
remove_layer = remove_layer_ids = top_index2;
394
keep_type = type1;
395
} else {
396
remove_type = type1;
397
remove_layer = remove_layer_ids = top_index1;
398
keep_type = type2;
399
}
400
// If all the indexes for the second (deeper) layer are the same.
401
// e.g., all are zero, then make sure to keep the first layer's ids
402
if (all_same)
403
remove_layer_ids = top_index2;
404
// Remove radix one type by setting the equivalence, removing the id from
405
// the hw threads and removing the layer from types and depth
406
set_equivalent_type(remove_type, keep_type);
407
for (int idx = 0; idx < num_hw_threads; ++idx) {
408
kmp_hw_thread_t &hw_thread = hw_threads[idx];
409
for (int d = remove_layer_ids; d < depth - 1; ++d)
410
hw_thread.ids[d] = hw_thread.ids[d + 1];
411
}
412
for (int idx = remove_layer; idx < depth - 1; ++idx)
413
types[idx] = types[idx + 1];
414
depth--;
415
} else {
416
top_index1 = top_index2++;
417
}
418
}
419
KMP_ASSERT(depth > 0);
420
}
421
422
void kmp_topology_t::_set_last_level_cache() {
423
if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
424
set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
425
else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
426
set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
427
#if KMP_MIC_SUPPORTED
428
else if (__kmp_mic_type == mic3) {
429
if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
430
set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
431
else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
432
set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
433
// L2/Tile wasn't detected so just say L1
434
else
435
set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
436
}
437
#endif
438
else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
439
set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
440
// Fallback is to set last level cache to socket or core
441
if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
442
if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
443
set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
444
else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
445
set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
446
}
447
KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
448
}
449
450
// Gather the count of each topology layer and the ratio
451
void kmp_topology_t::_gather_enumeration_information() {
452
int previous_id[KMP_HW_LAST];
453
int max[KMP_HW_LAST];
454
455
for (int i = 0; i < depth; ++i) {
456
previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
457
max[i] = 0;
458
count[i] = 0;
459
ratio[i] = 0;
460
}
461
int core_level = get_level(KMP_HW_CORE);
462
for (int i = 0; i < num_hw_threads; ++i) {
463
kmp_hw_thread_t &hw_thread = hw_threads[i];
464
for (int layer = 0; layer < depth; ++layer) {
465
int id = hw_thread.ids[layer];
466
if (id != previous_id[layer]) {
467
// Add an additional increment to each count
468
for (int l = layer; l < depth; ++l)
469
count[l]++;
470
// Keep track of topology layer ratio statistics
471
max[layer]++;
472
for (int l = layer + 1; l < depth; ++l) {
473
if (max[l] > ratio[l])
474
ratio[l] = max[l];
475
max[l] = 1;
476
}
477
// Figure out the number of different core types
478
// and efficiencies for hybrid CPUs
479
if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
480
if (hw_thread.attrs.is_core_eff_valid() &&
481
hw_thread.attrs.core_eff >= num_core_efficiencies) {
482
// Because efficiencies can range from 0 to max efficiency - 1,
483
// the number of efficiencies is max efficiency + 1
484
num_core_efficiencies = hw_thread.attrs.core_eff + 1;
485
}
486
if (hw_thread.attrs.is_core_type_valid()) {
487
bool found = false;
488
for (int j = 0; j < num_core_types; ++j) {
489
if (hw_thread.attrs.get_core_type() == core_types[j]) {
490
found = true;
491
break;
492
}
493
}
494
if (!found) {
495
KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
496
core_types[num_core_types++] = hw_thread.attrs.get_core_type();
497
}
498
}
499
}
500
break;
501
}
502
}
503
for (int layer = 0; layer < depth; ++layer) {
504
previous_id[layer] = hw_thread.ids[layer];
505
}
506
}
507
for (int layer = 0; layer < depth; ++layer) {
508
if (max[layer] > ratio[layer])
509
ratio[layer] = max[layer];
510
}
511
}
512
513
int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
514
int above_level,
515
bool find_all) const {
516
int current, current_max;
517
int previous_id[KMP_HW_LAST];
518
for (int i = 0; i < depth; ++i)
519
previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
520
int core_level = get_level(KMP_HW_CORE);
521
if (find_all)
522
above_level = -1;
523
KMP_ASSERT(above_level < core_level);
524
current_max = 0;
525
current = 0;
526
for (int i = 0; i < num_hw_threads; ++i) {
527
kmp_hw_thread_t &hw_thread = hw_threads[i];
528
if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
529
if (current > current_max)
530
current_max = current;
531
current = hw_thread.attrs.contains(attr);
532
} else {
533
for (int level = above_level + 1; level <= core_level; ++level) {
534
if (hw_thread.ids[level] != previous_id[level]) {
535
if (hw_thread.attrs.contains(attr))
536
current++;
537
break;
538
}
539
}
540
}
541
for (int level = 0; level < depth; ++level)
542
previous_id[level] = hw_thread.ids[level];
543
}
544
if (current > current_max)
545
current_max = current;
546
return current_max;
547
}
548
549
// Find out if the topology is uniform
550
void kmp_topology_t::_discover_uniformity() {
551
int num = 1;
552
for (int level = 0; level < depth; ++level)
553
num *= ratio[level];
554
flags.uniform = (num == count[depth - 1]);
555
}
556
557
// Set all the sub_ids for each hardware thread
558
void kmp_topology_t::_set_sub_ids() {
559
int previous_id[KMP_HW_LAST];
560
int sub_id[KMP_HW_LAST];
561
562
for (int i = 0; i < depth; ++i) {
563
previous_id[i] = -1;
564
sub_id[i] = -1;
565
}
566
for (int i = 0; i < num_hw_threads; ++i) {
567
kmp_hw_thread_t &hw_thread = hw_threads[i];
568
// Setup the sub_id
569
for (int j = 0; j < depth; ++j) {
570
if (hw_thread.ids[j] != previous_id[j]) {
571
sub_id[j]++;
572
for (int k = j + 1; k < depth; ++k) {
573
sub_id[k] = 0;
574
}
575
break;
576
}
577
}
578
// Set previous_id
579
for (int j = 0; j < depth; ++j) {
580
previous_id[j] = hw_thread.ids[j];
581
}
582
// Set the sub_ids field
583
for (int j = 0; j < depth; ++j) {
584
hw_thread.sub_ids[j] = sub_id[j];
585
}
586
}
587
}
588
589
void kmp_topology_t::_set_globals() {
590
// Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
591
int core_level, thread_level, package_level;
592
package_level = get_level(KMP_HW_SOCKET);
593
#if KMP_GROUP_AFFINITY
594
if (package_level == -1)
595
package_level = get_level(KMP_HW_PROC_GROUP);
596
#endif
597
core_level = get_level(KMP_HW_CORE);
598
thread_level = get_level(KMP_HW_THREAD);
599
600
KMP_ASSERT(core_level != -1);
601
KMP_ASSERT(thread_level != -1);
602
603
__kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
604
if (package_level != -1) {
605
nCoresPerPkg = calculate_ratio(core_level, package_level);
606
nPackages = get_count(package_level);
607
} else {
608
// assume one socket
609
nCoresPerPkg = get_count(core_level);
610
nPackages = 1;
611
}
612
#ifndef KMP_DFLT_NTH_CORES
613
__kmp_ncores = get_count(core_level);
614
#endif
615
}
616
617
kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
618
const kmp_hw_t *types) {
619
kmp_topology_t *retval;
620
// Allocate all data in one large allocation
621
size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
622
sizeof(int) * (size_t)KMP_HW_LAST * 3;
623
char *bytes = (char *)__kmp_allocate(size);
624
retval = (kmp_topology_t *)bytes;
625
if (nproc > 0) {
626
retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
627
} else {
628
retval->hw_threads = nullptr;
629
}
630
retval->num_hw_threads = nproc;
631
retval->depth = ndepth;
632
int *arr =
633
(int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
634
retval->types = (kmp_hw_t *)arr;
635
retval->ratio = arr + (size_t)KMP_HW_LAST;
636
retval->count = arr + 2 * (size_t)KMP_HW_LAST;
637
retval->num_core_efficiencies = 0;
638
retval->num_core_types = 0;
639
retval->compact = 0;
640
for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
641
retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
642
KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
643
for (int i = 0; i < ndepth; ++i) {
644
retval->types[i] = types[i];
645
retval->equivalent[types[i]] = types[i];
646
}
647
return retval;
648
}
649
650
void kmp_topology_t::deallocate(kmp_topology_t *topology) {
651
if (topology)
652
__kmp_free(topology);
653
}
654
655
bool kmp_topology_t::check_ids() const {
656
// Assume ids have been sorted
657
if (num_hw_threads == 0)
658
return true;
659
for (int i = 1; i < num_hw_threads; ++i) {
660
kmp_hw_thread_t &current_thread = hw_threads[i];
661
kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
662
bool unique = false;
663
for (int j = 0; j < depth; ++j) {
664
if (previous_thread.ids[j] != current_thread.ids[j]) {
665
unique = true;
666
break;
667
}
668
}
669
if (unique)
670
continue;
671
return false;
672
}
673
return true;
674
}
675
676
void kmp_topology_t::dump() const {
677
printf("***********************\n");
678
printf("*** __kmp_topology: ***\n");
679
printf("***********************\n");
680
printf("* depth: %d\n", depth);
681
682
printf("* types: ");
683
for (int i = 0; i < depth; ++i)
684
printf("%15s ", __kmp_hw_get_keyword(types[i]));
685
printf("\n");
686
687
printf("* ratio: ");
688
for (int i = 0; i < depth; ++i) {
689
printf("%15d ", ratio[i]);
690
}
691
printf("\n");
692
693
printf("* count: ");
694
for (int i = 0; i < depth; ++i) {
695
printf("%15d ", count[i]);
696
}
697
printf("\n");
698
699
printf("* num_core_eff: %d\n", num_core_efficiencies);
700
printf("* num_core_types: %d\n", num_core_types);
701
printf("* core_types: ");
702
for (int i = 0; i < num_core_types; ++i)
703
printf("%3d ", core_types[i]);
704
printf("\n");
705
706
printf("* equivalent map:\n");
707
KMP_FOREACH_HW_TYPE(i) {
708
const char *key = __kmp_hw_get_keyword(i);
709
const char *value = __kmp_hw_get_keyword(equivalent[i]);
710
printf("%-15s -> %-15s\n", key, value);
711
}
712
713
printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
714
715
printf("* num_hw_threads: %d\n", num_hw_threads);
716
printf("* hw_threads:\n");
717
for (int i = 0; i < num_hw_threads; ++i) {
718
hw_threads[i].print();
719
}
720
printf("***********************\n");
721
}
722
723
void kmp_topology_t::print(const char *env_var) const {
724
kmp_str_buf_t buf;
725
int print_types_depth;
726
__kmp_str_buf_init(&buf);
727
kmp_hw_t print_types[KMP_HW_LAST + 2];
728
729
// Num Available Threads
730
if (num_hw_threads) {
731
KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
732
} else {
733
KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc);
734
}
735
736
// Uniform or not
737
if (is_uniform()) {
738
KMP_INFORM(Uniform, env_var);
739
} else {
740
KMP_INFORM(NonUniform, env_var);
741
}
742
743
// Equivalent types
744
KMP_FOREACH_HW_TYPE(type) {
745
kmp_hw_t eq_type = equivalent[type];
746
if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
747
KMP_INFORM(AffEqualTopologyTypes, env_var,
748
__kmp_hw_get_catalog_string(type),
749
__kmp_hw_get_catalog_string(eq_type));
750
}
751
}
752
753
// Quick topology
754
KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
755
// Create a print types array that always guarantees printing
756
// the core and thread level
757
print_types_depth = 0;
758
for (int level = 0; level < depth; ++level)
759
print_types[print_types_depth++] = types[level];
760
if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
761
// Force in the core level for quick topology
762
if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
763
// Force core before thread e.g., 1 socket X 2 threads/socket
764
// becomes 1 socket X 1 core/socket X 2 threads/socket
765
print_types[print_types_depth - 1] = KMP_HW_CORE;
766
print_types[print_types_depth++] = KMP_HW_THREAD;
767
} else {
768
print_types[print_types_depth++] = KMP_HW_CORE;
769
}
770
}
771
// Always put threads at very end of quick topology
772
if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
773
print_types[print_types_depth++] = KMP_HW_THREAD;
774
775
__kmp_str_buf_clear(&buf);
776
kmp_hw_t numerator_type;
777
kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
778
int core_level = get_level(KMP_HW_CORE);
779
int ncores = get_count(core_level);
780
781
for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
782
int c;
783
bool plural;
784
numerator_type = print_types[plevel];
785
KMP_ASSERT_VALID_HW_TYPE(numerator_type);
786
if (equivalent[numerator_type] != numerator_type)
787
c = 1;
788
else
789
c = get_ratio(level++);
790
plural = (c > 1);
791
if (plevel == 0) {
792
__kmp_str_buf_print(&buf, "%d %s", c,
793
__kmp_hw_get_catalog_string(numerator_type, plural));
794
} else {
795
__kmp_str_buf_print(&buf, " x %d %s/%s", c,
796
__kmp_hw_get_catalog_string(numerator_type, plural),
797
__kmp_hw_get_catalog_string(denominator_type));
798
}
799
denominator_type = numerator_type;
800
}
801
KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
802
803
// Hybrid topology information
804
if (__kmp_is_hybrid_cpu()) {
805
for (int i = 0; i < num_core_types; ++i) {
806
kmp_hw_core_type_t core_type = core_types[i];
807
kmp_hw_attr_t attr;
808
attr.clear();
809
attr.set_core_type(core_type);
810
int ncores = get_ncores_with_attr(attr);
811
if (ncores > 0) {
812
KMP_INFORM(TopologyHybrid, env_var, ncores,
813
__kmp_hw_get_core_type_string(core_type));
814
KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
815
for (int eff = 0; eff < num_core_efficiencies; ++eff) {
816
attr.set_core_eff(eff);
817
int ncores_with_eff = get_ncores_with_attr(attr);
818
if (ncores_with_eff > 0) {
819
KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
820
}
821
}
822
}
823
}
824
}
825
826
if (num_hw_threads <= 0) {
827
__kmp_str_buf_free(&buf);
828
return;
829
}
830
831
// Full OS proc to hardware thread map
832
KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
833
for (int i = 0; i < num_hw_threads; i++) {
834
__kmp_str_buf_clear(&buf);
835
for (int level = 0; level < depth; ++level) {
836
kmp_hw_t type = types[level];
837
__kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
838
__kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
839
}
840
if (__kmp_is_hybrid_cpu())
841
__kmp_str_buf_print(
842
&buf, "(%s)",
843
__kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
844
KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
845
}
846
847
__kmp_str_buf_free(&buf);
848
}
849
850
#if KMP_AFFINITY_SUPPORTED
851
void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
852
const char *env_var = __kmp_get_affinity_env_var(affinity);
853
// If requested hybrid CPU attributes for granularity (either OMP_PLACES or
854
// KMP_AFFINITY), but none exist, then reset granularity and have below method
855
// select a granularity and warn user.
856
if (!__kmp_is_hybrid_cpu()) {
857
if (affinity.core_attr_gran.valid) {
858
// OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores
859
// instead
860
KMP_AFF_WARNING(
861
affinity, AffIgnoringNonHybrid, env_var,
862
__kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
863
affinity.gran = KMP_HW_CORE;
864
affinity.gran_levels = -1;
865
affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
866
affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
867
} else if (affinity.flags.core_types_gran ||
868
affinity.flags.core_effs_gran) {
869
// OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead
870
if (affinity.flags.omp_places) {
871
KMP_AFF_WARNING(
872
affinity, AffIgnoringNonHybrid, env_var,
873
__kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true));
874
} else {
875
// KMP_AFFINITY=granularity=core_type|core_eff,...
876
KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
877
"Intel(R) Hybrid Technology core attribute",
878
__kmp_hw_get_catalog_string(KMP_HW_CORE));
879
}
880
affinity.gran = KMP_HW_CORE;
881
affinity.gran_levels = -1;
882
affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN;
883
affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0;
884
}
885
}
886
// Set the number of affinity granularity levels
887
if (affinity.gran_levels < 0) {
888
kmp_hw_t gran_type = get_equivalent_type(affinity.gran);
889
// Check if user's granularity request is valid
890
if (gran_type == KMP_HW_UNKNOWN) {
891
// First try core, then thread, then package
892
kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
893
for (auto g : gran_types) {
894
if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
895
gran_type = g;
896
break;
897
}
898
}
899
KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
900
// Warn user what granularity setting will be used instead
901
KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
902
__kmp_hw_get_catalog_string(affinity.gran),
903
__kmp_hw_get_catalog_string(gran_type));
904
affinity.gran = gran_type;
905
}
906
#if KMP_GROUP_AFFINITY
907
// If more than one processor group exists, and the level of
908
// granularity specified by the user is too coarse, then the
909
// granularity must be adjusted "down" to processor group affinity
910
// because threads can only exist within one processor group.
911
// For example, if a user sets granularity=socket and there are two
912
// processor groups that cover a socket, then the runtime must
913
// restrict the granularity down to the processor group level.
914
if (__kmp_num_proc_groups > 1) {
915
int gran_depth = get_level(gran_type);
916
int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
917
if (gran_depth >= 0 && proc_group_depth >= 0 &&
918
gran_depth < proc_group_depth) {
919
KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,
920
__kmp_hw_get_catalog_string(affinity.gran));
921
affinity.gran = gran_type = KMP_HW_PROC_GROUP;
922
}
923
}
924
#endif
925
affinity.gran_levels = 0;
926
for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
927
affinity.gran_levels++;
928
}
929
}
930
#endif
931
932
void kmp_topology_t::canonicalize() {
933
#if KMP_GROUP_AFFINITY
934
_insert_windows_proc_groups();
935
#endif
936
_remove_radix1_layers();
937
_gather_enumeration_information();
938
_discover_uniformity();
939
_set_sub_ids();
940
_set_globals();
941
_set_last_level_cache();
942
943
#if KMP_MIC_SUPPORTED
944
// Manually Add L2 = Tile equivalence
945
if (__kmp_mic_type == mic3) {
946
if (get_level(KMP_HW_L2) != -1)
947
set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
948
else if (get_level(KMP_HW_TILE) != -1)
949
set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
950
}
951
#endif
952
953
// Perform post canonicalization checking
954
KMP_ASSERT(depth > 0);
955
for (int level = 0; level < depth; ++level) {
956
// All counts, ratios, and types must be valid
957
KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
958
KMP_ASSERT_VALID_HW_TYPE(types[level]);
959
// Detected types must point to themselves
960
KMP_ASSERT(equivalent[types[level]] == types[level]);
961
}
962
}
963
964
// Canonicalize an explicit packages X cores/pkg X threads/core topology
965
void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
966
int nthreads_per_core, int ncores) {
967
int ndepth = 3;
968
depth = ndepth;
969
KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
970
for (int level = 0; level < depth; ++level) {
971
count[level] = 0;
972
ratio[level] = 0;
973
}
974
count[0] = npackages;
975
count[1] = ncores;
976
count[2] = __kmp_xproc;
977
ratio[0] = npackages;
978
ratio[1] = ncores_per_pkg;
979
ratio[2] = nthreads_per_core;
980
equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
981
equivalent[KMP_HW_CORE] = KMP_HW_CORE;
982
equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
983
types[0] = KMP_HW_SOCKET;
984
types[1] = KMP_HW_CORE;
985
types[2] = KMP_HW_THREAD;
986
//__kmp_avail_proc = __kmp_xproc;
987
_discover_uniformity();
988
}
989
990
#if KMP_AFFINITY_SUPPORTED
991
static kmp_str_buf_t *
992
__kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
993
bool plural) {
994
__kmp_str_buf_init(buf);
995
if (attr.is_core_type_valid())
996
__kmp_str_buf_print(buf, "%s %s",
997
__kmp_hw_get_core_type_string(attr.get_core_type()),
998
__kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
999
else
1000
__kmp_str_buf_print(buf, "%s eff=%d",
1001
__kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
1002
attr.get_core_eff());
1003
return buf;
1004
}
1005
1006
bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) {
1007
// Apply the filter
1008
bool affected;
1009
int new_index = 0;
1010
for (int i = 0; i < num_hw_threads; ++i) {
1011
int os_id = hw_threads[i].os_id;
1012
if (KMP_CPU_ISSET(os_id, mask)) {
1013
if (i != new_index)
1014
hw_threads[new_index] = hw_threads[i];
1015
new_index++;
1016
} else {
1017
KMP_CPU_CLR(os_id, __kmp_affin_fullMask);
1018
__kmp_avail_proc--;
1019
}
1020
}
1021
1022
KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1023
affected = (num_hw_threads != new_index);
1024
num_hw_threads = new_index;
1025
1026
// Post hardware subset canonicalization
1027
if (affected) {
1028
_gather_enumeration_information();
1029
_discover_uniformity();
1030
_set_globals();
1031
_set_last_level_cache();
1032
#if KMP_OS_WINDOWS
1033
// Copy filtered full mask if topology has single processor group
1034
if (__kmp_num_proc_groups <= 1)
1035
#endif
1036
__kmp_affin_origMask->copy(__kmp_affin_fullMask);
1037
}
1038
return affected;
1039
}
1040
1041
// Apply the KMP_HW_SUBSET envirable to the topology
1042
// Returns true if KMP_HW_SUBSET filtered any processors
1043
// otherwise, returns false
1044
bool kmp_topology_t::filter_hw_subset() {
1045
// If KMP_HW_SUBSET wasn't requested, then do nothing.
1046
if (!__kmp_hw_subset)
1047
return false;
1048
1049
// First, sort the KMP_HW_SUBSET items by the machine topology
1050
__kmp_hw_subset->sort();
1051
1052
__kmp_hw_subset->canonicalize(__kmp_topology);
1053
1054
// Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
1055
bool using_core_types = false;
1056
bool using_core_effs = false;
1057
bool is_absolute = __kmp_hw_subset->is_absolute();
1058
int hw_subset_depth = __kmp_hw_subset->get_depth();
1059
kmp_hw_t specified[KMP_HW_LAST];
1060
int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
1061
KMP_ASSERT(hw_subset_depth > 0);
1062
KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
1063
int core_level = get_level(KMP_HW_CORE);
1064
for (int i = 0; i < hw_subset_depth; ++i) {
1065
int max_count;
1066
const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
1067
int num = item.num[0];
1068
int offset = item.offset[0];
1069
kmp_hw_t type = item.type;
1070
kmp_hw_t equivalent_type = equivalent[type];
1071
int level = get_level(type);
1072
topology_levels[i] = level;
1073
1074
// Check to see if current layer is in detected machine topology
1075
if (equivalent_type != KMP_HW_UNKNOWN) {
1076
__kmp_hw_subset->at(i).type = equivalent_type;
1077
} else {
1078
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,
1079
__kmp_hw_get_catalog_string(type));
1080
return false;
1081
}
1082
1083
// Check to see if current layer has already been
1084
// specified either directly or through an equivalent type
1085
if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
1086
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,
1087
__kmp_hw_get_catalog_string(type),
1088
__kmp_hw_get_catalog_string(specified[equivalent_type]));
1089
return false;
1090
}
1091
specified[equivalent_type] = type;
1092
1093
// Check to see if each layer's num & offset parameters are valid
1094
max_count = get_ratio(level);
1095
if (!is_absolute) {
1096
if (max_count < 0 ||
1097
(num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1098
bool plural = (num > 1);
1099
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,
1100
__kmp_hw_get_catalog_string(type, plural));
1101
return false;
1102
}
1103
}
1104
1105
// Check to see if core attributes are consistent
1106
if (core_level == level) {
1107
// Determine which core attributes are specified
1108
for (int j = 0; j < item.num_attrs; ++j) {
1109
if (item.attr[j].is_core_type_valid())
1110
using_core_types = true;
1111
if (item.attr[j].is_core_eff_valid())
1112
using_core_effs = true;
1113
}
1114
1115
// Check if using a single core attribute on non-hybrid arch.
1116
// Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1117
//
1118
// Check if using multiple core attributes on non-hyrbid arch.
1119
// Ignore all of KMP_HW_SUBSET if this is the case.
1120
if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1121
if (item.num_attrs == 1) {
1122
if (using_core_effs) {
1123
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1124
"efficiency");
1125
} else {
1126
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1127
"core_type");
1128
}
1129
using_core_effs = false;
1130
using_core_types = false;
1131
} else {
1132
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid);
1133
return false;
1134
}
1135
}
1136
1137
// Check if using both core types and core efficiencies together
1138
if (using_core_types && using_core_effs) {
1139
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",
1140
"efficiency");
1141
return false;
1142
}
1143
1144
// Check that core efficiency values are valid
1145
if (using_core_effs) {
1146
for (int j = 0; j < item.num_attrs; ++j) {
1147
if (item.attr[j].is_core_eff_valid()) {
1148
int core_eff = item.attr[j].get_core_eff();
1149
if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1150
kmp_str_buf_t buf;
1151
__kmp_str_buf_init(&buf);
1152
__kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1153
__kmp_msg(kmp_ms_warning,
1154
KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1155
KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1156
__kmp_msg_null);
1157
__kmp_str_buf_free(&buf);
1158
return false;
1159
}
1160
}
1161
}
1162
}
1163
1164
// Check that the number of requested cores with attributes is valid
1165
if ((using_core_types || using_core_effs) && !is_absolute) {
1166
for (int j = 0; j < item.num_attrs; ++j) {
1167
int num = item.num[j];
1168
int offset = item.offset[j];
1169
int level_above = core_level - 1;
1170
if (level_above >= 0) {
1171
max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1172
if (max_count <= 0 ||
1173
(num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1174
kmp_str_buf_t buf;
1175
__kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1176
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str);
1177
__kmp_str_buf_free(&buf);
1178
return false;
1179
}
1180
}
1181
}
1182
}
1183
1184
if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1185
for (int j = 0; j < item.num_attrs; ++j) {
1186
// Ambiguous use of specific core attribute + generic core
1187
// e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1188
if (!item.attr[j]) {
1189
kmp_hw_attr_t other_attr;
1190
for (int k = 0; k < item.num_attrs; ++k) {
1191
if (item.attr[k] != item.attr[j]) {
1192
other_attr = item.attr[k];
1193
break;
1194
}
1195
}
1196
kmp_str_buf_t buf;
1197
__kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1198
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,
1199
__kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1200
__kmp_str_buf_free(&buf);
1201
return false;
1202
}
1203
// Allow specifying a specific core type or core eff exactly once
1204
for (int k = 0; k < j; ++k) {
1205
if (!item.attr[j] || !item.attr[k])
1206
continue;
1207
if (item.attr[k] == item.attr[j]) {
1208
kmp_str_buf_t buf;
1209
__kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1210
item.num[j] > 0);
1211
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str);
1212
__kmp_str_buf_free(&buf);
1213
return false;
1214
}
1215
}
1216
}
1217
}
1218
}
1219
}
1220
1221
// For keeping track of sub_ids for an absolute KMP_HW_SUBSET
1222
// or core attributes (core type or efficiency)
1223
int prev_sub_ids[KMP_HW_LAST];
1224
int abs_sub_ids[KMP_HW_LAST];
1225
int core_eff_sub_ids[KMP_HW_MAX_NUM_CORE_EFFS];
1226
int core_type_sub_ids[KMP_HW_MAX_NUM_CORE_TYPES];
1227
for (size_t i = 0; i < KMP_HW_LAST; ++i) {
1228
abs_sub_ids[i] = -1;
1229
prev_sub_ids[i] = -1;
1230
}
1231
for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_EFFS; ++i)
1232
core_eff_sub_ids[i] = -1;
1233
for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
1234
core_type_sub_ids[i] = -1;
1235
1236
// Determine which hardware threads should be filtered.
1237
1238
// Helpful to determine if a topology layer is targeted by an absolute subset
1239
auto is_targeted = [&](int level) {
1240
if (is_absolute) {
1241
for (int i = 0; i < hw_subset_depth; ++i)
1242
if (topology_levels[i] == level)
1243
return true;
1244
return false;
1245
}
1246
// If not absolute KMP_HW_SUBSET, then every layer is seen as targeted
1247
return true;
1248
};
1249
1250
// Helpful to index into core type sub Ids array
1251
auto get_core_type_index = [](const kmp_hw_thread_t &t) {
1252
switch (t.attrs.get_core_type()) {
1253
case KMP_HW_CORE_TYPE_UNKNOWN:
1254
case KMP_HW_MAX_NUM_CORE_TYPES:
1255
return 0;
1256
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1257
case KMP_HW_CORE_TYPE_ATOM:
1258
return 1;
1259
case KMP_HW_CORE_TYPE_CORE:
1260
return 2;
1261
#endif
1262
}
1263
KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration");
1264
KMP_BUILTIN_UNREACHABLE;
1265
};
1266
1267
// Helpful to index into core efficiencies sub Ids array
1268
auto get_core_eff_index = [](const kmp_hw_thread_t &t) {
1269
return t.attrs.get_core_eff();
1270
};
1271
1272
int num_filtered = 0;
1273
kmp_affin_mask_t *filtered_mask;
1274
KMP_CPU_ALLOC(filtered_mask);
1275
KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask);
1276
for (int i = 0; i < num_hw_threads; ++i) {
1277
kmp_hw_thread_t &hw_thread = hw_threads[i];
1278
1279
// Figure out the absolute sub ids and core eff/type sub ids
1280
if (is_absolute || using_core_effs || using_core_types) {
1281
for (int level = 0; level < get_depth(); ++level) {
1282
if (hw_thread.sub_ids[level] != prev_sub_ids[level]) {
1283
bool found_targeted = false;
1284
for (int j = level; j < get_depth(); ++j) {
1285
bool targeted = is_targeted(j);
1286
if (!found_targeted && targeted) {
1287
found_targeted = true;
1288
abs_sub_ids[j]++;
1289
if (j == core_level && using_core_effs)
1290
core_eff_sub_ids[get_core_eff_index(hw_thread)]++;
1291
if (j == core_level && using_core_types)
1292
core_type_sub_ids[get_core_type_index(hw_thread)]++;
1293
} else if (targeted) {
1294
abs_sub_ids[j] = 0;
1295
if (j == core_level && using_core_effs)
1296
core_eff_sub_ids[get_core_eff_index(hw_thread)] = 0;
1297
if (j == core_level && using_core_types)
1298
core_type_sub_ids[get_core_type_index(hw_thread)] = 0;
1299
}
1300
}
1301
break;
1302
}
1303
}
1304
for (int level = 0; level < get_depth(); ++level)
1305
prev_sub_ids[level] = hw_thread.sub_ids[level];
1306
}
1307
1308
// Check to see if this hardware thread should be filtered
1309
bool should_be_filtered = false;
1310
for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1311
++hw_subset_index) {
1312
const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1313
int level = topology_levels[hw_subset_index];
1314
if (level == -1)
1315
continue;
1316
if ((using_core_effs || using_core_types) && level == core_level) {
1317
// Look for the core attribute in KMP_HW_SUBSET which corresponds
1318
// to this hardware thread's core attribute. Use this num,offset plus
1319
// the running sub_id for the particular core attribute of this hardware
1320
// thread to determine if the hardware thread should be filtered or not.
1321
int attr_idx;
1322
kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1323
int core_eff = hw_thread.attrs.get_core_eff();
1324
for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1325
if (using_core_types &&
1326
hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1327
break;
1328
if (using_core_effs &&
1329
hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1330
break;
1331
}
1332
// This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1333
if (attr_idx == hw_subset_item.num_attrs) {
1334
should_be_filtered = true;
1335
break;
1336
}
1337
int sub_id;
1338
int num = hw_subset_item.num[attr_idx];
1339
int offset = hw_subset_item.offset[attr_idx];
1340
if (using_core_types)
1341
sub_id = core_type_sub_ids[get_core_type_index(hw_thread)];
1342
else
1343
sub_id = core_eff_sub_ids[get_core_eff_index(hw_thread)];
1344
if (sub_id < offset ||
1345
(num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1346
should_be_filtered = true;
1347
break;
1348
}
1349
} else {
1350
int sub_id;
1351
int num = hw_subset_item.num[0];
1352
int offset = hw_subset_item.offset[0];
1353
if (is_absolute)
1354
sub_id = abs_sub_ids[level];
1355
else
1356
sub_id = hw_thread.sub_ids[level];
1357
if (sub_id < offset ||
1358
(num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1359
should_be_filtered = true;
1360
break;
1361
}
1362
}
1363
}
1364
// Collect filtering information
1365
if (should_be_filtered) {
1366
KMP_CPU_CLR(hw_thread.os_id, filtered_mask);
1367
num_filtered++;
1368
}
1369
}
1370
1371
// One last check that we shouldn't allow filtering entire machine
1372
if (num_filtered == num_hw_threads) {
1373
KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered);
1374
return false;
1375
}
1376
1377
// Apply the filter
1378
restrict_to_mask(filtered_mask);
1379
return true;
1380
}
1381
1382
bool kmp_topology_t::is_close(int hwt1, int hwt2,
1383
const kmp_affinity_t &stgs) const {
1384
int hw_level = stgs.gran_levels;
1385
if (hw_level >= depth)
1386
return true;
1387
bool retval = true;
1388
const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1389
const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1390
if (stgs.flags.core_types_gran)
1391
return t1.attrs.get_core_type() == t2.attrs.get_core_type();
1392
if (stgs.flags.core_effs_gran)
1393
return t1.attrs.get_core_eff() == t2.attrs.get_core_eff();
1394
for (int i = 0; i < (depth - hw_level); ++i) {
1395
if (t1.ids[i] != t2.ids[i])
1396
return false;
1397
}
1398
return retval;
1399
}
1400
1401
////////////////////////////////////////////////////////////////////////////////
1402
1403
bool KMPAffinity::picked_api = false;
1404
1405
void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
1406
void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
1407
void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
1408
void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
1409
void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
1410
void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1411
1412
void KMPAffinity::pick_api() {
1413
KMPAffinity *affinity_dispatch;
1414
if (picked_api)
1415
return;
1416
#if KMP_USE_HWLOC
1417
// Only use Hwloc if affinity isn't explicitly disabled and
1418
// user requests Hwloc topology method
1419
if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1420
__kmp_affinity.type != affinity_disabled) {
1421
affinity_dispatch = new KMPHwlocAffinity();
1422
} else
1423
#endif
1424
{
1425
affinity_dispatch = new KMPNativeAffinity();
1426
}
1427
__kmp_affinity_dispatch = affinity_dispatch;
1428
picked_api = true;
1429
}
1430
1431
void KMPAffinity::destroy_api() {
1432
if (__kmp_affinity_dispatch != NULL) {
1433
delete __kmp_affinity_dispatch;
1434
__kmp_affinity_dispatch = NULL;
1435
picked_api = false;
1436
}
1437
}
1438
1439
#define KMP_ADVANCE_SCAN(scan) \
1440
while (*scan != '\0') { \
1441
scan++; \
1442
}
1443
1444
// Print the affinity mask to the character array in a pretty format.
1445
// The format is a comma separated list of non-negative integers or integer
1446
// ranges: e.g., 1,2,3-5,7,9-15
1447
// The format can also be the string "{<empty>}" if no bits are set in mask
1448
char *__kmp_affinity_print_mask(char *buf, int buf_len,
1449
kmp_affin_mask_t *mask) {
1450
int start = 0, finish = 0, previous = 0;
1451
bool first_range;
1452
KMP_ASSERT(buf);
1453
KMP_ASSERT(buf_len >= 40);
1454
KMP_ASSERT(mask);
1455
char *scan = buf;
1456
char *end = buf + buf_len - 1;
1457
1458
// Check for empty set.
1459
if (mask->begin() == mask->end()) {
1460
KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
1461
KMP_ADVANCE_SCAN(scan);
1462
KMP_ASSERT(scan <= end);
1463
return buf;
1464
}
1465
1466
first_range = true;
1467
start = mask->begin();
1468
while (1) {
1469
// Find next range
1470
// [start, previous] is inclusive range of contiguous bits in mask
1471
for (finish = mask->next(start), previous = start;
1472
finish == previous + 1 && finish != mask->end();
1473
finish = mask->next(finish)) {
1474
previous = finish;
1475
}
1476
1477
// The first range does not need a comma printed before it, but the rest
1478
// of the ranges do need a comma beforehand
1479
if (!first_range) {
1480
KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
1481
KMP_ADVANCE_SCAN(scan);
1482
} else {
1483
first_range = false;
1484
}
1485
// Range with three or more contiguous bits in the affinity mask
1486
if (previous - start > 1) {
1487
KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
1488
} else {
1489
// Range with one or two contiguous bits in the affinity mask
1490
KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
1491
KMP_ADVANCE_SCAN(scan);
1492
if (previous - start > 0) {
1493
KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
1494
}
1495
}
1496
KMP_ADVANCE_SCAN(scan);
1497
// Start over with new start point
1498
start = finish;
1499
if (start == mask->end())
1500
break;
1501
// Check for overflow
1502
if (end - scan < 2)
1503
break;
1504
}
1505
1506
// Check for overflow
1507
KMP_ASSERT(scan <= end);
1508
return buf;
1509
}
1510
#undef KMP_ADVANCE_SCAN
1511
1512
// Print the affinity mask to the string buffer object in a pretty format
1513
// The format is a comma separated list of non-negative integers or integer
1514
// ranges: e.g., 1,2,3-5,7,9-15
1515
// The format can also be the string "{<empty>}" if no bits are set in mask
1516
kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1517
kmp_affin_mask_t *mask) {
1518
int start = 0, finish = 0, previous = 0;
1519
bool first_range;
1520
KMP_ASSERT(buf);
1521
KMP_ASSERT(mask);
1522
1523
__kmp_str_buf_clear(buf);
1524
1525
// Check for empty set.
1526
if (mask->begin() == mask->end()) {
1527
__kmp_str_buf_print(buf, "%s", "{<empty>}");
1528
return buf;
1529
}
1530
1531
first_range = true;
1532
start = mask->begin();
1533
while (1) {
1534
// Find next range
1535
// [start, previous] is inclusive range of contiguous bits in mask
1536
for (finish = mask->next(start), previous = start;
1537
finish == previous + 1 && finish != mask->end();
1538
finish = mask->next(finish)) {
1539
previous = finish;
1540
}
1541
1542
// The first range does not need a comma printed before it, but the rest
1543
// of the ranges do need a comma beforehand
1544
if (!first_range) {
1545
__kmp_str_buf_print(buf, "%s", ",");
1546
} else {
1547
first_range = false;
1548
}
1549
// Range with three or more contiguous bits in the affinity mask
1550
if (previous - start > 1) {
1551
__kmp_str_buf_print(buf, "%u-%u", start, previous);
1552
} else {
1553
// Range with one or two contiguous bits in the affinity mask
1554
__kmp_str_buf_print(buf, "%u", start);
1555
if (previous - start > 0) {
1556
__kmp_str_buf_print(buf, ",%u", previous);
1557
}
1558
}
1559
// Start over with new start point
1560
start = finish;
1561
if (start == mask->end())
1562
break;
1563
}
1564
return buf;
1565
}
1566
1567
// Return (possibly empty) affinity mask representing the offline CPUs
1568
// Caller must free the mask
1569
kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1570
kmp_affin_mask_t *offline;
1571
KMP_CPU_ALLOC(offline);
1572
KMP_CPU_ZERO(offline);
1573
#if KMP_OS_LINUX
1574
int n, begin_cpu, end_cpu;
1575
kmp_safe_raii_file_t offline_file;
1576
auto skip_ws = [](FILE *f) {
1577
int c;
1578
do {
1579
c = fgetc(f);
1580
} while (isspace(c));
1581
if (c != EOF)
1582
ungetc(c, f);
1583
};
1584
// File contains CSV of integer ranges representing the offline CPUs
1585
// e.g., 1,2,4-7,9,11-15
1586
int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
1587
if (status != 0)
1588
return offline;
1589
while (!feof(offline_file)) {
1590
skip_ws(offline_file);
1591
n = fscanf(offline_file, "%d", &begin_cpu);
1592
if (n != 1)
1593
break;
1594
skip_ws(offline_file);
1595
int c = fgetc(offline_file);
1596
if (c == EOF || c == ',') {
1597
// Just single CPU
1598
end_cpu = begin_cpu;
1599
} else if (c == '-') {
1600
// Range of CPUs
1601
skip_ws(offline_file);
1602
n = fscanf(offline_file, "%d", &end_cpu);
1603
if (n != 1)
1604
break;
1605
skip_ws(offline_file);
1606
c = fgetc(offline_file); // skip ','
1607
} else {
1608
// Syntax problem
1609
break;
1610
}
1611
// Ensure a valid range of CPUs
1612
if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1613
end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1614
continue;
1615
}
1616
// Insert [begin_cpu, end_cpu] into offline mask
1617
for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1618
KMP_CPU_SET(cpu, offline);
1619
}
1620
}
1621
#endif
1622
return offline;
1623
}
1624
1625
// Return the number of available procs
1626
int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1627
int avail_proc = 0;
1628
KMP_CPU_ZERO(mask);
1629
1630
#if KMP_GROUP_AFFINITY
1631
1632
if (__kmp_num_proc_groups > 1) {
1633
int group;
1634
KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1635
for (group = 0; group < __kmp_num_proc_groups; group++) {
1636
int i;
1637
int num = __kmp_GetActiveProcessorCount(group);
1638
for (i = 0; i < num; i++) {
1639
KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1640
avail_proc++;
1641
}
1642
}
1643
} else
1644
1645
#endif /* KMP_GROUP_AFFINITY */
1646
1647
{
1648
int proc;
1649
kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1650
for (proc = 0; proc < __kmp_xproc; proc++) {
1651
// Skip offline CPUs
1652
if (KMP_CPU_ISSET(proc, offline_cpus))
1653
continue;
1654
KMP_CPU_SET(proc, mask);
1655
avail_proc++;
1656
}
1657
KMP_CPU_FREE(offline_cpus);
1658
}
1659
1660
return avail_proc;
1661
}
1662
1663
// All of the __kmp_affinity_create_*_map() routines should allocate the
1664
// internal topology object and set the layer ids for it. Each routine
1665
// returns a boolean on whether it was successful at doing so.
1666
kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1667
// Original mask is a subset of full mask in multiple processor groups topology
1668
kmp_affin_mask_t *__kmp_affin_origMask = NULL;
1669
1670
#if KMP_USE_HWLOC
1671
static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1672
#if HWLOC_API_VERSION >= 0x00020000
1673
return hwloc_obj_type_is_cache(obj->type);
1674
#else
1675
return obj->type == HWLOC_OBJ_CACHE;
1676
#endif
1677
}
1678
1679
// Returns KMP_HW_* type derived from HWLOC_* type
1680
static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1681
1682
if (__kmp_hwloc_is_cache_type(obj)) {
1683
if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1684
return KMP_HW_UNKNOWN;
1685
switch (obj->attr->cache.depth) {
1686
case 1:
1687
return KMP_HW_L1;
1688
case 2:
1689
#if KMP_MIC_SUPPORTED
1690
if (__kmp_mic_type == mic3) {
1691
return KMP_HW_TILE;
1692
}
1693
#endif
1694
return KMP_HW_L2;
1695
case 3:
1696
return KMP_HW_L3;
1697
}
1698
return KMP_HW_UNKNOWN;
1699
}
1700
1701
switch (obj->type) {
1702
case HWLOC_OBJ_PACKAGE:
1703
return KMP_HW_SOCKET;
1704
case HWLOC_OBJ_NUMANODE:
1705
return KMP_HW_NUMA;
1706
case HWLOC_OBJ_CORE:
1707
return KMP_HW_CORE;
1708
case HWLOC_OBJ_PU:
1709
return KMP_HW_THREAD;
1710
case HWLOC_OBJ_GROUP:
1711
#if HWLOC_API_VERSION >= 0x00020000
1712
if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1713
return KMP_HW_DIE;
1714
else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1715
return KMP_HW_TILE;
1716
else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1717
return KMP_HW_MODULE;
1718
else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1719
return KMP_HW_PROC_GROUP;
1720
#endif
1721
return KMP_HW_UNKNOWN;
1722
#if HWLOC_API_VERSION >= 0x00020100
1723
case HWLOC_OBJ_DIE:
1724
return KMP_HW_DIE;
1725
#endif
1726
}
1727
return KMP_HW_UNKNOWN;
1728
}
1729
1730
// Returns the number of objects of type 'type' below 'obj' within the topology
1731
// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1732
// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1733
// object.
1734
static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1735
hwloc_obj_type_t type) {
1736
int retval = 0;
1737
hwloc_obj_t first;
1738
for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1739
obj->logical_index, type, 0);
1740
first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1741
obj->type, first) == obj;
1742
first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1743
first)) {
1744
++retval;
1745
}
1746
return retval;
1747
}
1748
1749
// This gets the sub_id for a lower object under a higher object in the
1750
// topology tree
1751
static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1752
hwloc_obj_t lower) {
1753
hwloc_obj_t obj;
1754
hwloc_obj_type_t ltype = lower->type;
1755
int lindex = lower->logical_index - 1;
1756
int sub_id = 0;
1757
// Get the previous lower object
1758
obj = hwloc_get_obj_by_type(t, ltype, lindex);
1759
while (obj && lindex >= 0 &&
1760
hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1761
if (obj->userdata) {
1762
sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1763
break;
1764
}
1765
sub_id++;
1766
lindex--;
1767
obj = hwloc_get_obj_by_type(t, ltype, lindex);
1768
}
1769
// store sub_id + 1 so that 0 is differed from NULL
1770
lower->userdata = RCAST(void *, sub_id + 1);
1771
return sub_id;
1772
}
1773
1774
static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1775
kmp_hw_t type;
1776
int hw_thread_index, sub_id;
1777
int depth;
1778
hwloc_obj_t pu, obj, root, prev;
1779
kmp_hw_t types[KMP_HW_LAST];
1780
hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1781
1782
hwloc_topology_t tp = __kmp_hwloc_topology;
1783
*msg_id = kmp_i18n_null;
1784
if (__kmp_affinity.flags.verbose) {
1785
KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1786
}
1787
1788
if (!KMP_AFFINITY_CAPABLE()) {
1789
// Hack to try and infer the machine topology using only the data
1790
// available from hwloc on the current thread, and __kmp_xproc.
1791
KMP_ASSERT(__kmp_affinity.type == affinity_none);
1792
// hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1793
hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1794
if (o != NULL)
1795
nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1796
else
1797
nCoresPerPkg = 1; // no PACKAGE found
1798
o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1799
if (o != NULL)
1800
__kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1801
else
1802
__kmp_nThreadsPerCore = 1; // no CORE found
1803
if (__kmp_nThreadsPerCore == 0)
1804
__kmp_nThreadsPerCore = 1;
1805
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1806
if (nCoresPerPkg == 0)
1807
nCoresPerPkg = 1; // to prevent possible division by 0
1808
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1809
return true;
1810
}
1811
1812
#if HWLOC_API_VERSION >= 0x00020400
1813
// Handle multiple types of cores if they exist on the system
1814
int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1815
1816
typedef struct kmp_hwloc_cpukinds_info_t {
1817
int efficiency;
1818
kmp_hw_core_type_t core_type;
1819
hwloc_bitmap_t mask;
1820
} kmp_hwloc_cpukinds_info_t;
1821
kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1822
1823
if (nr_cpu_kinds > 0) {
1824
unsigned nr_infos;
1825
struct hwloc_info_s *infos;
1826
cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1827
sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1828
for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1829
cpukinds[idx].efficiency = -1;
1830
cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1831
cpukinds[idx].mask = hwloc_bitmap_alloc();
1832
if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1833
&cpukinds[idx].efficiency, &nr_infos, &infos,
1834
0) == 0) {
1835
for (unsigned i = 0; i < nr_infos; ++i) {
1836
if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1837
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1838
if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1839
cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1840
break;
1841
} else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1842
cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1843
break;
1844
}
1845
#endif
1846
}
1847
}
1848
}
1849
}
1850
}
1851
#endif
1852
1853
root = hwloc_get_root_obj(tp);
1854
1855
// Figure out the depth and types in the topology
1856
depth = 0;
1857
obj = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1858
while (obj && obj != root) {
1859
#if HWLOC_API_VERSION >= 0x00020000
1860
if (obj->memory_arity) {
1861
hwloc_obj_t memory;
1862
for (memory = obj->memory_first_child; memory;
1863
memory = hwloc_get_next_child(tp, obj, memory)) {
1864
if (memory->type == HWLOC_OBJ_NUMANODE)
1865
break;
1866
}
1867
if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1868
types[depth] = KMP_HW_NUMA;
1869
hwloc_types[depth] = memory->type;
1870
depth++;
1871
}
1872
}
1873
#endif
1874
type = __kmp_hwloc_type_2_topology_type(obj);
1875
if (type != KMP_HW_UNKNOWN) {
1876
types[depth] = type;
1877
hwloc_types[depth] = obj->type;
1878
depth++;
1879
}
1880
obj = obj->parent;
1881
}
1882
KMP_ASSERT(depth > 0);
1883
1884
// Get the order for the types correct
1885
for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1886
hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1887
kmp_hw_t temp = types[i];
1888
types[i] = types[j];
1889
types[j] = temp;
1890
hwloc_types[i] = hwloc_types[j];
1891
hwloc_types[j] = hwloc_temp;
1892
}
1893
1894
// Allocate the data structure to be returned.
1895
__kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1896
1897
hw_thread_index = 0;
1898
pu = NULL;
1899
while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1900
int index = depth - 1;
1901
bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1902
kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1903
if (included) {
1904
hw_thread.clear();
1905
hw_thread.ids[index] = pu->logical_index;
1906
hw_thread.os_id = pu->os_index;
1907
// If multiple core types, then set that attribute for the hardware thread
1908
#if HWLOC_API_VERSION >= 0x00020400
1909
if (cpukinds) {
1910
int cpukind_index = -1;
1911
for (int i = 0; i < nr_cpu_kinds; ++i) {
1912
if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1913
cpukind_index = i;
1914
break;
1915
}
1916
}
1917
if (cpukind_index >= 0) {
1918
hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1919
hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1920
}
1921
}
1922
#endif
1923
index--;
1924
}
1925
obj = pu;
1926
prev = obj;
1927
while (obj != root && obj != NULL) {
1928
obj = obj->parent;
1929
#if HWLOC_API_VERSION >= 0x00020000
1930
// NUMA Nodes are handled differently since they are not within the
1931
// parent/child structure anymore. They are separate children
1932
// of obj (memory_first_child points to first memory child)
1933
if (obj->memory_arity) {
1934
hwloc_obj_t memory;
1935
for (memory = obj->memory_first_child; memory;
1936
memory = hwloc_get_next_child(tp, obj, memory)) {
1937
if (memory->type == HWLOC_OBJ_NUMANODE)
1938
break;
1939
}
1940
if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1941
sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1942
if (included) {
1943
hw_thread.ids[index] = memory->logical_index;
1944
hw_thread.ids[index + 1] = sub_id;
1945
index--;
1946
}
1947
prev = memory;
1948
}
1949
prev = obj;
1950
}
1951
#endif
1952
type = __kmp_hwloc_type_2_topology_type(obj);
1953
if (type != KMP_HW_UNKNOWN) {
1954
sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1955
if (included) {
1956
hw_thread.ids[index] = obj->logical_index;
1957
hw_thread.ids[index + 1] = sub_id;
1958
index--;
1959
}
1960
prev = obj;
1961
}
1962
}
1963
if (included)
1964
hw_thread_index++;
1965
}
1966
1967
#if HWLOC_API_VERSION >= 0x00020400
1968
// Free the core types information
1969
if (cpukinds) {
1970
for (int idx = 0; idx < nr_cpu_kinds; ++idx)
1971
hwloc_bitmap_free(cpukinds[idx].mask);
1972
__kmp_free(cpukinds);
1973
}
1974
#endif
1975
__kmp_topology->sort_ids();
1976
return true;
1977
}
1978
#endif // KMP_USE_HWLOC
1979
1980
// If we don't know how to retrieve the machine's processor topology, or
1981
// encounter an error in doing so, this routine is called to form a "flat"
1982
// mapping of os thread id's <-> processor id's.
1983
static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1984
*msg_id = kmp_i18n_null;
1985
int depth = 3;
1986
kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1987
1988
if (__kmp_affinity.flags.verbose) {
1989
KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1990
}
1991
1992
// Even if __kmp_affinity.type == affinity_none, this routine might still
1993
// be called to set __kmp_ncores, as well as
1994
// __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1995
if (!KMP_AFFINITY_CAPABLE()) {
1996
KMP_ASSERT(__kmp_affinity.type == affinity_none);
1997
__kmp_ncores = nPackages = __kmp_xproc;
1998
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
1999
return true;
2000
}
2001
2002
// When affinity is off, this routine will still be called to set
2003
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2004
// Make sure all these vars are set correctly, and return now if affinity is
2005
// not enabled.
2006
__kmp_ncores = nPackages = __kmp_avail_proc;
2007
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
2008
2009
// Construct the data structure to be returned.
2010
__kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2011
int avail_ct = 0;
2012
int i;
2013
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2014
// Skip this proc if it is not included in the machine model.
2015
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2016
continue;
2017
}
2018
kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
2019
hw_thread.clear();
2020
hw_thread.os_id = i;
2021
hw_thread.ids[0] = i;
2022
hw_thread.ids[1] = 0;
2023
hw_thread.ids[2] = 0;
2024
avail_ct++;
2025
}
2026
if (__kmp_affinity.flags.verbose) {
2027
KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
2028
}
2029
return true;
2030
}
2031
2032
#if KMP_GROUP_AFFINITY
2033
// If multiple Windows* OS processor groups exist, we can create a 2-level
2034
// topology map with the groups at level 0 and the individual procs at level 1.
2035
// This facilitates letting the threads float among all procs in a group,
2036
// if granularity=group (the default when there are multiple groups).
2037
static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
2038
*msg_id = kmp_i18n_null;
2039
int depth = 3;
2040
kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
2041
const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
2042
2043
if (__kmp_affinity.flags.verbose) {
2044
KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
2045
}
2046
2047
// If we aren't affinity capable, then use flat topology
2048
if (!KMP_AFFINITY_CAPABLE()) {
2049
KMP_ASSERT(__kmp_affinity.type == affinity_none);
2050
nPackages = __kmp_num_proc_groups;
2051
__kmp_nThreadsPerCore = 1;
2052
__kmp_ncores = __kmp_xproc;
2053
nCoresPerPkg = nPackages / __kmp_ncores;
2054
return true;
2055
}
2056
2057
// Construct the data structure to be returned.
2058
__kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
2059
int avail_ct = 0;
2060
int i;
2061
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2062
// Skip this proc if it is not included in the machine model.
2063
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2064
continue;
2065
}
2066
kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
2067
hw_thread.clear();
2068
hw_thread.os_id = i;
2069
hw_thread.ids[0] = i / BITS_PER_GROUP;
2070
hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
2071
}
2072
return true;
2073
}
2074
#endif /* KMP_GROUP_AFFINITY */
2075
2076
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2077
2078
template <kmp_uint32 LSB, kmp_uint32 MSB>
2079
static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
2080
const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
2081
const kmp_uint32 SHIFT_RIGHT = LSB;
2082
kmp_uint32 retval = v;
2083
retval <<= SHIFT_LEFT;
2084
retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
2085
return retval;
2086
}
2087
2088
static int __kmp_cpuid_mask_width(int count) {
2089
int r = 0;
2090
2091
while ((1 << r) < count)
2092
++r;
2093
return r;
2094
}
2095
2096
class apicThreadInfo {
2097
public:
2098
unsigned osId; // param to __kmp_affinity_bind_thread
2099
unsigned apicId; // from cpuid after binding
2100
unsigned maxCoresPerPkg; // ""
2101
unsigned maxThreadsPerPkg; // ""
2102
unsigned pkgId; // inferred from above values
2103
unsigned coreId; // ""
2104
unsigned threadId; // ""
2105
};
2106
2107
static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
2108
const void *b) {
2109
const apicThreadInfo *aa = (const apicThreadInfo *)a;
2110
const apicThreadInfo *bb = (const apicThreadInfo *)b;
2111
if (aa->pkgId < bb->pkgId)
2112
return -1;
2113
if (aa->pkgId > bb->pkgId)
2114
return 1;
2115
if (aa->coreId < bb->coreId)
2116
return -1;
2117
if (aa->coreId > bb->coreId)
2118
return 1;
2119
if (aa->threadId < bb->threadId)
2120
return -1;
2121
if (aa->threadId > bb->threadId)
2122
return 1;
2123
return 0;
2124
}
2125
2126
class kmp_cache_info_t {
2127
public:
2128
struct info_t {
2129
unsigned level, mask;
2130
};
2131
kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
2132
size_t get_depth() const { return depth; }
2133
info_t &operator[](size_t index) { return table[index]; }
2134
const info_t &operator[](size_t index) const { return table[index]; }
2135
2136
static kmp_hw_t get_topology_type(unsigned level) {
2137
KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2138
switch (level) {
2139
case 1:
2140
return KMP_HW_L1;
2141
case 2:
2142
return KMP_HW_L2;
2143
case 3:
2144
return KMP_HW_L3;
2145
}
2146
return KMP_HW_UNKNOWN;
2147
}
2148
2149
private:
2150
static const int MAX_CACHE_LEVEL = 3;
2151
2152
size_t depth;
2153
info_t table[MAX_CACHE_LEVEL];
2154
2155
void get_leaf4_levels() {
2156
unsigned level = 0;
2157
while (depth < MAX_CACHE_LEVEL) {
2158
unsigned cache_type, max_threads_sharing;
2159
unsigned cache_level, cache_mask_width;
2160
kmp_cpuid buf2;
2161
__kmp_x86_cpuid(4, level, &buf2);
2162
cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2163
if (!cache_type)
2164
break;
2165
// Skip instruction caches
2166
if (cache_type == 2) {
2167
level++;
2168
continue;
2169
}
2170
max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2171
cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2172
cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2173
table[depth].level = cache_level;
2174
table[depth].mask = ((-1) << cache_mask_width);
2175
depth++;
2176
level++;
2177
}
2178
}
2179
};
2180
2181
// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2182
// an algorithm which cycles through the available os threads, setting
2183
// the current thread's affinity mask to that thread, and then retrieves
2184
// the Apic Id for each thread context using the cpuid instruction.
2185
static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2186
kmp_cpuid buf;
2187
*msg_id = kmp_i18n_null;
2188
2189
if (__kmp_affinity.flags.verbose) {
2190
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2191
}
2192
2193
// Check if cpuid leaf 4 is supported.
2194
__kmp_x86_cpuid(0, 0, &buf);
2195
if (buf.eax < 4) {
2196
*msg_id = kmp_i18n_str_NoLeaf4Support;
2197
return false;
2198
}
2199
2200
// The algorithm used starts by setting the affinity to each available thread
2201
// and retrieving info from the cpuid instruction, so if we are not capable of
2202
// calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2203
// need to do something else - use the defaults that we calculated from
2204
// issuing cpuid without binding to each proc.
2205
if (!KMP_AFFINITY_CAPABLE()) {
2206
// Hack to try and infer the machine topology using only the data
2207
// available from cpuid on the current thread, and __kmp_xproc.
2208
KMP_ASSERT(__kmp_affinity.type == affinity_none);
2209
2210
// Get an upper bound on the number of threads per package using cpuid(1).
2211
// On some OS/chps combinations where HT is supported by the chip but is
2212
// disabled, this value will be 2 on a single core chip. Usually, it will be
2213
// 2 if HT is enabled and 1 if HT is disabled.
2214
__kmp_x86_cpuid(1, 0, &buf);
2215
int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2216
if (maxThreadsPerPkg == 0) {
2217
maxThreadsPerPkg = 1;
2218
}
2219
2220
// The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2221
// value.
2222
//
2223
// The author of cpu_count.cpp treated this only an upper bound on the
2224
// number of cores, but I haven't seen any cases where it was greater than
2225
// the actual number of cores, so we will treat it as exact in this block of
2226
// code.
2227
//
2228
// First, we need to check if cpuid(4) is supported on this chip. To see if
2229
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2230
// greater.
2231
__kmp_x86_cpuid(0, 0, &buf);
2232
if (buf.eax >= 4) {
2233
__kmp_x86_cpuid(4, 0, &buf);
2234
nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2235
} else {
2236
nCoresPerPkg = 1;
2237
}
2238
2239
// There is no way to reliably tell if HT is enabled without issuing the
2240
// cpuid instruction from every thread, can correlating the cpuid info, so
2241
// if the machine is not affinity capable, we assume that HT is off. We have
2242
// seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2243
// does not support HT.
2244
//
2245
// - Older OSes are usually found on machines with older chips, which do not
2246
// support HT.
2247
// - The performance penalty for mistakenly identifying a machine as HT when
2248
// it isn't (which results in blocktime being incorrectly set to 0) is
2249
// greater than the penalty when for mistakenly identifying a machine as
2250
// being 1 thread/core when it is really HT enabled (which results in
2251
// blocktime being incorrectly set to a positive value).
2252
__kmp_ncores = __kmp_xproc;
2253
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2254
__kmp_nThreadsPerCore = 1;
2255
return true;
2256
}
2257
2258
// From here on, we can assume that it is safe to call
2259
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2260
// __kmp_affinity.type = affinity_none.
2261
2262
// Save the affinity mask for the current thread.
2263
kmp_affinity_raii_t previous_affinity;
2264
2265
// Run through each of the available contexts, binding the current thread
2266
// to it, and obtaining the pertinent information using the cpuid instr.
2267
//
2268
// The relevant information is:
2269
// - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2270
// has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2271
// - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2272
// of this field determines the width of the core# + thread# fields in the
2273
// Apic Id. It is also an upper bound on the number of threads per
2274
// package, but it has been verified that situations happen were it is not
2275
// exact. In particular, on certain OS/chip combinations where Intel(R)
2276
// Hyper-Threading Technology is supported by the chip but has been
2277
// disabled, the value of this field will be 2 (for a single core chip).
2278
// On other OS/chip combinations supporting Intel(R) Hyper-Threading
2279
// Technology, the value of this field will be 1 when Intel(R)
2280
// Hyper-Threading Technology is disabled and 2 when it is enabled.
2281
// - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
2282
// of this field (+1) determines the width of the core# field in the Apic
2283
// Id. The comments in "cpucount.cpp" say that this value is an upper
2284
// bound, but the IA-32 architecture manual says that it is exactly the
2285
// number of cores per package, and I haven't seen any case where it
2286
// wasn't.
2287
//
2288
// From this information, deduce the package Id, core Id, and thread Id,
2289
// and set the corresponding fields in the apicThreadInfo struct.
2290
unsigned i;
2291
apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2292
__kmp_avail_proc * sizeof(apicThreadInfo));
2293
unsigned nApics = 0;
2294
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2295
// Skip this proc if it is not included in the machine model.
2296
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2297
continue;
2298
}
2299
KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2300
2301
__kmp_affinity_dispatch->bind_thread(i);
2302
threadInfo[nApics].osId = i;
2303
2304
// The apic id and max threads per pkg come from cpuid(1).
2305
__kmp_x86_cpuid(1, 0, &buf);
2306
if (((buf.edx >> 9) & 1) == 0) {
2307
__kmp_free(threadInfo);
2308
*msg_id = kmp_i18n_str_ApicNotPresent;
2309
return false;
2310
}
2311
threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2312
threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2313
if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2314
threadInfo[nApics].maxThreadsPerPkg = 1;
2315
}
2316
2317
// Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2318
// value.
2319
//
2320
// First, we need to check if cpuid(4) is supported on this chip. To see if
2321
// cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2322
// or greater.
2323
__kmp_x86_cpuid(0, 0, &buf);
2324
if (buf.eax >= 4) {
2325
__kmp_x86_cpuid(4, 0, &buf);
2326
threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2327
} else {
2328
threadInfo[nApics].maxCoresPerPkg = 1;
2329
}
2330
2331
// Infer the pkgId / coreId / threadId using only the info obtained locally.
2332
int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2333
threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2334
2335
int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2336
int widthT = widthCT - widthC;
2337
if (widthT < 0) {
2338
// I've never seen this one happen, but I suppose it could, if the cpuid
2339
// instruction on a chip was really screwed up. Make sure to restore the
2340
// affinity mask before the tail call.
2341
__kmp_free(threadInfo);
2342
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
2343
return false;
2344
}
2345
2346
int maskC = (1 << widthC) - 1;
2347
threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2348
2349
int maskT = (1 << widthT) - 1;
2350
threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2351
2352
nApics++;
2353
}
2354
2355
// We've collected all the info we need.
2356
// Restore the old affinity mask for this thread.
2357
previous_affinity.restore();
2358
2359
// Sort the threadInfo table by physical Id.
2360
qsort(threadInfo, nApics, sizeof(*threadInfo),
2361
__kmp_affinity_cmp_apicThreadInfo_phys_id);
2362
2363
// The table is now sorted by pkgId / coreId / threadId, but we really don't
2364
// know the radix of any of the fields. pkgId's may be sparsely assigned among
2365
// the chips on a system. Although coreId's are usually assigned
2366
// [0 .. coresPerPkg-1] and threadId's are usually assigned
2367
// [0..threadsPerCore-1], we don't want to make any such assumptions.
2368
//
2369
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2370
// total # packages) are at this point - we want to determine that now. We
2371
// only have an upper bound on the first two figures.
2372
//
2373
// We also perform a consistency check at this point: the values returned by
2374
// the cpuid instruction for any thread bound to a given package had better
2375
// return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2376
nPackages = 1;
2377
nCoresPerPkg = 1;
2378
__kmp_nThreadsPerCore = 1;
2379
unsigned nCores = 1;
2380
2381
unsigned pkgCt = 1; // to determine radii
2382
unsigned lastPkgId = threadInfo[0].pkgId;
2383
unsigned coreCt = 1;
2384
unsigned lastCoreId = threadInfo[0].coreId;
2385
unsigned threadCt = 1;
2386
unsigned lastThreadId = threadInfo[0].threadId;
2387
2388
// intra-pkg consist checks
2389
unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2390
unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2391
2392
for (i = 1; i < nApics; i++) {
2393
if (threadInfo[i].pkgId != lastPkgId) {
2394
nCores++;
2395
pkgCt++;
2396
lastPkgId = threadInfo[i].pkgId;
2397
if ((int)coreCt > nCoresPerPkg)
2398
nCoresPerPkg = coreCt;
2399
coreCt = 1;
2400
lastCoreId = threadInfo[i].coreId;
2401
if ((int)threadCt > __kmp_nThreadsPerCore)
2402
__kmp_nThreadsPerCore = threadCt;
2403
threadCt = 1;
2404
lastThreadId = threadInfo[i].threadId;
2405
2406
// This is a different package, so go on to the next iteration without
2407
// doing any consistency checks. Reset the consistency check vars, though.
2408
prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2409
prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2410
continue;
2411
}
2412
2413
if (threadInfo[i].coreId != lastCoreId) {
2414
nCores++;
2415
coreCt++;
2416
lastCoreId = threadInfo[i].coreId;
2417
if ((int)threadCt > __kmp_nThreadsPerCore)
2418
__kmp_nThreadsPerCore = threadCt;
2419
threadCt = 1;
2420
lastThreadId = threadInfo[i].threadId;
2421
} else if (threadInfo[i].threadId != lastThreadId) {
2422
threadCt++;
2423
lastThreadId = threadInfo[i].threadId;
2424
} else {
2425
__kmp_free(threadInfo);
2426
*msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2427
return false;
2428
}
2429
2430
// Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2431
// fields agree between all the threads bounds to a given package.
2432
if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2433
(prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2434
__kmp_free(threadInfo);
2435
*msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2436
return false;
2437
}
2438
}
2439
// When affinity is off, this routine will still be called to set
2440
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2441
// Make sure all these vars are set correctly
2442
nPackages = pkgCt;
2443
if ((int)coreCt > nCoresPerPkg)
2444
nCoresPerPkg = coreCt;
2445
if ((int)threadCt > __kmp_nThreadsPerCore)
2446
__kmp_nThreadsPerCore = threadCt;
2447
__kmp_ncores = nCores;
2448
KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2449
2450
// Now that we've determined the number of packages, the number of cores per
2451
// package, and the number of threads per core, we can construct the data
2452
// structure that is to be returned.
2453
int idx = 0;
2454
int pkgLevel = 0;
2455
int coreLevel = 1;
2456
int threadLevel = 2;
2457
//(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2458
int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2459
kmp_hw_t types[3];
2460
if (pkgLevel >= 0)
2461
types[idx++] = KMP_HW_SOCKET;
2462
if (coreLevel >= 0)
2463
types[idx++] = KMP_HW_CORE;
2464
if (threadLevel >= 0)
2465
types[idx++] = KMP_HW_THREAD;
2466
2467
KMP_ASSERT(depth > 0);
2468
__kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2469
2470
for (i = 0; i < nApics; ++i) {
2471
idx = 0;
2472
unsigned os = threadInfo[i].osId;
2473
kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2474
hw_thread.clear();
2475
2476
if (pkgLevel >= 0) {
2477
hw_thread.ids[idx++] = threadInfo[i].pkgId;
2478
}
2479
if (coreLevel >= 0) {
2480
hw_thread.ids[idx++] = threadInfo[i].coreId;
2481
}
2482
if (threadLevel >= 0) {
2483
hw_thread.ids[idx++] = threadInfo[i].threadId;
2484
}
2485
hw_thread.os_id = os;
2486
}
2487
2488
__kmp_free(threadInfo);
2489
__kmp_topology->sort_ids();
2490
if (!__kmp_topology->check_ids()) {
2491
kmp_topology_t::deallocate(__kmp_topology);
2492
__kmp_topology = nullptr;
2493
*msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2494
return false;
2495
}
2496
return true;
2497
}
2498
2499
// Hybrid cpu detection using CPUID.1A
2500
// Thread should be pinned to processor already
2501
static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2502
unsigned *native_model_id) {
2503
kmp_cpuid buf;
2504
__kmp_x86_cpuid(0x1a, 0, &buf);
2505
*type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2506
switch (*type) {
2507
case KMP_HW_CORE_TYPE_ATOM:
2508
*efficiency = 0;
2509
break;
2510
case KMP_HW_CORE_TYPE_CORE:
2511
*efficiency = 1;
2512
break;
2513
default:
2514
*efficiency = 0;
2515
}
2516
*native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2517
}
2518
2519
// Intel(R) microarchitecture code name Nehalem, Dunnington and later
2520
// architectures support a newer interface for specifying the x2APIC Ids,
2521
// based on CPUID.B or CPUID.1F
2522
/*
2523
* CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2524
Bits Bits Bits Bits
2525
31-16 15-8 7-4 4-0
2526
---+-----------+--------------+-------------+-----------------+
2527
EAX| reserved | reserved | reserved | Bits to Shift |
2528
---+-----------|--------------+-------------+-----------------|
2529
EBX| reserved | Num logical processors at level (16 bits) |
2530
---+-----------|--------------+-------------------------------|
2531
ECX| reserved | Level Type | Level Number (8 bits) |
2532
---+-----------+--------------+-------------------------------|
2533
EDX| X2APIC ID (32 bits) |
2534
---+----------------------------------------------------------+
2535
*/
2536
2537
enum {
2538
INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2539
INTEL_LEVEL_TYPE_SMT = 1,
2540
INTEL_LEVEL_TYPE_CORE = 2,
2541
INTEL_LEVEL_TYPE_MODULE = 3,
2542
INTEL_LEVEL_TYPE_TILE = 4,
2543
INTEL_LEVEL_TYPE_DIE = 5,
2544
INTEL_LEVEL_TYPE_LAST = 6,
2545
};
2546
2547
struct cpuid_level_info_t {
2548
unsigned level_type, mask, mask_width, nitems, cache_mask;
2549
};
2550
2551
static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2552
switch (intel_type) {
2553
case INTEL_LEVEL_TYPE_INVALID:
2554
return KMP_HW_SOCKET;
2555
case INTEL_LEVEL_TYPE_SMT:
2556
return KMP_HW_THREAD;
2557
case INTEL_LEVEL_TYPE_CORE:
2558
return KMP_HW_CORE;
2559
case INTEL_LEVEL_TYPE_TILE:
2560
return KMP_HW_TILE;
2561
case INTEL_LEVEL_TYPE_MODULE:
2562
return KMP_HW_MODULE;
2563
case INTEL_LEVEL_TYPE_DIE:
2564
return KMP_HW_DIE;
2565
}
2566
return KMP_HW_UNKNOWN;
2567
}
2568
2569
// This function takes the topology leaf, a levels array to store the levels
2570
// detected and a bitmap of the known levels.
2571
// Returns the number of levels in the topology
2572
static unsigned
2573
__kmp_x2apicid_get_levels(int leaf,
2574
cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
2575
kmp_uint64 known_levels) {
2576
unsigned level, levels_index;
2577
unsigned level_type, mask_width, nitems;
2578
kmp_cpuid buf;
2579
2580
// New algorithm has known topology layers act as highest unknown topology
2581
// layers when unknown topology layers exist.
2582
// e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2583
// are unknown topology layers, Then SMT will take the characteristics of
2584
// (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2585
// This eliminates unknown portions of the topology while still keeping the
2586
// correct structure.
2587
level = levels_index = 0;
2588
do {
2589
__kmp_x86_cpuid(leaf, level, &buf);
2590
level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2591
mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2592
nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2593
if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
2594
return 0;
2595
2596
if (known_levels & (1ull << level_type)) {
2597
// Add a new level to the topology
2598
KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2599
levels[levels_index].level_type = level_type;
2600
levels[levels_index].mask_width = mask_width;
2601
levels[levels_index].nitems = nitems;
2602
levels_index++;
2603
} else {
2604
// If it is an unknown level, then logically move the previous layer up
2605
if (levels_index > 0) {
2606
levels[levels_index - 1].mask_width = mask_width;
2607
levels[levels_index - 1].nitems = nitems;
2608
}
2609
}
2610
level++;
2611
} while (level_type != INTEL_LEVEL_TYPE_INVALID);
2612
2613
// Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first
2614
if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID)
2615
return 0;
2616
2617
// Set the masks to & with apicid
2618
for (unsigned i = 0; i < levels_index; ++i) {
2619
if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2620
levels[i].mask = ~((-1) << levels[i].mask_width);
2621
levels[i].cache_mask = (-1) << levels[i].mask_width;
2622
for (unsigned j = 0; j < i; ++j)
2623
levels[i].mask ^= levels[j].mask;
2624
} else {
2625
KMP_DEBUG_ASSERT(i > 0);
2626
levels[i].mask = (-1) << levels[i - 1].mask_width;
2627
levels[i].cache_mask = 0;
2628
}
2629
}
2630
return levels_index;
2631
}
2632
2633
static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2634
2635
cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2636
kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2637
unsigned levels_index;
2638
kmp_cpuid buf;
2639
kmp_uint64 known_levels;
2640
int topology_leaf, highest_leaf, apic_id;
2641
int num_leaves;
2642
static int leaves[] = {0, 0};
2643
2644
kmp_i18n_id_t leaf_message_id;
2645
2646
KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
2647
2648
*msg_id = kmp_i18n_null;
2649
if (__kmp_affinity.flags.verbose) {
2650
KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2651
}
2652
2653
// Figure out the known topology levels
2654
known_levels = 0ull;
2655
for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
2656
if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
2657
known_levels |= (1ull << i);
2658
}
2659
}
2660
2661
// Get the highest cpuid leaf supported
2662
__kmp_x86_cpuid(0, 0, &buf);
2663
highest_leaf = buf.eax;
2664
2665
// If a specific topology method was requested, only allow that specific leaf
2666
// otherwise, try both leaves 31 and 11 in that order
2667
num_leaves = 0;
2668
if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2669
num_leaves = 1;
2670
leaves[0] = 11;
2671
leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2672
} else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2673
num_leaves = 1;
2674
leaves[0] = 31;
2675
leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2676
} else {
2677
num_leaves = 2;
2678
leaves[0] = 31;
2679
leaves[1] = 11;
2680
leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2681
}
2682
2683
// Check to see if cpuid leaf 31 or 11 is supported.
2684
__kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2685
topology_leaf = -1;
2686
for (int i = 0; i < num_leaves; ++i) {
2687
int leaf = leaves[i];
2688
if (highest_leaf < leaf)
2689
continue;
2690
__kmp_x86_cpuid(leaf, 0, &buf);
2691
if (buf.ebx == 0)
2692
continue;
2693
topology_leaf = leaf;
2694
levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
2695
if (levels_index == 0)
2696
continue;
2697
break;
2698
}
2699
if (topology_leaf == -1 || levels_index == 0) {
2700
*msg_id = leaf_message_id;
2701
return false;
2702
}
2703
KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2704
2705
// The algorithm used starts by setting the affinity to each available thread
2706
// and retrieving info from the cpuid instruction, so if we are not capable of
2707
// calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2708
// we need to do something else - use the defaults that we calculated from
2709
// issuing cpuid without binding to each proc.
2710
if (!KMP_AFFINITY_CAPABLE()) {
2711
// Hack to try and infer the machine topology using only the data
2712
// available from cpuid on the current thread, and __kmp_xproc.
2713
KMP_ASSERT(__kmp_affinity.type == affinity_none);
2714
for (unsigned i = 0; i < levels_index; ++i) {
2715
if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2716
__kmp_nThreadsPerCore = levels[i].nitems;
2717
} else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2718
nCoresPerPkg = levels[i].nitems;
2719
}
2720
}
2721
__kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2722
nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2723
return true;
2724
}
2725
2726
// Allocate the data structure to be returned.
2727
int depth = levels_index;
2728
for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
2729
types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
2730
__kmp_topology =
2731
kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
2732
2733
// Insert equivalent cache types if they exist
2734
kmp_cache_info_t cache_info;
2735
for (size_t i = 0; i < cache_info.get_depth(); ++i) {
2736
const kmp_cache_info_t::info_t &info = cache_info[i];
2737
unsigned cache_mask = info.mask;
2738
unsigned cache_level = info.level;
2739
for (unsigned j = 0; j < levels_index; ++j) {
2740
unsigned hw_cache_mask = levels[j].cache_mask;
2741
kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2742
if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2743
kmp_hw_t type =
2744
__kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2745
__kmp_topology->set_equivalent_type(cache_type, type);
2746
}
2747
}
2748
}
2749
2750
// From here on, we can assume that it is safe to call
2751
// __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2752
// __kmp_affinity.type = affinity_none.
2753
2754
// Save the affinity mask for the current thread.
2755
kmp_affinity_raii_t previous_affinity;
2756
2757
// Run through each of the available contexts, binding the current thread
2758
// to it, and obtaining the pertinent information using the cpuid instr.
2759
unsigned int proc;
2760
int hw_thread_index = 0;
2761
KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2762
cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2763
unsigned my_levels_index;
2764
2765
// Skip this proc if it is not included in the machine model.
2766
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2767
continue;
2768
}
2769
KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2770
2771
__kmp_affinity_dispatch->bind_thread(proc);
2772
2773
// New algorithm
2774
__kmp_x86_cpuid(topology_leaf, 0, &buf);
2775
apic_id = buf.edx;
2776
kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2777
my_levels_index =
2778
__kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2779
if (my_levels_index == 0 || my_levels_index != levels_index) {
2780
*msg_id = kmp_i18n_str_InvalidCpuidInfo;
2781
return false;
2782
}
2783
hw_thread.clear();
2784
hw_thread.os_id = proc;
2785
// Put in topology information
2786
for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2787
hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2788
if (j > 0) {
2789
hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2790
}
2791
}
2792
// Hybrid information
2793
if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2794
kmp_hw_core_type_t type;
2795
unsigned native_model_id;
2796
int efficiency;
2797
__kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
2798
hw_thread.attrs.set_core_type(type);
2799
hw_thread.attrs.set_core_eff(efficiency);
2800
}
2801
hw_thread_index++;
2802
}
2803
KMP_ASSERT(hw_thread_index > 0);
2804
__kmp_topology->sort_ids();
2805
if (!__kmp_topology->check_ids()) {
2806
kmp_topology_t::deallocate(__kmp_topology);
2807
__kmp_topology = nullptr;
2808
*msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2809
return false;
2810
}
2811
return true;
2812
}
2813
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2814
2815
#define osIdIndex 0
2816
#define threadIdIndex 1
2817
#define coreIdIndex 2
2818
#define pkgIdIndex 3
2819
#define nodeIdIndex 4
2820
2821
typedef unsigned *ProcCpuInfo;
2822
static unsigned maxIndex = pkgIdIndex;
2823
2824
static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2825
const void *b) {
2826
unsigned i;
2827
const unsigned *aa = *(unsigned *const *)a;
2828
const unsigned *bb = *(unsigned *const *)b;
2829
for (i = maxIndex;; i--) {
2830
if (aa[i] < bb[i])
2831
return -1;
2832
if (aa[i] > bb[i])
2833
return 1;
2834
if (i == osIdIndex)
2835
break;
2836
}
2837
return 0;
2838
}
2839
2840
#if KMP_USE_HIER_SCHED
2841
// Set the array sizes for the hierarchy layers
2842
static void __kmp_dispatch_set_hierarchy_values() {
2843
// Set the maximum number of L1's to number of cores
2844
// Set the maximum number of L2's to either number of cores / 2 for
2845
// Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2846
// Or the number of cores for Intel(R) Xeon(R) processors
2847
// Set the maximum number of NUMA nodes and L3's to number of packages
2848
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2849
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2850
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2851
#if KMP_ARCH_X86_64 && \
2852
(KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
2853
KMP_OS_WINDOWS) && \
2854
KMP_MIC_SUPPORTED
2855
if (__kmp_mic_type >= mic3)
2856
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2857
else
2858
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2859
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2860
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2861
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2862
__kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2863
// Set the number of threads per unit
2864
// Number of hardware threads per L1/L2/L3/NUMA/LOOP
2865
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2866
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2867
__kmp_nThreadsPerCore;
2868
#if KMP_ARCH_X86_64 && \
2869
(KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
2870
KMP_OS_WINDOWS) && \
2871
KMP_MIC_SUPPORTED
2872
if (__kmp_mic_type >= mic3)
2873
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2874
2 * __kmp_nThreadsPerCore;
2875
else
2876
#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2877
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2878
__kmp_nThreadsPerCore;
2879
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2880
nCoresPerPkg * __kmp_nThreadsPerCore;
2881
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2882
nCoresPerPkg * __kmp_nThreadsPerCore;
2883
__kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2884
nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2885
}
2886
2887
// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2888
// i.e., this thread's L1 or this thread's L2, etc.
2889
int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2890
int index = type + 1;
2891
int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2892
KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2893
if (type == kmp_hier_layer_e::LAYER_THREAD)
2894
return tid;
2895
else if (type == kmp_hier_layer_e::LAYER_LOOP)
2896
return 0;
2897
KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2898
if (tid >= num_hw_threads)
2899
tid = tid % num_hw_threads;
2900
return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2901
}
2902
2903
// Return the number of t1's per t2
2904
int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2905
int i1 = t1 + 1;
2906
int i2 = t2 + 1;
2907
KMP_DEBUG_ASSERT(i1 <= i2);
2908
KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2909
KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2910
KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2911
// (nthreads/t2) / (nthreads/t1) = t1 / t2
2912
return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2913
}
2914
#endif // KMP_USE_HIER_SCHED
2915
2916
static inline const char *__kmp_cpuinfo_get_filename() {
2917
const char *filename;
2918
if (__kmp_cpuinfo_file != nullptr)
2919
filename = __kmp_cpuinfo_file;
2920
else
2921
filename = "/proc/cpuinfo";
2922
return filename;
2923
}
2924
2925
static inline const char *__kmp_cpuinfo_get_envvar() {
2926
const char *envvar = nullptr;
2927
if (__kmp_cpuinfo_file != nullptr)
2928
envvar = "KMP_CPUINFO_FILE";
2929
return envvar;
2930
}
2931
2932
// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2933
// affinity map. On AIX, the map is obtained through system SRAD (Scheduler
2934
// Resource Allocation Domain).
2935
static bool __kmp_affinity_create_cpuinfo_map(int *line,
2936
kmp_i18n_id_t *const msg_id) {
2937
*msg_id = kmp_i18n_null;
2938
2939
#if KMP_OS_AIX
2940
unsigned num_records = __kmp_xproc;
2941
#else
2942
const char *filename = __kmp_cpuinfo_get_filename();
2943
const char *envvar = __kmp_cpuinfo_get_envvar();
2944
2945
if (__kmp_affinity.flags.verbose) {
2946
KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2947
}
2948
2949
kmp_safe_raii_file_t f(filename, "r", envvar);
2950
2951
// Scan of the file, and count the number of "processor" (osId) fields,
2952
// and find the highest value of <n> for a node_<n> field.
2953
char buf[256];
2954
unsigned num_records = 0;
2955
while (!feof(f)) {
2956
buf[sizeof(buf) - 1] = 1;
2957
if (!fgets(buf, sizeof(buf), f)) {
2958
// Read errors presumably because of EOF
2959
break;
2960
}
2961
2962
char s1[] = "processor";
2963
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2964
num_records++;
2965
continue;
2966
}
2967
2968
// FIXME - this will match "node_<n> <garbage>"
2969
unsigned level;
2970
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2971
// validate the input fisrt:
2972
if (level > (unsigned)__kmp_xproc) { // level is too big
2973
level = __kmp_xproc;
2974
}
2975
if (nodeIdIndex + level >= maxIndex) {
2976
maxIndex = nodeIdIndex + level;
2977
}
2978
continue;
2979
}
2980
}
2981
2982
// Check for empty file / no valid processor records, or too many. The number
2983
// of records can't exceed the number of valid bits in the affinity mask.
2984
if (num_records == 0) {
2985
*msg_id = kmp_i18n_str_NoProcRecords;
2986
return false;
2987
}
2988
if (num_records > (unsigned)__kmp_xproc) {
2989
*msg_id = kmp_i18n_str_TooManyProcRecords;
2990
return false;
2991
}
2992
2993
// Set the file pointer back to the beginning, so that we can scan the file
2994
// again, this time performing a full parse of the data. Allocate a vector of
2995
// ProcCpuInfo object, where we will place the data. Adding an extra element
2996
// at the end allows us to remove a lot of extra checks for termination
2997
// conditions.
2998
if (fseek(f, 0, SEEK_SET) != 0) {
2999
*msg_id = kmp_i18n_str_CantRewindCpuinfo;
3000
return false;
3001
}
3002
#endif // KMP_OS_AIX
3003
3004
// Allocate the array of records to store the proc info in. The dummy
3005
// element at the end makes the logic in filling them out easier to code.
3006
unsigned **threadInfo =
3007
(unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
3008
unsigned i;
3009
for (i = 0; i <= num_records; i++) {
3010
threadInfo[i] =
3011
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3012
}
3013
3014
#define CLEANUP_THREAD_INFO \
3015
for (i = 0; i <= num_records; i++) { \
3016
__kmp_free(threadInfo[i]); \
3017
} \
3018
__kmp_free(threadInfo);
3019
3020
// A value of UINT_MAX means that we didn't find the field
3021
unsigned __index;
3022
3023
#define INIT_PROC_INFO(p) \
3024
for (__index = 0; __index <= maxIndex; __index++) { \
3025
(p)[__index] = UINT_MAX; \
3026
}
3027
3028
for (i = 0; i <= num_records; i++) {
3029
INIT_PROC_INFO(threadInfo[i]);
3030
}
3031
3032
#if KMP_OS_AIX
3033
int smt_threads;
3034
lpar_info_format1_t cpuinfo;
3035
unsigned num_avail = __kmp_xproc;
3036
3037
if (__kmp_affinity.flags.verbose)
3038
KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "system info for topology");
3039
3040
// Get the number of SMT threads per core.
3041
smt_threads = syssmt(GET_NUMBER_SMT_SETS, 0, 0, NULL);
3042
3043
// Allocate a resource set containing available system resourses.
3044
rsethandle_t sys_rset = rs_alloc(RS_SYSTEM);
3045
if (sys_rset == NULL) {
3046
CLEANUP_THREAD_INFO;
3047
*msg_id = kmp_i18n_str_UnknownTopology;
3048
return false;
3049
}
3050
// Allocate a resource set for the SRAD info.
3051
rsethandle_t srad = rs_alloc(RS_EMPTY);
3052
if (srad == NULL) {
3053
rs_free(sys_rset);
3054
CLEANUP_THREAD_INFO;
3055
*msg_id = kmp_i18n_str_UnknownTopology;
3056
return false;
3057
}
3058
3059
// Get the SRAD system detail level.
3060
int sradsdl = rs_getinfo(NULL, R_SRADSDL, 0);
3061
if (sradsdl < 0) {
3062
rs_free(sys_rset);
3063
rs_free(srad);
3064
CLEANUP_THREAD_INFO;
3065
*msg_id = kmp_i18n_str_UnknownTopology;
3066
return false;
3067
}
3068
// Get the number of RADs at that SRAD SDL.
3069
int num_rads = rs_numrads(sys_rset, sradsdl, 0);
3070
if (num_rads < 0) {
3071
rs_free(sys_rset);
3072
rs_free(srad);
3073
CLEANUP_THREAD_INFO;
3074
*msg_id = kmp_i18n_str_UnknownTopology;
3075
return false;
3076
}
3077
3078
// Get the maximum number of procs that may be contained in a resource set.
3079
int max_procs = rs_getinfo(NULL, R_MAXPROCS, 0);
3080
if (max_procs < 0) {
3081
rs_free(sys_rset);
3082
rs_free(srad);
3083
CLEANUP_THREAD_INFO;
3084
*msg_id = kmp_i18n_str_UnknownTopology;
3085
return false;
3086
}
3087
3088
int cur_rad = 0;
3089
int num_set = 0;
3090
for (int srad_idx = 0; cur_rad < num_rads && srad_idx < VMI_MAXRADS;
3091
++srad_idx) {
3092
// Check if the SRAD is available in the RSET.
3093
if (rs_getrad(sys_rset, srad, sradsdl, srad_idx, 0) < 0)
3094
continue;
3095
3096
for (int cpu = 0; cpu < max_procs; cpu++) {
3097
// Set the info for the cpu if it is in the SRAD.
3098
if (rs_op(RS_TESTRESOURCE, srad, NULL, R_PROCS, cpu)) {
3099
threadInfo[cpu][osIdIndex] = cpu;
3100
threadInfo[cpu][pkgIdIndex] = cur_rad;
3101
threadInfo[cpu][coreIdIndex] = cpu / smt_threads;
3102
++num_set;
3103
if (num_set >= num_avail) {
3104
// Done if all available CPUs have been set.
3105
break;
3106
}
3107
}
3108
}
3109
++cur_rad;
3110
}
3111
rs_free(sys_rset);
3112
rs_free(srad);
3113
3114
// The topology is already sorted.
3115
3116
#else // !KMP_OS_AIX
3117
unsigned num_avail = 0;
3118
*line = 0;
3119
#if KMP_ARCH_S390X
3120
bool reading_s390x_sys_info = true;
3121
#endif
3122
while (!feof(f)) {
3123
// Create an inner scoping level, so that all the goto targets at the end of
3124
// the loop appear in an outer scoping level. This avoids warnings about
3125
// jumping past an initialization to a target in the same block.
3126
{
3127
buf[sizeof(buf) - 1] = 1;
3128
bool long_line = false;
3129
if (!fgets(buf, sizeof(buf), f)) {
3130
// Read errors presumably because of EOF
3131
// If there is valid data in threadInfo[num_avail], then fake
3132
// a blank line in ensure that the last address gets parsed.
3133
bool valid = false;
3134
for (i = 0; i <= maxIndex; i++) {
3135
if (threadInfo[num_avail][i] != UINT_MAX) {
3136
valid = true;
3137
}
3138
}
3139
if (!valid) {
3140
break;
3141
}
3142
buf[0] = 0;
3143
} else if (!buf[sizeof(buf) - 1]) {
3144
// The line is longer than the buffer. Set a flag and don't
3145
// emit an error if we were going to ignore the line, anyway.
3146
long_line = true;
3147
3148
#define CHECK_LINE \
3149
if (long_line) { \
3150
CLEANUP_THREAD_INFO; \
3151
*msg_id = kmp_i18n_str_LongLineCpuinfo; \
3152
return false; \
3153
}
3154
}
3155
(*line)++;
3156
3157
#if KMP_ARCH_LOONGARCH64
3158
// The parsing logic of /proc/cpuinfo in this function highly depends on
3159
// the blank lines between each processor info block. But on LoongArch a
3160
// blank line exists before the first processor info block (i.e. after the
3161
// "system type" line). This blank line was added because the "system
3162
// type" line is unrelated to any of the CPUs. We must skip this line so
3163
// that the original logic works on LoongArch.
3164
if (*buf == '\n' && *line == 2)
3165
continue;
3166
#endif
3167
#if KMP_ARCH_S390X
3168
// s390x /proc/cpuinfo starts with a variable number of lines containing
3169
// the overall system information. Skip them.
3170
if (reading_s390x_sys_info) {
3171
if (*buf == '\n')
3172
reading_s390x_sys_info = false;
3173
continue;
3174
}
3175
#endif
3176
3177
#if KMP_ARCH_S390X
3178
char s1[] = "cpu number";
3179
#else
3180
char s1[] = "processor";
3181
#endif
3182
if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
3183
CHECK_LINE;
3184
char *p = strchr(buf + sizeof(s1) - 1, ':');
3185
unsigned val;
3186
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3187
goto no_val;
3188
if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
3189
#if KMP_ARCH_AARCH64
3190
// Handle the old AArch64 /proc/cpuinfo layout differently,
3191
// it contains all of the 'processor' entries listed in a
3192
// single 'Processor' section, therefore the normal looking
3193
// for duplicates in that section will always fail.
3194
num_avail++;
3195
#else
3196
goto dup_field;
3197
#endif
3198
threadInfo[num_avail][osIdIndex] = val;
3199
#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
3200
char path[256];
3201
KMP_SNPRINTF(
3202
path, sizeof(path),
3203
"/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
3204
threadInfo[num_avail][osIdIndex]);
3205
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
3206
3207
#if KMP_ARCH_S390X
3208
// Disambiguate physical_package_id.
3209
unsigned book_id;
3210
KMP_SNPRINTF(path, sizeof(path),
3211
"/sys/devices/system/cpu/cpu%u/topology/book_id",
3212
threadInfo[num_avail][osIdIndex]);
3213
__kmp_read_from_file(path, "%u", &book_id);
3214
threadInfo[num_avail][pkgIdIndex] |= (book_id << 8);
3215
3216
unsigned drawer_id;
3217
KMP_SNPRINTF(path, sizeof(path),
3218
"/sys/devices/system/cpu/cpu%u/topology/drawer_id",
3219
threadInfo[num_avail][osIdIndex]);
3220
__kmp_read_from_file(path, "%u", &drawer_id);
3221
threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16);
3222
#endif
3223
3224
KMP_SNPRINTF(path, sizeof(path),
3225
"/sys/devices/system/cpu/cpu%u/topology/core_id",
3226
threadInfo[num_avail][osIdIndex]);
3227
__kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
3228
continue;
3229
#else
3230
}
3231
char s2[] = "physical id";
3232
if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
3233
CHECK_LINE;
3234
char *p = strchr(buf + sizeof(s2) - 1, ':');
3235
unsigned val;
3236
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3237
goto no_val;
3238
if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
3239
goto dup_field;
3240
threadInfo[num_avail][pkgIdIndex] = val;
3241
continue;
3242
}
3243
char s3[] = "core id";
3244
if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
3245
CHECK_LINE;
3246
char *p = strchr(buf + sizeof(s3) - 1, ':');
3247
unsigned val;
3248
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3249
goto no_val;
3250
if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
3251
goto dup_field;
3252
threadInfo[num_avail][coreIdIndex] = val;
3253
continue;
3254
#endif // KMP_OS_LINUX && USE_SYSFS_INFO
3255
}
3256
char s4[] = "thread id";
3257
if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
3258
CHECK_LINE;
3259
char *p = strchr(buf + sizeof(s4) - 1, ':');
3260
unsigned val;
3261
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3262
goto no_val;
3263
if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
3264
goto dup_field;
3265
threadInfo[num_avail][threadIdIndex] = val;
3266
continue;
3267
}
3268
unsigned level;
3269
if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
3270
CHECK_LINE;
3271
char *p = strchr(buf + sizeof(s4) - 1, ':');
3272
unsigned val;
3273
if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3274
goto no_val;
3275
// validate the input before using level:
3276
if (level > (unsigned)__kmp_xproc) { // level is too big
3277
level = __kmp_xproc;
3278
}
3279
if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3280
goto dup_field;
3281
threadInfo[num_avail][nodeIdIndex + level] = val;
3282
continue;
3283
}
3284
3285
// We didn't recognize the leading token on the line. There are lots of
3286
// leading tokens that we don't recognize - if the line isn't empty, go on
3287
// to the next line.
3288
if ((*buf != 0) && (*buf != '\n')) {
3289
// If the line is longer than the buffer, read characters
3290
// until we find a newline.
3291
if (long_line) {
3292
int ch;
3293
while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
3294
;
3295
}
3296
continue;
3297
}
3298
3299
// A newline has signalled the end of the processor record.
3300
// Check that there aren't too many procs specified.
3301
if ((int)num_avail == __kmp_xproc) {
3302
CLEANUP_THREAD_INFO;
3303
*msg_id = kmp_i18n_str_TooManyEntries;
3304
return false;
3305
}
3306
3307
// Check for missing fields. The osId field must be there, and we
3308
// currently require that the physical id field is specified, also.
3309
if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3310
CLEANUP_THREAD_INFO;
3311
*msg_id = kmp_i18n_str_MissingProcField;
3312
return false;
3313
}
3314
if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
3315
CLEANUP_THREAD_INFO;
3316
*msg_id = kmp_i18n_str_MissingPhysicalIDField;
3317
return false;
3318
}
3319
3320
// Skip this proc if it is not included in the machine model.
3321
if (KMP_AFFINITY_CAPABLE() &&
3322
!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3323
__kmp_affin_fullMask)) {
3324
INIT_PROC_INFO(threadInfo[num_avail]);
3325
continue;
3326
}
3327
3328
// We have a successful parse of this proc's info.
3329
// Increment the counter, and prepare for the next proc.
3330
num_avail++;
3331
KMP_ASSERT(num_avail <= num_records);
3332
INIT_PROC_INFO(threadInfo[num_avail]);
3333
}
3334
continue;
3335
3336
no_val:
3337
CLEANUP_THREAD_INFO;
3338
*msg_id = kmp_i18n_str_MissingValCpuinfo;
3339
return false;
3340
3341
dup_field:
3342
CLEANUP_THREAD_INFO;
3343
*msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3344
return false;
3345
}
3346
*line = 0;
3347
3348
#if KMP_MIC && REDUCE_TEAM_SIZE
3349
unsigned teamSize = 0;
3350
#endif // KMP_MIC && REDUCE_TEAM_SIZE
3351
3352
// check for num_records == __kmp_xproc ???
3353
3354
// If it is configured to omit the package level when there is only a single
3355
// package, the logic at the end of this routine won't work if there is only a
3356
// single thread
3357
KMP_ASSERT(num_avail > 0);
3358
KMP_ASSERT(num_avail <= num_records);
3359
3360
// Sort the threadInfo table by physical Id.
3361
qsort(threadInfo, num_avail, sizeof(*threadInfo),
3362
__kmp_affinity_cmp_ProcCpuInfo_phys_id);
3363
3364
#endif // KMP_OS_AIX
3365
3366
// The table is now sorted by pkgId / coreId / threadId, but we really don't
3367
// know the radix of any of the fields. pkgId's may be sparsely assigned among
3368
// the chips on a system. Although coreId's are usually assigned
3369
// [0 .. coresPerPkg-1] and threadId's are usually assigned
3370
// [0..threadsPerCore-1], we don't want to make any such assumptions.
3371
//
3372
// For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3373
// total # packages) are at this point - we want to determine that now. We
3374
// only have an upper bound on the first two figures.
3375
unsigned *counts =
3376
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3377
unsigned *maxCt =
3378
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3379
unsigned *totals =
3380
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3381
unsigned *lastId =
3382
(unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3383
3384
bool assign_thread_ids = false;
3385
unsigned threadIdCt;
3386
unsigned index;
3387
3388
restart_radix_check:
3389
threadIdCt = 0;
3390
3391
// Initialize the counter arrays with data from threadInfo[0].
3392
if (assign_thread_ids) {
3393
if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3394
threadInfo[0][threadIdIndex] = threadIdCt++;
3395
} else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3396
threadIdCt = threadInfo[0][threadIdIndex] + 1;
3397
}
3398
}
3399
for (index = 0; index <= maxIndex; index++) {
3400
counts[index] = 1;
3401
maxCt[index] = 1;
3402
totals[index] = 1;
3403
lastId[index] = threadInfo[0][index];
3404
;
3405
}
3406
3407
// Run through the rest of the OS procs.
3408
for (i = 1; i < num_avail; i++) {
3409
// Find the most significant index whose id differs from the id for the
3410
// previous OS proc.
3411
for (index = maxIndex; index >= threadIdIndex; index--) {
3412
if (assign_thread_ids && (index == threadIdIndex)) {
3413
// Auto-assign the thread id field if it wasn't specified.
3414
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3415
threadInfo[i][threadIdIndex] = threadIdCt++;
3416
}
3417
// Apparently the thread id field was specified for some entries and not
3418
// others. Start the thread id counter off at the next higher thread id.
3419
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3420
threadIdCt = threadInfo[i][threadIdIndex] + 1;
3421
}
3422
}
3423
if (threadInfo[i][index] != lastId[index]) {
3424
// Run through all indices which are less significant, and reset the
3425
// counts to 1. At all levels up to and including index, we need to
3426
// increment the totals and record the last id.
3427
unsigned index2;
3428
for (index2 = threadIdIndex; index2 < index; index2++) {
3429
totals[index2]++;
3430
if (counts[index2] > maxCt[index2]) {
3431
maxCt[index2] = counts[index2];
3432
}
3433
counts[index2] = 1;
3434
lastId[index2] = threadInfo[i][index2];
3435
}
3436
counts[index]++;
3437
totals[index]++;
3438
lastId[index] = threadInfo[i][index];
3439
3440
if (assign_thread_ids && (index > threadIdIndex)) {
3441
3442
#if KMP_MIC && REDUCE_TEAM_SIZE
3443
// The default team size is the total #threads in the machine
3444
// minus 1 thread for every core that has 3 or more threads.
3445
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3446
#endif // KMP_MIC && REDUCE_TEAM_SIZE
3447
3448
// Restart the thread counter, as we are on a new core.
3449
threadIdCt = 0;
3450
3451
// Auto-assign the thread id field if it wasn't specified.
3452
if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3453
threadInfo[i][threadIdIndex] = threadIdCt++;
3454
}
3455
3456
// Apparently the thread id field was specified for some entries and
3457
// not others. Start the thread id counter off at the next higher
3458
// thread id.
3459
else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3460
threadIdCt = threadInfo[i][threadIdIndex] + 1;
3461
}
3462
}
3463
break;
3464
}
3465
}
3466
if (index < threadIdIndex) {
3467
// If thread ids were specified, it is an error if they are not unique.
3468
// Also, check that we waven't already restarted the loop (to be safe -
3469
// shouldn't need to).
3470
if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3471
__kmp_free(lastId);
3472
__kmp_free(totals);
3473
__kmp_free(maxCt);
3474
__kmp_free(counts);
3475
CLEANUP_THREAD_INFO;
3476
*msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3477
return false;
3478
}
3479
3480
// If the thread ids were not specified and we see entries that
3481
// are duplicates, start the loop over and assign the thread ids manually.
3482
assign_thread_ids = true;
3483
goto restart_radix_check;
3484
}
3485
}
3486
3487
#if KMP_MIC && REDUCE_TEAM_SIZE
3488
// The default team size is the total #threads in the machine
3489
// minus 1 thread for every core that has 3 or more threads.
3490
teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3491
#endif // KMP_MIC && REDUCE_TEAM_SIZE
3492
3493
for (index = threadIdIndex; index <= maxIndex; index++) {
3494
if (counts[index] > maxCt[index]) {
3495
maxCt[index] = counts[index];
3496
}
3497
}
3498
3499
__kmp_nThreadsPerCore = maxCt[threadIdIndex];
3500
nCoresPerPkg = maxCt[coreIdIndex];
3501
nPackages = totals[pkgIdIndex];
3502
3503
// When affinity is off, this routine will still be called to set
3504
// __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3505
// Make sure all these vars are set correctly, and return now if affinity is
3506
// not enabled.
3507
__kmp_ncores = totals[coreIdIndex];
3508
if (!KMP_AFFINITY_CAPABLE()) {
3509
KMP_ASSERT(__kmp_affinity.type == affinity_none);
3510
return true;
3511
}
3512
3513
#if KMP_MIC && REDUCE_TEAM_SIZE
3514
// Set the default team size.
3515
if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3516
__kmp_dflt_team_nth = teamSize;
3517
KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3518
"__kmp_dflt_team_nth = %d\n",
3519
__kmp_dflt_team_nth));
3520
}
3521
#endif // KMP_MIC && REDUCE_TEAM_SIZE
3522
3523
KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3524
3525
// Count the number of levels which have more nodes at that level than at the
3526
// parent's level (with there being an implicit root node of the top level).
3527
// This is equivalent to saying that there is at least one node at this level
3528
// which has a sibling. These levels are in the map, and the package level is
3529
// always in the map.
3530
bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3531
for (index = threadIdIndex; index < maxIndex; index++) {
3532
KMP_ASSERT(totals[index] >= totals[index + 1]);
3533
inMap[index] = (totals[index] > totals[index + 1]);
3534
}
3535
inMap[maxIndex] = (totals[maxIndex] > 1);
3536
inMap[pkgIdIndex] = true;
3537
inMap[coreIdIndex] = true;
3538
inMap[threadIdIndex] = true;
3539
3540
int depth = 0;
3541
int idx = 0;
3542
kmp_hw_t types[KMP_HW_LAST];
3543
int pkgLevel = -1;
3544
int coreLevel = -1;
3545
int threadLevel = -1;
3546
for (index = threadIdIndex; index <= maxIndex; index++) {
3547
if (inMap[index]) {
3548
depth++;
3549
}
3550
}
3551
if (inMap[pkgIdIndex]) {
3552
pkgLevel = idx;
3553
types[idx++] = KMP_HW_SOCKET;
3554
}
3555
if (inMap[coreIdIndex]) {
3556
coreLevel = idx;
3557
types[idx++] = KMP_HW_CORE;
3558
}
3559
if (inMap[threadIdIndex]) {
3560
threadLevel = idx;
3561
types[idx++] = KMP_HW_THREAD;
3562
}
3563
KMP_ASSERT(depth > 0);
3564
3565
// Construct the data structure that is to be returned.
3566
__kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3567
3568
for (i = 0; i < num_avail; ++i) {
3569
unsigned os = threadInfo[i][osIdIndex];
3570
int src_index;
3571
kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3572
hw_thread.clear();
3573
hw_thread.os_id = os;
3574
3575
idx = 0;
3576
for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3577
if (!inMap[src_index]) {
3578
continue;
3579
}
3580
if (src_index == pkgIdIndex) {
3581
hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3582
} else if (src_index == coreIdIndex) {
3583
hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3584
} else if (src_index == threadIdIndex) {
3585
hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3586
}
3587
}
3588
}
3589
3590
__kmp_free(inMap);
3591
__kmp_free(lastId);
3592
__kmp_free(totals);
3593
__kmp_free(maxCt);
3594
__kmp_free(counts);
3595
CLEANUP_THREAD_INFO;
3596
__kmp_topology->sort_ids();
3597
if (!__kmp_topology->check_ids()) {
3598
kmp_topology_t::deallocate(__kmp_topology);
3599
__kmp_topology = nullptr;
3600
*msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3601
return false;
3602
}
3603
return true;
3604
}
3605
3606
// Create and return a table of affinity masks, indexed by OS thread ID.
3607
// This routine handles OR'ing together all the affinity masks of threads
3608
// that are sufficiently close, if granularity > fine.
3609
template <typename FindNextFunctionType>
3610
static void __kmp_create_os_id_masks(unsigned *numUnique,
3611
kmp_affinity_t &affinity,
3612
FindNextFunctionType find_next) {
3613
// First form a table of affinity masks in order of OS thread id.
3614
int maxOsId;
3615
int i;
3616
int numAddrs = __kmp_topology->get_num_hw_threads();
3617
int depth = __kmp_topology->get_depth();
3618
const char *env_var = __kmp_get_affinity_env_var(affinity);
3619
KMP_ASSERT(numAddrs);
3620
KMP_ASSERT(depth);
3621
3622
i = find_next(-1);
3623
// If could not find HW thread location with attributes, then return and
3624
// fallback to increment find_next and disregard core attributes.
3625
if (i >= numAddrs)
3626
return;
3627
3628
maxOsId = 0;
3629
for (i = numAddrs - 1;; --i) {
3630
int osId = __kmp_topology->at(i).os_id;
3631
if (osId > maxOsId) {
3632
maxOsId = osId;
3633
}
3634
if (i == 0)
3635
break;
3636
}
3637
affinity.num_os_id_masks = maxOsId + 1;
3638
KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks);
3639
KMP_ASSERT(affinity.gran_levels >= 0);
3640
if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
3641
KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels);
3642
}
3643
if (affinity.gran_levels >= (int)depth) {
3644
KMP_AFF_WARNING(affinity, AffThreadsMayMigrate);
3645
}
3646
3647
// Run through the table, forming the masks for all threads on each core.
3648
// Threads on the same core will have identical kmp_hw_thread_t objects, not
3649
// considering the last level, which must be the thread id. All threads on a
3650
// core will appear consecutively.
3651
int unique = 0;
3652
int j = 0; // index of 1st thread on core
3653
int leader = 0;
3654
kmp_affin_mask_t *sum;
3655
KMP_CPU_ALLOC_ON_STACK(sum);
3656
KMP_CPU_ZERO(sum);
3657
3658
i = j = leader = find_next(-1);
3659
KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3660
kmp_full_mask_modifier_t full_mask;
3661
for (i = find_next(i); i < numAddrs; i = find_next(i)) {
3662
// If this thread is sufficiently close to the leader (within the
3663
// granularity setting), then set the bit for this os thread in the
3664
// affinity mask for this group, and go on to the next thread.
3665
if (__kmp_topology->is_close(leader, i, affinity)) {
3666
KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3667
continue;
3668
}
3669
3670
// For every thread in this group, copy the mask to the thread's entry in
3671
// the OS Id mask table. Mark the first address as a leader.
3672
for (; j < i; j = find_next(j)) {
3673
int osId = __kmp_topology->at(j).os_id;
3674
KMP_DEBUG_ASSERT(osId <= maxOsId);
3675
kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3676
KMP_CPU_COPY(mask, sum);
3677
__kmp_topology->at(j).leader = (j == leader);
3678
}
3679
unique++;
3680
3681
// Start a new mask.
3682
leader = i;
3683
full_mask.include(sum);
3684
KMP_CPU_ZERO(sum);
3685
KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3686
}
3687
3688
// For every thread in last group, copy the mask to the thread's
3689
// entry in the OS Id mask table.
3690
for (; j < i; j = find_next(j)) {
3691
int osId = __kmp_topology->at(j).os_id;
3692
KMP_DEBUG_ASSERT(osId <= maxOsId);
3693
kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3694
KMP_CPU_COPY(mask, sum);
3695
__kmp_topology->at(j).leader = (j == leader);
3696
}
3697
full_mask.include(sum);
3698
unique++;
3699
KMP_CPU_FREE_FROM_STACK(sum);
3700
3701
// See if the OS Id mask table further restricts or changes the full mask
3702
if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
3703
__kmp_topology->print(env_var);
3704
}
3705
3706
*numUnique = unique;
3707
}
3708
3709
// Stuff for the affinity proclist parsers. It's easier to declare these vars
3710
// as file-static than to try and pass them through the calling sequence of
3711
// the recursive-descent OMP_PLACES parser.
3712
static kmp_affin_mask_t *newMasks;
3713
static int numNewMasks;
3714
static int nextNewMask;
3715
3716
#define ADD_MASK(_mask) \
3717
{ \
3718
if (nextNewMask >= numNewMasks) { \
3719
int i; \
3720
numNewMasks *= 2; \
3721
kmp_affin_mask_t *temp; \
3722
KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
3723
for (i = 0; i < numNewMasks / 2; i++) { \
3724
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
3725
kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
3726
KMP_CPU_COPY(dest, src); \
3727
} \
3728
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
3729
newMasks = temp; \
3730
} \
3731
KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
3732
nextNewMask++; \
3733
}
3734
3735
#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
3736
{ \
3737
if (((_osId) > _maxOsId) || \
3738
(!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
3739
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \
3740
} else { \
3741
ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
3742
} \
3743
}
3744
3745
// Re-parse the proclist (for the explicit affinity type), and form the list
3746
// of affinity newMasks indexed by gtid.
3747
static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
3748
int i;
3749
kmp_affin_mask_t **out_masks = &affinity.masks;
3750
unsigned *out_numMasks = &affinity.num_masks;
3751
const char *proclist = affinity.proclist;
3752
kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3753
int maxOsId = affinity.num_os_id_masks - 1;
3754
const char *scan = proclist;
3755
const char *next = proclist;
3756
3757
// We use malloc() for the temporary mask vector, so that we can use
3758
// realloc() to extend it.
3759
numNewMasks = 2;
3760
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3761
nextNewMask = 0;
3762
kmp_affin_mask_t *sumMask;
3763
KMP_CPU_ALLOC(sumMask);
3764
int setSize = 0;
3765
3766
for (;;) {
3767
int start, end, stride;
3768
3769
SKIP_WS(scan);
3770
next = scan;
3771
if (*next == '\0') {
3772
break;
3773
}
3774
3775
if (*next == '{') {
3776
int num;
3777
setSize = 0;
3778
next++; // skip '{'
3779
SKIP_WS(next);
3780
scan = next;
3781
3782
// Read the first integer in the set.
3783
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
3784
SKIP_DIGITS(next);
3785
num = __kmp_str_to_int(scan, *next);
3786
KMP_ASSERT2(num >= 0, "bad explicit proc list");
3787
3788
// Copy the mask for that osId to the sum (union) mask.
3789
if ((num > maxOsId) ||
3790
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3791
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3792
KMP_CPU_ZERO(sumMask);
3793
} else {
3794
KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3795
setSize = 1;
3796
}
3797
3798
for (;;) {
3799
// Check for end of set.
3800
SKIP_WS(next);
3801
if (*next == '}') {
3802
next++; // skip '}'
3803
break;
3804
}
3805
3806
// Skip optional comma.
3807
if (*next == ',') {
3808
next++;
3809
}
3810
SKIP_WS(next);
3811
3812
// Read the next integer in the set.
3813
scan = next;
3814
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3815
3816
SKIP_DIGITS(next);
3817
num = __kmp_str_to_int(scan, *next);
3818
KMP_ASSERT2(num >= 0, "bad explicit proc list");
3819
3820
// Add the mask for that osId to the sum mask.
3821
if ((num > maxOsId) ||
3822
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3823
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3824
} else {
3825
KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3826
setSize++;
3827
}
3828
}
3829
if (setSize > 0) {
3830
ADD_MASK(sumMask);
3831
}
3832
3833
SKIP_WS(next);
3834
if (*next == ',') {
3835
next++;
3836
}
3837
scan = next;
3838
continue;
3839
}
3840
3841
// Read the first integer.
3842
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3843
SKIP_DIGITS(next);
3844
start = __kmp_str_to_int(scan, *next);
3845
KMP_ASSERT2(start >= 0, "bad explicit proc list");
3846
SKIP_WS(next);
3847
3848
// If this isn't a range, then add a mask to the list and go on.
3849
if (*next != '-') {
3850
ADD_MASK_OSID(start, osId2Mask, maxOsId);
3851
3852
// Skip optional comma.
3853
if (*next == ',') {
3854
next++;
3855
}
3856
scan = next;
3857
continue;
3858
}
3859
3860
// This is a range. Skip over the '-' and read in the 2nd int.
3861
next++; // skip '-'
3862
SKIP_WS(next);
3863
scan = next;
3864
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3865
SKIP_DIGITS(next);
3866
end = __kmp_str_to_int(scan, *next);
3867
KMP_ASSERT2(end >= 0, "bad explicit proc list");
3868
3869
// Check for a stride parameter
3870
stride = 1;
3871
SKIP_WS(next);
3872
if (*next == ':') {
3873
// A stride is specified. Skip over the ':" and read the 3rd int.
3874
int sign = +1;
3875
next++; // skip ':'
3876
SKIP_WS(next);
3877
scan = next;
3878
if (*next == '-') {
3879
sign = -1;
3880
next++;
3881
SKIP_WS(next);
3882
scan = next;
3883
}
3884
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3885
SKIP_DIGITS(next);
3886
stride = __kmp_str_to_int(scan, *next);
3887
KMP_ASSERT2(stride >= 0, "bad explicit proc list");
3888
stride *= sign;
3889
}
3890
3891
// Do some range checks.
3892
KMP_ASSERT2(stride != 0, "bad explicit proc list");
3893
if (stride > 0) {
3894
KMP_ASSERT2(start <= end, "bad explicit proc list");
3895
} else {
3896
KMP_ASSERT2(start >= end, "bad explicit proc list");
3897
}
3898
KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3899
3900
// Add the mask for each OS proc # to the list.
3901
if (stride > 0) {
3902
do {
3903
ADD_MASK_OSID(start, osId2Mask, maxOsId);
3904
start += stride;
3905
} while (start <= end);
3906
} else {
3907
do {
3908
ADD_MASK_OSID(start, osId2Mask, maxOsId);
3909
start += stride;
3910
} while (start >= end);
3911
}
3912
3913
// Skip optional comma.
3914
SKIP_WS(next);
3915
if (*next == ',') {
3916
next++;
3917
}
3918
scan = next;
3919
}
3920
3921
*out_numMasks = nextNewMask;
3922
if (nextNewMask == 0) {
3923
*out_masks = NULL;
3924
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3925
return;
3926
}
3927
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3928
for (i = 0; i < nextNewMask; i++) {
3929
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3930
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3931
KMP_CPU_COPY(dest, src);
3932
}
3933
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3934
KMP_CPU_FREE(sumMask);
3935
}
3936
3937
/*-----------------------------------------------------------------------------
3938
Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3939
places. Again, Here is the grammar:
3940
3941
place_list := place
3942
place_list := place , place_list
3943
place := num
3944
place := place : num
3945
place := place : num : signed
3946
place := { subplacelist }
3947
place := ! place // (lowest priority)
3948
subplace_list := subplace
3949
subplace_list := subplace , subplace_list
3950
subplace := num
3951
subplace := num : num
3952
subplace := num : num : signed
3953
signed := num
3954
signed := + signed
3955
signed := - signed
3956
-----------------------------------------------------------------------------*/
3957
static void __kmp_process_subplace_list(const char **scan,
3958
kmp_affinity_t &affinity, int maxOsId,
3959
kmp_affin_mask_t *tempMask,
3960
int *setSize) {
3961
const char *next;
3962
kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3963
3964
for (;;) {
3965
int start, count, stride, i;
3966
3967
// Read in the starting proc id
3968
SKIP_WS(*scan);
3969
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3970
next = *scan;
3971
SKIP_DIGITS(next);
3972
start = __kmp_str_to_int(*scan, *next);
3973
KMP_ASSERT(start >= 0);
3974
*scan = next;
3975
3976
// valid follow sets are ',' ':' and '}'
3977
SKIP_WS(*scan);
3978
if (**scan == '}' || **scan == ',') {
3979
if ((start > maxOsId) ||
3980
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3981
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3982
} else {
3983
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3984
(*setSize)++;
3985
}
3986
if (**scan == '}') {
3987
break;
3988
}
3989
(*scan)++; // skip ','
3990
continue;
3991
}
3992
KMP_ASSERT2(**scan == ':', "bad explicit places list");
3993
(*scan)++; // skip ':'
3994
3995
// Read count parameter
3996
SKIP_WS(*scan);
3997
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3998
next = *scan;
3999
SKIP_DIGITS(next);
4000
count = __kmp_str_to_int(*scan, *next);
4001
KMP_ASSERT(count >= 0);
4002
*scan = next;
4003
4004
// valid follow sets are ',' ':' and '}'
4005
SKIP_WS(*scan);
4006
if (**scan == '}' || **scan == ',') {
4007
for (i = 0; i < count; i++) {
4008
if ((start > maxOsId) ||
4009
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4010
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4011
break; // don't proliferate warnings for large count
4012
} else {
4013
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4014
start++;
4015
(*setSize)++;
4016
}
4017
}
4018
if (**scan == '}') {
4019
break;
4020
}
4021
(*scan)++; // skip ','
4022
continue;
4023
}
4024
KMP_ASSERT2(**scan == ':', "bad explicit places list");
4025
(*scan)++; // skip ':'
4026
4027
// Read stride parameter
4028
int sign = +1;
4029
for (;;) {
4030
SKIP_WS(*scan);
4031
if (**scan == '+') {
4032
(*scan)++; // skip '+'
4033
continue;
4034
}
4035
if (**scan == '-') {
4036
sign *= -1;
4037
(*scan)++; // skip '-'
4038
continue;
4039
}
4040
break;
4041
}
4042
SKIP_WS(*scan);
4043
KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
4044
next = *scan;
4045
SKIP_DIGITS(next);
4046
stride = __kmp_str_to_int(*scan, *next);
4047
KMP_ASSERT(stride >= 0);
4048
*scan = next;
4049
stride *= sign;
4050
4051
// valid follow sets are ',' and '}'
4052
SKIP_WS(*scan);
4053
if (**scan == '}' || **scan == ',') {
4054
for (i = 0; i < count; i++) {
4055
if ((start > maxOsId) ||
4056
(!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
4057
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
4058
break; // don't proliferate warnings for large count
4059
} else {
4060
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
4061
start += stride;
4062
(*setSize)++;
4063
}
4064
}
4065
if (**scan == '}') {
4066
break;
4067
}
4068
(*scan)++; // skip ','
4069
continue;
4070
}
4071
4072
KMP_ASSERT2(0, "bad explicit places list");
4073
}
4074
}
4075
4076
static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
4077
int maxOsId, kmp_affin_mask_t *tempMask,
4078
int *setSize) {
4079
const char *next;
4080
kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4081
4082
// valid follow sets are '{' '!' and num
4083
SKIP_WS(*scan);
4084
if (**scan == '{') {
4085
(*scan)++; // skip '{'
4086
__kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
4087
KMP_ASSERT2(**scan == '}', "bad explicit places list");
4088
(*scan)++; // skip '}'
4089
} else if (**scan == '!') {
4090
(*scan)++; // skip '!'
4091
__kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
4092
KMP_CPU_COMPLEMENT(maxOsId, tempMask);
4093
} else if ((**scan >= '0') && (**scan <= '9')) {
4094
next = *scan;
4095
SKIP_DIGITS(next);
4096
int num = __kmp_str_to_int(*scan, *next);
4097
KMP_ASSERT(num >= 0);
4098
if ((num > maxOsId) ||
4099
(!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
4100
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
4101
} else {
4102
KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
4103
(*setSize)++;
4104
}
4105
*scan = next; // skip num
4106
} else {
4107
KMP_ASSERT2(0, "bad explicit places list");
4108
}
4109
}
4110
4111
// static void
4112
void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
4113
int i, j, count, stride, sign;
4114
kmp_affin_mask_t **out_masks = &affinity.masks;
4115
unsigned *out_numMasks = &affinity.num_masks;
4116
const char *placelist = affinity.proclist;
4117
kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
4118
int maxOsId = affinity.num_os_id_masks - 1;
4119
const char *scan = placelist;
4120
const char *next = placelist;
4121
4122
numNewMasks = 2;
4123
KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
4124
nextNewMask = 0;
4125
4126
// tempMask is modified based on the previous or initial
4127
// place to form the current place
4128
// previousMask contains the previous place
4129
kmp_affin_mask_t *tempMask;
4130
kmp_affin_mask_t *previousMask;
4131
KMP_CPU_ALLOC(tempMask);
4132
KMP_CPU_ZERO(tempMask);
4133
KMP_CPU_ALLOC(previousMask);
4134
KMP_CPU_ZERO(previousMask);
4135
int setSize = 0;
4136
4137
for (;;) {
4138
__kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize);
4139
4140
// valid follow sets are ',' ':' and EOL
4141
SKIP_WS(scan);
4142
if (*scan == '\0' || *scan == ',') {
4143
if (setSize > 0) {
4144
ADD_MASK(tempMask);
4145
}
4146
KMP_CPU_ZERO(tempMask);
4147
setSize = 0;
4148
if (*scan == '\0') {
4149
break;
4150
}
4151
scan++; // skip ','
4152
continue;
4153
}
4154
4155
KMP_ASSERT2(*scan == ':', "bad explicit places list");
4156
scan++; // skip ':'
4157
4158
// Read count parameter
4159
SKIP_WS(scan);
4160
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4161
next = scan;
4162
SKIP_DIGITS(next);
4163
count = __kmp_str_to_int(scan, *next);
4164
KMP_ASSERT(count >= 0);
4165
scan = next;
4166
4167
// valid follow sets are ',' ':' and EOL
4168
SKIP_WS(scan);
4169
if (*scan == '\0' || *scan == ',') {
4170
stride = +1;
4171
} else {
4172
KMP_ASSERT2(*scan == ':', "bad explicit places list");
4173
scan++; // skip ':'
4174
4175
// Read stride parameter
4176
sign = +1;
4177
for (;;) {
4178
SKIP_WS(scan);
4179
if (*scan == '+') {
4180
scan++; // skip '+'
4181
continue;
4182
}
4183
if (*scan == '-') {
4184
sign *= -1;
4185
scan++; // skip '-'
4186
continue;
4187
}
4188
break;
4189
}
4190
SKIP_WS(scan);
4191
KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
4192
next = scan;
4193
SKIP_DIGITS(next);
4194
stride = __kmp_str_to_int(scan, *next);
4195
KMP_DEBUG_ASSERT(stride >= 0);
4196
scan = next;
4197
stride *= sign;
4198
}
4199
4200
// Add places determined by initial_place : count : stride
4201
for (i = 0; i < count; i++) {
4202
if (setSize == 0) {
4203
break;
4204
}
4205
// Add the current place, then build the next place (tempMask) from that
4206
KMP_CPU_COPY(previousMask, tempMask);
4207
ADD_MASK(previousMask);
4208
KMP_CPU_ZERO(tempMask);
4209
setSize = 0;
4210
KMP_CPU_SET_ITERATE(j, previousMask) {
4211
if (!KMP_CPU_ISSET(j, previousMask)) {
4212
continue;
4213
}
4214
if ((j + stride > maxOsId) || (j + stride < 0) ||
4215
(!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
4216
(!KMP_CPU_ISSET(j + stride,
4217
KMP_CPU_INDEX(osId2Mask, j + stride)))) {
4218
if (i < count - 1) {
4219
KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride);
4220
}
4221
continue;
4222
}
4223
KMP_CPU_SET(j + stride, tempMask);
4224
setSize++;
4225
}
4226
}
4227
KMP_CPU_ZERO(tempMask);
4228
setSize = 0;
4229
4230
// valid follow sets are ',' and EOL
4231
SKIP_WS(scan);
4232
if (*scan == '\0') {
4233
break;
4234
}
4235
if (*scan == ',') {
4236
scan++; // skip ','
4237
continue;
4238
}
4239
4240
KMP_ASSERT2(0, "bad explicit places list");
4241
}
4242
4243
*out_numMasks = nextNewMask;
4244
if (nextNewMask == 0) {
4245
*out_masks = NULL;
4246
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4247
return;
4248
}
4249
KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
4250
KMP_CPU_FREE(tempMask);
4251
KMP_CPU_FREE(previousMask);
4252
for (i = 0; i < nextNewMask; i++) {
4253
kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
4254
kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
4255
KMP_CPU_COPY(dest, src);
4256
}
4257
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4258
}
4259
4260
#undef ADD_MASK
4261
#undef ADD_MASK_OSID
4262
4263
// This function figures out the deepest level at which there is at least one
4264
// cluster/core with more than one processing unit bound to it.
4265
static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
4266
int core_level = 0;
4267
4268
for (int i = 0; i < nprocs; i++) {
4269
const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
4270
for (int j = bottom_level; j > 0; j--) {
4271
if (hw_thread.ids[j] > 0) {
4272
if (core_level < (j - 1)) {
4273
core_level = j - 1;
4274
}
4275
}
4276
}
4277
}
4278
return core_level;
4279
}
4280
4281
// This function counts number of clusters/cores at given level.
4282
static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4283
int core_level) {
4284
return __kmp_topology->get_count(core_level);
4285
}
4286
// This function finds to which cluster/core given processing unit is bound.
4287
static int __kmp_affinity_find_core(int proc, int bottom_level,
4288
int core_level) {
4289
int core = 0;
4290
KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4291
for (int i = 0; i <= proc; ++i) {
4292
if (i + 1 <= proc) {
4293
for (int j = 0; j <= core_level; ++j) {
4294
if (__kmp_topology->at(i + 1).sub_ids[j] !=
4295
__kmp_topology->at(i).sub_ids[j]) {
4296
core++;
4297
break;
4298
}
4299
}
4300
}
4301
}
4302
return core;
4303
}
4304
4305
// This function finds maximal number of processing units bound to a
4306
// cluster/core at given level.
4307
static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4308
int core_level) {
4309
if (core_level >= bottom_level)
4310
return 1;
4311
int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4312
return __kmp_topology->calculate_ratio(thread_level, core_level);
4313
}
4314
4315
static int *procarr = NULL;
4316
static int __kmp_aff_depth = 0;
4317
static int *__kmp_osid_to_hwthread_map = NULL;
4318
4319
static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask,
4320
kmp_affinity_ids_t &ids,
4321
kmp_affinity_attrs_t &attrs) {
4322
if (!KMP_AFFINITY_CAPABLE())
4323
return;
4324
4325
// Initiailze ids and attrs thread data
4326
for (int i = 0; i < KMP_HW_LAST; ++i)
4327
ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
4328
attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4329
4330
// Iterate through each os id within the mask and determine
4331
// the topology id and attribute information
4332
int cpu;
4333
int depth = __kmp_topology->get_depth();
4334
KMP_CPU_SET_ITERATE(cpu, mask) {
4335
int osid_idx = __kmp_osid_to_hwthread_map[cpu];
4336
ids.os_id = cpu;
4337
const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx);
4338
for (int level = 0; level < depth; ++level) {
4339
kmp_hw_t type = __kmp_topology->get_type(level);
4340
int id = hw_thread.sub_ids[level];
4341
if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) {
4342
ids.ids[type] = id;
4343
} else {
4344
// This mask spans across multiple topology units, set it as such
4345
// and mark every level below as such as well.
4346
ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4347
for (; level < depth; ++level) {
4348
kmp_hw_t type = __kmp_topology->get_type(level);
4349
ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4350
}
4351
}
4352
}
4353
if (!attrs.valid) {
4354
attrs.core_type = hw_thread.attrs.get_core_type();
4355
attrs.core_eff = hw_thread.attrs.get_core_eff();
4356
attrs.valid = 1;
4357
} else {
4358
// This mask spans across multiple attributes, set it as such
4359
if (attrs.core_type != hw_thread.attrs.get_core_type())
4360
attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN;
4361
if (attrs.core_eff != hw_thread.attrs.get_core_eff())
4362
attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF;
4363
}
4364
}
4365
}
4366
4367
static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) {
4368
if (!KMP_AFFINITY_CAPABLE())
4369
return;
4370
const kmp_affin_mask_t *mask = th->th.th_affin_mask;
4371
kmp_affinity_ids_t &ids = th->th.th_topology_ids;
4372
kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs;
4373
__kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4374
}
4375
4376
// Assign the topology information to each place in the place list
4377
// A thread can then grab not only its affinity mask, but the topology
4378
// information associated with that mask. e.g., Which socket is a thread on
4379
static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) {
4380
if (!KMP_AFFINITY_CAPABLE())
4381
return;
4382
if (affinity.type != affinity_none) {
4383
KMP_ASSERT(affinity.num_os_id_masks);
4384
KMP_ASSERT(affinity.os_id_masks);
4385
}
4386
KMP_ASSERT(affinity.num_masks);
4387
KMP_ASSERT(affinity.masks);
4388
KMP_ASSERT(__kmp_affin_fullMask);
4389
4390
int max_cpu = __kmp_affin_fullMask->get_max_cpu();
4391
int num_hw_threads = __kmp_topology->get_num_hw_threads();
4392
4393
// Allocate thread topology information
4394
if (!affinity.ids) {
4395
affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(
4396
sizeof(kmp_affinity_ids_t) * affinity.num_masks);
4397
}
4398
if (!affinity.attrs) {
4399
affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(
4400
sizeof(kmp_affinity_attrs_t) * affinity.num_masks);
4401
}
4402
if (!__kmp_osid_to_hwthread_map) {
4403
// Want the +1 because max_cpu should be valid index into map
4404
__kmp_osid_to_hwthread_map =
4405
(int *)__kmp_allocate(sizeof(int) * (max_cpu + 1));
4406
}
4407
4408
// Create the OS proc to hardware thread map
4409
for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) {
4410
int os_id = __kmp_topology->at(hw_thread).os_id;
4411
if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask))
4412
__kmp_osid_to_hwthread_map[os_id] = hw_thread;
4413
}
4414
4415
for (unsigned i = 0; i < affinity.num_masks; ++i) {
4416
kmp_affinity_ids_t &ids = affinity.ids[i];
4417
kmp_affinity_attrs_t &attrs = affinity.attrs[i];
4418
kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i);
4419
__kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4420
}
4421
}
4422
4423
// Called when __kmp_topology is ready
4424
static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) {
4425
// Initialize other data structures which depend on the topology
4426
if (__kmp_topology && __kmp_topology->get_num_hw_threads()) {
4427
machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4428
__kmp_affinity_get_topology_info(affinity);
4429
#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
4430
__kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore();
4431
#endif
4432
}
4433
}
4434
4435
// Create a one element mask array (set of places) which only contains the
4436
// initial process's affinity mask
4437
static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
4438
KMP_ASSERT(__kmp_affin_fullMask != NULL);
4439
KMP_ASSERT(affinity.type == affinity_none);
4440
KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4441
affinity.num_masks = 1;
4442
KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4443
kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0);
4444
KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4445
__kmp_aux_affinity_initialize_other_data(affinity);
4446
}
4447
4448
static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
4449
// Create the "full" mask - this defines all of the processors that we
4450
// consider to be in the machine model. If respect is set, then it is the
4451
// initialization thread's affinity mask. Otherwise, it is all processors that
4452
// we know about on the machine.
4453
int verbose = affinity.flags.verbose;
4454
const char *env_var = affinity.env_var;
4455
4456
// Already initialized
4457
if (__kmp_affin_fullMask && __kmp_affin_origMask)
4458
return;
4459
4460
if (__kmp_affin_fullMask == NULL) {
4461
KMP_CPU_ALLOC(__kmp_affin_fullMask);
4462
}
4463
if (__kmp_affin_origMask == NULL) {
4464
KMP_CPU_ALLOC(__kmp_affin_origMask);
4465
}
4466
if (KMP_AFFINITY_CAPABLE()) {
4467
__kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4468
// Make a copy before possible expanding to the entire machine mask
4469
__kmp_affin_origMask->copy(__kmp_affin_fullMask);
4470
if (affinity.flags.respect) {
4471
// Count the number of available processors.
4472
unsigned i;
4473
__kmp_avail_proc = 0;
4474
KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4475
if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4476
continue;
4477
}
4478
__kmp_avail_proc++;
4479
}
4480
if (__kmp_avail_proc > __kmp_xproc) {
4481
KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4482
affinity.type = affinity_none;
4483
KMP_AFFINITY_DISABLE();
4484
return;
4485
}
4486
4487
if (verbose) {
4488
char buf[KMP_AFFIN_MASK_PRINT_LEN];
4489
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4490
__kmp_affin_fullMask);
4491
KMP_INFORM(InitOSProcSetRespect, env_var, buf);
4492
}
4493
} else {
4494
if (verbose) {
4495
char buf[KMP_AFFIN_MASK_PRINT_LEN];
4496
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4497
__kmp_affin_fullMask);
4498
KMP_INFORM(InitOSProcSetNotRespect, env_var, buf);
4499
}
4500
__kmp_avail_proc =
4501
__kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4502
#if KMP_OS_WINDOWS
4503
if (__kmp_num_proc_groups <= 1) {
4504
// Copy expanded full mask if topology has single processor group
4505
__kmp_affin_origMask->copy(__kmp_affin_fullMask);
4506
}
4507
// Set the process affinity mask since threads' affinity
4508
// masks must be subset of process mask in Windows* OS
4509
__kmp_affin_fullMask->set_process_affinity(true);
4510
#endif
4511
}
4512
}
4513
}
4514
4515
static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
4516
bool success = false;
4517
const char *env_var = affinity.env_var;
4518
kmp_i18n_id_t msg_id = kmp_i18n_null;
4519
int verbose = affinity.flags.verbose;
4520
4521
// For backward compatibility, setting KMP_CPUINFO_FILE =>
4522
// KMP_TOPOLOGY_METHOD=cpuinfo
4523
if ((__kmp_cpuinfo_file != NULL) &&
4524
(__kmp_affinity_top_method == affinity_top_method_all)) {
4525
__kmp_affinity_top_method = affinity_top_method_cpuinfo;
4526
}
4527
4528
if (__kmp_affinity_top_method == affinity_top_method_all) {
4529
// In the default code path, errors are not fatal - we just try using
4530
// another method. We only emit a warning message if affinity is on, or the
4531
// verbose flag is set, an the nowarnings flag was not set.
4532
#if KMP_USE_HWLOC
4533
if (!success &&
4534
__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4535
if (!__kmp_hwloc_error) {
4536
success = __kmp_affinity_create_hwloc_map(&msg_id);
4537
if (!success && verbose) {
4538
KMP_INFORM(AffIgnoringHwloc, env_var);
4539
}
4540
} else if (verbose) {
4541
KMP_INFORM(AffIgnoringHwloc, env_var);
4542
}
4543
}
4544
#endif
4545
4546
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
4547
if (!success) {
4548
success = __kmp_affinity_create_x2apicid_map(&msg_id);
4549
if (!success && verbose && msg_id != kmp_i18n_null) {
4550
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4551
}
4552
}
4553
if (!success) {
4554
success = __kmp_affinity_create_apicid_map(&msg_id);
4555
if (!success && verbose && msg_id != kmp_i18n_null) {
4556
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4557
}
4558
}
4559
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4560
4561
#if KMP_OS_LINUX || KMP_OS_AIX
4562
if (!success) {
4563
int line = 0;
4564
success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4565
if (!success && verbose && msg_id != kmp_i18n_null) {
4566
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4567
}
4568
}
4569
#endif /* KMP_OS_LINUX */
4570
4571
#if KMP_GROUP_AFFINITY
4572
if (!success && (__kmp_num_proc_groups > 1)) {
4573
success = __kmp_affinity_create_proc_group_map(&msg_id);
4574
if (!success && verbose && msg_id != kmp_i18n_null) {
4575
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4576
}
4577
}
4578
#endif /* KMP_GROUP_AFFINITY */
4579
4580
if (!success) {
4581
success = __kmp_affinity_create_flat_map(&msg_id);
4582
if (!success && verbose && msg_id != kmp_i18n_null) {
4583
KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4584
}
4585
KMP_ASSERT(success);
4586
}
4587
}
4588
4589
// If the user has specified that a paricular topology discovery method is to be
4590
// used, then we abort if that method fails. The exception is group affinity,
4591
// which might have been implicitly set.
4592
#if KMP_USE_HWLOC
4593
else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4594
KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4595
success = __kmp_affinity_create_hwloc_map(&msg_id);
4596
if (!success) {
4597
KMP_ASSERT(msg_id != kmp_i18n_null);
4598
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4599
}
4600
}
4601
#endif // KMP_USE_HWLOC
4602
4603
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
4604
else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4605
__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4606
success = __kmp_affinity_create_x2apicid_map(&msg_id);
4607
if (!success) {
4608
KMP_ASSERT(msg_id != kmp_i18n_null);
4609
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4610
}
4611
} else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4612
success = __kmp_affinity_create_apicid_map(&msg_id);
4613
if (!success) {
4614
KMP_ASSERT(msg_id != kmp_i18n_null);
4615
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4616
}
4617
}
4618
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4619
4620
else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4621
int line = 0;
4622
success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4623
if (!success) {
4624
KMP_ASSERT(msg_id != kmp_i18n_null);
4625
const char *filename = __kmp_cpuinfo_get_filename();
4626
if (line > 0) {
4627
KMP_FATAL(FileLineMsgExiting, filename, line,
4628
__kmp_i18n_catgets(msg_id));
4629
} else {
4630
KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4631
}
4632
}
4633
}
4634
4635
#if KMP_GROUP_AFFINITY
4636
else if (__kmp_affinity_top_method == affinity_top_method_group) {
4637
success = __kmp_affinity_create_proc_group_map(&msg_id);
4638
KMP_ASSERT(success);
4639
if (!success) {
4640
KMP_ASSERT(msg_id != kmp_i18n_null);
4641
KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4642
}
4643
}
4644
#endif /* KMP_GROUP_AFFINITY */
4645
4646
else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4647
success = __kmp_affinity_create_flat_map(&msg_id);
4648
// should not fail
4649
KMP_ASSERT(success);
4650
}
4651
4652
// Early exit if topology could not be created
4653
if (!__kmp_topology) {
4654
if (KMP_AFFINITY_CAPABLE()) {
4655
KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4656
}
4657
if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4658
__kmp_ncores > 0) {
4659
__kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
4660
__kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4661
__kmp_nThreadsPerCore, __kmp_ncores);
4662
if (verbose) {
4663
__kmp_topology->print(env_var);
4664
}
4665
}
4666
return false;
4667
}
4668
4669
// Canonicalize, print (if requested), apply KMP_HW_SUBSET
4670
__kmp_topology->canonicalize();
4671
if (verbose)
4672
__kmp_topology->print(env_var);
4673
bool filtered = __kmp_topology->filter_hw_subset();
4674
if (filtered && verbose)
4675
__kmp_topology->print("KMP_HW_SUBSET");
4676
return success;
4677
}
4678
4679
static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
4680
bool is_regular_affinity = (&affinity == &__kmp_affinity);
4681
bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
4682
const char *env_var = __kmp_get_affinity_env_var(affinity);
4683
4684
if (affinity.flags.initialized) {
4685
KMP_ASSERT(__kmp_affin_fullMask != NULL);
4686
return;
4687
}
4688
4689
if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
4690
__kmp_aux_affinity_initialize_masks(affinity);
4691
4692
if (is_regular_affinity && !__kmp_topology) {
4693
bool success = __kmp_aux_affinity_initialize_topology(affinity);
4694
if (success) {
4695
KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4696
} else {
4697
affinity.type = affinity_none;
4698
KMP_AFFINITY_DISABLE();
4699
}
4700
}
4701
4702
// If KMP_AFFINITY=none, then only create the single "none" place
4703
// which is the process's initial affinity mask or the number of
4704
// hardware threads depending on respect,norespect
4705
if (affinity.type == affinity_none) {
4706
__kmp_create_affinity_none_places(affinity);
4707
#if KMP_USE_HIER_SCHED
4708
__kmp_dispatch_set_hierarchy_values();
4709
#endif
4710
affinity.flags.initialized = TRUE;
4711
return;
4712
}
4713
4714
__kmp_topology->set_granularity(affinity);
4715
int depth = __kmp_topology->get_depth();
4716
4717
// Create the table of masks, indexed by thread Id.
4718
unsigned numUnique;
4719
int numAddrs = __kmp_topology->get_num_hw_threads();
4720
// If OMP_PLACES=cores:<attribute> specified, then attempt
4721
// to make OS Id mask table using those attributes
4722
if (affinity.core_attr_gran.valid) {
4723
__kmp_create_os_id_masks(&numUnique, affinity, [&](int idx) {
4724
KMP_ASSERT(idx >= -1);
4725
for (int i = idx + 1; i < numAddrs; ++i)
4726
if (__kmp_topology->at(i).attrs.contains(affinity.core_attr_gran))
4727
return i;
4728
return numAddrs;
4729
});
4730
if (!affinity.os_id_masks) {
4731
const char *core_attribute;
4732
if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF)
4733
core_attribute = "core_efficiency";
4734
else
4735
core_attribute = "core_type";
4736
KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var,
4737
core_attribute,
4738
__kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true))
4739
}
4740
}
4741
// If core attributes did not work, or none were specified,
4742
// then make OS Id mask table using typical incremental way.
4743
if (!affinity.os_id_masks) {
4744
__kmp_create_os_id_masks(&numUnique, affinity, [](int idx) {
4745
KMP_ASSERT(idx >= -1);
4746
return idx + 1;
4747
});
4748
}
4749
if (affinity.gran_levels == 0) {
4750
KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4751
}
4752
4753
switch (affinity.type) {
4754
4755
case affinity_explicit:
4756
KMP_DEBUG_ASSERT(affinity.proclist != NULL);
4757
if (is_hidden_helper_affinity ||
4758
__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4759
__kmp_affinity_process_proclist(affinity);
4760
} else {
4761
__kmp_affinity_process_placelist(affinity);
4762
}
4763
if (affinity.num_masks == 0) {
4764
KMP_AFF_WARNING(affinity, AffNoValidProcID);
4765
affinity.type = affinity_none;
4766
__kmp_create_affinity_none_places(affinity);
4767
affinity.flags.initialized = TRUE;
4768
return;
4769
}
4770
break;
4771
4772
// The other affinity types rely on sorting the hardware threads according to
4773
// some permutation of the machine topology tree. Set affinity.compact
4774
// and affinity.offset appropriately, then jump to a common code
4775
// fragment to do the sort and create the array of affinity masks.
4776
case affinity_logical:
4777
affinity.compact = 0;
4778
if (affinity.offset) {
4779
affinity.offset =
4780
__kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4781
}
4782
goto sortTopology;
4783
4784
case affinity_physical:
4785
if (__kmp_nThreadsPerCore > 1) {
4786
affinity.compact = 1;
4787
if (affinity.compact >= depth) {
4788
affinity.compact = 0;
4789
}
4790
} else {
4791
affinity.compact = 0;
4792
}
4793
if (affinity.offset) {
4794
affinity.offset =
4795
__kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4796
}
4797
goto sortTopology;
4798
4799
case affinity_scatter:
4800
if (affinity.compact >= depth) {
4801
affinity.compact = 0;
4802
} else {
4803
affinity.compact = depth - 1 - affinity.compact;
4804
}
4805
goto sortTopology;
4806
4807
case affinity_compact:
4808
if (affinity.compact >= depth) {
4809
affinity.compact = depth - 1;
4810
}
4811
goto sortTopology;
4812
4813
case affinity_balanced:
4814
if (depth <= 1 || is_hidden_helper_affinity) {
4815
KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4816
affinity.type = affinity_none;
4817
__kmp_create_affinity_none_places(affinity);
4818
affinity.flags.initialized = TRUE;
4819
return;
4820
} else if (!__kmp_topology->is_uniform()) {
4821
// Save the depth for further usage
4822
__kmp_aff_depth = depth;
4823
4824
int core_level =
4825
__kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
4826
int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
4827
core_level);
4828
int maxprocpercore = __kmp_affinity_max_proc_per_core(
4829
__kmp_avail_proc, depth - 1, core_level);
4830
4831
int nproc = ncores * maxprocpercore;
4832
if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4833
KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4834
affinity.type = affinity_none;
4835
__kmp_create_affinity_none_places(affinity);
4836
affinity.flags.initialized = TRUE;
4837
return;
4838
}
4839
4840
procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4841
for (int i = 0; i < nproc; i++) {
4842
procarr[i] = -1;
4843
}
4844
4845
int lastcore = -1;
4846
int inlastcore = 0;
4847
for (int i = 0; i < __kmp_avail_proc; i++) {
4848
int proc = __kmp_topology->at(i).os_id;
4849
int core = __kmp_affinity_find_core(i, depth - 1, core_level);
4850
4851
if (core == lastcore) {
4852
inlastcore++;
4853
} else {
4854
inlastcore = 0;
4855
}
4856
lastcore = core;
4857
4858
procarr[core * maxprocpercore + inlastcore] = proc;
4859
}
4860
}
4861
if (affinity.compact >= depth) {
4862
affinity.compact = depth - 1;
4863
}
4864
4865
sortTopology:
4866
// Allocate the gtid->affinity mask table.
4867
if (affinity.flags.dups) {
4868
affinity.num_masks = __kmp_avail_proc;
4869
} else {
4870
affinity.num_masks = numUnique;
4871
}
4872
4873
if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4874
(__kmp_affinity_num_places > 0) &&
4875
((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
4876
!is_hidden_helper_affinity) {
4877
affinity.num_masks = __kmp_affinity_num_places;
4878
}
4879
4880
KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4881
4882
// Sort the topology table according to the current setting of
4883
// affinity.compact, then fill out affinity.masks.
4884
__kmp_topology->sort_compact(affinity);
4885
{
4886
int i;
4887
unsigned j;
4888
int num_hw_threads = __kmp_topology->get_num_hw_threads();
4889
kmp_full_mask_modifier_t full_mask;
4890
for (i = 0, j = 0; i < num_hw_threads; i++) {
4891
if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) {
4892
continue;
4893
}
4894
int osId = __kmp_topology->at(i).os_id;
4895
4896
kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId);
4897
kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j);
4898
KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4899
KMP_CPU_COPY(dest, src);
4900
full_mask.include(src);
4901
if (++j >= affinity.num_masks) {
4902
break;
4903
}
4904
}
4905
KMP_DEBUG_ASSERT(j == affinity.num_masks);
4906
// See if the places list further restricts or changes the full mask
4907
if (full_mask.restrict_to_mask() && affinity.flags.verbose) {
4908
__kmp_topology->print(env_var);
4909
}
4910
}
4911
// Sort the topology back using ids
4912
__kmp_topology->sort_ids();
4913
break;
4914
4915
default:
4916
KMP_ASSERT2(0, "Unexpected affinity setting");
4917
}
4918
__kmp_aux_affinity_initialize_other_data(affinity);
4919
affinity.flags.initialized = TRUE;
4920
}
4921
4922
void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
4923
// Much of the code above was written assuming that if a machine was not
4924
// affinity capable, then affinity type == affinity_none.
4925
// We now explicitly represent this as affinity type == affinity_disabled.
4926
// There are too many checks for affinity type == affinity_none in this code.
4927
// Instead of trying to change them all, check if
4928
// affinity type == affinity_disabled, and if so, slam it with affinity_none,
4929
// call the real initialization routine, then restore affinity type to
4930
// affinity_disabled.
4931
int disabled = (affinity.type == affinity_disabled);
4932
if (!KMP_AFFINITY_CAPABLE())
4933
KMP_ASSERT(disabled);
4934
if (disabled)
4935
affinity.type = affinity_none;
4936
__kmp_aux_affinity_initialize(affinity);
4937
if (disabled)
4938
affinity.type = affinity_disabled;
4939
}
4940
4941
void __kmp_affinity_uninitialize(void) {
4942
for (kmp_affinity_t *affinity : __kmp_affinities) {
4943
if (affinity->masks != NULL)
4944
KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks);
4945
if (affinity->os_id_masks != NULL)
4946
KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks);
4947
if (affinity->proclist != NULL)
4948
__kmp_free(affinity->proclist);
4949
if (affinity->ids != NULL)
4950
__kmp_free(affinity->ids);
4951
if (affinity->attrs != NULL)
4952
__kmp_free(affinity->attrs);
4953
*affinity = KMP_AFFINITY_INIT(affinity->env_var);
4954
}
4955
if (__kmp_affin_origMask != NULL) {
4956
if (KMP_AFFINITY_CAPABLE()) {
4957
#if KMP_OS_AIX
4958
// Uninitialize by unbinding the thread.
4959
bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
4960
#else
4961
__kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
4962
#endif
4963
}
4964
KMP_CPU_FREE(__kmp_affin_origMask);
4965
__kmp_affin_origMask = NULL;
4966
}
4967
__kmp_affinity_num_places = 0;
4968
if (procarr != NULL) {
4969
__kmp_free(procarr);
4970
procarr = NULL;
4971
}
4972
if (__kmp_osid_to_hwthread_map) {
4973
__kmp_free(__kmp_osid_to_hwthread_map);
4974
__kmp_osid_to_hwthread_map = NULL;
4975
}
4976
#if KMP_USE_HWLOC
4977
if (__kmp_hwloc_topology != NULL) {
4978
hwloc_topology_destroy(__kmp_hwloc_topology);
4979
__kmp_hwloc_topology = NULL;
4980
}
4981
#endif
4982
if (__kmp_hw_subset) {
4983
kmp_hw_subset_t::deallocate(__kmp_hw_subset);
4984
__kmp_hw_subset = nullptr;
4985
}
4986
if (__kmp_topology) {
4987
kmp_topology_t::deallocate(__kmp_topology);
4988
__kmp_topology = nullptr;
4989
}
4990
KMPAffinity::destroy_api();
4991
}
4992
4993
static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
4994
int *place, kmp_affin_mask_t **mask) {
4995
int mask_idx;
4996
bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4997
if (is_hidden_helper)
4998
// The first gtid is the regular primary thread, the second gtid is the main
4999
// thread of hidden team which does not participate in task execution.
5000
mask_idx = gtid - 2;
5001
else
5002
mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
5003
KMP_DEBUG_ASSERT(affinity->num_masks > 0);
5004
*place = (mask_idx + affinity->offset) % affinity->num_masks;
5005
*mask = KMP_CPU_INDEX(affinity->masks, *place);
5006
}
5007
5008
// This function initializes the per-thread data concerning affinity including
5009
// the mask and topology information
5010
void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
5011
5012
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5013
5014
// Set the thread topology information to default of unknown
5015
for (int id = 0; id < KMP_HW_LAST; ++id)
5016
th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID;
5017
th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
5018
5019
if (!KMP_AFFINITY_CAPABLE()) {
5020
return;
5021
}
5022
5023
if (th->th.th_affin_mask == NULL) {
5024
KMP_CPU_ALLOC(th->th.th_affin_mask);
5025
} else {
5026
KMP_CPU_ZERO(th->th.th_affin_mask);
5027
}
5028
5029
// Copy the thread mask to the kmp_info_t structure. If
5030
// __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
5031
// one that has all of the OS proc ids set, or if
5032
// __kmp_affinity.flags.respect is set, then the full mask is the
5033
// same as the mask of the initialization thread.
5034
kmp_affin_mask_t *mask;
5035
int i;
5036
const kmp_affinity_t *affinity;
5037
bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5038
5039
if (is_hidden_helper)
5040
affinity = &__kmp_hh_affinity;
5041
else
5042
affinity = &__kmp_affinity;
5043
5044
if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) {
5045
if ((affinity->type == affinity_none) ||
5046
(affinity->type == affinity_balanced) ||
5047
KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5048
#if KMP_GROUP_AFFINITY
5049
if (__kmp_num_proc_groups > 1) {
5050
return;
5051
}
5052
#endif
5053
KMP_ASSERT(__kmp_affin_fullMask != NULL);
5054
i = 0;
5055
mask = __kmp_affin_fullMask;
5056
} else {
5057
__kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
5058
}
5059
} else {
5060
if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
5061
#if KMP_GROUP_AFFINITY
5062
if (__kmp_num_proc_groups > 1) {
5063
return;
5064
}
5065
#endif
5066
KMP_ASSERT(__kmp_affin_fullMask != NULL);
5067
i = KMP_PLACE_ALL;
5068
mask = __kmp_affin_fullMask;
5069
} else {
5070
__kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
5071
}
5072
}
5073
5074
th->th.th_current_place = i;
5075
if (isa_root && !is_hidden_helper) {
5076
th->th.th_new_place = i;
5077
th->th.th_first_place = 0;
5078
th->th.th_last_place = affinity->num_masks - 1;
5079
} else if (KMP_AFFINITY_NON_PROC_BIND) {
5080
// When using a Non-OMP_PROC_BIND affinity method,
5081
// set all threads' place-partition-var to the entire place list
5082
th->th.th_first_place = 0;
5083
th->th.th_last_place = affinity->num_masks - 1;
5084
}
5085
// Copy topology information associated with the place
5086
if (i >= 0) {
5087
th->th.th_topology_ids = __kmp_affinity.ids[i];
5088
th->th.th_topology_attrs = __kmp_affinity.attrs[i];
5089
}
5090
5091
if (i == KMP_PLACE_ALL) {
5092
KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n",
5093
gtid));
5094
} else {
5095
KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n",
5096
gtid, i));
5097
}
5098
5099
KMP_CPU_COPY(th->th.th_affin_mask, mask);
5100
}
5101
5102
void __kmp_affinity_bind_init_mask(int gtid) {
5103
if (!KMP_AFFINITY_CAPABLE()) {
5104
return;
5105
}
5106
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5107
const kmp_affinity_t *affinity;
5108
const char *env_var;
5109
bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
5110
5111
if (is_hidden_helper)
5112
affinity = &__kmp_hh_affinity;
5113
else
5114
affinity = &__kmp_affinity;
5115
env_var = __kmp_get_affinity_env_var(*affinity, /*for_binding=*/true);
5116
/* to avoid duplicate printing (will be correctly printed on barrier) */
5117
if (affinity->flags.verbose && (affinity->type == affinity_none ||
5118
(th->th.th_current_place != KMP_PLACE_ALL &&
5119
affinity->type != affinity_balanced)) &&
5120
!KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
5121
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5122
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5123
th->th.th_affin_mask);
5124
KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5125
gtid, buf);
5126
}
5127
5128
#if KMP_OS_WINDOWS
5129
// On Windows* OS, the process affinity mask might have changed. If the user
5130
// didn't request affinity and this call fails, just continue silently.
5131
// See CQ171393.
5132
if (affinity->type == affinity_none) {
5133
__kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
5134
} else
5135
#endif
5136
#ifndef KMP_OS_AIX
5137
// Do not set the full mask as the init mask on AIX.
5138
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5139
#endif
5140
}
5141
5142
void __kmp_affinity_bind_place(int gtid) {
5143
// Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
5144
if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) {
5145
return;
5146
}
5147
5148
kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
5149
5150
KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current "
5151
"place = %d)\n",
5152
gtid, th->th.th_new_place, th->th.th_current_place));
5153
5154
// Check that the new place is within this thread's partition.
5155
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5156
KMP_ASSERT(th->th.th_new_place >= 0);
5157
KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks);
5158
if (th->th.th_first_place <= th->th.th_last_place) {
5159
KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
5160
(th->th.th_new_place <= th->th.th_last_place));
5161
} else {
5162
KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
5163
(th->th.th_new_place >= th->th.th_last_place));
5164
}
5165
5166
// Copy the thread mask to the kmp_info_t structure,
5167
// and set this thread's affinity.
5168
kmp_affin_mask_t *mask =
5169
KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place);
5170
KMP_CPU_COPY(th->th.th_affin_mask, mask);
5171
th->th.th_current_place = th->th.th_new_place;
5172
5173
if (__kmp_affinity.flags.verbose) {
5174
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5175
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5176
th->th.th_affin_mask);
5177
KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
5178
__kmp_gettid(), gtid, buf);
5179
}
5180
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
5181
}
5182
5183
int __kmp_aux_set_affinity(void **mask) {
5184
int gtid;
5185
kmp_info_t *th;
5186
int retval;
5187
5188
if (!KMP_AFFINITY_CAPABLE()) {
5189
return -1;
5190
}
5191
5192
gtid = __kmp_entry_gtid();
5193
KA_TRACE(
5194
1000, (""); {
5195
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5196
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5197
(kmp_affin_mask_t *)(*mask));
5198
__kmp_debug_printf(
5199
"kmp_set_affinity: setting affinity mask for thread %d = %s\n",
5200
gtid, buf);
5201
});
5202
5203
if (__kmp_env_consistency_check) {
5204
if ((mask == NULL) || (*mask == NULL)) {
5205
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5206
} else {
5207
unsigned proc;
5208
int num_procs = 0;
5209
5210
KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
5211
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5212
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5213
}
5214
if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
5215
continue;
5216
}
5217
num_procs++;
5218
}
5219
if (num_procs == 0) {
5220
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5221
}
5222
5223
#if KMP_GROUP_AFFINITY
5224
if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
5225
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
5226
}
5227
#endif /* KMP_GROUP_AFFINITY */
5228
}
5229
}
5230
5231
th = __kmp_threads[gtid];
5232
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5233
retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5234
if (retval == 0) {
5235
KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
5236
}
5237
5238
th->th.th_current_place = KMP_PLACE_UNDEFINED;
5239
th->th.th_new_place = KMP_PLACE_UNDEFINED;
5240
th->th.th_first_place = 0;
5241
th->th.th_last_place = __kmp_affinity.num_masks - 1;
5242
5243
// Turn off 4.0 affinity for the current tread at this parallel level.
5244
th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
5245
5246
return retval;
5247
}
5248
5249
int __kmp_aux_get_affinity(void **mask) {
5250
int gtid;
5251
int retval;
5252
#if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5253
kmp_info_t *th;
5254
#endif
5255
if (!KMP_AFFINITY_CAPABLE()) {
5256
return -1;
5257
}
5258
5259
gtid = __kmp_entry_gtid();
5260
#if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG
5261
th = __kmp_threads[gtid];
5262
#else
5263
(void)gtid; // unused variable
5264
#endif
5265
KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
5266
5267
KA_TRACE(
5268
1000, (""); {
5269
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5270
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5271
th->th.th_affin_mask);
5272
__kmp_printf(
5273
"kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
5274
buf);
5275
});
5276
5277
if (__kmp_env_consistency_check) {
5278
if ((mask == NULL) || (*mask == NULL)) {
5279
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
5280
}
5281
}
5282
5283
#if !KMP_OS_WINDOWS && !KMP_OS_AIX
5284
5285
retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
5286
KA_TRACE(
5287
1000, (""); {
5288
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5289
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5290
(kmp_affin_mask_t *)(*mask));
5291
__kmp_printf(
5292
"kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
5293
buf);
5294
});
5295
return retval;
5296
5297
#else
5298
(void)retval;
5299
5300
KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
5301
return 0;
5302
5303
#endif /* !KMP_OS_WINDOWS && !KMP_OS_AIX */
5304
}
5305
5306
int __kmp_aux_get_affinity_max_proc() {
5307
if (!KMP_AFFINITY_CAPABLE()) {
5308
return 0;
5309
}
5310
#if KMP_GROUP_AFFINITY
5311
if (__kmp_num_proc_groups > 1) {
5312
return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
5313
}
5314
#endif
5315
return __kmp_xproc;
5316
}
5317
5318
int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
5319
if (!KMP_AFFINITY_CAPABLE()) {
5320
return -1;
5321
}
5322
5323
KA_TRACE(
5324
1000, (""); {
5325
int gtid = __kmp_entry_gtid();
5326
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5327
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5328
(kmp_affin_mask_t *)(*mask));
5329
__kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
5330
"affinity mask for thread %d = %s\n",
5331
proc, gtid, buf);
5332
});
5333
5334
if (__kmp_env_consistency_check) {
5335
if ((mask == NULL) || (*mask == NULL)) {
5336
KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5337
}
5338
}
5339
5340
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5341
return -1;
5342
}
5343
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5344
return -2;
5345
}
5346
5347
KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5348
return 0;
5349
}
5350
5351
int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5352
if (!KMP_AFFINITY_CAPABLE()) {
5353
return -1;
5354
}
5355
5356
KA_TRACE(
5357
1000, (""); {
5358
int gtid = __kmp_entry_gtid();
5359
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5360
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5361
(kmp_affin_mask_t *)(*mask));
5362
__kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5363
"affinity mask for thread %d = %s\n",
5364
proc, gtid, buf);
5365
});
5366
5367
if (__kmp_env_consistency_check) {
5368
if ((mask == NULL) || (*mask == NULL)) {
5369
KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5370
}
5371
}
5372
5373
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5374
return -1;
5375
}
5376
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5377
return -2;
5378
}
5379
5380
KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5381
return 0;
5382
}
5383
5384
int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5385
if (!KMP_AFFINITY_CAPABLE()) {
5386
return -1;
5387
}
5388
5389
KA_TRACE(
5390
1000, (""); {
5391
int gtid = __kmp_entry_gtid();
5392
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5393
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5394
(kmp_affin_mask_t *)(*mask));
5395
__kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5396
"affinity mask for thread %d = %s\n",
5397
proc, gtid, buf);
5398
});
5399
5400
if (__kmp_env_consistency_check) {
5401
if ((mask == NULL) || (*mask == NULL)) {
5402
KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5403
}
5404
}
5405
5406
if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5407
return -1;
5408
}
5409
if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5410
return 0;
5411
}
5412
5413
return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5414
}
5415
5416
#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
5417
// Returns first os proc id with ATOM core
5418
int __kmp_get_first_osid_with_ecore(void) {
5419
int low = 0;
5420
int high = __kmp_topology->get_num_hw_threads() - 1;
5421
int mid = 0;
5422
while (high - low > 1) {
5423
mid = (high + low) / 2;
5424
if (__kmp_topology->at(mid).attrs.get_core_type() ==
5425
KMP_HW_CORE_TYPE_CORE) {
5426
low = mid + 1;
5427
} else {
5428
high = mid;
5429
}
5430
}
5431
if (__kmp_topology->at(mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) {
5432
return mid;
5433
}
5434
return -1;
5435
}
5436
#endif
5437
5438
// Dynamic affinity settings - Affinity balanced
5439
void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5440
KMP_DEBUG_ASSERT(th);
5441
bool fine_gran = true;
5442
int tid = th->th.th_info.ds.ds_tid;
5443
const char *env_var = "KMP_AFFINITY";
5444
5445
// Do not perform balanced affinity for the hidden helper threads
5446
if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
5447
return;
5448
5449
switch (__kmp_affinity.gran) {
5450
case KMP_HW_THREAD:
5451
break;
5452
case KMP_HW_CORE:
5453
if (__kmp_nThreadsPerCore > 1) {
5454
fine_gran = false;
5455
}
5456
break;
5457
case KMP_HW_SOCKET:
5458
if (nCoresPerPkg > 1) {
5459
fine_gran = false;
5460
}
5461
break;
5462
default:
5463
fine_gran = false;
5464
}
5465
5466
if (__kmp_topology->is_uniform()) {
5467
int coreID;
5468
int threadID;
5469
// Number of hyper threads per core in HT machine
5470
int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5471
// Number of cores
5472
int ncores = __kmp_ncores;
5473
if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5474
__kmp_nth_per_core = __kmp_avail_proc / nPackages;
5475
ncores = nPackages;
5476
}
5477
// How many threads will be bound to each core
5478
int chunk = nthreads / ncores;
5479
// How many cores will have an additional thread bound to it - "big cores"
5480
int big_cores = nthreads % ncores;
5481
// Number of threads on the big cores
5482
int big_nth = (chunk + 1) * big_cores;
5483
if (tid < big_nth) {
5484
coreID = tid / (chunk + 1);
5485
threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5486
} else { // tid >= big_nth
5487
coreID = (tid - big_cores) / chunk;
5488
threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5489
}
5490
KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5491
"Illegal set affinity operation when not capable");
5492
5493
kmp_affin_mask_t *mask = th->th.th_affin_mask;
5494
KMP_CPU_ZERO(mask);
5495
5496
if (fine_gran) {
5497
int osID =
5498
__kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
5499
KMP_CPU_SET(osID, mask);
5500
} else {
5501
for (int i = 0; i < __kmp_nth_per_core; i++) {
5502
int osID;
5503
osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
5504
KMP_CPU_SET(osID, mask);
5505
}
5506
}
5507
if (__kmp_affinity.flags.verbose) {
5508
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5509
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5510
KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5511
tid, buf);
5512
}
5513
__kmp_affinity_get_thread_topology_info(th);
5514
__kmp_set_system_affinity(mask, TRUE);
5515
} else { // Non-uniform topology
5516
5517
kmp_affin_mask_t *mask = th->th.th_affin_mask;
5518
KMP_CPU_ZERO(mask);
5519
5520
int core_level =
5521
__kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
5522
int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
5523
__kmp_aff_depth - 1, core_level);
5524
int nth_per_core = __kmp_affinity_max_proc_per_core(
5525
__kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5526
5527
// For performance gain consider the special case nthreads ==
5528
// __kmp_avail_proc
5529
if (nthreads == __kmp_avail_proc) {
5530
if (fine_gran) {
5531
int osID = __kmp_topology->at(tid).os_id;
5532
KMP_CPU_SET(osID, mask);
5533
} else {
5534
int core =
5535
__kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5536
for (int i = 0; i < __kmp_avail_proc; i++) {
5537
int osID = __kmp_topology->at(i).os_id;
5538
if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5539
core) {
5540
KMP_CPU_SET(osID, mask);
5541
}
5542
}
5543
}
5544
} else if (nthreads <= ncores) {
5545
5546
int core = 0;
5547
for (int i = 0; i < ncores; i++) {
5548
// Check if this core from procarr[] is in the mask
5549
int in_mask = 0;
5550
for (int j = 0; j < nth_per_core; j++) {
5551
if (procarr[i * nth_per_core + j] != -1) {
5552
in_mask = 1;
5553
break;
5554
}
5555
}
5556
if (in_mask) {
5557
if (tid == core) {
5558
for (int j = 0; j < nth_per_core; j++) {
5559
int osID = procarr[i * nth_per_core + j];
5560
if (osID != -1) {
5561
KMP_CPU_SET(osID, mask);
5562
// For fine granularity it is enough to set the first available
5563
// osID for this core
5564
if (fine_gran) {
5565
break;
5566
}
5567
}
5568
}
5569
break;
5570
} else {
5571
core++;
5572
}
5573
}
5574
}
5575
} else { // nthreads > ncores
5576
// Array to save the number of processors at each core
5577
int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5578
// Array to save the number of cores with "x" available processors;
5579
int *ncores_with_x_procs =
5580
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5581
// Array to save the number of cores with # procs from x to nth_per_core
5582
int *ncores_with_x_to_max_procs =
5583
(int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5584
5585
for (int i = 0; i <= nth_per_core; i++) {
5586
ncores_with_x_procs[i] = 0;
5587
ncores_with_x_to_max_procs[i] = 0;
5588
}
5589
5590
for (int i = 0; i < ncores; i++) {
5591
int cnt = 0;
5592
for (int j = 0; j < nth_per_core; j++) {
5593
if (procarr[i * nth_per_core + j] != -1) {
5594
cnt++;
5595
}
5596
}
5597
nproc_at_core[i] = cnt;
5598
ncores_with_x_procs[cnt]++;
5599
}
5600
5601
for (int i = 0; i <= nth_per_core; i++) {
5602
for (int j = i; j <= nth_per_core; j++) {
5603
ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5604
}
5605
}
5606
5607
// Max number of processors
5608
int nproc = nth_per_core * ncores;
5609
// An array to keep number of threads per each context
5610
int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5611
for (int i = 0; i < nproc; i++) {
5612
newarr[i] = 0;
5613
}
5614
5615
int nth = nthreads;
5616
int flag = 0;
5617
while (nth > 0) {
5618
for (int j = 1; j <= nth_per_core; j++) {
5619
int cnt = ncores_with_x_to_max_procs[j];
5620
for (int i = 0; i < ncores; i++) {
5621
// Skip the core with 0 processors
5622
if (nproc_at_core[i] == 0) {
5623
continue;
5624
}
5625
for (int k = 0; k < nth_per_core; k++) {
5626
if (procarr[i * nth_per_core + k] != -1) {
5627
if (newarr[i * nth_per_core + k] == 0) {
5628
newarr[i * nth_per_core + k] = 1;
5629
cnt--;
5630
nth--;
5631
break;
5632
} else {
5633
if (flag != 0) {
5634
newarr[i * nth_per_core + k]++;
5635
cnt--;
5636
nth--;
5637
break;
5638
}
5639
}
5640
}
5641
}
5642
if (cnt == 0 || nth == 0) {
5643
break;
5644
}
5645
}
5646
if (nth == 0) {
5647
break;
5648
}
5649
}
5650
flag = 1;
5651
}
5652
int sum = 0;
5653
for (int i = 0; i < nproc; i++) {
5654
sum += newarr[i];
5655
if (sum > tid) {
5656
if (fine_gran) {
5657
int osID = procarr[i];
5658
KMP_CPU_SET(osID, mask);
5659
} else {
5660
int coreID = i / nth_per_core;
5661
for (int ii = 0; ii < nth_per_core; ii++) {
5662
int osID = procarr[coreID * nth_per_core + ii];
5663
if (osID != -1) {
5664
KMP_CPU_SET(osID, mask);
5665
}
5666
}
5667
}
5668
break;
5669
}
5670
}
5671
__kmp_free(newarr);
5672
}
5673
5674
if (__kmp_affinity.flags.verbose) {
5675
char buf[KMP_AFFIN_MASK_PRINT_LEN];
5676
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5677
KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5678
tid, buf);
5679
}
5680
__kmp_affinity_get_thread_topology_info(th);
5681
__kmp_set_system_affinity(mask, TRUE);
5682
}
5683
}
5684
5685
#if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
5686
KMP_OS_AIX
5687
// We don't need this entry for Windows because
5688
// there is GetProcessAffinityMask() api
5689
//
5690
// The intended usage is indicated by these steps:
5691
// 1) The user gets the current affinity mask
5692
// 2) Then sets the affinity by calling this function
5693
// 3) Error check the return value
5694
// 4) Use non-OpenMP parallelization
5695
// 5) Reset the affinity to what was stored in step 1)
5696
#ifdef __cplusplus
5697
extern "C"
5698
#endif
5699
int
5700
kmp_set_thread_affinity_mask_initial()
5701
// the function returns 0 on success,
5702
// -1 if we cannot bind thread
5703
// >0 (errno) if an error happened during binding
5704
{
5705
int gtid = __kmp_get_gtid();
5706
if (gtid < 0) {
5707
// Do not touch non-omp threads
5708
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5709
"non-omp thread, returning\n"));
5710
return -1;
5711
}
5712
if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5713
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5714
"affinity not initialized, returning\n"));
5715
return -1;
5716
}
5717
KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5718
"set full mask for thread %d\n",
5719
gtid));
5720
KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5721
#if KMP_OS_AIX
5722
return bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY);
5723
#else
5724
return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5725
#endif
5726
}
5727
#endif
5728
5729
#endif // KMP_AFFINITY_SUPPORTED
5730
5731