Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/openmp/runtime/src/kmp_lock.h
35258 views
1
/*
2
* kmp_lock.h -- lock header file
3
*/
4
5
//===----------------------------------------------------------------------===//
6
//
7
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8
// See https://llvm.org/LICENSE.txt for license information.
9
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef KMP_LOCK_H
14
#define KMP_LOCK_H
15
16
#include <limits.h> // CHAR_BIT
17
#include <stddef.h> // offsetof
18
19
#include "kmp_debug.h"
20
#include "kmp_os.h"
21
22
#ifdef __cplusplus
23
#include <atomic>
24
25
extern "C" {
26
#endif // __cplusplus
27
28
// ----------------------------------------------------------------------------
29
// Have to copy these definitions from kmp.h because kmp.h cannot be included
30
// due to circular dependencies. Will undef these at end of file.
31
32
#define KMP_PAD(type, sz) \
33
(sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
34
#define KMP_GTID_DNE (-2)
35
36
// Forward declaration of ident and ident_t
37
38
struct ident;
39
typedef struct ident ident_t;
40
41
// End of copied code.
42
// ----------------------------------------------------------------------------
43
44
// We need to know the size of the area we can assume that the compiler(s)
45
// allocated for objects of type omp_lock_t and omp_nest_lock_t. The Intel
46
// compiler always allocates a pointer-sized area, as does visual studio.
47
//
48
// gcc however, only allocates 4 bytes for regular locks, even on 64-bit
49
// intel archs. It allocates at least 8 bytes for nested lock (more on
50
// recent versions), but we are bounded by the pointer-sized chunks that
51
// the Intel compiler allocates.
52
53
#if (KMP_OS_LINUX || KMP_OS_AIX) && defined(KMP_GOMP_COMPAT)
54
#define OMP_LOCK_T_SIZE sizeof(int)
55
#define OMP_NEST_LOCK_T_SIZE sizeof(void *)
56
#else
57
#define OMP_LOCK_T_SIZE sizeof(void *)
58
#define OMP_NEST_LOCK_T_SIZE sizeof(void *)
59
#endif
60
61
// The Intel compiler allocates a 32-byte chunk for a critical section.
62
// Both gcc and visual studio only allocate enough space for a pointer.
63
// Sometimes we know that the space was allocated by the Intel compiler.
64
#define OMP_CRITICAL_SIZE sizeof(void *)
65
#define INTEL_CRITICAL_SIZE 32
66
67
// lock flags
68
typedef kmp_uint32 kmp_lock_flags_t;
69
70
#define kmp_lf_critical_section 1
71
72
// When a lock table is used, the indices are of kmp_lock_index_t
73
typedef kmp_uint32 kmp_lock_index_t;
74
75
// When memory allocated for locks are on the lock pool (free list),
76
// it is treated as structs of this type.
77
struct kmp_lock_pool {
78
union kmp_user_lock *next;
79
kmp_lock_index_t index;
80
};
81
82
typedef struct kmp_lock_pool kmp_lock_pool_t;
83
84
extern void __kmp_validate_locks(void);
85
86
// ----------------------------------------------------------------------------
87
// There are 5 lock implementations:
88
// 1. Test and set locks.
89
// 2. futex locks (Linux* OS on x86 and
90
// Intel(R) Many Integrated Core Architecture)
91
// 3. Ticket (Lamport bakery) locks.
92
// 4. Queuing locks (with separate spin fields).
93
// 5. DRPA (Dynamically Reconfigurable Distributed Polling Area) locks
94
//
95
// and 3 lock purposes:
96
// 1. Bootstrap locks -- Used for a few locks available at library
97
// startup-shutdown time.
98
// These do not require non-negative global thread ID's.
99
// 2. Internal RTL locks -- Used everywhere else in the RTL
100
// 3. User locks (includes critical sections)
101
// ----------------------------------------------------------------------------
102
103
// ============================================================================
104
// Lock implementations.
105
//
106
// Test and set locks.
107
//
108
// Non-nested test and set locks differ from the other lock kinds (except
109
// futex) in that we use the memory allocated by the compiler for the lock,
110
// rather than a pointer to it.
111
//
112
// On lin32, lin_32e, and win_32, the space allocated may be as small as 4
113
// bytes, so we have to use a lock table for nested locks, and avoid accessing
114
// the depth_locked field for non-nested locks.
115
//
116
// Information normally available to the tools, such as lock location, lock
117
// usage (normal lock vs. critical section), etc. is not available with test and
118
// set locks.
119
// ----------------------------------------------------------------------------
120
121
struct kmp_base_tas_lock {
122
// KMP_LOCK_FREE(tas) => unlocked; locked: (gtid+1) of owning thread
123
#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) && \
124
__LP64__
125
// Flip the ordering of the high and low 32-bit member to be consistent
126
// with the memory layout of the address in 64-bit big-endian.
127
kmp_int32 depth_locked; // depth locked, for nested locks only
128
std::atomic<kmp_int32> poll;
129
#else
130
std::atomic<kmp_int32> poll;
131
kmp_int32 depth_locked; // depth locked, for nested locks only
132
#endif
133
};
134
135
typedef struct kmp_base_tas_lock kmp_base_tas_lock_t;
136
137
union kmp_tas_lock {
138
kmp_base_tas_lock_t lk;
139
kmp_lock_pool_t pool; // make certain struct is large enough
140
double lk_align; // use worst case alignment; no cache line padding
141
};
142
143
typedef union kmp_tas_lock kmp_tas_lock_t;
144
145
// Static initializer for test and set lock variables. Usage:
146
// kmp_tas_lock_t xlock = KMP_TAS_LOCK_INITIALIZER( xlock );
147
#define KMP_TAS_LOCK_INITIALIZER(lock) \
148
{ \
149
{ KMP_LOCK_FREE(tas), 0 } \
150
}
151
152
extern int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
153
extern int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
154
extern int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
155
extern void __kmp_init_tas_lock(kmp_tas_lock_t *lck);
156
extern void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck);
157
158
extern int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
159
extern int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
160
extern int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
161
extern void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck);
162
extern void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck);
163
164
#define KMP_LOCK_RELEASED 1
165
#define KMP_LOCK_STILL_HELD 0
166
#define KMP_LOCK_ACQUIRED_FIRST 1
167
#define KMP_LOCK_ACQUIRED_NEXT 0
168
#ifndef KMP_USE_FUTEX
169
#define KMP_USE_FUTEX \
170
(KMP_OS_LINUX && \
171
(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64))
172
#endif
173
#if KMP_USE_FUTEX
174
175
// ----------------------------------------------------------------------------
176
// futex locks. futex locks are only available on Linux* OS.
177
//
178
// Like non-nested test and set lock, non-nested futex locks use the memory
179
// allocated by the compiler for the lock, rather than a pointer to it.
180
//
181
// Information normally available to the tools, such as lock location, lock
182
// usage (normal lock vs. critical section), etc. is not available with test and
183
// set locks. With non-nested futex locks, the lock owner is not even available.
184
// ----------------------------------------------------------------------------
185
186
struct kmp_base_futex_lock {
187
volatile kmp_int32 poll; // KMP_LOCK_FREE(futex) => unlocked
188
// 2*(gtid+1) of owning thread, 0 if unlocked
189
// locked: (gtid+1) of owning thread
190
kmp_int32 depth_locked; // depth locked, for nested locks only
191
};
192
193
typedef struct kmp_base_futex_lock kmp_base_futex_lock_t;
194
195
union kmp_futex_lock {
196
kmp_base_futex_lock_t lk;
197
kmp_lock_pool_t pool; // make certain struct is large enough
198
double lk_align; // use worst case alignment
199
// no cache line padding
200
};
201
202
typedef union kmp_futex_lock kmp_futex_lock_t;
203
204
// Static initializer for futex lock variables. Usage:
205
// kmp_futex_lock_t xlock = KMP_FUTEX_LOCK_INITIALIZER( xlock );
206
#define KMP_FUTEX_LOCK_INITIALIZER(lock) \
207
{ \
208
{ KMP_LOCK_FREE(futex), 0 } \
209
}
210
211
extern int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
212
extern int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
213
extern int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
214
extern void __kmp_init_futex_lock(kmp_futex_lock_t *lck);
215
extern void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck);
216
217
extern int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck,
218
kmp_int32 gtid);
219
extern int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
220
extern int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck,
221
kmp_int32 gtid);
222
extern void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck);
223
extern void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck);
224
225
#endif // KMP_USE_FUTEX
226
227
// ----------------------------------------------------------------------------
228
// Ticket locks.
229
230
#ifdef __cplusplus
231
232
#ifdef _MSC_VER
233
// MSVC won't allow use of std::atomic<> in a union since it has non-trivial
234
// copy constructor.
235
236
struct kmp_base_ticket_lock {
237
// `initialized' must be the first entry in the lock data structure!
238
std::atomic_bool initialized;
239
volatile union kmp_ticket_lock *self; // points to the lock union
240
ident_t const *location; // Source code location of omp_init_lock().
241
std::atomic_uint
242
next_ticket; // ticket number to give to next thread which acquires
243
std::atomic_uint now_serving; // ticket number for thread which holds the lock
244
std::atomic_int owner_id; // (gtid+1) of owning thread, 0 if unlocked
245
std::atomic_int depth_locked; // depth locked, for nested locks only
246
kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
247
};
248
#else
249
struct kmp_base_ticket_lock {
250
// `initialized' must be the first entry in the lock data structure!
251
std::atomic<bool> initialized;
252
volatile union kmp_ticket_lock *self; // points to the lock union
253
ident_t const *location; // Source code location of omp_init_lock().
254
std::atomic<unsigned>
255
next_ticket; // ticket number to give to next thread which acquires
256
std::atomic<unsigned>
257
now_serving; // ticket number for thread which holds the lock
258
std::atomic<int> owner_id; // (gtid+1) of owning thread, 0 if unlocked
259
std::atomic<int> depth_locked; // depth locked, for nested locks only
260
kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
261
};
262
#endif
263
264
#else // __cplusplus
265
266
struct kmp_base_ticket_lock;
267
268
#endif // !__cplusplus
269
270
typedef struct kmp_base_ticket_lock kmp_base_ticket_lock_t;
271
272
union KMP_ALIGN_CACHE kmp_ticket_lock {
273
kmp_base_ticket_lock_t
274
lk; // This field must be first to allow static initializing.
275
kmp_lock_pool_t pool;
276
double lk_align; // use worst case alignment
277
char lk_pad[KMP_PAD(kmp_base_ticket_lock_t, CACHE_LINE)];
278
};
279
280
typedef union kmp_ticket_lock kmp_ticket_lock_t;
281
282
// Static initializer for simple ticket lock variables. Usage:
283
// kmp_ticket_lock_t xlock = KMP_TICKET_LOCK_INITIALIZER( xlock );
284
// Note the macro argument. It is important to make var properly initialized.
285
#define KMP_TICKET_LOCK_INITIALIZER(lock) \
286
{ \
287
{ true, &(lock), NULL, 0U, 0U, 0, -1 } \
288
}
289
290
extern int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
291
extern int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
292
extern int __kmp_test_ticket_lock_with_cheks(kmp_ticket_lock_t *lck,
293
kmp_int32 gtid);
294
extern int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
295
extern void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck);
296
extern void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck);
297
298
extern int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck,
299
kmp_int32 gtid);
300
extern int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck,
301
kmp_int32 gtid);
302
extern int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck,
303
kmp_int32 gtid);
304
extern void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck);
305
extern void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck);
306
307
// ----------------------------------------------------------------------------
308
// Queuing locks.
309
310
#if KMP_USE_ADAPTIVE_LOCKS
311
312
struct kmp_adaptive_lock_info;
313
314
typedef struct kmp_adaptive_lock_info kmp_adaptive_lock_info_t;
315
316
#if KMP_DEBUG_ADAPTIVE_LOCKS
317
318
struct kmp_adaptive_lock_statistics {
319
/* So we can get stats from locks that haven't been destroyed. */
320
kmp_adaptive_lock_info_t *next;
321
kmp_adaptive_lock_info_t *prev;
322
323
/* Other statistics */
324
kmp_uint32 successfulSpeculations;
325
kmp_uint32 hardFailedSpeculations;
326
kmp_uint32 softFailedSpeculations;
327
kmp_uint32 nonSpeculativeAcquires;
328
kmp_uint32 nonSpeculativeAcquireAttempts;
329
kmp_uint32 lemmingYields;
330
};
331
332
typedef struct kmp_adaptive_lock_statistics kmp_adaptive_lock_statistics_t;
333
334
extern void __kmp_print_speculative_stats();
335
extern void __kmp_init_speculative_stats();
336
337
#endif // KMP_DEBUG_ADAPTIVE_LOCKS
338
339
struct kmp_adaptive_lock_info {
340
/* Values used for adaptivity.
341
Although these are accessed from multiple threads we don't access them
342
atomically, because if we miss updates it probably doesn't matter much. (It
343
just affects our decision about whether to try speculation on the lock). */
344
kmp_uint32 volatile badness;
345
kmp_uint32 volatile acquire_attempts;
346
/* Parameters of the lock. */
347
kmp_uint32 max_badness;
348
kmp_uint32 max_soft_retries;
349
350
#if KMP_DEBUG_ADAPTIVE_LOCKS
351
kmp_adaptive_lock_statistics_t volatile stats;
352
#endif
353
};
354
355
#endif // KMP_USE_ADAPTIVE_LOCKS
356
357
struct kmp_base_queuing_lock {
358
359
// `initialized' must be the first entry in the lock data structure!
360
volatile union kmp_queuing_lock
361
*initialized; // Points to the lock union if in initialized state.
362
363
ident_t const *location; // Source code location of omp_init_lock().
364
365
KMP_ALIGN(8) // tail_id must be 8-byte aligned!
366
367
volatile kmp_int32
368
tail_id; // (gtid+1) of thread at tail of wait queue, 0 if empty
369
// Must be no padding here since head/tail used in 8-byte CAS
370
volatile kmp_int32
371
head_id; // (gtid+1) of thread at head of wait queue, 0 if empty
372
// Decl order assumes little endian
373
// bakery-style lock
374
volatile kmp_uint32
375
next_ticket; // ticket number to give to next thread which acquires
376
volatile kmp_uint32
377
now_serving; // ticket number for thread which holds the lock
378
volatile kmp_int32 owner_id; // (gtid+1) of owning thread, 0 if unlocked
379
kmp_int32 depth_locked; // depth locked, for nested locks only
380
381
kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
382
};
383
384
typedef struct kmp_base_queuing_lock kmp_base_queuing_lock_t;
385
386
KMP_BUILD_ASSERT(offsetof(kmp_base_queuing_lock_t, tail_id) % 8 == 0);
387
388
union KMP_ALIGN_CACHE kmp_queuing_lock {
389
kmp_base_queuing_lock_t
390
lk; // This field must be first to allow static initializing.
391
kmp_lock_pool_t pool;
392
double lk_align; // use worst case alignment
393
char lk_pad[KMP_PAD(kmp_base_queuing_lock_t, CACHE_LINE)];
394
};
395
396
typedef union kmp_queuing_lock kmp_queuing_lock_t;
397
398
extern int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
399
extern int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
400
extern int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
401
extern void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck);
402
extern void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck);
403
404
extern int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck,
405
kmp_int32 gtid);
406
extern int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck,
407
kmp_int32 gtid);
408
extern int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck,
409
kmp_int32 gtid);
410
extern void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck);
411
extern void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck);
412
413
#if KMP_USE_ADAPTIVE_LOCKS
414
415
// ----------------------------------------------------------------------------
416
// Adaptive locks.
417
struct kmp_base_adaptive_lock {
418
kmp_base_queuing_lock qlk;
419
KMP_ALIGN(CACHE_LINE)
420
kmp_adaptive_lock_info_t
421
adaptive; // Information for the speculative adaptive lock
422
};
423
424
typedef struct kmp_base_adaptive_lock kmp_base_adaptive_lock_t;
425
426
union KMP_ALIGN_CACHE kmp_adaptive_lock {
427
kmp_base_adaptive_lock_t lk;
428
kmp_lock_pool_t pool;
429
double lk_align;
430
char lk_pad[KMP_PAD(kmp_base_adaptive_lock_t, CACHE_LINE)];
431
};
432
typedef union kmp_adaptive_lock kmp_adaptive_lock_t;
433
434
#define GET_QLK_PTR(l) ((kmp_queuing_lock_t *)&(l)->lk.qlk)
435
436
#endif // KMP_USE_ADAPTIVE_LOCKS
437
438
// ----------------------------------------------------------------------------
439
// DRDPA ticket locks.
440
struct kmp_base_drdpa_lock {
441
// All of the fields on the first cache line are only written when
442
// initializing or reconfiguring the lock. These are relatively rare
443
// operations, so data from the first cache line will usually stay resident in
444
// the cache of each thread trying to acquire the lock.
445
//
446
// initialized must be the first entry in the lock data structure!
447
KMP_ALIGN_CACHE
448
449
volatile union kmp_drdpa_lock
450
*initialized; // points to the lock union if in initialized state
451
ident_t const *location; // Source code location of omp_init_lock().
452
std::atomic<std::atomic<kmp_uint64> *> polls;
453
std::atomic<kmp_uint64> mask; // is 2**num_polls-1 for mod op
454
kmp_uint64 cleanup_ticket; // thread with cleanup ticket
455
std::atomic<kmp_uint64> *old_polls; // will deallocate old_polls
456
kmp_uint32 num_polls; // must be power of 2
457
458
// next_ticket it needs to exist in a separate cache line, as it is
459
// invalidated every time a thread takes a new ticket.
460
KMP_ALIGN_CACHE
461
462
std::atomic<kmp_uint64> next_ticket;
463
464
// now_serving is used to store our ticket value while we hold the lock. It
465
// has a slightly different meaning in the DRDPA ticket locks (where it is
466
// written by the acquiring thread) than it does in the simple ticket locks
467
// (where it is written by the releasing thread).
468
//
469
// Since now_serving is only read and written in the critical section,
470
// it is non-volatile, but it needs to exist on a separate cache line,
471
// as it is invalidated at every lock acquire.
472
//
473
// Likewise, the vars used for nested locks (owner_id and depth_locked) are
474
// only written by the thread owning the lock, so they are put in this cache
475
// line. owner_id is read by other threads, so it must be declared volatile.
476
KMP_ALIGN_CACHE
477
kmp_uint64 now_serving; // doesn't have to be volatile
478
volatile kmp_uint32 owner_id; // (gtid+1) of owning thread, 0 if unlocked
479
kmp_int32 depth_locked; // depth locked
480
kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
481
};
482
483
typedef struct kmp_base_drdpa_lock kmp_base_drdpa_lock_t;
484
485
union KMP_ALIGN_CACHE kmp_drdpa_lock {
486
kmp_base_drdpa_lock_t
487
lk; // This field must be first to allow static initializing. */
488
kmp_lock_pool_t pool;
489
double lk_align; // use worst case alignment
490
char lk_pad[KMP_PAD(kmp_base_drdpa_lock_t, CACHE_LINE)];
491
};
492
493
typedef union kmp_drdpa_lock kmp_drdpa_lock_t;
494
495
extern int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
496
extern int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
497
extern int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
498
extern void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck);
499
extern void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck);
500
501
extern int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck,
502
kmp_int32 gtid);
503
extern int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
504
extern int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck,
505
kmp_int32 gtid);
506
extern void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck);
507
extern void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck);
508
509
// ============================================================================
510
// Lock purposes.
511
// ============================================================================
512
513
// Bootstrap locks.
514
//
515
// Bootstrap locks -- very few locks used at library initialization time.
516
// Bootstrap locks are currently implemented as ticket locks.
517
// They could also be implemented as test and set lock, but cannot be
518
// implemented with other lock kinds as they require gtids which are not
519
// available at initialization time.
520
521
typedef kmp_ticket_lock_t kmp_bootstrap_lock_t;
522
523
#define KMP_BOOTSTRAP_LOCK_INITIALIZER(lock) KMP_TICKET_LOCK_INITIALIZER((lock))
524
#define KMP_BOOTSTRAP_LOCK_INIT(lock) \
525
kmp_bootstrap_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock)
526
527
static inline int __kmp_acquire_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
528
return __kmp_acquire_ticket_lock(lck, KMP_GTID_DNE);
529
}
530
531
static inline int __kmp_test_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
532
return __kmp_test_ticket_lock(lck, KMP_GTID_DNE);
533
}
534
535
static inline void __kmp_release_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
536
__kmp_release_ticket_lock(lck, KMP_GTID_DNE);
537
}
538
539
static inline void __kmp_init_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
540
__kmp_init_ticket_lock(lck);
541
}
542
543
static inline void __kmp_destroy_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
544
__kmp_destroy_ticket_lock(lck);
545
}
546
547
// Internal RTL locks.
548
//
549
// Internal RTL locks are also implemented as ticket locks, for now.
550
//
551
// FIXME - We should go through and figure out which lock kind works best for
552
// each internal lock, and use the type declaration and function calls for
553
// that explicit lock kind (and get rid of this section).
554
555
typedef kmp_ticket_lock_t kmp_lock_t;
556
557
#define KMP_LOCK_INIT(lock) kmp_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock)
558
559
static inline int __kmp_acquire_lock(kmp_lock_t *lck, kmp_int32 gtid) {
560
return __kmp_acquire_ticket_lock(lck, gtid);
561
}
562
563
static inline int __kmp_test_lock(kmp_lock_t *lck, kmp_int32 gtid) {
564
return __kmp_test_ticket_lock(lck, gtid);
565
}
566
567
static inline void __kmp_release_lock(kmp_lock_t *lck, kmp_int32 gtid) {
568
__kmp_release_ticket_lock(lck, gtid);
569
}
570
571
static inline void __kmp_init_lock(kmp_lock_t *lck) {
572
__kmp_init_ticket_lock(lck);
573
}
574
575
static inline void __kmp_destroy_lock(kmp_lock_t *lck) {
576
__kmp_destroy_ticket_lock(lck);
577
}
578
579
// User locks.
580
//
581
// Do not allocate objects of type union kmp_user_lock!!! This will waste space
582
// unless __kmp_user_lock_kind == lk_drdpa. Instead, check the value of
583
// __kmp_user_lock_kind and allocate objects of the type of the appropriate
584
// union member, and cast their addresses to kmp_user_lock_p.
585
586
enum kmp_lock_kind {
587
lk_default = 0,
588
lk_tas,
589
#if KMP_USE_FUTEX
590
lk_futex,
591
#endif
592
#if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX
593
lk_hle,
594
lk_rtm_queuing,
595
lk_rtm_spin,
596
#endif
597
lk_ticket,
598
lk_queuing,
599
lk_drdpa,
600
#if KMP_USE_ADAPTIVE_LOCKS
601
lk_adaptive
602
#endif // KMP_USE_ADAPTIVE_LOCKS
603
};
604
605
typedef enum kmp_lock_kind kmp_lock_kind_t;
606
607
extern kmp_lock_kind_t __kmp_user_lock_kind;
608
609
union kmp_user_lock {
610
kmp_tas_lock_t tas;
611
#if KMP_USE_FUTEX
612
kmp_futex_lock_t futex;
613
#endif
614
kmp_ticket_lock_t ticket;
615
kmp_queuing_lock_t queuing;
616
kmp_drdpa_lock_t drdpa;
617
#if KMP_USE_ADAPTIVE_LOCKS
618
kmp_adaptive_lock_t adaptive;
619
#endif // KMP_USE_ADAPTIVE_LOCKS
620
kmp_lock_pool_t pool;
621
};
622
623
typedef union kmp_user_lock *kmp_user_lock_p;
624
625
#if !KMP_USE_DYNAMIC_LOCK
626
627
extern size_t __kmp_base_user_lock_size;
628
extern size_t __kmp_user_lock_size;
629
630
extern kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck);
631
632
static inline kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck) {
633
KMP_DEBUG_ASSERT(__kmp_get_user_lock_owner_ != NULL);
634
return (*__kmp_get_user_lock_owner_)(lck);
635
}
636
637
extern int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
638
kmp_int32 gtid);
639
640
#if KMP_OS_LINUX && \
641
(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
642
643
#define __kmp_acquire_user_lock_with_checks(lck, gtid) \
644
if (__kmp_user_lock_kind == lk_tas) { \
645
if (__kmp_env_consistency_check) { \
646
char const *const func = "omp_set_lock"; \
647
if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && \
648
lck->tas.lk.depth_locked != -1) { \
649
KMP_FATAL(LockNestableUsedAsSimple, func); \
650
} \
651
if ((gtid >= 0) && (lck->tas.lk.poll - 1 == gtid)) { \
652
KMP_FATAL(LockIsAlreadyOwned, func); \
653
} \
654
} \
655
if (lck->tas.lk.poll != 0 || \
656
!__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) { \
657
kmp_uint32 spins; \
658
kmp_uint64 time; \
659
KMP_FSYNC_PREPARE(lck); \
660
KMP_INIT_YIELD(spins); \
661
KMP_INIT_BACKOFF(time); \
662
do { \
663
KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); \
664
} while ( \
665
lck->tas.lk.poll != 0 || \
666
!__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); \
667
} \
668
KMP_FSYNC_ACQUIRED(lck); \
669
} else { \
670
KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL); \
671
(*__kmp_acquire_user_lock_with_checks_)(lck, gtid); \
672
}
673
674
#else
675
static inline int __kmp_acquire_user_lock_with_checks(kmp_user_lock_p lck,
676
kmp_int32 gtid) {
677
KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL);
678
return (*__kmp_acquire_user_lock_with_checks_)(lck, gtid);
679
}
680
#endif
681
682
extern int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
683
kmp_int32 gtid);
684
685
#if KMP_OS_LINUX && \
686
(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
687
688
#include "kmp_i18n.h" /* AC: KMP_FATAL definition */
689
extern int __kmp_env_consistency_check; /* AC: copy from kmp.h here */
690
static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck,
691
kmp_int32 gtid) {
692
if (__kmp_user_lock_kind == lk_tas) {
693
if (__kmp_env_consistency_check) {
694
char const *const func = "omp_test_lock";
695
if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
696
lck->tas.lk.depth_locked != -1) {
697
KMP_FATAL(LockNestableUsedAsSimple, func);
698
}
699
}
700
return ((lck->tas.lk.poll == 0) &&
701
__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));
702
} else {
703
KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL);
704
return (*__kmp_test_user_lock_with_checks_)(lck, gtid);
705
}
706
}
707
#else
708
static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck,
709
kmp_int32 gtid) {
710
KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL);
711
return (*__kmp_test_user_lock_with_checks_)(lck, gtid);
712
}
713
#endif
714
715
extern int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
716
kmp_int32 gtid);
717
718
static inline void __kmp_release_user_lock_with_checks(kmp_user_lock_p lck,
719
kmp_int32 gtid) {
720
KMP_DEBUG_ASSERT(__kmp_release_user_lock_with_checks_ != NULL);
721
(*__kmp_release_user_lock_with_checks_)(lck, gtid);
722
}
723
724
extern void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck);
725
726
static inline void __kmp_init_user_lock_with_checks(kmp_user_lock_p lck) {
727
KMP_DEBUG_ASSERT(__kmp_init_user_lock_with_checks_ != NULL);
728
(*__kmp_init_user_lock_with_checks_)(lck);
729
}
730
731
// We need a non-checking version of destroy lock for when the RTL is
732
// doing the cleanup as it can't always tell if the lock is nested or not.
733
extern void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck);
734
735
static inline void __kmp_destroy_user_lock(kmp_user_lock_p lck) {
736
KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_ != NULL);
737
(*__kmp_destroy_user_lock_)(lck);
738
}
739
740
extern void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck);
741
742
static inline void __kmp_destroy_user_lock_with_checks(kmp_user_lock_p lck) {
743
KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_with_checks_ != NULL);
744
(*__kmp_destroy_user_lock_with_checks_)(lck);
745
}
746
747
extern int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
748
kmp_int32 gtid);
749
750
#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
751
752
#define __kmp_acquire_nested_user_lock_with_checks(lck, gtid, depth) \
753
if (__kmp_user_lock_kind == lk_tas) { \
754
if (__kmp_env_consistency_check) { \
755
char const *const func = "omp_set_nest_lock"; \
756
if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) && \
757
lck->tas.lk.depth_locked == -1) { \
758
KMP_FATAL(LockSimpleUsedAsNestable, func); \
759
} \
760
} \
761
if (lck->tas.lk.poll - 1 == gtid) { \
762
lck->tas.lk.depth_locked += 1; \
763
*depth = KMP_LOCK_ACQUIRED_NEXT; \
764
} else { \
765
if ((lck->tas.lk.poll != 0) || \
766
!__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) { \
767
kmp_uint32 spins; \
768
kmp_uint64 time; \
769
KMP_FSYNC_PREPARE(lck); \
770
KMP_INIT_YIELD(spins); \
771
KMP_INIT_BACKOFF(time); \
772
do { \
773
KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); \
774
} while ( \
775
(lck->tas.lk.poll != 0) || \
776
!__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); \
777
} \
778
lck->tas.lk.depth_locked = 1; \
779
*depth = KMP_LOCK_ACQUIRED_FIRST; \
780
} \
781
KMP_FSYNC_ACQUIRED(lck); \
782
} else { \
783
KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL); \
784
*depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid); \
785
}
786
787
#else
788
static inline void
789
__kmp_acquire_nested_user_lock_with_checks(kmp_user_lock_p lck, kmp_int32 gtid,
790
int *depth) {
791
KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL);
792
*depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid);
793
}
794
#endif
795
796
extern int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
797
kmp_int32 gtid);
798
799
#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
800
static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,
801
kmp_int32 gtid) {
802
if (__kmp_user_lock_kind == lk_tas) {
803
int retval;
804
if (__kmp_env_consistency_check) {
805
char const *const func = "omp_test_nest_lock";
806
if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) &&
807
lck->tas.lk.depth_locked == -1) {
808
KMP_FATAL(LockSimpleUsedAsNestable, func);
809
}
810
}
811
KMP_DEBUG_ASSERT(gtid >= 0);
812
if (lck->tas.lk.poll - 1 ==
813
gtid) { /* __kmp_get_tas_lock_owner( lck ) == gtid */
814
return ++lck->tas.lk.depth_locked; /* same owner, depth increased */
815
}
816
retval = ((lck->tas.lk.poll == 0) &&
817
__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));
818
if (retval) {
819
KMP_MB();
820
lck->tas.lk.depth_locked = 1;
821
}
822
return retval;
823
} else {
824
KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL);
825
return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid);
826
}
827
}
828
#else
829
static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,
830
kmp_int32 gtid) {
831
KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL);
832
return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid);
833
}
834
#endif
835
836
extern int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
837
kmp_int32 gtid);
838
839
static inline int
840
__kmp_release_nested_user_lock_with_checks(kmp_user_lock_p lck,
841
kmp_int32 gtid) {
842
KMP_DEBUG_ASSERT(__kmp_release_nested_user_lock_with_checks_ != NULL);
843
return (*__kmp_release_nested_user_lock_with_checks_)(lck, gtid);
844
}
845
846
extern void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck);
847
848
static inline void
849
__kmp_init_nested_user_lock_with_checks(kmp_user_lock_p lck) {
850
KMP_DEBUG_ASSERT(__kmp_init_nested_user_lock_with_checks_ != NULL);
851
(*__kmp_init_nested_user_lock_with_checks_)(lck);
852
}
853
854
extern void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck);
855
856
static inline void
857
__kmp_destroy_nested_user_lock_with_checks(kmp_user_lock_p lck) {
858
KMP_DEBUG_ASSERT(__kmp_destroy_nested_user_lock_with_checks_ != NULL);
859
(*__kmp_destroy_nested_user_lock_with_checks_)(lck);
860
}
861
862
// user lock functions which do not necessarily exist for all lock kinds.
863
//
864
// The "set" functions usually have wrapper routines that check for a NULL set
865
// function pointer and call it if non-NULL.
866
//
867
// In some cases, it makes sense to have a "get" wrapper function check for a
868
// NULL get function pointer and return NULL / invalid value / error code if
869
// the function pointer is NULL.
870
//
871
// In other cases, the calling code really should differentiate between an
872
// unimplemented function and one that is implemented but returning NULL /
873
// invalid value. If this is the case, no get function wrapper exists.
874
875
extern int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck);
876
877
// no set function; fields set during local allocation
878
879
extern const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck);
880
881
static inline const ident_t *__kmp_get_user_lock_location(kmp_user_lock_p lck) {
882
if (__kmp_get_user_lock_location_ != NULL) {
883
return (*__kmp_get_user_lock_location_)(lck);
884
} else {
885
return NULL;
886
}
887
}
888
889
extern void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
890
const ident_t *loc);
891
892
static inline void __kmp_set_user_lock_location(kmp_user_lock_p lck,
893
const ident_t *loc) {
894
if (__kmp_set_user_lock_location_ != NULL) {
895
(*__kmp_set_user_lock_location_)(lck, loc);
896
}
897
}
898
899
extern kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck);
900
901
extern void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
902
kmp_lock_flags_t flags);
903
904
static inline void __kmp_set_user_lock_flags(kmp_user_lock_p lck,
905
kmp_lock_flags_t flags) {
906
if (__kmp_set_user_lock_flags_ != NULL) {
907
(*__kmp_set_user_lock_flags_)(lck, flags);
908
}
909
}
910
911
// The function which sets up all of the vtbl pointers for kmp_user_lock_t.
912
extern void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind);
913
914
// Macros for binding user lock functions.
915
#define KMP_BIND_USER_LOCK_TEMPLATE(nest, kind, suffix) \
916
{ \
917
__kmp_acquire##nest##user_lock_with_checks_ = (int (*)( \
918
kmp_user_lock_p, kmp_int32))__kmp_acquire##nest##kind##_##suffix; \
919
__kmp_release##nest##user_lock_with_checks_ = (int (*)( \
920
kmp_user_lock_p, kmp_int32))__kmp_release##nest##kind##_##suffix; \
921
__kmp_test##nest##user_lock_with_checks_ = (int (*)( \
922
kmp_user_lock_p, kmp_int32))__kmp_test##nest##kind##_##suffix; \
923
__kmp_init##nest##user_lock_with_checks_ = \
924
(void (*)(kmp_user_lock_p))__kmp_init##nest##kind##_##suffix; \
925
__kmp_destroy##nest##user_lock_with_checks_ = \
926
(void (*)(kmp_user_lock_p))__kmp_destroy##nest##kind##_##suffix; \
927
}
928
929
#define KMP_BIND_USER_LOCK(kind) KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock)
930
#define KMP_BIND_USER_LOCK_WITH_CHECKS(kind) \
931
KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock_with_checks)
932
#define KMP_BIND_NESTED_USER_LOCK(kind) \
933
KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock)
934
#define KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(kind) \
935
KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock_with_checks)
936
937
// User lock table & lock allocation
938
/* On 64-bit Linux* OS (and OS X*) GNU compiler allocates only 4 bytems memory
939
for lock variable, which is not enough to store a pointer, so we have to use
940
lock indexes instead of pointers and maintain lock table to map indexes to
941
pointers.
942
943
944
Note: The first element of the table is not a pointer to lock! It is a
945
pointer to previously allocated table (or NULL if it is the first table).
946
947
Usage:
948
949
if ( OMP_LOCK_T_SIZE < sizeof( <lock> ) ) { // or OMP_NEST_LOCK_T_SIZE
950
Lock table is fully utilized. User locks are indexes, so table is used on
951
user lock operation.
952
Note: it may be the case (lin_32) that we don't need to use a lock
953
table for regular locks, but do need the table for nested locks.
954
}
955
else {
956
Lock table initialized but not actually used.
957
}
958
*/
959
960
struct kmp_lock_table {
961
kmp_lock_index_t used; // Number of used elements
962
kmp_lock_index_t allocated; // Number of allocated elements
963
kmp_user_lock_p *table; // Lock table.
964
};
965
966
typedef struct kmp_lock_table kmp_lock_table_t;
967
968
extern kmp_lock_table_t __kmp_user_lock_table;
969
extern kmp_user_lock_p __kmp_lock_pool;
970
971
struct kmp_block_of_locks {
972
struct kmp_block_of_locks *next_block;
973
void *locks;
974
};
975
976
typedef struct kmp_block_of_locks kmp_block_of_locks_t;
977
978
extern kmp_block_of_locks_t *__kmp_lock_blocks;
979
extern int __kmp_num_locks_in_block;
980
981
extern kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock,
982
kmp_int32 gtid,
983
kmp_lock_flags_t flags);
984
extern void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
985
kmp_user_lock_p lck);
986
extern kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock,
987
char const *func);
988
extern void __kmp_cleanup_user_locks();
989
990
#define KMP_CHECK_USER_LOCK_INIT() \
991
{ \
992
if (!TCR_4(__kmp_init_user_locks)) { \
993
__kmp_acquire_bootstrap_lock(&__kmp_initz_lock); \
994
if (!TCR_4(__kmp_init_user_locks)) { \
995
TCW_4(__kmp_init_user_locks, TRUE); \
996
} \
997
__kmp_release_bootstrap_lock(&__kmp_initz_lock); \
998
} \
999
}
1000
1001
#endif // KMP_USE_DYNAMIC_LOCK
1002
1003
#undef KMP_PAD
1004
#undef KMP_GTID_DNE
1005
1006
#if KMP_USE_DYNAMIC_LOCK
1007
// KMP_USE_DYNAMIC_LOCK enables dynamic dispatch of lock functions without
1008
// breaking the current compatibility. Essential functionality of this new code
1009
// is dynamic dispatch, but it also implements (or enables implementation of)
1010
// hinted user lock and critical section which will be part of OMP 4.5 soon.
1011
//
1012
// Lock type can be decided at creation time (i.e., lock initialization), and
1013
// subsequent lock function call on the created lock object requires type
1014
// extraction and call through jump table using the extracted type. This type
1015
// information is stored in two different ways depending on the size of the lock
1016
// object, and we differentiate lock types by this size requirement - direct and
1017
// indirect locks.
1018
//
1019
// Direct locks:
1020
// A direct lock object fits into the space created by the compiler for an
1021
// omp_lock_t object, and TAS/Futex lock falls into this category. We use low
1022
// one byte of the lock object as the storage for the lock type, and appropriate
1023
// bit operation is required to access the data meaningful to the lock
1024
// algorithms. Also, to differentiate direct lock from indirect lock, 1 is
1025
// written to LSB of the lock object. The newly introduced "hle" lock is also a
1026
// direct lock.
1027
//
1028
// Indirect locks:
1029
// An indirect lock object requires more space than the compiler-generated
1030
// space, and it should be allocated from heap. Depending on the size of the
1031
// compiler-generated space for the lock (i.e., size of omp_lock_t), this
1032
// omp_lock_t object stores either the address of the heap-allocated indirect
1033
// lock (void * fits in the object) or an index to the indirect lock table entry
1034
// that holds the address. Ticket/Queuing/DRDPA/Adaptive lock falls into this
1035
// category, and the newly introduced "rtm" lock is also an indirect lock which
1036
// was implemented on top of the Queuing lock. When the omp_lock_t object holds
1037
// an index (not lock address), 0 is written to LSB to differentiate the lock
1038
// from a direct lock, and the remaining part is the actual index to the
1039
// indirect lock table.
1040
1041
#include <stdint.h> // for uintptr_t
1042
1043
// Shortcuts
1044
#define KMP_USE_INLINED_TAS \
1045
(KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)) && 1
1046
#define KMP_USE_INLINED_FUTEX KMP_USE_FUTEX && 0
1047
1048
// List of lock definitions; all nested locks are indirect locks.
1049
// hle lock is xchg lock prefixed with XACQUIRE/XRELEASE.
1050
// All nested locks are indirect lock types.
1051
#if KMP_USE_TSX
1052
#if KMP_USE_FUTEX
1053
#define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a) m(hle, a) m(rtm_spin, a)
1054
#define KMP_FOREACH_I_LOCK(m, a) \
1055
m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm_queuing, a) \
1056
m(nested_tas, a) m(nested_futex, a) m(nested_ticket, a) \
1057
m(nested_queuing, a) m(nested_drdpa, a)
1058
#else
1059
#define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(hle, a) m(rtm_spin, a)
1060
#define KMP_FOREACH_I_LOCK(m, a) \
1061
m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm_queuing, a) \
1062
m(nested_tas, a) m(nested_ticket, a) m(nested_queuing, a) \
1063
m(nested_drdpa, a)
1064
#endif // KMP_USE_FUTEX
1065
#define KMP_LAST_D_LOCK lockseq_rtm_spin
1066
#else
1067
#if KMP_USE_FUTEX
1068
#define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a)
1069
#define KMP_FOREACH_I_LOCK(m, a) \
1070
m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_futex, a) \
1071
m(nested_ticket, a) m(nested_queuing, a) m(nested_drdpa, a)
1072
#define KMP_LAST_D_LOCK lockseq_futex
1073
#else
1074
#define KMP_FOREACH_D_LOCK(m, a) m(tas, a)
1075
#define KMP_FOREACH_I_LOCK(m, a) \
1076
m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_ticket, a) \
1077
m(nested_queuing, a) m(nested_drdpa, a)
1078
#define KMP_LAST_D_LOCK lockseq_tas
1079
#endif // KMP_USE_FUTEX
1080
#endif // KMP_USE_TSX
1081
1082
// Information used in dynamic dispatch
1083
#define KMP_LOCK_SHIFT \
1084
8 // number of low bits to be used as tag for direct locks
1085
#define KMP_FIRST_D_LOCK lockseq_tas
1086
#define KMP_FIRST_I_LOCK lockseq_ticket
1087
#define KMP_LAST_I_LOCK lockseq_nested_drdpa
1088
#define KMP_NUM_I_LOCKS \
1089
(locktag_nested_drdpa + 1) // number of indirect lock types
1090
1091
// Base type for dynamic locks.
1092
typedef kmp_uint32 kmp_dyna_lock_t;
1093
1094
// Lock sequence that enumerates all lock kinds. Always make this enumeration
1095
// consistent with kmp_lockseq_t in the include directory.
1096
typedef enum {
1097
lockseq_indirect = 0,
1098
#define expand_seq(l, a) lockseq_##l,
1099
KMP_FOREACH_D_LOCK(expand_seq, 0) KMP_FOREACH_I_LOCK(expand_seq, 0)
1100
#undef expand_seq
1101
} kmp_dyna_lockseq_t;
1102
1103
// Enumerates indirect lock tags.
1104
typedef enum {
1105
#define expand_tag(l, a) locktag_##l,
1106
KMP_FOREACH_I_LOCK(expand_tag, 0)
1107
#undef expand_tag
1108
} kmp_indirect_locktag_t;
1109
1110
// Utility macros that extract information from lock sequences.
1111
#define KMP_IS_D_LOCK(seq) \
1112
((seq) >= KMP_FIRST_D_LOCK && (seq) <= KMP_LAST_D_LOCK)
1113
#define KMP_IS_I_LOCK(seq) \
1114
((seq) >= KMP_FIRST_I_LOCK && (seq) <= KMP_LAST_I_LOCK)
1115
#define KMP_GET_I_TAG(seq) (kmp_indirect_locktag_t)((seq)-KMP_FIRST_I_LOCK)
1116
#define KMP_GET_D_TAG(seq) ((seq) << 1 | 1)
1117
1118
// Enumerates direct lock tags starting from indirect tag.
1119
typedef enum {
1120
#define expand_tag(l, a) locktag_##l = KMP_GET_D_TAG(lockseq_##l),
1121
KMP_FOREACH_D_LOCK(expand_tag, 0)
1122
#undef expand_tag
1123
} kmp_direct_locktag_t;
1124
1125
// Indirect lock type
1126
typedef struct {
1127
kmp_user_lock_p lock;
1128
kmp_indirect_locktag_t type;
1129
} kmp_indirect_lock_t;
1130
1131
// Function tables for direct locks. Set/unset/test differentiate functions
1132
// with/without consistency checking.
1133
extern void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t);
1134
extern void (**__kmp_direct_destroy)(kmp_dyna_lock_t *);
1135
extern int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32);
1136
extern int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32);
1137
extern int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32);
1138
1139
// Function tables for indirect locks. Set/unset/test differentiate functions
1140
// with/without consistency checking.
1141
extern void (*__kmp_indirect_init[])(kmp_user_lock_p);
1142
extern void (**__kmp_indirect_destroy)(kmp_user_lock_p);
1143
extern int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32);
1144
extern int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32);
1145
extern int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32);
1146
1147
// Extracts direct lock tag from a user lock pointer
1148
#define KMP_EXTRACT_D_TAG(l) \
1149
((kmp_dyna_lock_t)((kmp_base_tas_lock_t *)(l))->poll & \
1150
((1 << KMP_LOCK_SHIFT) - 1) & \
1151
-((kmp_dyna_lock_t)((kmp_tas_lock_t *)(l))->lk.poll & 1))
1152
1153
// Extracts indirect lock index from a user lock pointer
1154
#define KMP_EXTRACT_I_INDEX(l) \
1155
((kmp_lock_index_t)((kmp_base_tas_lock_t *)(l))->poll >> 1)
1156
1157
// Returns function pointer to the direct lock function with l (kmp_dyna_lock_t
1158
// *) and op (operation type).
1159
#define KMP_D_LOCK_FUNC(l, op) __kmp_direct_##op[KMP_EXTRACT_D_TAG(l)]
1160
1161
// Returns function pointer to the indirect lock function with l
1162
// (kmp_indirect_lock_t *) and op (operation type).
1163
#define KMP_I_LOCK_FUNC(l, op) \
1164
__kmp_indirect_##op[((kmp_indirect_lock_t *)(l))->type]
1165
1166
// Initializes a direct lock with the given lock pointer and lock sequence.
1167
#define KMP_INIT_D_LOCK(l, seq) \
1168
__kmp_direct_init[KMP_GET_D_TAG(seq)]((kmp_dyna_lock_t *)l, seq)
1169
1170
// Initializes an indirect lock with the given lock pointer and lock sequence.
1171
#define KMP_INIT_I_LOCK(l, seq) \
1172
__kmp_direct_init[0]((kmp_dyna_lock_t *)(l), seq)
1173
1174
// Returns "free" lock value for the given lock type.
1175
#define KMP_LOCK_FREE(type) (locktag_##type)
1176
1177
// Returns "busy" lock value for the given lock teyp.
1178
#define KMP_LOCK_BUSY(v, type) ((v) << KMP_LOCK_SHIFT | locktag_##type)
1179
1180
// Returns lock value after removing (shifting) lock tag.
1181
#define KMP_LOCK_STRIP(v) ((v) >> KMP_LOCK_SHIFT)
1182
1183
// Initializes global states and data structures for managing dynamic user
1184
// locks.
1185
extern void __kmp_init_dynamic_user_locks();
1186
1187
// Allocates and returns an indirect lock with the given indirect lock tag.
1188
extern kmp_indirect_lock_t *
1189
__kmp_allocate_indirect_lock(void **, kmp_int32, kmp_indirect_locktag_t);
1190
1191
// Cleans up global states and data structures for managing dynamic user locks.
1192
extern void __kmp_cleanup_indirect_user_locks();
1193
1194
// Default user lock sequence when not using hinted locks.
1195
extern kmp_dyna_lockseq_t __kmp_user_lock_seq;
1196
1197
// Jump table for "set lock location", available only for indirect locks.
1198
extern void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
1199
const ident_t *);
1200
#define KMP_SET_I_LOCK_LOCATION(lck, loc) \
1201
{ \
1202
if (__kmp_indirect_set_location[(lck)->type] != NULL) \
1203
__kmp_indirect_set_location[(lck)->type]((lck)->lock, loc); \
1204
}
1205
1206
// Jump table for "set lock flags", available only for indirect locks.
1207
extern void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
1208
kmp_lock_flags_t);
1209
#define KMP_SET_I_LOCK_FLAGS(lck, flag) \
1210
{ \
1211
if (__kmp_indirect_set_flags[(lck)->type] != NULL) \
1212
__kmp_indirect_set_flags[(lck)->type]((lck)->lock, flag); \
1213
}
1214
1215
// Jump table for "get lock location", available only for indirect locks.
1216
extern const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
1217
kmp_user_lock_p);
1218
#define KMP_GET_I_LOCK_LOCATION(lck) \
1219
(__kmp_indirect_get_location[(lck)->type] != NULL \
1220
? __kmp_indirect_get_location[(lck)->type]((lck)->lock) \
1221
: NULL)
1222
1223
// Jump table for "get lock flags", available only for indirect locks.
1224
extern kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
1225
kmp_user_lock_p);
1226
#define KMP_GET_I_LOCK_FLAGS(lck) \
1227
(__kmp_indirect_get_flags[(lck)->type] != NULL \
1228
? __kmp_indirect_get_flags[(lck)->type]((lck)->lock) \
1229
: NULL)
1230
1231
// number of kmp_indirect_lock_t objects to be allocated together
1232
#define KMP_I_LOCK_CHUNK 1024
1233
// Keep at a power of 2 since it is used in multiplication & division
1234
KMP_BUILD_ASSERT(KMP_I_LOCK_CHUNK % 2 == 0);
1235
// number of row entries in the initial lock table
1236
#define KMP_I_LOCK_TABLE_INIT_NROW_PTRS 8
1237
1238
// Lock table for indirect locks.
1239
typedef struct kmp_indirect_lock_table {
1240
kmp_indirect_lock_t **table; // blocks of indirect locks allocated
1241
kmp_uint32 nrow_ptrs; // number *table pointer entries in table
1242
kmp_lock_index_t next; // index to the next lock to be allocated
1243
struct kmp_indirect_lock_table *next_table;
1244
} kmp_indirect_lock_table_t;
1245
1246
extern kmp_indirect_lock_table_t __kmp_i_lock_table;
1247
1248
// Returns the indirect lock associated with the given index.
1249
// Returns nullptr if no lock at given index
1250
static inline kmp_indirect_lock_t *__kmp_get_i_lock(kmp_lock_index_t idx) {
1251
kmp_indirect_lock_table_t *lock_table = &__kmp_i_lock_table;
1252
while (lock_table) {
1253
kmp_lock_index_t max_locks = lock_table->nrow_ptrs * KMP_I_LOCK_CHUNK;
1254
if (idx < max_locks) {
1255
kmp_lock_index_t row = idx / KMP_I_LOCK_CHUNK;
1256
kmp_lock_index_t col = idx % KMP_I_LOCK_CHUNK;
1257
if (!lock_table->table[row] || idx >= lock_table->next)
1258
break;
1259
return &lock_table->table[row][col];
1260
}
1261
idx -= max_locks;
1262
lock_table = lock_table->next_table;
1263
}
1264
return nullptr;
1265
}
1266
1267
// Number of locks in a lock block, which is fixed to "1" now.
1268
// TODO: No lock block implementation now. If we do support, we need to manage
1269
// lock block data structure for each indirect lock type.
1270
extern int __kmp_num_locks_in_block;
1271
1272
// Fast lock table lookup without consistency checking
1273
#define KMP_LOOKUP_I_LOCK(l) \
1274
((OMP_LOCK_T_SIZE < sizeof(void *)) \
1275
? __kmp_get_i_lock(KMP_EXTRACT_I_INDEX(l)) \
1276
: *((kmp_indirect_lock_t **)(l)))
1277
1278
// Used once in kmp_error.cpp
1279
extern kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p, kmp_uint32);
1280
1281
#else // KMP_USE_DYNAMIC_LOCK
1282
1283
#define KMP_LOCK_BUSY(v, type) (v)
1284
#define KMP_LOCK_FREE(type) 0
1285
#define KMP_LOCK_STRIP(v) (v)
1286
1287
#endif // KMP_USE_DYNAMIC_LOCK
1288
1289
// data structure for using backoff within spin locks.
1290
typedef struct {
1291
kmp_uint32 step; // current step
1292
kmp_uint32 max_backoff; // upper bound of outer delay loop
1293
kmp_uint32 min_tick; // size of inner delay loop in ticks (machine-dependent)
1294
} kmp_backoff_t;
1295
1296
// Runtime's default backoff parameters
1297
extern kmp_backoff_t __kmp_spin_backoff_params;
1298
1299
// Backoff function
1300
extern void __kmp_spin_backoff(kmp_backoff_t *);
1301
1302
#ifdef __cplusplus
1303
} // extern "C"
1304
#endif // __cplusplus
1305
1306
#endif /* KMP_LOCK_H */
1307
1308