Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/lua/src/lcode.c
35069 views
1
/*
2
** $Id: lcode.c $
3
** Code generator for Lua
4
** See Copyright Notice in lua.h
5
*/
6
7
#define lcode_c
8
#define LUA_CORE
9
10
#include "lprefix.h"
11
12
13
#include <float.h>
14
#include <limits.h>
15
#include <math.h>
16
#include <stdlib.h>
17
18
#include "lua.h"
19
20
#include "lcode.h"
21
#include "ldebug.h"
22
#include "ldo.h"
23
#include "lgc.h"
24
#include "llex.h"
25
#include "lmem.h"
26
#include "lobject.h"
27
#include "lopcodes.h"
28
#include "lparser.h"
29
#include "lstring.h"
30
#include "ltable.h"
31
#include "lvm.h"
32
33
34
/* Maximum number of registers in a Lua function (must fit in 8 bits) */
35
#define MAXREGS 255
36
37
38
/* (note that expressions VJMP also have jumps.) */
39
#define hasjumps(e) ((e)->t != (e)->f)
40
41
42
static int codesJ (FuncState *fs, OpCode o, int sj, int k);
43
44
45
46
/* semantic error */
47
l_noret luaK_semerror (LexState *ls, const char *msg) {
48
ls->t.token = 0; /* remove "near <token>" from final message */
49
luaX_syntaxerror(ls, msg);
50
}
51
52
53
/*
54
** If expression is a numeric constant, fills 'v' with its value
55
** and returns 1. Otherwise, returns 0.
56
*/
57
static int tonumeral (const expdesc *e, TValue *v) {
58
if (hasjumps(e))
59
return 0; /* not a numeral */
60
switch (e->k) {
61
case VKINT:
62
if (v) setivalue(v, e->u.ival);
63
return 1;
64
case VKFLT:
65
if (v) setfltvalue(v, e->u.nval);
66
return 1;
67
default: return 0;
68
}
69
}
70
71
72
/*
73
** Get the constant value from a constant expression
74
*/
75
static TValue *const2val (FuncState *fs, const expdesc *e) {
76
lua_assert(e->k == VCONST);
77
return &fs->ls->dyd->actvar.arr[e->u.info].k;
78
}
79
80
81
/*
82
** If expression is a constant, fills 'v' with its value
83
** and returns 1. Otherwise, returns 0.
84
*/
85
int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
86
if (hasjumps(e))
87
return 0; /* not a constant */
88
switch (e->k) {
89
case VFALSE:
90
setbfvalue(v);
91
return 1;
92
case VTRUE:
93
setbtvalue(v);
94
return 1;
95
case VNIL:
96
setnilvalue(v);
97
return 1;
98
case VKSTR: {
99
setsvalue(fs->ls->L, v, e->u.strval);
100
return 1;
101
}
102
case VCONST: {
103
setobj(fs->ls->L, v, const2val(fs, e));
104
return 1;
105
}
106
default: return tonumeral(e, v);
107
}
108
}
109
110
111
/*
112
** Return the previous instruction of the current code. If there
113
** may be a jump target between the current instruction and the
114
** previous one, return an invalid instruction (to avoid wrong
115
** optimizations).
116
*/
117
static Instruction *previousinstruction (FuncState *fs) {
118
static const Instruction invalidinstruction = ~(Instruction)0;
119
if (fs->pc > fs->lasttarget)
120
return &fs->f->code[fs->pc - 1]; /* previous instruction */
121
else
122
return cast(Instruction*, &invalidinstruction);
123
}
124
125
126
/*
127
** Create a OP_LOADNIL instruction, but try to optimize: if the previous
128
** instruction is also OP_LOADNIL and ranges are compatible, adjust
129
** range of previous instruction instead of emitting a new one. (For
130
** instance, 'local a; local b' will generate a single opcode.)
131
*/
132
void luaK_nil (FuncState *fs, int from, int n) {
133
int l = from + n - 1; /* last register to set nil */
134
Instruction *previous = previousinstruction(fs);
135
if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
136
int pfrom = GETARG_A(*previous); /* get previous range */
137
int pl = pfrom + GETARG_B(*previous);
138
if ((pfrom <= from && from <= pl + 1) ||
139
(from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
140
if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
141
if (pl > l) l = pl; /* l = max(l, pl) */
142
SETARG_A(*previous, from);
143
SETARG_B(*previous, l - from);
144
return;
145
} /* else go through */
146
}
147
luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
148
}
149
150
151
/*
152
** Gets the destination address of a jump instruction. Used to traverse
153
** a list of jumps.
154
*/
155
static int getjump (FuncState *fs, int pc) {
156
int offset = GETARG_sJ(fs->f->code[pc]);
157
if (offset == NO_JUMP) /* point to itself represents end of list */
158
return NO_JUMP; /* end of list */
159
else
160
return (pc+1)+offset; /* turn offset into absolute position */
161
}
162
163
164
/*
165
** Fix jump instruction at position 'pc' to jump to 'dest'.
166
** (Jump addresses are relative in Lua)
167
*/
168
static void fixjump (FuncState *fs, int pc, int dest) {
169
Instruction *jmp = &fs->f->code[pc];
170
int offset = dest - (pc + 1);
171
lua_assert(dest != NO_JUMP);
172
if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
173
luaX_syntaxerror(fs->ls, "control structure too long");
174
lua_assert(GET_OPCODE(*jmp) == OP_JMP);
175
SETARG_sJ(*jmp, offset);
176
}
177
178
179
/*
180
** Concatenate jump-list 'l2' into jump-list 'l1'
181
*/
182
void luaK_concat (FuncState *fs, int *l1, int l2) {
183
if (l2 == NO_JUMP) return; /* nothing to concatenate? */
184
else if (*l1 == NO_JUMP) /* no original list? */
185
*l1 = l2; /* 'l1' points to 'l2' */
186
else {
187
int list = *l1;
188
int next;
189
while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
190
list = next;
191
fixjump(fs, list, l2); /* last element links to 'l2' */
192
}
193
}
194
195
196
/*
197
** Create a jump instruction and return its position, so its destination
198
** can be fixed later (with 'fixjump').
199
*/
200
int luaK_jump (FuncState *fs) {
201
return codesJ(fs, OP_JMP, NO_JUMP, 0);
202
}
203
204
205
/*
206
** Code a 'return' instruction
207
*/
208
void luaK_ret (FuncState *fs, int first, int nret) {
209
OpCode op;
210
switch (nret) {
211
case 0: op = OP_RETURN0; break;
212
case 1: op = OP_RETURN1; break;
213
default: op = OP_RETURN; break;
214
}
215
luaK_codeABC(fs, op, first, nret + 1, 0);
216
}
217
218
219
/*
220
** Code a "conditional jump", that is, a test or comparison opcode
221
** followed by a jump. Return jump position.
222
*/
223
static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
224
luaK_codeABCk(fs, op, A, B, C, k);
225
return luaK_jump(fs);
226
}
227
228
229
/*
230
** returns current 'pc' and marks it as a jump target (to avoid wrong
231
** optimizations with consecutive instructions not in the same basic block).
232
*/
233
int luaK_getlabel (FuncState *fs) {
234
fs->lasttarget = fs->pc;
235
return fs->pc;
236
}
237
238
239
/*
240
** Returns the position of the instruction "controlling" a given
241
** jump (that is, its condition), or the jump itself if it is
242
** unconditional.
243
*/
244
static Instruction *getjumpcontrol (FuncState *fs, int pc) {
245
Instruction *pi = &fs->f->code[pc];
246
if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
247
return pi-1;
248
else
249
return pi;
250
}
251
252
253
/*
254
** Patch destination register for a TESTSET instruction.
255
** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
256
** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
257
** register. Otherwise, change instruction to a simple 'TEST' (produces
258
** no register value)
259
*/
260
static int patchtestreg (FuncState *fs, int node, int reg) {
261
Instruction *i = getjumpcontrol(fs, node);
262
if (GET_OPCODE(*i) != OP_TESTSET)
263
return 0; /* cannot patch other instructions */
264
if (reg != NO_REG && reg != GETARG_B(*i))
265
SETARG_A(*i, reg);
266
else {
267
/* no register to put value or register already has the value;
268
change instruction to simple test */
269
*i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
270
}
271
return 1;
272
}
273
274
275
/*
276
** Traverse a list of tests ensuring no one produces a value
277
*/
278
static void removevalues (FuncState *fs, int list) {
279
for (; list != NO_JUMP; list = getjump(fs, list))
280
patchtestreg(fs, list, NO_REG);
281
}
282
283
284
/*
285
** Traverse a list of tests, patching their destination address and
286
** registers: tests producing values jump to 'vtarget' (and put their
287
** values in 'reg'), other tests jump to 'dtarget'.
288
*/
289
static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
290
int dtarget) {
291
while (list != NO_JUMP) {
292
int next = getjump(fs, list);
293
if (patchtestreg(fs, list, reg))
294
fixjump(fs, list, vtarget);
295
else
296
fixjump(fs, list, dtarget); /* jump to default target */
297
list = next;
298
}
299
}
300
301
302
/*
303
** Path all jumps in 'list' to jump to 'target'.
304
** (The assert means that we cannot fix a jump to a forward address
305
** because we only know addresses once code is generated.)
306
*/
307
void luaK_patchlist (FuncState *fs, int list, int target) {
308
lua_assert(target <= fs->pc);
309
patchlistaux(fs, list, target, NO_REG, target);
310
}
311
312
313
void luaK_patchtohere (FuncState *fs, int list) {
314
int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
315
luaK_patchlist(fs, list, hr);
316
}
317
318
319
/* limit for difference between lines in relative line info. */
320
#define LIMLINEDIFF 0x80
321
322
323
/*
324
** Save line info for a new instruction. If difference from last line
325
** does not fit in a byte, of after that many instructions, save a new
326
** absolute line info; (in that case, the special value 'ABSLINEINFO'
327
** in 'lineinfo' signals the existence of this absolute information.)
328
** Otherwise, store the difference from last line in 'lineinfo'.
329
*/
330
static void savelineinfo (FuncState *fs, Proto *f, int line) {
331
int linedif = line - fs->previousline;
332
int pc = fs->pc - 1; /* last instruction coded */
333
if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
334
luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
335
f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
336
f->abslineinfo[fs->nabslineinfo].pc = pc;
337
f->abslineinfo[fs->nabslineinfo++].line = line;
338
linedif = ABSLINEINFO; /* signal that there is absolute information */
339
fs->iwthabs = 1; /* restart counter */
340
}
341
luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
342
MAX_INT, "opcodes");
343
f->lineinfo[pc] = linedif;
344
fs->previousline = line; /* last line saved */
345
}
346
347
348
/*
349
** Remove line information from the last instruction.
350
** If line information for that instruction is absolute, set 'iwthabs'
351
** above its max to force the new (replacing) instruction to have
352
** absolute line info, too.
353
*/
354
static void removelastlineinfo (FuncState *fs) {
355
Proto *f = fs->f;
356
int pc = fs->pc - 1; /* last instruction coded */
357
if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
358
fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
359
fs->iwthabs--; /* undo previous increment */
360
}
361
else { /* absolute line information */
362
lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
363
fs->nabslineinfo--; /* remove it */
364
fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
365
}
366
}
367
368
369
/*
370
** Remove the last instruction created, correcting line information
371
** accordingly.
372
*/
373
static void removelastinstruction (FuncState *fs) {
374
removelastlineinfo(fs);
375
fs->pc--;
376
}
377
378
379
/*
380
** Emit instruction 'i', checking for array sizes and saving also its
381
** line information. Return 'i' position.
382
*/
383
int luaK_code (FuncState *fs, Instruction i) {
384
Proto *f = fs->f;
385
/* put new instruction in code array */
386
luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
387
MAX_INT, "opcodes");
388
f->code[fs->pc++] = i;
389
savelineinfo(fs, f, fs->ls->lastline);
390
return fs->pc - 1; /* index of new instruction */
391
}
392
393
394
/*
395
** Format and emit an 'iABC' instruction. (Assertions check consistency
396
** of parameters versus opcode.)
397
*/
398
int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
399
lua_assert(getOpMode(o) == iABC);
400
lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
401
c <= MAXARG_C && (k & ~1) == 0);
402
return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
403
}
404
405
406
/*
407
** Format and emit an 'iABx' instruction.
408
*/
409
int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
410
lua_assert(getOpMode(o) == iABx);
411
lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
412
return luaK_code(fs, CREATE_ABx(o, a, bc));
413
}
414
415
416
/*
417
** Format and emit an 'iAsBx' instruction.
418
*/
419
static int codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
420
unsigned int b = bc + OFFSET_sBx;
421
lua_assert(getOpMode(o) == iAsBx);
422
lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
423
return luaK_code(fs, CREATE_ABx(o, a, b));
424
}
425
426
427
/*
428
** Format and emit an 'isJ' instruction.
429
*/
430
static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
431
unsigned int j = sj + OFFSET_sJ;
432
lua_assert(getOpMode(o) == isJ);
433
lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
434
return luaK_code(fs, CREATE_sJ(o, j, k));
435
}
436
437
438
/*
439
** Emit an "extra argument" instruction (format 'iAx')
440
*/
441
static int codeextraarg (FuncState *fs, int a) {
442
lua_assert(a <= MAXARG_Ax);
443
return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
444
}
445
446
447
/*
448
** Emit a "load constant" instruction, using either 'OP_LOADK'
449
** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
450
** instruction with "extra argument".
451
*/
452
static int luaK_codek (FuncState *fs, int reg, int k) {
453
if (k <= MAXARG_Bx)
454
return luaK_codeABx(fs, OP_LOADK, reg, k);
455
else {
456
int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
457
codeextraarg(fs, k);
458
return p;
459
}
460
}
461
462
463
/*
464
** Check register-stack level, keeping track of its maximum size
465
** in field 'maxstacksize'
466
*/
467
void luaK_checkstack (FuncState *fs, int n) {
468
int newstack = fs->freereg + n;
469
if (newstack > fs->f->maxstacksize) {
470
if (newstack >= MAXREGS)
471
luaX_syntaxerror(fs->ls,
472
"function or expression needs too many registers");
473
fs->f->maxstacksize = cast_byte(newstack);
474
}
475
}
476
477
478
/*
479
** Reserve 'n' registers in register stack
480
*/
481
void luaK_reserveregs (FuncState *fs, int n) {
482
luaK_checkstack(fs, n);
483
fs->freereg += n;
484
}
485
486
487
/*
488
** Free register 'reg', if it is neither a constant index nor
489
** a local variable.
490
)
491
*/
492
static void freereg (FuncState *fs, int reg) {
493
if (reg >= luaY_nvarstack(fs)) {
494
fs->freereg--;
495
lua_assert(reg == fs->freereg);
496
}
497
}
498
499
500
/*
501
** Free two registers in proper order
502
*/
503
static void freeregs (FuncState *fs, int r1, int r2) {
504
if (r1 > r2) {
505
freereg(fs, r1);
506
freereg(fs, r2);
507
}
508
else {
509
freereg(fs, r2);
510
freereg(fs, r1);
511
}
512
}
513
514
515
/*
516
** Free register used by expression 'e' (if any)
517
*/
518
static void freeexp (FuncState *fs, expdesc *e) {
519
if (e->k == VNONRELOC)
520
freereg(fs, e->u.info);
521
}
522
523
524
/*
525
** Free registers used by expressions 'e1' and 'e2' (if any) in proper
526
** order.
527
*/
528
static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
529
int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
530
int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
531
freeregs(fs, r1, r2);
532
}
533
534
535
/*
536
** Add constant 'v' to prototype's list of constants (field 'k').
537
** Use scanner's table to cache position of constants in constant list
538
** and try to reuse constants. Because some values should not be used
539
** as keys (nil cannot be a key, integer keys can collapse with float
540
** keys), the caller must provide a useful 'key' for indexing the cache.
541
** Note that all functions share the same table, so entering or exiting
542
** a function can make some indices wrong.
543
*/
544
static int addk (FuncState *fs, TValue *key, TValue *v) {
545
TValue val;
546
lua_State *L = fs->ls->L;
547
Proto *f = fs->f;
548
const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
549
int k, oldsize;
550
if (ttisinteger(idx)) { /* is there an index there? */
551
k = cast_int(ivalue(idx));
552
/* correct value? (warning: must distinguish floats from integers!) */
553
if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
554
luaV_rawequalobj(&f->k[k], v))
555
return k; /* reuse index */
556
}
557
/* constant not found; create a new entry */
558
oldsize = f->sizek;
559
k = fs->nk;
560
/* numerical value does not need GC barrier;
561
table has no metatable, so it does not need to invalidate cache */
562
setivalue(&val, k);
563
luaH_finishset(L, fs->ls->h, key, idx, &val);
564
luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
565
while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
566
setobj(L, &f->k[k], v);
567
fs->nk++;
568
luaC_barrier(L, f, v);
569
return k;
570
}
571
572
573
/*
574
** Add a string to list of constants and return its index.
575
*/
576
static int stringK (FuncState *fs, TString *s) {
577
TValue o;
578
setsvalue(fs->ls->L, &o, s);
579
return addk(fs, &o, &o); /* use string itself as key */
580
}
581
582
583
/*
584
** Add an integer to list of constants and return its index.
585
*/
586
static int luaK_intK (FuncState *fs, lua_Integer n) {
587
TValue o;
588
setivalue(&o, n);
589
return addk(fs, &o, &o); /* use integer itself as key */
590
}
591
592
/*
593
** Add a float to list of constants and return its index. Floats
594
** with integral values need a different key, to avoid collision
595
** with actual integers. To that, we add to the number its smaller
596
** power-of-two fraction that is still significant in its scale.
597
** For doubles, that would be 1/2^52.
598
** (This method is not bulletproof: there may be another float
599
** with that value, and for floats larger than 2^53 the result is
600
** still an integer. At worst, this only wastes an entry with
601
** a duplicate.)
602
*/
603
static int luaK_numberK (FuncState *fs, lua_Number r) {
604
TValue o;
605
lua_Integer ik;
606
setfltvalue(&o, r);
607
#ifndef LUA_AVOID_FLOAT
608
if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
609
return addk(fs, &o, &o); /* use number itself as key */
610
else { /* must build an alternative key */
611
const int nbm = l_floatatt(MANT_DIG);
612
const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
613
const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
614
TValue kv;
615
setfltvalue(&kv, k);
616
/* result is not an integral value, unless value is too large */
617
lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
618
l_mathop(fabs)(r) >= l_mathop(1e6));
619
return addk(fs, &kv, &o);
620
}
621
#else
622
/*
623
** When we're avoiding floats, allow any collision since floats are ints.
624
*/
625
return addk(fs, &o, &o); /* use number itself as key */
626
#endif
627
}
628
629
630
/*
631
** Add a false to list of constants and return its index.
632
*/
633
static int boolF (FuncState *fs) {
634
TValue o;
635
setbfvalue(&o);
636
return addk(fs, &o, &o); /* use boolean itself as key */
637
}
638
639
640
/*
641
** Add a true to list of constants and return its index.
642
*/
643
static int boolT (FuncState *fs) {
644
TValue o;
645
setbtvalue(&o);
646
return addk(fs, &o, &o); /* use boolean itself as key */
647
}
648
649
650
/*
651
** Add nil to list of constants and return its index.
652
*/
653
static int nilK (FuncState *fs) {
654
TValue k, v;
655
setnilvalue(&v);
656
/* cannot use nil as key; instead use table itself to represent nil */
657
sethvalue(fs->ls->L, &k, fs->ls->h);
658
return addk(fs, &k, &v);
659
}
660
661
662
/*
663
** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
664
** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
665
** overflows in the hidden addition inside 'int2sC'.
666
*/
667
static int fitsC (lua_Integer i) {
668
return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
669
}
670
671
672
/*
673
** Check whether 'i' can be stored in an 'sBx' operand.
674
*/
675
static int fitsBx (lua_Integer i) {
676
return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
677
}
678
679
680
void luaK_int (FuncState *fs, int reg, lua_Integer i) {
681
if (fitsBx(i))
682
codeAsBx(fs, OP_LOADI, reg, cast_int(i));
683
else
684
luaK_codek(fs, reg, luaK_intK(fs, i));
685
}
686
687
688
static void luaK_float (FuncState *fs, int reg, lua_Number f) {
689
lua_Integer fi;
690
if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
691
codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
692
else
693
luaK_codek(fs, reg, luaK_numberK(fs, f));
694
}
695
696
697
/*
698
** Convert a constant in 'v' into an expression description 'e'
699
*/
700
static void const2exp (TValue *v, expdesc *e) {
701
switch (ttypetag(v)) {
702
case LUA_VNUMINT:
703
e->k = VKINT; e->u.ival = ivalue(v);
704
break;
705
case LUA_VNUMFLT:
706
e->k = VKFLT; e->u.nval = fltvalue(v);
707
break;
708
case LUA_VFALSE:
709
e->k = VFALSE;
710
break;
711
case LUA_VTRUE:
712
e->k = VTRUE;
713
break;
714
case LUA_VNIL:
715
e->k = VNIL;
716
break;
717
case LUA_VSHRSTR: case LUA_VLNGSTR:
718
e->k = VKSTR; e->u.strval = tsvalue(v);
719
break;
720
default: lua_assert(0);
721
}
722
}
723
724
725
/*
726
** Fix an expression to return the number of results 'nresults'.
727
** 'e' must be a multi-ret expression (function call or vararg).
728
*/
729
void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
730
Instruction *pc = &getinstruction(fs, e);
731
if (e->k == VCALL) /* expression is an open function call? */
732
SETARG_C(*pc, nresults + 1);
733
else {
734
lua_assert(e->k == VVARARG);
735
SETARG_C(*pc, nresults + 1);
736
SETARG_A(*pc, fs->freereg);
737
luaK_reserveregs(fs, 1);
738
}
739
}
740
741
742
/*
743
** Convert a VKSTR to a VK
744
*/
745
static void str2K (FuncState *fs, expdesc *e) {
746
lua_assert(e->k == VKSTR);
747
e->u.info = stringK(fs, e->u.strval);
748
e->k = VK;
749
}
750
751
752
/*
753
** Fix an expression to return one result.
754
** If expression is not a multi-ret expression (function call or
755
** vararg), it already returns one result, so nothing needs to be done.
756
** Function calls become VNONRELOC expressions (as its result comes
757
** fixed in the base register of the call), while vararg expressions
758
** become VRELOC (as OP_VARARG puts its results where it wants).
759
** (Calls are created returning one result, so that does not need
760
** to be fixed.)
761
*/
762
void luaK_setoneret (FuncState *fs, expdesc *e) {
763
if (e->k == VCALL) { /* expression is an open function call? */
764
/* already returns 1 value */
765
lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
766
e->k = VNONRELOC; /* result has fixed position */
767
e->u.info = GETARG_A(getinstruction(fs, e));
768
}
769
else if (e->k == VVARARG) {
770
SETARG_C(getinstruction(fs, e), 2);
771
e->k = VRELOC; /* can relocate its simple result */
772
}
773
}
774
775
776
/*
777
** Ensure that expression 'e' is not a variable (nor a <const>).
778
** (Expression still may have jump lists.)
779
*/
780
void luaK_dischargevars (FuncState *fs, expdesc *e) {
781
switch (e->k) {
782
case VCONST: {
783
const2exp(const2val(fs, e), e);
784
break;
785
}
786
case VLOCAL: { /* already in a register */
787
int temp = e->u.var.ridx;
788
e->u.info = temp; /* (can't do a direct assignment; values overlap) */
789
e->k = VNONRELOC; /* becomes a non-relocatable value */
790
break;
791
}
792
case VUPVAL: { /* move value to some (pending) register */
793
e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
794
e->k = VRELOC;
795
break;
796
}
797
case VINDEXUP: {
798
e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
799
e->k = VRELOC;
800
break;
801
}
802
case VINDEXI: {
803
freereg(fs, e->u.ind.t);
804
e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
805
e->k = VRELOC;
806
break;
807
}
808
case VINDEXSTR: {
809
freereg(fs, e->u.ind.t);
810
e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
811
e->k = VRELOC;
812
break;
813
}
814
case VINDEXED: {
815
freeregs(fs, e->u.ind.t, e->u.ind.idx);
816
e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
817
e->k = VRELOC;
818
break;
819
}
820
case VVARARG: case VCALL: {
821
luaK_setoneret(fs, e);
822
break;
823
}
824
default: break; /* there is one value available (somewhere) */
825
}
826
}
827
828
829
/*
830
** Ensure expression value is in register 'reg', making 'e' a
831
** non-relocatable expression.
832
** (Expression still may have jump lists.)
833
*/
834
static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
835
luaK_dischargevars(fs, e);
836
switch (e->k) {
837
case VNIL: {
838
luaK_nil(fs, reg, 1);
839
break;
840
}
841
case VFALSE: {
842
luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
843
break;
844
}
845
case VTRUE: {
846
luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
847
break;
848
}
849
case VKSTR: {
850
str2K(fs, e);
851
} /* FALLTHROUGH */
852
case VK: {
853
luaK_codek(fs, reg, e->u.info);
854
break;
855
}
856
case VKFLT: {
857
luaK_float(fs, reg, e->u.nval);
858
break;
859
}
860
case VKINT: {
861
luaK_int(fs, reg, e->u.ival);
862
break;
863
}
864
case VRELOC: {
865
Instruction *pc = &getinstruction(fs, e);
866
SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
867
break;
868
}
869
case VNONRELOC: {
870
if (reg != e->u.info)
871
luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
872
break;
873
}
874
default: {
875
lua_assert(e->k == VJMP);
876
return; /* nothing to do... */
877
}
878
}
879
e->u.info = reg;
880
e->k = VNONRELOC;
881
}
882
883
884
/*
885
** Ensure expression value is in a register, making 'e' a
886
** non-relocatable expression.
887
** (Expression still may have jump lists.)
888
*/
889
static void discharge2anyreg (FuncState *fs, expdesc *e) {
890
if (e->k != VNONRELOC) { /* no fixed register yet? */
891
luaK_reserveregs(fs, 1); /* get a register */
892
discharge2reg(fs, e, fs->freereg-1); /* put value there */
893
}
894
}
895
896
897
static int code_loadbool (FuncState *fs, int A, OpCode op) {
898
luaK_getlabel(fs); /* those instructions may be jump targets */
899
return luaK_codeABC(fs, op, A, 0, 0);
900
}
901
902
903
/*
904
** check whether list has any jump that do not produce a value
905
** or produce an inverted value
906
*/
907
static int need_value (FuncState *fs, int list) {
908
for (; list != NO_JUMP; list = getjump(fs, list)) {
909
Instruction i = *getjumpcontrol(fs, list);
910
if (GET_OPCODE(i) != OP_TESTSET) return 1;
911
}
912
return 0; /* not found */
913
}
914
915
916
/*
917
** Ensures final expression result (which includes results from its
918
** jump lists) is in register 'reg'.
919
** If expression has jumps, need to patch these jumps either to
920
** its final position or to "load" instructions (for those tests
921
** that do not produce values).
922
*/
923
static void exp2reg (FuncState *fs, expdesc *e, int reg) {
924
discharge2reg(fs, e, reg);
925
if (e->k == VJMP) /* expression itself is a test? */
926
luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
927
if (hasjumps(e)) {
928
int final; /* position after whole expression */
929
int p_f = NO_JUMP; /* position of an eventual LOAD false */
930
int p_t = NO_JUMP; /* position of an eventual LOAD true */
931
if (need_value(fs, e->t) || need_value(fs, e->f)) {
932
int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
933
p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
934
p_t = code_loadbool(fs, reg, OP_LOADTRUE);
935
/* jump around these booleans if 'e' is not a test */
936
luaK_patchtohere(fs, fj);
937
}
938
final = luaK_getlabel(fs);
939
patchlistaux(fs, e->f, final, reg, p_f);
940
patchlistaux(fs, e->t, final, reg, p_t);
941
}
942
e->f = e->t = NO_JUMP;
943
e->u.info = reg;
944
e->k = VNONRELOC;
945
}
946
947
948
/*
949
** Ensures final expression result is in next available register.
950
*/
951
void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
952
luaK_dischargevars(fs, e);
953
freeexp(fs, e);
954
luaK_reserveregs(fs, 1);
955
exp2reg(fs, e, fs->freereg - 1);
956
}
957
958
959
/*
960
** Ensures final expression result is in some (any) register
961
** and return that register.
962
*/
963
int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
964
luaK_dischargevars(fs, e);
965
if (e->k == VNONRELOC) { /* expression already has a register? */
966
if (!hasjumps(e)) /* no jumps? */
967
return e->u.info; /* result is already in a register */
968
if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
969
exp2reg(fs, e, e->u.info); /* put final result in it */
970
return e->u.info;
971
}
972
/* else expression has jumps and cannot change its register
973
to hold the jump values, because it is a local variable.
974
Go through to the default case. */
975
}
976
luaK_exp2nextreg(fs, e); /* default: use next available register */
977
return e->u.info;
978
}
979
980
981
/*
982
** Ensures final expression result is either in a register
983
** or in an upvalue.
984
*/
985
void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
986
if (e->k != VUPVAL || hasjumps(e))
987
luaK_exp2anyreg(fs, e);
988
}
989
990
991
/*
992
** Ensures final expression result is either in a register
993
** or it is a constant.
994
*/
995
void luaK_exp2val (FuncState *fs, expdesc *e) {
996
if (e->k == VJMP || hasjumps(e))
997
luaK_exp2anyreg(fs, e);
998
else
999
luaK_dischargevars(fs, e);
1000
}
1001
1002
1003
/*
1004
** Try to make 'e' a K expression with an index in the range of R/K
1005
** indices. Return true iff succeeded.
1006
*/
1007
static int luaK_exp2K (FuncState *fs, expdesc *e) {
1008
if (!hasjumps(e)) {
1009
int info;
1010
switch (e->k) { /* move constants to 'k' */
1011
case VTRUE: info = boolT(fs); break;
1012
case VFALSE: info = boolF(fs); break;
1013
case VNIL: info = nilK(fs); break;
1014
case VKINT: info = luaK_intK(fs, e->u.ival); break;
1015
case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
1016
case VKSTR: info = stringK(fs, e->u.strval); break;
1017
case VK: info = e->u.info; break;
1018
default: return 0; /* not a constant */
1019
}
1020
if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
1021
e->k = VK; /* make expression a 'K' expression */
1022
e->u.info = info;
1023
return 1;
1024
}
1025
}
1026
/* else, expression doesn't fit; leave it unchanged */
1027
return 0;
1028
}
1029
1030
1031
/*
1032
** Ensures final expression result is in a valid R/K index
1033
** (that is, it is either in a register or in 'k' with an index
1034
** in the range of R/K indices).
1035
** Returns 1 iff expression is K.
1036
*/
1037
static int exp2RK (FuncState *fs, expdesc *e) {
1038
if (luaK_exp2K(fs, e))
1039
return 1;
1040
else { /* not a constant in the right range: put it in a register */
1041
luaK_exp2anyreg(fs, e);
1042
return 0;
1043
}
1044
}
1045
1046
1047
static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1048
expdesc *ec) {
1049
int k = exp2RK(fs, ec);
1050
luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1051
}
1052
1053
1054
/*
1055
** Generate code to store result of expression 'ex' into variable 'var'.
1056
*/
1057
void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1058
switch (var->k) {
1059
case VLOCAL: {
1060
freeexp(fs, ex);
1061
exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
1062
return;
1063
}
1064
case VUPVAL: {
1065
int e = luaK_exp2anyreg(fs, ex);
1066
luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1067
break;
1068
}
1069
case VINDEXUP: {
1070
codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1071
break;
1072
}
1073
case VINDEXI: {
1074
codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1075
break;
1076
}
1077
case VINDEXSTR: {
1078
codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1079
break;
1080
}
1081
case VINDEXED: {
1082
codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1083
break;
1084
}
1085
default: lua_assert(0); /* invalid var kind to store */
1086
}
1087
freeexp(fs, ex);
1088
}
1089
1090
1091
/*
1092
** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1093
*/
1094
void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1095
int ereg;
1096
luaK_exp2anyreg(fs, e);
1097
ereg = e->u.info; /* register where 'e' was placed */
1098
freeexp(fs, e);
1099
e->u.info = fs->freereg; /* base register for op_self */
1100
e->k = VNONRELOC; /* self expression has a fixed register */
1101
luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
1102
codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1103
freeexp(fs, key);
1104
}
1105
1106
1107
/*
1108
** Negate condition 'e' (where 'e' is a comparison).
1109
*/
1110
static void negatecondition (FuncState *fs, expdesc *e) {
1111
Instruction *pc = getjumpcontrol(fs, e->u.info);
1112
lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1113
GET_OPCODE(*pc) != OP_TEST);
1114
SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1115
}
1116
1117
1118
/*
1119
** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1120
** is true, code will jump if 'e' is true.) Return jump position.
1121
** Optimize when 'e' is 'not' something, inverting the condition
1122
** and removing the 'not'.
1123
*/
1124
static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1125
if (e->k == VRELOC) {
1126
Instruction ie = getinstruction(fs, e);
1127
if (GET_OPCODE(ie) == OP_NOT) {
1128
removelastinstruction(fs); /* remove previous OP_NOT */
1129
return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1130
}
1131
/* else go through */
1132
}
1133
discharge2anyreg(fs, e);
1134
freeexp(fs, e);
1135
return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1136
}
1137
1138
1139
/*
1140
** Emit code to go through if 'e' is true, jump otherwise.
1141
*/
1142
void luaK_goiftrue (FuncState *fs, expdesc *e) {
1143
int pc; /* pc of new jump */
1144
luaK_dischargevars(fs, e);
1145
switch (e->k) {
1146
case VJMP: { /* condition? */
1147
negatecondition(fs, e); /* jump when it is false */
1148
pc = e->u.info; /* save jump position */
1149
break;
1150
}
1151
case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1152
pc = NO_JUMP; /* always true; do nothing */
1153
break;
1154
}
1155
default: {
1156
pc = jumponcond(fs, e, 0); /* jump when false */
1157
break;
1158
}
1159
}
1160
luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
1161
luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
1162
e->t = NO_JUMP;
1163
}
1164
1165
1166
/*
1167
** Emit code to go through if 'e' is false, jump otherwise.
1168
*/
1169
void luaK_goiffalse (FuncState *fs, expdesc *e) {
1170
int pc; /* pc of new jump */
1171
luaK_dischargevars(fs, e);
1172
switch (e->k) {
1173
case VJMP: {
1174
pc = e->u.info; /* already jump if true */
1175
break;
1176
}
1177
case VNIL: case VFALSE: {
1178
pc = NO_JUMP; /* always false; do nothing */
1179
break;
1180
}
1181
default: {
1182
pc = jumponcond(fs, e, 1); /* jump if true */
1183
break;
1184
}
1185
}
1186
luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
1187
luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
1188
e->f = NO_JUMP;
1189
}
1190
1191
1192
/*
1193
** Code 'not e', doing constant folding.
1194
*/
1195
static void codenot (FuncState *fs, expdesc *e) {
1196
switch (e->k) {
1197
case VNIL: case VFALSE: {
1198
e->k = VTRUE; /* true == not nil == not false */
1199
break;
1200
}
1201
case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1202
e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
1203
break;
1204
}
1205
case VJMP: {
1206
negatecondition(fs, e);
1207
break;
1208
}
1209
case VRELOC:
1210
case VNONRELOC: {
1211
discharge2anyreg(fs, e);
1212
freeexp(fs, e);
1213
e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1214
e->k = VRELOC;
1215
break;
1216
}
1217
default: lua_assert(0); /* cannot happen */
1218
}
1219
/* interchange true and false lists */
1220
{ int temp = e->f; e->f = e->t; e->t = temp; }
1221
removevalues(fs, e->f); /* values are useless when negated */
1222
removevalues(fs, e->t);
1223
}
1224
1225
1226
/*
1227
** Check whether expression 'e' is a short literal string
1228
*/
1229
static int isKstr (FuncState *fs, expdesc *e) {
1230
return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1231
ttisshrstring(&fs->f->k[e->u.info]));
1232
}
1233
1234
/*
1235
** Check whether expression 'e' is a literal integer.
1236
*/
1237
static int isKint (expdesc *e) {
1238
return (e->k == VKINT && !hasjumps(e));
1239
}
1240
1241
1242
/*
1243
** Check whether expression 'e' is a literal integer in
1244
** proper range to fit in register C
1245
*/
1246
static int isCint (expdesc *e) {
1247
return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1248
}
1249
1250
1251
/*
1252
** Check whether expression 'e' is a literal integer in
1253
** proper range to fit in register sC
1254
*/
1255
static int isSCint (expdesc *e) {
1256
return isKint(e) && fitsC(e->u.ival);
1257
}
1258
1259
1260
/*
1261
** Check whether expression 'e' is a literal integer or float in
1262
** proper range to fit in a register (sB or sC).
1263
*/
1264
static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1265
lua_Integer i;
1266
if (e->k == VKINT)
1267
i = e->u.ival;
1268
else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1269
*isfloat = 1;
1270
else
1271
return 0; /* not a number */
1272
if (!hasjumps(e) && fitsC(i)) {
1273
*pi = int2sC(cast_int(i));
1274
return 1;
1275
}
1276
else
1277
return 0;
1278
}
1279
1280
1281
/*
1282
** Create expression 't[k]'. 't' must have its final result already in a
1283
** register or upvalue. Upvalues can only be indexed by literal strings.
1284
** Keys can be literal strings in the constant table or arbitrary
1285
** values in registers.
1286
*/
1287
void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1288
if (k->k == VKSTR)
1289
str2K(fs, k);
1290
lua_assert(!hasjumps(t) &&
1291
(t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1292
if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
1293
luaK_exp2anyreg(fs, t); /* put it in a register */
1294
if (t->k == VUPVAL) {
1295
int temp = t->u.info; /* upvalue index */
1296
lua_assert(isKstr(fs, k));
1297
t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
1298
t->u.ind.idx = k->u.info; /* literal short string */
1299
t->k = VINDEXUP;
1300
}
1301
else {
1302
/* register index of the table */
1303
t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1304
if (isKstr(fs, k)) {
1305
t->u.ind.idx = k->u.info; /* literal short string */
1306
t->k = VINDEXSTR;
1307
}
1308
else if (isCint(k)) {
1309
t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
1310
t->k = VINDEXI;
1311
}
1312
else {
1313
t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
1314
t->k = VINDEXED;
1315
}
1316
}
1317
}
1318
1319
1320
/*
1321
** Return false if folding can raise an error.
1322
** Bitwise operations need operands convertible to integers; division
1323
** operations cannot have 0 as divisor.
1324
*/
1325
static int validop (int op, TValue *v1, TValue *v2) {
1326
switch (op) {
1327
case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1328
case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
1329
lua_Integer i;
1330
return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1331
luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1332
}
1333
case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
1334
return (nvalue(v2) != 0);
1335
default: return 1; /* everything else is valid */
1336
}
1337
}
1338
1339
1340
/*
1341
** Try to "constant-fold" an operation; return 1 iff successful.
1342
** (In this case, 'e1' has the final result.)
1343
*/
1344
static int constfolding (FuncState *fs, int op, expdesc *e1,
1345
const expdesc *e2) {
1346
TValue v1, v2, res;
1347
if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1348
return 0; /* non-numeric operands or not safe to fold */
1349
luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
1350
if (ttisinteger(&res)) {
1351
e1->k = VKINT;
1352
e1->u.ival = ivalue(&res);
1353
}
1354
else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1355
lua_Number n = fltvalue(&res);
1356
if (luai_numisnan(n) || n == 0)
1357
return 0;
1358
e1->k = VKFLT;
1359
e1->u.nval = n;
1360
}
1361
return 1;
1362
}
1363
1364
1365
/*
1366
** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
1367
*/
1368
l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
1369
lua_assert(baser <= opr &&
1370
((baser == OPR_ADD && opr <= OPR_SHR) ||
1371
(baser == OPR_LT && opr <= OPR_LE)));
1372
return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
1373
}
1374
1375
1376
/*
1377
** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
1378
*/
1379
l_sinline OpCode unopr2op (UnOpr opr) {
1380
return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
1381
cast_int(OP_UNM));
1382
}
1383
1384
1385
/*
1386
** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
1387
*/
1388
l_sinline TMS binopr2TM (BinOpr opr) {
1389
lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
1390
return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
1391
}
1392
1393
1394
/*
1395
** Emit code for unary expressions that "produce values"
1396
** (everything but 'not').
1397
** Expression to produce final result will be encoded in 'e'.
1398
*/
1399
static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1400
int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
1401
freeexp(fs, e);
1402
e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
1403
e->k = VRELOC; /* all those operations are relocatable */
1404
luaK_fixline(fs, line);
1405
}
1406
1407
1408
/*
1409
** Emit code for binary expressions that "produce values"
1410
** (everything but logical operators 'and'/'or' and comparison
1411
** operators).
1412
** Expression to produce final result will be encoded in 'e1'.
1413
*/
1414
static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1415
OpCode op, int v2, int flip, int line,
1416
OpCode mmop, TMS event) {
1417
int v1 = luaK_exp2anyreg(fs, e1);
1418
int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1419
freeexps(fs, e1, e2);
1420
e1->u.info = pc;
1421
e1->k = VRELOC; /* all those operations are relocatable */
1422
luaK_fixline(fs, line);
1423
luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
1424
luaK_fixline(fs, line);
1425
}
1426
1427
1428
/*
1429
** Emit code for binary expressions that "produce values" over
1430
** two registers.
1431
*/
1432
static void codebinexpval (FuncState *fs, BinOpr opr,
1433
expdesc *e1, expdesc *e2, int line) {
1434
OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
1435
int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
1436
/* 'e1' must be already in a register or it is a constant */
1437
lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
1438
e1->k == VNONRELOC || e1->k == VRELOC);
1439
lua_assert(OP_ADD <= op && op <= OP_SHR);
1440
finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
1441
}
1442
1443
1444
/*
1445
** Code binary operators with immediate operands.
1446
*/
1447
static void codebini (FuncState *fs, OpCode op,
1448
expdesc *e1, expdesc *e2, int flip, int line,
1449
TMS event) {
1450
int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
1451
lua_assert(e2->k == VKINT);
1452
finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1453
}
1454
1455
1456
/*
1457
** Code binary operators with K operand.
1458
*/
1459
static void codebinK (FuncState *fs, BinOpr opr,
1460
expdesc *e1, expdesc *e2, int flip, int line) {
1461
TMS event = binopr2TM(opr);
1462
int v2 = e2->u.info; /* K index */
1463
OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
1464
finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1465
}
1466
1467
1468
/* Try to code a binary operator negating its second operand.
1469
** For the metamethod, 2nd operand must keep its original value.
1470
*/
1471
static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1472
OpCode op, int line, TMS event) {
1473
if (!isKint(e2))
1474
return 0; /* not an integer constant */
1475
else {
1476
lua_Integer i2 = e2->u.ival;
1477
if (!(fitsC(i2) && fitsC(-i2)))
1478
return 0; /* not in the proper range */
1479
else { /* operating a small integer constant */
1480
int v2 = cast_int(i2);
1481
finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1482
/* correct metamethod argument */
1483
SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1484
return 1; /* successfully coded */
1485
}
1486
}
1487
}
1488
1489
1490
static void swapexps (expdesc *e1, expdesc *e2) {
1491
expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
1492
}
1493
1494
1495
/*
1496
** Code binary operators with no constant operand.
1497
*/
1498
static void codebinNoK (FuncState *fs, BinOpr opr,
1499
expdesc *e1, expdesc *e2, int flip, int line) {
1500
if (flip)
1501
swapexps(e1, e2); /* back to original order */
1502
codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
1503
}
1504
1505
1506
/*
1507
** Code arithmetic operators ('+', '-', ...). If second operand is a
1508
** constant in the proper range, use variant opcodes with K operands.
1509
*/
1510
static void codearith (FuncState *fs, BinOpr opr,
1511
expdesc *e1, expdesc *e2, int flip, int line) {
1512
if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
1513
codebinK(fs, opr, e1, e2, flip, line);
1514
else /* 'e2' is neither an immediate nor a K operand */
1515
codebinNoK(fs, opr, e1, e2, flip, line);
1516
}
1517
1518
1519
/*
1520
** Code commutative operators ('+', '*'). If first operand is a
1521
** numeric constant, change order of operands to try to use an
1522
** immediate or K operator.
1523
*/
1524
static void codecommutative (FuncState *fs, BinOpr op,
1525
expdesc *e1, expdesc *e2, int line) {
1526
int flip = 0;
1527
if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
1528
swapexps(e1, e2); /* change order */
1529
flip = 1;
1530
}
1531
if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
1532
codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
1533
else
1534
codearith(fs, op, e1, e2, flip, line);
1535
}
1536
1537
1538
/*
1539
** Code bitwise operations; they are all commutative, so the function
1540
** tries to put an integer constant as the 2nd operand (a K operand).
1541
*/
1542
static void codebitwise (FuncState *fs, BinOpr opr,
1543
expdesc *e1, expdesc *e2, int line) {
1544
int flip = 0;
1545
if (e1->k == VKINT) {
1546
swapexps(e1, e2); /* 'e2' will be the constant operand */
1547
flip = 1;
1548
}
1549
if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
1550
codebinK(fs, opr, e1, e2, flip, line);
1551
else /* no constants */
1552
codebinNoK(fs, opr, e1, e2, flip, line);
1553
}
1554
1555
1556
/*
1557
** Emit code for order comparisons. When using an immediate operand,
1558
** 'isfloat' tells whether the original value was a float.
1559
*/
1560
static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1561
int r1, r2;
1562
int im;
1563
int isfloat = 0;
1564
OpCode op;
1565
if (isSCnumber(e2, &im, &isfloat)) {
1566
/* use immediate operand */
1567
r1 = luaK_exp2anyreg(fs, e1);
1568
r2 = im;
1569
op = binopr2op(opr, OPR_LT, OP_LTI);
1570
}
1571
else if (isSCnumber(e1, &im, &isfloat)) {
1572
/* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1573
r1 = luaK_exp2anyreg(fs, e2);
1574
r2 = im;
1575
op = binopr2op(opr, OPR_LT, OP_GTI);
1576
}
1577
else { /* regular case, compare two registers */
1578
r1 = luaK_exp2anyreg(fs, e1);
1579
r2 = luaK_exp2anyreg(fs, e2);
1580
op = binopr2op(opr, OPR_LT, OP_LT);
1581
}
1582
freeexps(fs, e1, e2);
1583
e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1584
e1->k = VJMP;
1585
}
1586
1587
1588
/*
1589
** Emit code for equality comparisons ('==', '~=').
1590
** 'e1' was already put as RK by 'luaK_infix'.
1591
*/
1592
static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1593
int r1, r2;
1594
int im;
1595
int isfloat = 0; /* not needed here, but kept for symmetry */
1596
OpCode op;
1597
if (e1->k != VNONRELOC) {
1598
lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1599
swapexps(e1, e2);
1600
}
1601
r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
1602
if (isSCnumber(e2, &im, &isfloat)) {
1603
op = OP_EQI;
1604
r2 = im; /* immediate operand */
1605
}
1606
else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
1607
op = OP_EQK;
1608
r2 = e2->u.info; /* constant index */
1609
}
1610
else {
1611
op = OP_EQ; /* will compare two registers */
1612
r2 = luaK_exp2anyreg(fs, e2);
1613
}
1614
freeexps(fs, e1, e2);
1615
e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1616
e1->k = VJMP;
1617
}
1618
1619
1620
/*
1621
** Apply prefix operation 'op' to expression 'e'.
1622
*/
1623
void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
1624
static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1625
luaK_dischargevars(fs, e);
1626
switch (opr) {
1627
case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
1628
if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
1629
break;
1630
/* else */ /* FALLTHROUGH */
1631
case OPR_LEN:
1632
codeunexpval(fs, unopr2op(opr), e, line);
1633
break;
1634
case OPR_NOT: codenot(fs, e); break;
1635
default: lua_assert(0);
1636
}
1637
}
1638
1639
1640
/*
1641
** Process 1st operand 'v' of binary operation 'op' before reading
1642
** 2nd operand.
1643
*/
1644
void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1645
luaK_dischargevars(fs, v);
1646
switch (op) {
1647
case OPR_AND: {
1648
luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
1649
break;
1650
}
1651
case OPR_OR: {
1652
luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
1653
break;
1654
}
1655
case OPR_CONCAT: {
1656
luaK_exp2nextreg(fs, v); /* operand must be on the stack */
1657
break;
1658
}
1659
case OPR_ADD: case OPR_SUB:
1660
case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1661
case OPR_MOD: case OPR_POW:
1662
case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1663
case OPR_SHL: case OPR_SHR: {
1664
if (!tonumeral(v, NULL))
1665
luaK_exp2anyreg(fs, v);
1666
/* else keep numeral, which may be folded or used as an immediate
1667
operand */
1668
break;
1669
}
1670
case OPR_EQ: case OPR_NE: {
1671
if (!tonumeral(v, NULL))
1672
exp2RK(fs, v);
1673
/* else keep numeral, which may be an immediate operand */
1674
break;
1675
}
1676
case OPR_LT: case OPR_LE:
1677
case OPR_GT: case OPR_GE: {
1678
int dummy, dummy2;
1679
if (!isSCnumber(v, &dummy, &dummy2))
1680
luaK_exp2anyreg(fs, v);
1681
/* else keep numeral, which may be an immediate operand */
1682
break;
1683
}
1684
default: lua_assert(0);
1685
}
1686
}
1687
1688
/*
1689
** Create code for '(e1 .. e2)'.
1690
** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1691
** because concatenation is right associative), merge both CONCATs.
1692
*/
1693
static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1694
Instruction *ie2 = previousinstruction(fs);
1695
if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
1696
int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
1697
lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1698
freeexp(fs, e2);
1699
SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
1700
SETARG_B(*ie2, n + 1); /* will concatenate one more element */
1701
}
1702
else { /* 'e2' is not a concatenation */
1703
luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
1704
freeexp(fs, e2);
1705
luaK_fixline(fs, line);
1706
}
1707
}
1708
1709
1710
/*
1711
** Finalize code for binary operation, after reading 2nd operand.
1712
*/
1713
void luaK_posfix (FuncState *fs, BinOpr opr,
1714
expdesc *e1, expdesc *e2, int line) {
1715
luaK_dischargevars(fs, e2);
1716
if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1717
return; /* done by folding */
1718
switch (opr) {
1719
case OPR_AND: {
1720
lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
1721
luaK_concat(fs, &e2->f, e1->f);
1722
*e1 = *e2;
1723
break;
1724
}
1725
case OPR_OR: {
1726
lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
1727
luaK_concat(fs, &e2->t, e1->t);
1728
*e1 = *e2;
1729
break;
1730
}
1731
case OPR_CONCAT: { /* e1 .. e2 */
1732
luaK_exp2nextreg(fs, e2);
1733
codeconcat(fs, e1, e2, line);
1734
break;
1735
}
1736
case OPR_ADD: case OPR_MUL: {
1737
codecommutative(fs, opr, e1, e2, line);
1738
break;
1739
}
1740
case OPR_SUB: {
1741
if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1742
break; /* coded as (r1 + -I) */
1743
/* ELSE */
1744
} /* FALLTHROUGH */
1745
case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1746
codearith(fs, opr, e1, e2, 0, line);
1747
break;
1748
}
1749
case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1750
codebitwise(fs, opr, e1, e2, line);
1751
break;
1752
}
1753
case OPR_SHL: {
1754
if (isSCint(e1)) {
1755
swapexps(e1, e2);
1756
codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
1757
}
1758
else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1759
/* coded as (r1 >> -I) */;
1760
}
1761
else /* regular case (two registers) */
1762
codebinexpval(fs, opr, e1, e2, line);
1763
break;
1764
}
1765
case OPR_SHR: {
1766
if (isSCint(e2))
1767
codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
1768
else /* regular case (two registers) */
1769
codebinexpval(fs, opr, e1, e2, line);
1770
break;
1771
}
1772
case OPR_EQ: case OPR_NE: {
1773
codeeq(fs, opr, e1, e2);
1774
break;
1775
}
1776
case OPR_GT: case OPR_GE: {
1777
/* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
1778
swapexps(e1, e2);
1779
opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
1780
} /* FALLTHROUGH */
1781
case OPR_LT: case OPR_LE: {
1782
codeorder(fs, opr, e1, e2);
1783
break;
1784
}
1785
default: lua_assert(0);
1786
}
1787
}
1788
1789
1790
/*
1791
** Change line information associated with current position, by removing
1792
** previous info and adding it again with new line.
1793
*/
1794
void luaK_fixline (FuncState *fs, int line) {
1795
removelastlineinfo(fs);
1796
savelineinfo(fs, fs->f, line);
1797
}
1798
1799
1800
void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1801
Instruction *inst = &fs->f->code[pc];
1802
int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
1803
int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
1804
int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
1805
int k = (extra > 0); /* true iff needs extra argument */
1806
*inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1807
*(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1808
}
1809
1810
1811
/*
1812
** Emit a SETLIST instruction.
1813
** 'base' is register that keeps table;
1814
** 'nelems' is #table plus those to be stored now;
1815
** 'tostore' is number of values (in registers 'base + 1',...) to add to
1816
** table (or LUA_MULTRET to add up to stack top).
1817
*/
1818
void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1819
lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1820
if (tostore == LUA_MULTRET)
1821
tostore = 0;
1822
if (nelems <= MAXARG_C)
1823
luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1824
else {
1825
int extra = nelems / (MAXARG_C + 1);
1826
nelems %= (MAXARG_C + 1);
1827
luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1828
codeextraarg(fs, extra);
1829
}
1830
fs->freereg = base + 1; /* free registers with list values */
1831
}
1832
1833
1834
/*
1835
** return the final target of a jump (skipping jumps to jumps)
1836
*/
1837
static int finaltarget (Instruction *code, int i) {
1838
int count;
1839
for (count = 0; count < 100; count++) { /* avoid infinite loops */
1840
Instruction pc = code[i];
1841
if (GET_OPCODE(pc) != OP_JMP)
1842
break;
1843
else
1844
i += GETARG_sJ(pc) + 1;
1845
}
1846
return i;
1847
}
1848
1849
1850
/*
1851
** Do a final pass over the code of a function, doing small peephole
1852
** optimizations and adjustments.
1853
*/
1854
void luaK_finish (FuncState *fs) {
1855
int i;
1856
Proto *p = fs->f;
1857
for (i = 0; i < fs->pc; i++) {
1858
Instruction *pc = &p->code[i];
1859
lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1860
switch (GET_OPCODE(*pc)) {
1861
case OP_RETURN0: case OP_RETURN1: {
1862
if (!(fs->needclose || p->is_vararg))
1863
break; /* no extra work */
1864
/* else use OP_RETURN to do the extra work */
1865
SET_OPCODE(*pc, OP_RETURN);
1866
} /* FALLTHROUGH */
1867
case OP_RETURN: case OP_TAILCALL: {
1868
if (fs->needclose)
1869
SETARG_k(*pc, 1); /* signal that it needs to close */
1870
if (p->is_vararg)
1871
SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
1872
break;
1873
}
1874
case OP_JMP: {
1875
int target = finaltarget(p->code, i);
1876
fixjump(fs, i, target);
1877
break;
1878
}
1879
default: break;
1880
}
1881
}
1882
}
1883
1884