Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/krb5/src/include/k5-platform.h
34879 views
1
/* -*- mode: c; indent-tabs-mode: nil -*- */
2
/* include/k5-platform.h */
3
/*
4
* Copyright 2003, 2004, 2005, 2007, 2008, 2009 Massachusetts Institute of Technology.
5
* All Rights Reserved.
6
*
7
* Export of this software from the United States of America may
8
* require a specific license from the United States Government.
9
* It is the responsibility of any person or organization contemplating
10
* export to obtain such a license before exporting.
11
*
12
* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
13
* distribute this software and its documentation for any purpose and
14
* without fee is hereby granted, provided that the above copyright
15
* notice appear in all copies and that both that copyright notice and
16
* this permission notice appear in supporting documentation, and that
17
* the name of M.I.T. not be used in advertising or publicity pertaining
18
* to distribution of the software without specific, written prior
19
* permission. Furthermore if you modify this software you must label
20
* your software as modified software and not distribute it in such a
21
* fashion that it might be confused with the original M.I.T. software.
22
* M.I.T. makes no representations about the suitability of
23
* this software for any purpose. It is provided "as is" without express
24
* or implied warranty.
25
*/
26
27
/*
28
* Some platform-dependent definitions to sync up the C support level.
29
* Some to a C99-ish level, some related utility code.
30
*
31
* Currently:
32
* + [u]int{8,16,32}_t types
33
* + 64-bit types and load/store code
34
* + SIZE_MAX
35
* + shared library init/fini hooks
36
* + consistent getpwnam/getpwuid interfaces
37
* + va_copy fudged if not provided
38
* + strlcpy/strlcat
39
* + fnmatch
40
* + [v]asprintf
41
* + strerror_r
42
* + mkstemp
43
* + zap (support function and macro)
44
* + constant time memory comparison
45
* + path manipulation
46
* + _, N_, dgettext, bindtextdomain (for localization)
47
* + getopt_long
48
* + secure_getenv
49
* + fetching filenames from a directory
50
*/
51
52
#ifndef K5_PLATFORM_H
53
#define K5_PLATFORM_H
54
55
#include "autoconf.h"
56
#include <assert.h>
57
#include <string.h>
58
#include <stdarg.h>
59
#include <stdint.h>
60
#include <limits.h>
61
#include <stdlib.h>
62
#include <stdio.h>
63
#include <fcntl.h>
64
#include <errno.h>
65
#ifdef HAVE_FNMATCH_H
66
#include <fnmatch.h>
67
#endif
68
69
#ifdef HAVE_UNISTD_H
70
#include <unistd.h>
71
#endif
72
73
#ifdef __cplusplus
74
extern "C" {
75
#endif
76
77
#ifdef _WIN32
78
#define CAN_COPY_VA_LIST
79
#endif
80
81
/* This attribute prevents unused function warnings in gcc and clang. */
82
#ifdef __GNUC__
83
#define UNUSED __attribute__((__unused__))
84
#else
85
#define UNUSED
86
#endif
87
88
#if defined(macintosh) || (defined(__MACH__) && defined(__APPLE__))
89
#include <TargetConditionals.h>
90
#endif
91
92
/* Initialization and finalization function support for libraries.
93
94
At top level, before the functions are defined or even declared:
95
MAKE_INIT_FUNCTION(init_fn);
96
MAKE_FINI_FUNCTION(fini_fn);
97
Then:
98
int init_fn(void) { ... }
99
void fini_fn(void) { if (INITIALIZER_RAN(init_fn)) ... }
100
In code, in the same file:
101
err = CALL_INIT_FUNCTION(init_fn);
102
103
To trigger or verify the initializer invocation from another file,
104
a helper function must be created.
105
106
This model handles both the load-time execution (Windows) and
107
delayed execution (pthread_once) approaches, and should be able to
108
guarantee in both cases that the init function is run once, in one
109
thread, before other stuff in the library is done; furthermore, the
110
finalization code should only run if the initialization code did.
111
(Maybe I could've made the "if INITIALIZER_RAN" test implicit, via
112
another function hidden in macros, but this is hairy enough
113
already.)
114
115
The init_fn and fini_fn names should be chosen such that any
116
exported names staring with those names, and optionally followed by
117
additional characters, fits in with any namespace constraints on
118
the library in question.
119
120
121
There's also PROGRAM_EXITING() currently always defined as zero.
122
If there's some trivial way to find out if the fini function is
123
being called because the program that the library is linked into is
124
exiting, we can just skip all the work because the resources are
125
about to be freed up anyways. Generally this is likely to be the
126
same as distinguishing whether the library was loaded dynamically
127
while the program was running, or loaded as part of program
128
startup. On most platforms, I don't think we can distinguish these
129
cases easily, and it's probably not worth expending any significant
130
effort. (Note in particular that atexit() won't do, because if the
131
library is explicitly loaded and unloaded, it would have to be able
132
to deregister the atexit callback function. Also, the system limit
133
on atexit callbacks may be small.)
134
135
136
Implementation outline:
137
138
Windows: MAKE_FINI_FUNCTION creates a symbol with a magic name that
139
is sought at library build time, and code is added to invoke the
140
function when the library is unloaded. MAKE_INIT_FUNCTION does
141
likewise, but the function is invoked when the library is loaded,
142
and an extra variable is declared to hold an error code and a "yes
143
the initializer ran" flag. CALL_INIT_FUNCTION blows up if the flag
144
isn't set, otherwise returns the error code.
145
146
UNIX: MAKE_INIT_FUNCTION creates and initializes a variable with a
147
name derived from the function name, containing a k5_once_t
148
(pthread_once_t or int), an error code, and a pointer to the
149
function. The function itself is declared static, but the
150
associated variable has external linkage. CALL_INIT_FUNCTION
151
ensures thath the function is called exactly once (pthread_once or
152
just check the flag) and returns the stored error code (or the
153
pthread_once error).
154
155
(That's the basic idea. With some debugging assert() calls and
156
such, it's a bit more complicated. And we also need to handle
157
doing the pthread test at run time on systems where that works, so
158
we use the k5_once_t stuff instead.)
159
160
UNIX, with library unloading prevented or when building static
161
libraries: we don't need to run finalizers.
162
163
UNIX, with compiler support: MAKE_FINI_FUNCTION declares the
164
function as a destructor, and the run time linker support or
165
whatever will cause it to be invoked when the library is unloaded,
166
the program ends, etc.
167
168
UNIX, with linker support: MAKE_FINI_FUNCTION creates a symbol with
169
a magic name that is sought at library build time, and linker
170
options are used to mark it as a finalization function for the
171
library. The symbol must be exported.
172
173
UNIX, no library finalization support: The finalization function
174
never runs, and we leak memory. Tough.
175
176
DELAY_INITIALIZER will be defined by the configure script if we
177
want to use k5_once instead of load-time initialization. That'll
178
be the preferred method on most systems except Windows, where we
179
have to initialize some mutexes.
180
181
182
183
184
For maximum flexibility in defining the macros, the function name
185
parameter should be a simple name, not even a macro defined as
186
another name. The function should have a unique name, and should
187
conform to whatever namespace is used by the library in question.
188
(We do have export lists, but (1) they're not used for all
189
platforms, and (2) they're not used for static libraries.)
190
191
If the macro expansion needs the function to have been declared, it
192
must include a declaration. If it is not necessary for the symbol
193
name to be exported from the object file, the macro should declare
194
it as "static". Hence the signature must exactly match "void
195
foo(void)". (ANSI C allows a static declaration followed by a
196
non-static one; the result is internal linkage.) The macro
197
expansion has to come before the function, because gcc apparently
198
won't act on "__attribute__((constructor))" if it comes after the
199
function definition.
200
201
This is going to be compiler- and environment-specific, and may
202
require some support at library build time, and/or "asm"
203
statements. But through macro expansion and auxiliary functions,
204
we should be able to handle most things except #pragma.
205
206
It's okay for this code to require that the library be built
207
with the same compiler and compiler options throughout, but
208
we shouldn't require that the library and application use the
209
same compiler.
210
211
For static libraries, we don't really care about cleanup too much,
212
since it's all memory handling and mutex allocation which will all
213
be cleaned up when the program exits. Thus, it's okay if gcc-built
214
static libraries don't play nicely with cc-built executables when
215
it comes to static constructors, just as long as it doesn't cause
216
linking to fail.
217
218
For dynamic libraries on UNIX, we'll use pthread_once-type support
219
to do delayed initialization, so if finalization can't be made to
220
work, we'll only have memory leaks in a load/use/unload cycle. If
221
anyone (like, say, the OS vendor) complains about this, they can
222
tell us how to get a shared library finalization function invoked
223
automatically.
224
225
Currently there's --disable-delayed-initialization for preventing
226
the initialization from being delayed on UNIX, but that's mainly
227
just for testing the linker options for initialization, and will
228
probably be removed at some point. */
229
230
/* Helper macros. */
231
232
# define JOIN__2_2(A,B) A ## _ ## _ ## B
233
# define JOIN__2(A,B) JOIN__2_2(A,B)
234
235
/* XXX Should test USE_LINKER_INIT_OPTION early, and if it's set,
236
always provide a function by the expected name, even if we're
237
delaying initialization. */
238
239
#if defined(DELAY_INITIALIZER)
240
241
/* Run the initialization code during program execution, at the latest
242
possible moment. This means multiple threads may be active. */
243
# include "k5-thread.h"
244
typedef struct { k5_once_t once; int error, did_run; void (*fn)(void); } k5_init_t;
245
# ifdef USE_LINKER_INIT_OPTION
246
# define MAYBE_DUMMY_INIT(NAME) \
247
void JOIN__2(NAME, auxinit) () { }
248
# else
249
# define MAYBE_DUMMY_INIT(NAME)
250
# endif
251
# ifdef __GNUC__
252
/* Do it in macro form so we get the file/line of the invocation if
253
the assertion fails. */
254
# define k5_call_init_function(I) \
255
(__extension__ ({ \
256
k5_init_t *k5int_i = (I); \
257
int k5int_err = k5_once(&k5int_i->once, k5int_i->fn); \
258
(k5int_err \
259
? k5int_err \
260
: (assert(k5int_i->did_run != 0), k5int_i->error)); \
261
}))
262
# define MAYBE_DEFINE_CALLINIT_FUNCTION
263
# else
264
# define MAYBE_DEFINE_CALLINIT_FUNCTION \
265
static inline int k5_call_init_function(k5_init_t *i) \
266
{ \
267
int err; \
268
err = k5_once(&i->once, i->fn); \
269
if (err) \
270
return err; \
271
assert (i->did_run != 0); \
272
return i->error; \
273
}
274
# endif
275
# define MAKE_INIT_FUNCTION(NAME) \
276
static int NAME(void); \
277
MAYBE_DUMMY_INIT(NAME) \
278
/* forward declaration for use in initializer */ \
279
static void JOIN__2(NAME, aux) (void); \
280
static k5_init_t JOIN__2(NAME, once) = \
281
{ K5_ONCE_INIT, 0, 0, JOIN__2(NAME, aux) }; \
282
MAYBE_DEFINE_CALLINIT_FUNCTION \
283
static void JOIN__2(NAME, aux) (void) \
284
{ \
285
JOIN__2(NAME, once).did_run = 1; \
286
JOIN__2(NAME, once).error = NAME(); \
287
} \
288
/* so ';' following macro use won't get error */ \
289
static int NAME(void)
290
# define CALL_INIT_FUNCTION(NAME) \
291
k5_call_init_function(& JOIN__2(NAME, once))
292
/* This should be called in finalization only, so we shouldn't have
293
multiple active threads mucking around in our library at this
294
point. So ignore the once_t object and just look at the flag.
295
296
XXX Could we have problems with memory coherence between processors
297
if we don't invoke mutex/once routines? Probably not, the
298
application code should already be coordinating things such that
299
the library code is not in use by this point, and memory
300
synchronization will be needed there. */
301
# define INITIALIZER_RAN(NAME) \
302
(JOIN__2(NAME, once).did_run && JOIN__2(NAME, once).error == 0)
303
304
# define PROGRAM_EXITING() (0)
305
306
#elif defined(__GNUC__) && !defined(_WIN32) && defined(CONSTRUCTOR_ATTR_WORKS)
307
308
/* Run initializer at load time, via GCC/C++ hook magic. */
309
310
# ifdef USE_LINKER_INIT_OPTION
311
/* Both gcc and linker option?? Favor gcc. */
312
# define MAYBE_DUMMY_INIT(NAME) \
313
void JOIN__2(NAME, auxinit) () { }
314
# else
315
# define MAYBE_DUMMY_INIT(NAME)
316
# endif
317
318
typedef struct { int error; unsigned char did_run; } k5_init_t;
319
# define MAKE_INIT_FUNCTION(NAME) \
320
MAYBE_DUMMY_INIT(NAME) \
321
static k5_init_t JOIN__2(NAME, ran) \
322
= { 0, 2 }; \
323
static void JOIN__2(NAME, aux)(void) \
324
__attribute__((constructor)); \
325
static int NAME(void); \
326
static void JOIN__2(NAME, aux)(void) \
327
{ \
328
JOIN__2(NAME, ran).error = NAME(); \
329
JOIN__2(NAME, ran).did_run = 3; \
330
} \
331
static int NAME(void)
332
# define CALL_INIT_FUNCTION(NAME) \
333
(JOIN__2(NAME, ran).did_run == 3 \
334
? JOIN__2(NAME, ran).error \
335
: (abort(),0))
336
# define INITIALIZER_RAN(NAME) (JOIN__2(NAME,ran).did_run == 3 && JOIN__2(NAME, ran).error == 0)
337
338
# define PROGRAM_EXITING() (0)
339
340
#elif defined(USE_LINKER_INIT_OPTION) || defined(_WIN32)
341
342
/* Run initializer at load time, via linker magic, or in the
343
case of WIN32, win_glue.c hard-coded knowledge. */
344
typedef struct { int error; unsigned char did_run; } k5_init_t;
345
# define MAKE_INIT_FUNCTION(NAME) \
346
static k5_init_t JOIN__2(NAME, ran) \
347
= { 0, 2 }; \
348
static int NAME(void); \
349
void JOIN__2(NAME, auxinit)() \
350
{ \
351
JOIN__2(NAME, ran).error = NAME(); \
352
JOIN__2(NAME, ran).did_run = 3; \
353
} \
354
static int NAME(void)
355
# define CALL_INIT_FUNCTION(NAME) \
356
(JOIN__2(NAME, ran).did_run == 3 \
357
? JOIN__2(NAME, ran).error \
358
: (abort(),0))
359
# define INITIALIZER_RAN(NAME) \
360
(JOIN__2(NAME, ran).error == 0)
361
362
# define PROGRAM_EXITING() (0)
363
364
#else
365
366
# error "Don't know how to do load-time initializers for this configuration."
367
368
# define PROGRAM_EXITING() (0)
369
370
#endif
371
372
373
374
#if defined(USE_LINKER_FINI_OPTION) || defined(_WIN32)
375
/* If we're told the linker option will be used, it doesn't really
376
matter what compiler we're using. Do it the same way
377
regardless. */
378
379
# ifdef __hpux
380
381
/* On HP-UX, we need this auxiliary function. At dynamic load or
382
unload time (but *not* program startup and termination for
383
link-time specified libraries), the linker-indicated function
384
is called with a handle on the library and a flag indicating
385
whether it's being loaded or unloaded.
386
387
The "real" fini function doesn't need to be exported, so
388
declare it static.
389
390
As usual, the final declaration is just for syntactic
391
convenience, so the top-level invocation of this macro can be
392
followed by a semicolon. */
393
394
# include <dl.h>
395
# define MAKE_FINI_FUNCTION(NAME) \
396
static void NAME(void); \
397
void JOIN__2(NAME, auxfini)(shl_t, int); /* silence gcc warnings */ \
398
void JOIN__2(NAME, auxfini)(shl_t h, int l) { if (!l) NAME(); } \
399
static void NAME(void)
400
401
# else /* not hpux */
402
403
# define MAKE_FINI_FUNCTION(NAME) \
404
void NAME(void)
405
406
# endif
407
408
#elif !defined(SHARED) || defined(LIB_UNLOAD_PREVENTED)
409
410
/*
411
* In this case, we just don't care about finalization. The code will still
412
* define the function, but we won't do anything with it.
413
*/
414
# define MAKE_FINI_FUNCTION(NAME) \
415
static void NAME(void) UNUSED
416
417
#elif defined(__GNUC__) && defined(DESTRUCTOR_ATTR_WORKS)
418
/* If we're using gcc, if the C++ support works, the compiler should
419
build executables and shared libraries that support the use of
420
static constructors and destructors. The C compiler supports a
421
function attribute that makes use of the same facility as C++.
422
423
XXX How do we know if the C++ support actually works? */
424
# define MAKE_FINI_FUNCTION(NAME) \
425
static void NAME(void) __attribute__((destructor))
426
427
#else
428
429
# error "Don't know how to do unload-time finalization for this configuration."
430
431
#endif
432
433
#ifndef SIZE_MAX
434
# define SIZE_MAX ((size_t)((size_t)0 - 1))
435
#endif
436
437
#ifdef _WIN32
438
# define SSIZE_MAX ((ssize_t)(SIZE_MAX/2))
439
#endif
440
441
/* Read and write integer values as (unaligned) octet strings in
442
specific byte orders. Add per-platform optimizations as
443
needed. */
444
445
#if HAVE_ENDIAN_H
446
# include <endian.h>
447
#elif HAVE_MACHINE_ENDIAN_H
448
# include <machine/endian.h>
449
#endif
450
/* Check for BIG/LITTLE_ENDIAN macros. If exactly one is defined, use
451
it. If both are defined, then BYTE_ORDER should be defined and
452
match one of them. Try those symbols, then try again with an
453
underscore prefix. */
454
#if defined(BIG_ENDIAN) && defined(LITTLE_ENDIAN)
455
# if BYTE_ORDER == BIG_ENDIAN
456
# define K5_BE
457
# endif
458
# if BYTE_ORDER == LITTLE_ENDIAN
459
# define K5_LE
460
# endif
461
#elif defined(BIG_ENDIAN)
462
# define K5_BE
463
#elif defined(LITTLE_ENDIAN)
464
# define K5_LE
465
#elif defined(_BIG_ENDIAN) && defined(_LITTLE_ENDIAN)
466
# if _BYTE_ORDER == _BIG_ENDIAN
467
# define K5_BE
468
# endif
469
# if _BYTE_ORDER == _LITTLE_ENDIAN
470
# define K5_LE
471
# endif
472
#elif defined(_BIG_ENDIAN)
473
# define K5_BE
474
#elif defined(_LITTLE_ENDIAN)
475
# define K5_LE
476
#elif defined(__BIG_ENDIAN__) && !defined(__LITTLE_ENDIAN__)
477
# define K5_BE
478
#elif defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
479
# define K5_LE
480
#endif
481
#if !defined(K5_BE) && !defined(K5_LE)
482
/* Look for some architectures we know about.
483
484
MIPS can use either byte order, but the preprocessor tells us which
485
mode we're compiling for. The GCC config files indicate that
486
variants of Alpha and IA64 might be out there with both byte
487
orders, but until we encounter the "wrong" ones in the real world,
488
just go with the default (unless there are cpp predefines to help
489
us there too).
490
491
As far as I know, only PDP11 and ARM (which we don't handle here)
492
have strange byte orders where an 8-byte value isn't laid out as
493
either 12345678 or 87654321. */
494
# if defined(__i386__) || defined(_MIPSEL) || defined(__alpha__) || (defined(__ia64__) && !defined(__hpux))
495
# define K5_LE
496
# endif
497
# if defined(__hppa__) || defined(__rs6000__) || defined(__sparc__) || defined(_MIPSEB) || defined(__m68k__) || defined(__sparc64__) || defined(__ppc__) || defined(__ppc64__) || (defined(__hpux) && defined(__ia64__))
498
# define K5_BE
499
# endif
500
#endif
501
#if defined(K5_BE) && defined(K5_LE)
502
# error "oops, check the byte order macros"
503
#endif
504
505
/* Optimize for GCC on platforms with known byte orders.
506
507
GCC's packed structures can be written to with any alignment; the
508
compiler will use byte operations, unaligned-word operations, or
509
normal memory ops as appropriate for the architecture.
510
511
This assumes the availability of uint##_t types, which should work
512
on most of our platforms except Windows, where we're not using
513
GCC. */
514
#ifdef __GNUC__
515
# define PUT(SIZE,PTR,VAL) (((struct { uint##SIZE##_t i; } __attribute__((packed)) *)(PTR))->i = (VAL))
516
# define GET(SIZE,PTR) (((const struct { uint##SIZE##_t i; } __attribute__((packed)) *)(PTR))->i)
517
# define PUTSWAPPED(SIZE,PTR,VAL) PUT(SIZE,PTR,SWAP##SIZE(VAL))
518
# define GETSWAPPED(SIZE,PTR) SWAP##SIZE(GET(SIZE,PTR))
519
#endif
520
/* To do: Define SWAP16, SWAP32, SWAP64 macros to byte-swap values
521
with the indicated numbers of bits.
522
523
Linux: byteswap.h, bswap_16 etc.
524
Solaris 10: none
525
macOS: machine/endian.h or byte_order.h, NXSwap{Short,Int,LongLong}
526
NetBSD: sys/bswap.h, bswap16 etc. */
527
528
#if defined(HAVE_BYTESWAP_H) && defined(HAVE_BSWAP_16)
529
# include <byteswap.h>
530
# define SWAP16 bswap_16
531
# define SWAP32 bswap_32
532
# ifdef HAVE_BSWAP_64
533
# define SWAP64 bswap_64
534
# endif
535
#elif TARGET_OS_MAC
536
# include <architecture/byte_order.h>
537
# define SWAP16 k5_swap16
538
static inline unsigned int k5_swap16 (unsigned int x) {
539
x &= 0xffff;
540
return (x >> 8) | ((x & 0xff) << 8);
541
}
542
# define SWAP32 OSSwapInt32
543
# define SWAP64 OSSwapInt64
544
#elif defined(HAVE_SYS_BSWAP_H)
545
/* XXX NetBSD/x86 5.0.1 defines bswap16 and bswap32 as inline
546
functions only, so autoconf doesn't pick up on their existence.
547
So, no feature macro test for them here. The 64-bit version isn't
548
inline at all, though, for whatever reason. */
549
# include <sys/bswap.h>
550
# define SWAP16 bswap16
551
# define SWAP32 bswap32
552
/* However, bswap64 causes lots of warnings about 'long long'
553
constants; probably only on 32-bit platforms. */
554
# if LONG_MAX > 0x7fffffffL
555
# define SWAP64 bswap64
556
# endif
557
#endif
558
559
/* Note that on Windows at least this file can be included from C++
560
source, so casts *from* void* are required. */
561
static inline void
562
store_16_be (unsigned int val, void *vp)
563
{
564
unsigned char *p = (unsigned char *) vp;
565
#if defined(__GNUC__) && defined(K5_BE) && !defined(__cplusplus)
566
PUT(16,p,val);
567
#elif defined(__GNUC__) && defined(K5_LE) && defined(SWAP16) && !defined(__cplusplus)
568
PUTSWAPPED(16,p,val);
569
#else
570
p[0] = (val >> 8) & 0xff;
571
p[1] = (val ) & 0xff;
572
#endif
573
}
574
static inline void
575
store_32_be (unsigned int val, void *vp)
576
{
577
unsigned char *p = (unsigned char *) vp;
578
#if defined(__GNUC__) && defined(K5_BE) && !defined(__cplusplus)
579
PUT(32,p,val);
580
#elif defined(__GNUC__) && defined(K5_LE) && defined(SWAP32) && !defined(__cplusplus)
581
PUTSWAPPED(32,p,val);
582
#else
583
p[0] = (val >> 24) & 0xff;
584
p[1] = (val >> 16) & 0xff;
585
p[2] = (val >> 8) & 0xff;
586
p[3] = (val ) & 0xff;
587
#endif
588
}
589
static inline void
590
store_64_be (uint64_t val, void *vp)
591
{
592
unsigned char *p = (unsigned char *) vp;
593
#if defined(__GNUC__) && defined(K5_BE) && !defined(__cplusplus)
594
PUT(64,p,val);
595
#elif defined(__GNUC__) && defined(K5_LE) && defined(SWAP64) && !defined(__cplusplus)
596
PUTSWAPPED(64,p,val);
597
#else
598
p[0] = (unsigned char)((val >> 56) & 0xff);
599
p[1] = (unsigned char)((val >> 48) & 0xff);
600
p[2] = (unsigned char)((val >> 40) & 0xff);
601
p[3] = (unsigned char)((val >> 32) & 0xff);
602
p[4] = (unsigned char)((val >> 24) & 0xff);
603
p[5] = (unsigned char)((val >> 16) & 0xff);
604
p[6] = (unsigned char)((val >> 8) & 0xff);
605
p[7] = (unsigned char)((val ) & 0xff);
606
#endif
607
}
608
static inline unsigned short
609
load_16_be (const void *cvp)
610
{
611
const unsigned char *p = (const unsigned char *) cvp;
612
#if defined(__GNUC__) && defined(K5_BE) && !defined(__cplusplus)
613
return GET(16,p);
614
#elif defined(__GNUC__) && defined(K5_LE) && defined(SWAP16) && !defined(__cplusplus)
615
return GETSWAPPED(16,p);
616
#else
617
return (p[1] | (p[0] << 8));
618
#endif
619
}
620
static inline unsigned int
621
load_32_be (const void *cvp)
622
{
623
const unsigned char *p = (const unsigned char *) cvp;
624
#if defined(__GNUC__) && defined(K5_BE) && !defined(__cplusplus)
625
return GET(32,p);
626
#elif defined(__GNUC__) && defined(K5_LE) && defined(SWAP32) && !defined(__cplusplus)
627
return GETSWAPPED(32,p);
628
#else
629
return (p[3] | (p[2] << 8)
630
| ((uint32_t) p[1] << 16)
631
| ((uint32_t) p[0] << 24));
632
#endif
633
}
634
static inline uint64_t
635
load_64_be (const void *cvp)
636
{
637
const unsigned char *p = (const unsigned char *) cvp;
638
#if defined(__GNUC__) && defined(K5_BE) && !defined(__cplusplus)
639
return GET(64,p);
640
#elif defined(__GNUC__) && defined(K5_LE) && defined(SWAP64) && !defined(__cplusplus)
641
return GETSWAPPED(64,p);
642
#else
643
return ((uint64_t)load_32_be(p) << 32) | load_32_be(p+4);
644
#endif
645
}
646
static inline void
647
store_16_le (unsigned int val, void *vp)
648
{
649
unsigned char *p = (unsigned char *) vp;
650
#if defined(__GNUC__) && defined(K5_LE) && !defined(__cplusplus)
651
PUT(16,p,val);
652
#elif defined(__GNUC__) && defined(K5_BE) && defined(SWAP16) && !defined(__cplusplus)
653
PUTSWAPPED(16,p,val);
654
#else
655
p[1] = (val >> 8) & 0xff;
656
p[0] = (val ) & 0xff;
657
#endif
658
}
659
static inline void
660
store_32_le (unsigned int val, void *vp)
661
{
662
unsigned char *p = (unsigned char *) vp;
663
#if defined(__GNUC__) && defined(K5_LE) && !defined(__cplusplus)
664
PUT(32,p,val);
665
#elif defined(__GNUC__) && defined(K5_BE) && defined(SWAP32) && !defined(__cplusplus)
666
PUTSWAPPED(32,p,val);
667
#else
668
p[3] = (val >> 24) & 0xff;
669
p[2] = (val >> 16) & 0xff;
670
p[1] = (val >> 8) & 0xff;
671
p[0] = (val ) & 0xff;
672
#endif
673
}
674
static inline void
675
store_64_le (uint64_t val, void *vp)
676
{
677
unsigned char *p = (unsigned char *) vp;
678
#if defined(__GNUC__) && defined(K5_LE) && !defined(__cplusplus)
679
PUT(64,p,val);
680
#elif defined(__GNUC__) && defined(K5_BE) && defined(SWAP64) && !defined(__cplusplus)
681
PUTSWAPPED(64,p,val);
682
#else
683
p[7] = (unsigned char)((val >> 56) & 0xff);
684
p[6] = (unsigned char)((val >> 48) & 0xff);
685
p[5] = (unsigned char)((val >> 40) & 0xff);
686
p[4] = (unsigned char)((val >> 32) & 0xff);
687
p[3] = (unsigned char)((val >> 24) & 0xff);
688
p[2] = (unsigned char)((val >> 16) & 0xff);
689
p[1] = (unsigned char)((val >> 8) & 0xff);
690
p[0] = (unsigned char)((val ) & 0xff);
691
#endif
692
}
693
static inline unsigned short
694
load_16_le (const void *cvp)
695
{
696
const unsigned char *p = (const unsigned char *) cvp;
697
#if defined(__GNUC__) && defined(K5_LE) && !defined(__cplusplus)
698
return GET(16,p);
699
#elif defined(__GNUC__) && defined(K5_BE) && defined(SWAP16) && !defined(__cplusplus)
700
return GETSWAPPED(16,p);
701
#else
702
return (p[0] | (p[1] << 8));
703
#endif
704
}
705
static inline unsigned int
706
load_32_le (const void *cvp)
707
{
708
const unsigned char *p = (const unsigned char *) cvp;
709
#if defined(__GNUC__) && defined(K5_LE) && !defined(__cplusplus)
710
return GET(32,p);
711
#elif defined(__GNUC__) && defined(K5_BE) && defined(SWAP32) && !defined(__cplusplus)
712
return GETSWAPPED(32,p);
713
#else
714
return (p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24));
715
#endif
716
}
717
static inline uint64_t
718
load_64_le (const void *cvp)
719
{
720
const unsigned char *p = (const unsigned char *) cvp;
721
#if defined(__GNUC__) && defined(K5_LE) && !defined(__cplusplus)
722
return GET(64,p);
723
#elif defined(__GNUC__) && defined(K5_BE) && defined(SWAP64) && !defined(__cplusplus)
724
return GETSWAPPED(64,p);
725
#else
726
return ((uint64_t)load_32_le(p+4) << 32) | load_32_le(p);
727
#endif
728
}
729
730
#define UINT16_TYPE uint16_t
731
#define UINT32_TYPE uint32_t
732
733
static inline void
734
store_16_n (unsigned int val, void *vp)
735
{
736
UINT16_TYPE n = val;
737
memcpy(vp, &n, 2);
738
}
739
static inline void
740
store_32_n (unsigned int val, void *vp)
741
{
742
UINT32_TYPE n = val;
743
memcpy(vp, &n, 4);
744
}
745
static inline void
746
store_64_n (uint64_t val, void *vp)
747
{
748
uint64_t n = val;
749
memcpy(vp, &n, 8);
750
}
751
static inline unsigned short
752
load_16_n (const void *p)
753
{
754
UINT16_TYPE n;
755
memcpy(&n, p, 2);
756
return n;
757
}
758
static inline unsigned int
759
load_32_n (const void *p)
760
{
761
UINT32_TYPE n;
762
memcpy(&n, p, 4);
763
return n;
764
}
765
static inline uint64_t
766
load_64_n (const void *p)
767
{
768
uint64_t n;
769
memcpy(&n, p, 8);
770
return n;
771
}
772
#undef UINT16_TYPE
773
#undef UINT32_TYPE
774
775
/* Assume for simplicity that these swaps are identical. */
776
static inline uint64_t
777
k5_htonll (uint64_t val)
778
{
779
#ifdef K5_BE
780
return val;
781
#elif defined K5_LE && defined SWAP64
782
return SWAP64 (val);
783
#else
784
return load_64_be ((unsigned char *)&val);
785
#endif
786
}
787
static inline uint64_t
788
k5_ntohll (uint64_t val)
789
{
790
return k5_htonll (val);
791
}
792
793
/* Make the interfaces to getpwnam and getpwuid consistent.
794
Model the wrappers on the POSIX thread-safe versions, but
795
use the unsafe system versions if the safe ones don't exist
796
or we can't figure out their interfaces. */
797
798
/* int k5_getpwnam_r(const char *, blah blah) */
799
#ifdef HAVE_GETPWNAM_R
800
# ifndef GETPWNAM_R_4_ARGS
801
/* POSIX */
802
# define k5_getpwnam_r(NAME, REC, BUF, BUFSIZE, OUT) \
803
(getpwnam_r(NAME,REC,BUF,BUFSIZE,OUT) == 0 \
804
? (*(OUT) == NULL ? -1 : 0) : -1)
805
# else
806
/* POSIX drafts? */
807
# ifdef GETPWNAM_R_RETURNS_INT
808
# define k5_getpwnam_r(NAME, REC, BUF, BUFSIZE, OUT) \
809
(getpwnam_r(NAME,REC,BUF,BUFSIZE) == 0 \
810
? (*(OUT) = REC, 0) \
811
: (*(OUT) = NULL, -1))
812
# else
813
# define k5_getpwnam_r(NAME, REC, BUF, BUFSIZE, OUT) \
814
(*(OUT) = getpwnam_r(NAME,REC,BUF,BUFSIZE), *(OUT) == NULL ? -1 : 0)
815
# endif
816
# endif
817
#else /* no getpwnam_r, or can't figure out #args or return type */
818
/* Will get warnings about unused variables. */
819
# define k5_getpwnam_r(NAME, REC, BUF, BUFSIZE, OUT) \
820
(*(OUT) = getpwnam(NAME), *(OUT) == NULL ? -1 : 0)
821
#endif
822
823
/* int k5_getpwuid_r(uid_t, blah blah) */
824
#ifdef HAVE_GETPWUID_R
825
# ifndef GETPWUID_R_4_ARGS
826
/* POSIX */
827
# define k5_getpwuid_r(UID, REC, BUF, BUFSIZE, OUT) \
828
(getpwuid_r(UID,REC,BUF,BUFSIZE,OUT) == 0 \
829
? (*(OUT) == NULL ? -1 : 0) : -1)
830
# else
831
/* POSIX drafts? Yes, I mean to test GETPWNAM... here. Less junk to
832
do at configure time. */
833
# ifdef GETPWNAM_R_RETURNS_INT
834
# define k5_getpwuid_r(UID, REC, BUF, BUFSIZE, OUT) \
835
(getpwuid_r(UID,REC,BUF,BUFSIZE) == 0 \
836
? (*(OUT) = REC, 0) \
837
: (*(OUT) = NULL, -1))
838
# else
839
# define k5_getpwuid_r(UID, REC, BUF, BUFSIZE, OUT) \
840
(*(OUT) = getpwuid_r(UID,REC,BUF,BUFSIZE), *(OUT) == NULL ? -1 : 0)
841
# endif
842
# endif
843
#else /* no getpwuid_r, or can't figure out #args or return type */
844
/* Will get warnings about unused variables. */
845
# define k5_getpwuid_r(UID, REC, BUF, BUFSIZE, OUT) \
846
(*(OUT) = getpwuid(UID), *(OUT) == NULL ? -1 : 0)
847
#endif
848
849
/* Ensure, if possible, that the indicated file descriptor won't be
850
kept open if we exec another process (e.g., launching a ccapi
851
server). If we don't know how to do it... well, just go about our
852
business. Probably most callers won't check the return status
853
anyways. */
854
855
/* Macros make the Sun compiler happier, and all variants of this do a
856
single evaluation of the argument, and fcntl and fileno should
857
produce reasonable error messages on type mismatches, on any system
858
with F_SETFD. */
859
#ifdef F_SETFD
860
# ifdef FD_CLOEXEC
861
# define set_cloexec_fd(FD) ((void)fcntl((FD), F_SETFD, FD_CLOEXEC))
862
# else
863
# define set_cloexec_fd(FD) ((void)fcntl((FD), F_SETFD, 1))
864
# endif
865
#else
866
# define set_cloexec_fd(FD) ((void)(FD))
867
#endif
868
#define set_cloexec_file(F) set_cloexec_fd(fileno(F))
869
870
/* Since the original ANSI C spec left it undefined whether or
871
how you could copy around a va_list, C 99 added va_copy.
872
For old implementations, let's do our best to fake it.
873
874
XXX Doesn't yet handle implementations with __va_copy (early draft)
875
or GCC's __builtin_va_copy. */
876
#if defined(HAS_VA_COPY) || defined(va_copy)
877
/* Do nothing. */
878
#elif defined(CAN_COPY_VA_LIST)
879
#define va_copy(dest, src) ((dest) = (src))
880
#else
881
/* Assume array type, but still simply copyable.
882
883
There is, theoretically, the possibility that va_start will
884
allocate some storage pointed to by the va_list, and in that case
885
we'll just lose. If anyone cares, we could try to devise a test
886
for that case. */
887
#define va_copy(dest, src) memcpy(dest, src, sizeof(va_list))
888
#endif
889
890
/* Provide strlcpy/strlcat interfaces. */
891
#ifndef HAVE_STRLCPY
892
#define strlcpy krb5int_strlcpy
893
#define strlcat krb5int_strlcat
894
extern size_t krb5int_strlcpy(char *dst, const char *src, size_t siz);
895
extern size_t krb5int_strlcat(char *dst, const char *src, size_t siz);
896
#endif
897
898
/* Provide fnmatch interface. */
899
#ifndef HAVE_FNMATCH
900
#define fnmatch k5_fnmatch
901
int k5_fnmatch(const char *pattern, const char *string, int flags);
902
#define FNM_NOMATCH 1 /* Match failed. */
903
#define FNM_NOSYS 2 /* Function not implemented. */
904
#define FNM_NORES 3 /* Out of resources */
905
#define FNM_NOESCAPE 0x01 /* Disable backslash escaping. */
906
#define FNM_PATHNAME 0x02 /* Slash must be matched by slash. */
907
#define FNM_PERIOD 0x04 /* Period must be matched by period. */
908
#define FNM_CASEFOLD 0x08 /* Pattern is matched case-insensitive */
909
#define FNM_LEADING_DIR 0x10 /* Ignore /<tail> after Imatch. */
910
#endif
911
912
/* Provide [v]asprintf interfaces. */
913
#ifndef HAVE_VSNPRINTF
914
#ifdef _WIN32
915
static inline int
916
vsnprintf(char *str, size_t size, const char *format, va_list args)
917
{
918
va_list args_copy;
919
int length;
920
921
va_copy(args_copy, args);
922
length = _vscprintf(format, args_copy);
923
va_end(args_copy);
924
if (size > 0) {
925
_vsnprintf(str, size, format, args);
926
str[size - 1] = '\0';
927
}
928
return length;
929
}
930
static inline int
931
snprintf(char *str, size_t size, const char *format, ...)
932
{
933
va_list args;
934
int n;
935
936
va_start(args, format);
937
n = vsnprintf(str, size, format, args);
938
va_end(args);
939
return n;
940
}
941
#else /* not win32 */
942
#error We need an implementation of vsnprintf.
943
#endif /* win32? */
944
#endif /* no vsnprintf */
945
946
#ifndef HAVE_VASPRINTF
947
948
extern int krb5int_vasprintf(char **, const char *, va_list)
949
#if !defined(__cplusplus) && (__GNUC__ > 2)
950
__attribute__((__format__(__printf__, 2, 0)))
951
#endif
952
;
953
extern int krb5int_asprintf(char **, const char *, ...)
954
#if !defined(__cplusplus) && (__GNUC__ > 2)
955
__attribute__((__format__(__printf__, 2, 3)))
956
#endif
957
;
958
959
#define vasprintf krb5int_vasprintf
960
/* Assume HAVE_ASPRINTF iff HAVE_VASPRINTF. */
961
#define asprintf krb5int_asprintf
962
963
#elif defined(NEED_VASPRINTF_PROTO)
964
965
extern int vasprintf(char **, const char *, va_list)
966
#if !defined(__cplusplus) && (__GNUC__ > 2)
967
__attribute__((__format__(__printf__, 2, 0)))
968
#endif
969
;
970
extern int asprintf(char **, const char *, ...)
971
#if !defined(__cplusplus) && (__GNUC__ > 2)
972
__attribute__((__format__(__printf__, 2, 3)))
973
#endif
974
;
975
976
#endif /* have vasprintf and prototype? */
977
978
/* Return true if the snprintf return value RESULT reflects a buffer
979
overflow for the buffer size SIZE.
980
981
We cast the result to unsigned int for two reasons. First, old
982
implementations of snprintf (such as the one in Solaris 9 and
983
prior) return -1 on a buffer overflow. Casting the result to -1
984
will convert that value to UINT_MAX, which should compare larger
985
than any reasonable buffer size. Second, comparing signed and
986
unsigned integers will generate warnings with some compilers, and
987
can have unpredictable results, particularly when the relative
988
widths of the types is not known (size_t may be the same width as
989
int or larger).
990
*/
991
#define SNPRINTF_OVERFLOW(result, size) \
992
((unsigned int)(result) >= (size_t)(size))
993
994
#if defined(_WIN32) || !defined(HAVE_STRERROR_R) || defined(STRERROR_R_CHAR_P)
995
#define strerror_r k5_strerror_r
996
#endif
997
extern int k5_strerror_r(int errnum, char *buf, size_t buflen);
998
999
#ifndef HAVE_MKSTEMP
1000
extern int krb5int_mkstemp(char *);
1001
#define mkstemp krb5int_mkstemp
1002
#endif
1003
1004
#ifndef HAVE_GETTIMEOFDAY
1005
extern int krb5int_gettimeofday(struct timeval *tp, void *ignore);
1006
#define gettimeofday krb5int_gettimeofday
1007
#endif
1008
1009
/*
1010
* Attempt to zero memory in a way that compilers won't optimize out.
1011
*
1012
* This mechanism should work even for heap storage about to be freed,
1013
* or automatic storage right before we return from a function.
1014
*
1015
* Then, even if we leak uninitialized memory someplace, or UNIX
1016
* "core" files get created with world-read access, some of the most
1017
* sensitive data in the process memory will already be safely wiped.
1018
*
1019
* We're not going so far -- yet -- as to try to protect key data that
1020
* may have been written into swap space....
1021
*/
1022
#ifdef _WIN32
1023
# define zap(ptr, len) SecureZeroMemory(ptr, len)
1024
#elif defined(__STDC_LIB_EXT1__)
1025
/*
1026
* Use memset_s() which cannot be optimized out. Avoid memset_s(NULL, 0, 0, 0)
1027
* which would cause a runtime constraint violation.
1028
*/
1029
static inline void zap(void *ptr, size_t len)
1030
{
1031
if (len > 0)
1032
memset_s(ptr, len, 0, len);
1033
}
1034
#elif defined(HAVE_EXPLICIT_BZERO)
1035
# define zap(ptr, len) explicit_bzero(ptr, len)
1036
#elif defined(HAVE_EXPLICIT_MEMSET)
1037
# define zap(ptr, len) explicit_memset(ptr, 0, len)
1038
#elif defined(__GNUC__) || defined(__clang__)
1039
/*
1040
* Use an asm statement which declares a memory clobber to force the memset to
1041
* be carried out. Avoid memset(NULL, 0, 0) which has undefined behavior.
1042
*/
1043
static inline void zap(void *ptr, size_t len)
1044
{
1045
if (len > 0)
1046
memset(ptr, 0, len);
1047
__asm__ __volatile__("" : : "g" (ptr) : "memory");
1048
}
1049
#else
1050
/*
1051
* Use a function from libkrb5support to defeat inlining unless link-time
1052
* optimization is used. The function uses a volatile pointer, which prevents
1053
* current compilers from optimizing out the memset.
1054
*/
1055
# define zap(ptr, len) krb5int_zap(ptr, len)
1056
#endif
1057
1058
extern void krb5int_zap(void *ptr, size_t len);
1059
1060
/*
1061
* Return 0 if the n-byte memory regions p1 and p2 are equal, and nonzero if
1062
* they are not. The function is intended to take the same amount of time
1063
* regardless of how many bytes of p1 and p2 are equal.
1064
*/
1065
int k5_bcmp(const void *p1, const void *p2, size_t n);
1066
1067
/*
1068
* Split a path into parent directory and basename. Either output parameter
1069
* may be NULL if the caller doesn't need it. parent_out will be empty if path
1070
* has no basename. basename_out will be empty if path ends with a path
1071
* separator. Returns 0 on success or ENOMEM on allocation failure.
1072
*/
1073
long k5_path_split(const char *path, char **parent_out, char **basename_out);
1074
1075
/*
1076
* Compose two path components, inserting the platform-appropriate path
1077
* separator if needed. If path2 is an absolute path, path1 will be discarded
1078
* and path_out will be a copy of path2. Returns 0 on success or ENOMEM on
1079
* allocation failure.
1080
*/
1081
long k5_path_join(const char *path1, const char *path2, char **path_out);
1082
1083
/* Return 1 if path is absolute, 0 if it is relative. */
1084
int k5_path_isabs(const char *path);
1085
1086
/*
1087
* Localization macros. If we have gettext, define _ appropriately for
1088
* translating a string. If we do not have gettext, define _ and
1089
* bindtextdomain as no-ops. N_ is always a no-op; it marks a string for
1090
* extraction to pot files but does not translate it.
1091
*/
1092
#ifdef ENABLE_NLS
1093
#include <libintl.h>
1094
#define KRB5_TEXTDOMAIN "mit-krb5"
1095
#define _(s) dgettext(KRB5_TEXTDOMAIN, s)
1096
#else
1097
#define _(s) s
1098
#define dgettext(d, m) m
1099
#define ngettext(m1, m2, n) (((n) == 1) ? m1 : m2)
1100
#define bindtextdomain(p, d)
1101
#endif
1102
#define N_(s) s
1103
1104
#if !defined(HAVE_GETOPT) || !defined(HAVE_UNISTD_H)
1105
/* Data objects imported from DLLs must be declared as such on Windows. */
1106
#if defined(_WIN32) && !defined(K5_GETOPT_C)
1107
#define K5_GETOPT_DECL __declspec(dllimport)
1108
#else
1109
#define K5_GETOPT_DECL
1110
#endif
1111
K5_GETOPT_DECL extern int k5_opterr;
1112
K5_GETOPT_DECL extern int k5_optind;
1113
K5_GETOPT_DECL extern int k5_optopt;
1114
K5_GETOPT_DECL extern char *k5_optarg;
1115
#define opterr k5_opterr
1116
#define optind k5_optind
1117
#define optopt k5_optopt
1118
#define optarg k5_optarg
1119
1120
extern int k5_getopt(int nargc, char * const nargv[], const char *ostr);
1121
#define getopt k5_getopt
1122
#endif /* HAVE_GETOPT */
1123
1124
#ifdef HAVE_GETOPT_LONG
1125
#include <getopt.h>
1126
#else
1127
1128
struct option
1129
{
1130
const char *name;
1131
int has_arg;
1132
int *flag;
1133
int val;
1134
};
1135
1136
#define no_argument 0
1137
#define required_argument 1
1138
#define optional_argument 2
1139
1140
extern int k5_getopt_long(int nargc, char **nargv, char *options,
1141
struct option *long_options, int *index);
1142
#define getopt_long k5_getopt_long
1143
#endif /* HAVE_GETOPT_LONG */
1144
1145
#if defined(_WIN32)
1146
/* On Windows there is never a need to ignore the process environment. */
1147
#define secure_getenv getenv
1148
#elif !defined(HAVE_SECURE_GETENV)
1149
#define secure_getenv k5_secure_getenv
1150
extern char *k5_secure_getenv(const char *name);
1151
#endif
1152
1153
/* Set *fnames_out to a null-terminated list of filenames within dirname,
1154
* sorted according to strcmp(). Return 0 on success, or ENOENT/ENOMEM. */
1155
int k5_dir_filenames(const char *dirname, char ***fnames_out);
1156
void k5_free_filenames(char **fnames);
1157
1158
#ifdef __cplusplus
1159
}
1160
#endif
1161
1162
#endif /* K5_PLATFORM_H */
1163
1164