Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/krb5/src/include/k5-thread.h
34879 views
1
/* -*- mode: c; c-basic-offset: 4; indent-tabs-mode: nil -*- */
2
/* include/k5-thread.h - Preliminary portable thread support */
3
/*
4
* Copyright 2004,2005,2006,2007,2008 by the Massachusetts Institute of Technology.
5
* All Rights Reserved.
6
*
7
* Export of this software from the United States of America may
8
* require a specific license from the United States Government.
9
* It is the responsibility of any person or organization contemplating
10
* export to obtain such a license before exporting.
11
*
12
* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
13
* distribute this software and its documentation for any purpose and
14
* without fee is hereby granted, provided that the above copyright
15
* notice appear in all copies and that both that copyright notice and
16
* this permission notice appear in supporting documentation, and that
17
* the name of M.I.T. not be used in advertising or publicity pertaining
18
* to distribution of the software without specific, written prior
19
* permission. Furthermore if you modify this software you must label
20
* your software as modified software and not distribute it in such a
21
* fashion that it might be confused with the original M.I.T. software.
22
* M.I.T. makes no representations about the suitability of
23
* this software for any purpose. It is provided "as is" without express
24
* or implied warranty.
25
*/
26
27
#ifndef K5_THREAD_H
28
#define K5_THREAD_H
29
30
#include "autoconf.h"
31
#ifndef KRB5_CALLCONV
32
# define KRB5_CALLCONV
33
#endif
34
#ifndef KRB5_CALLCONV_C
35
# define KRB5_CALLCONV_C
36
#endif
37
38
/* Interface (tentative):
39
40
Mutex support:
41
42
// Between these two, we should be able to do pure compile-time
43
// and pure run-time initialization.
44
// POSIX: partial initializer is PTHREAD_MUTEX_INITIALIZER,
45
// finish does nothing
46
// Windows: partial initializer is an invalid handle,
47
// finish does the real initialization work
48
k5_mutex_t foo_mutex = K5_MUTEX_PARTIAL_INITIALIZER;
49
int k5_mutex_finish_init(k5_mutex_t *);
50
// for dynamic allocation
51
int k5_mutex_init(k5_mutex_t *);
52
// Must work for both kinds of alloc, even if it means adding flags.
53
int k5_mutex_destroy(k5_mutex_t *);
54
55
// As before.
56
int k5_mutex_lock(k5_mutex_t *);
57
int k5_mutex_unlock(k5_mutex_t *);
58
59
In each library, one new function to finish the static mutex init,
60
and any other library-wide initialization that might be desired.
61
On POSIX, this function would be called via the second support
62
function (see below). On Windows, it would be called at library
63
load time. These functions, or functions they calls, should be the
64
only places that k5_mutex_finish_init gets called.
65
66
A second function or macro called at various possible "first" entry
67
points which either calls pthread_once on the first function
68
(POSIX), or checks some flag set by the first function (Windows),
69
and possibly returns an error. (In the non-threaded case, a simple
70
flag can be used to avoid multiple invocations, and the mutexes
71
don't need run-time initialization anyways.)
72
73
A third function for library termination calls mutex_destroy on
74
each mutex for the library. This function would be called
75
automatically at library unload time. If it turns out to be needed
76
at exit time for libraries that don't get unloaded, perhaps we
77
should also use atexit(). Any static mutexes should be cleaned up
78
with k5_mutex_destroy here.
79
80
How does that second support function invoke the first support
81
function only once? Through something modelled on pthread_once
82
that I haven't written up yet. Probably:
83
84
k5_once_t foo_once = K5_ONCE_INIT;
85
k5_once(k5_once_t *, void (*)(void));
86
87
For POSIX: Map onto pthread_once facility.
88
For non-threaded case: A simple flag.
89
For Windows: Not needed; library init code takes care of it.
90
91
XXX: A general k5_once mechanism isn't possible for Windows,
92
without faking it through named mutexes or mutexes initialized at
93
startup. I was only using it in one place outside these headers,
94
so I'm dropping the general scheme. Eventually the existing uses
95
in k5-thread.h and k5-platform.h will be converted to pthread_once
96
or static variables.
97
98
99
Thread-specific data:
100
101
// TSD keys are limited in number in gssapi/krb5/com_err; enumerate
102
// them all. This allows support code init to allocate the
103
// necessary storage for pointers all at once, and avoids any
104
// possible error in key creation.
105
enum { ... } k5_key_t;
106
// Register destructor function. Called in library init code.
107
int k5_key_register(k5_key_t, void (*destructor)(void *));
108
// Returns NULL or data.
109
void *k5_getspecific(k5_key_t);
110
// Returns error if key out of bounds, or the pointer table can't
111
// be allocated. A call to k5_key_register must have happened first.
112
// This may trigger the calling of pthread_setspecific on POSIX.
113
int k5_setspecific(k5_key_t, void *);
114
// Called in library termination code.
115
// Trashes data in all threads, calling the registered destructor
116
// (but calling it from the current thread).
117
int k5_key_delete(k5_key_t);
118
119
For the non-threaded version, the support code will have a static
120
array indexed by k5_key_t values, and get/setspecific simply access
121
the array elements.
122
123
The TSD destructor table is global state, protected by a mutex if
124
threads are enabled.
125
126
127
Any actual external symbols will use the krb5int_ prefix. The k5_
128
names will be simple macros or inline functions to rename the
129
external symbols, or slightly more complex ones to expand the
130
implementation inline (e.g., map to POSIX versions and/or debug
131
code using __FILE__ and the like).
132
133
134
More to be added, perhaps. */
135
136
#include <assert.h>
137
#ifndef NDEBUG
138
#include <stdio.h>
139
#include <string.h>
140
#endif
141
142
/* The mutex structure we use, k5_mutex_t, is defined to some
143
OS-specific bits. The use of multiple layers of typedefs are an
144
artifact resulting from debugging code we once used, implemented as
145
wrappers around the OS mutex scheme.
146
147
The OS specific bits, in k5_os_mutex, break down into three primary
148
implementations, POSIX threads, Windows threads, and no thread
149
support. However, the POSIX thread version is further subdivided:
150
In one case, we can determine at run time whether the thread
151
library is linked into the application, and use it only if it is
152
present; in the other case, we cannot, and the thread library must
153
be linked in always, but can be used unconditionally. In the
154
former case, the k5_os_mutex structure needs to hold both the POSIX
155
and the non-threaded versions.
156
157
The various k5_os_mutex_* operations are the OS-specific versions,
158
applied to the OS-specific data, and k5_mutex_* uses k5_os_mutex_*
159
to do the OS-specific parts of the work. */
160
161
/* Define the OS mutex bit. */
162
163
typedef char k5_os_nothread_mutex;
164
# define K5_OS_NOTHREAD_MUTEX_PARTIAL_INITIALIZER 0
165
/* Empty inline functions avoid the "statement with no effect"
166
warnings, and do better type-checking than functions that don't use
167
their arguments. */
168
static inline int k5_os_nothread_mutex_finish_init(k5_os_nothread_mutex *m) {
169
return 0;
170
}
171
static inline int k5_os_nothread_mutex_init(k5_os_nothread_mutex *m) {
172
return 0;
173
}
174
static inline int k5_os_nothread_mutex_destroy(k5_os_nothread_mutex *m) {
175
return 0;
176
}
177
static inline int k5_os_nothread_mutex_lock(k5_os_nothread_mutex *m) {
178
return 0;
179
}
180
static inline int k5_os_nothread_mutex_unlock(k5_os_nothread_mutex *m) {
181
return 0;
182
}
183
184
/* Values:
185
2 - function has not been run
186
3 - function has been run
187
4 - function is being run -- deadlock detected */
188
typedef unsigned char k5_os_nothread_once_t;
189
# define K5_OS_NOTHREAD_ONCE_INIT 2
190
# define k5_os_nothread_once(O,F) \
191
(*(O) == 3 ? 0 \
192
: *(O) == 2 ? (*(O) = 4, (F)(), *(O) = 3, 0) \
193
: (assert(*(O) != 4), assert(*(O) == 2 || *(O) == 3), 0))
194
195
196
197
#ifndef ENABLE_THREADS
198
199
typedef k5_os_nothread_mutex k5_os_mutex;
200
# define K5_OS_MUTEX_PARTIAL_INITIALIZER \
201
K5_OS_NOTHREAD_MUTEX_PARTIAL_INITIALIZER
202
# define k5_os_mutex_finish_init k5_os_nothread_mutex_finish_init
203
# define k5_os_mutex_init k5_os_nothread_mutex_init
204
# define k5_os_mutex_destroy k5_os_nothread_mutex_destroy
205
# define k5_os_mutex_lock k5_os_nothread_mutex_lock
206
# define k5_os_mutex_unlock k5_os_nothread_mutex_unlock
207
208
# define k5_once_t k5_os_nothread_once_t
209
# define K5_ONCE_INIT K5_OS_NOTHREAD_ONCE_INIT
210
# define k5_once k5_os_nothread_once
211
212
#elif HAVE_PTHREAD
213
214
# include <pthread.h>
215
216
/* Weak reference support, etc.
217
218
Linux: Stub mutex routines exist, but pthread_once does not.
219
220
Solaris <10: In libc there's a pthread_once that doesn't seem to do
221
anything. Bleah. But pthread_mutexattr_setrobust_np is defined
222
only in libpthread. However, some version of GNU libc (Red Hat's
223
Fedora Core 5, reportedly) seems to have that function, but no
224
declaration, so we'd have to declare it in order to test for its
225
address. We now have tests to see if pthread_once actually works,
226
so stick with that for now.
227
228
Solaris 10: The real thread support now lives in libc, and
229
libpthread is just a filter object. So we might as well use the
230
real functions unconditionally. Since we haven't got a test for
231
this property yet, we use NO_WEAK_PTHREADS defined in aclocal.m4
232
depending on the OS type.
233
234
IRIX 6.5 stub pthread support in libc is really annoying. The
235
pthread_mutex_lock function returns ENOSYS for a program not linked
236
against -lpthread. No link-time failure, no weak symbols, etc.
237
The C library doesn't provide pthread_once; we can use weak
238
reference support for that.
239
240
If weak references are not available, then for now, we assume that
241
the pthread support routines will always be available -- either the
242
real thing, or functional stubs that merely prohibit creating
243
threads.
244
245
If we find a platform with non-functional stubs and no weak
246
references, we may have to resort to some hack like dlsym on the
247
symbol tables of the current process. */
248
249
#if defined(HAVE_PRAGMA_WEAK_REF) && !defined(NO_WEAK_PTHREADS)
250
# define USE_CONDITIONAL_PTHREADS
251
#endif
252
253
#ifdef USE_CONDITIONAL_PTHREADS
254
255
/* Can't rely on useful stubs -- see above regarding Solaris. */
256
typedef struct {
257
pthread_once_t o;
258
k5_os_nothread_once_t n;
259
} k5_once_t;
260
# define K5_ONCE_INIT { PTHREAD_ONCE_INIT, K5_OS_NOTHREAD_ONCE_INIT }
261
262
int k5_once(k5_once_t *once, void (*fn)(void));
263
#else
264
265
/* no pragma weak support */
266
267
typedef pthread_once_t k5_once_t;
268
# define K5_ONCE_INIT PTHREAD_ONCE_INIT
269
# define k5_once pthread_once
270
271
#endif
272
273
#if defined(__mips) && defined(__sgi) && (defined(_SYSTYPE_SVR4) || defined(__SYSTYPE_SVR4__))
274
# ifndef HAVE_PRAGMA_WEAK_REF
275
# if defined(__GNUC__) && __GNUC__ < 3
276
# error "Please update to a newer gcc with weak symbol support, or switch to native cc, reconfigure and recompile."
277
# else
278
# error "Weak reference support is required"
279
# endif
280
# endif
281
#endif
282
283
typedef pthread_mutex_t k5_os_mutex;
284
# define K5_OS_MUTEX_PARTIAL_INITIALIZER \
285
PTHREAD_MUTEX_INITIALIZER
286
287
#ifdef USE_CONDITIONAL_PTHREADS
288
289
# define k5_os_mutex_finish_init(M) (0)
290
int k5_os_mutex_init(k5_os_mutex *m);
291
int k5_os_mutex_destroy(k5_os_mutex *m);
292
int k5_os_mutex_lock(k5_os_mutex *m);
293
int k5_os_mutex_unlock(k5_os_mutex *m);
294
295
#else
296
297
static inline int k5_os_mutex_finish_init(k5_os_mutex *m) { return 0; }
298
# define k5_os_mutex_init(M) pthread_mutex_init((M), 0)
299
# define k5_os_mutex_destroy(M) pthread_mutex_destroy((M))
300
# define k5_os_mutex_lock(M) pthread_mutex_lock(M)
301
# define k5_os_mutex_unlock(M) pthread_mutex_unlock(M)
302
303
#endif /* is pthreads always available? */
304
305
#elif defined _WIN32
306
307
# define k5_once_t k5_os_nothread_once_t
308
309
typedef struct {
310
HANDLE h;
311
int is_locked;
312
} k5_os_mutex;
313
314
# define K5_OS_MUTEX_PARTIAL_INITIALIZER { INVALID_HANDLE_VALUE, 0 }
315
316
# define k5_os_mutex_finish_init(M) \
317
(assert((M)->h == INVALID_HANDLE_VALUE), \
318
((M)->h = CreateMutex(NULL, FALSE, NULL)) ? 0 : GetLastError())
319
# define k5_os_mutex_init(M) \
320
((M)->is_locked = 0, \
321
((M)->h = CreateMutex(NULL, FALSE, NULL)) ? 0 : GetLastError())
322
# define k5_os_mutex_destroy(M) \
323
(CloseHandle((M)->h) ? ((M)->h = 0, 0) : GetLastError())
324
# define k5_os_mutex_lock k5_win_mutex_lock
325
326
static inline int k5_win_mutex_lock(k5_os_mutex *m)
327
{
328
DWORD res;
329
res = WaitForSingleObject(m->h, INFINITE);
330
if (res == WAIT_FAILED)
331
return GetLastError();
332
/* Eventually these should be turned into some reasonable error
333
code. */
334
assert(res != WAIT_TIMEOUT);
335
assert(res != WAIT_ABANDONED);
336
assert(res == WAIT_OBJECT_0);
337
/* Avoid locking twice. */
338
assert(m->is_locked == 0);
339
m->is_locked = 1;
340
return 0;
341
}
342
343
# define k5_os_mutex_unlock(M) \
344
(assert((M)->is_locked == 1), \
345
(M)->is_locked = 0, \
346
ReleaseMutex((M)->h) ? 0 : GetLastError())
347
348
#else
349
350
# error "Thread support enabled, but thread system unknown"
351
352
#endif
353
354
typedef k5_os_mutex k5_mutex_t;
355
#define K5_MUTEX_PARTIAL_INITIALIZER K5_OS_MUTEX_PARTIAL_INITIALIZER
356
static inline int k5_mutex_init(k5_mutex_t *m)
357
{
358
return k5_os_mutex_init(m);
359
}
360
static inline int k5_mutex_finish_init(k5_mutex_t *m)
361
{
362
return k5_os_mutex_finish_init(m);
363
}
364
#define k5_mutex_destroy(M) \
365
(k5_os_mutex_destroy(M))
366
367
static inline void k5_mutex_lock(k5_mutex_t *m)
368
{
369
int r = k5_os_mutex_lock(m);
370
#ifndef NDEBUG
371
if (r != 0) {
372
fprintf(stderr, "k5_mutex_lock: Received error %d (%s)\n",
373
r, strerror(r));
374
}
375
#endif
376
assert(r == 0);
377
}
378
379
static inline void k5_mutex_unlock(k5_mutex_t *m)
380
{
381
int r = k5_os_mutex_unlock(m);
382
#ifndef NDEBUG
383
if (r != 0) {
384
fprintf(stderr, "k5_mutex_unlock: Received error %d (%s)\n",
385
r, strerror(r));
386
}
387
#endif
388
assert(r == 0);
389
}
390
391
#define k5_mutex_assert_locked(M) ((void)(M))
392
#define k5_mutex_assert_unlocked(M) ((void)(M))
393
#define k5_assert_locked k5_mutex_assert_locked
394
#define k5_assert_unlocked k5_mutex_assert_unlocked
395
396
/* Thread-specific data; implemented in a support file, because we'll
397
need to keep track of some global data for cleanup purposes.
398
399
Note that the callback function type is such that the C library
400
routine free() is a valid callback. */
401
typedef enum {
402
K5_KEY_COM_ERR,
403
K5_KEY_GSS_KRB5_SET_CCACHE_OLD_NAME,
404
K5_KEY_GSS_KRB5_CCACHE_NAME,
405
K5_KEY_GSS_KRB5_ERROR_MESSAGE,
406
K5_KEY_GSS_SPNEGO_STATUS,
407
#if defined(__MACH__) && defined(__APPLE__)
408
K5_KEY_IPC_CONNECTION_INFO,
409
#endif
410
K5_KEY_MAX
411
} k5_key_t;
412
/* rename shorthand symbols for export */
413
#define k5_key_register krb5int_key_register
414
#define k5_getspecific krb5int_getspecific
415
#define k5_setspecific krb5int_setspecific
416
#define k5_key_delete krb5int_key_delete
417
extern int k5_key_register(k5_key_t, void (*)(void *));
418
extern void *k5_getspecific(k5_key_t);
419
extern int k5_setspecific(k5_key_t, void *);
420
extern int k5_key_delete(k5_key_t);
421
422
extern int KRB5_CALLCONV krb5int_mutex_alloc (k5_mutex_t **);
423
extern void KRB5_CALLCONV krb5int_mutex_free (k5_mutex_t *);
424
extern void KRB5_CALLCONV krb5int_mutex_lock (k5_mutex_t *);
425
extern void KRB5_CALLCONV krb5int_mutex_unlock (k5_mutex_t *);
426
427
/* In time, many of the definitions above should move into the support
428
library, and this file should be greatly simplified. For type
429
definitions, that'll take some work, since other data structures
430
incorporate mutexes directly, and our mutex type is dependent on
431
configuration options and system attributes. For most functions,
432
though, it should be relatively easy.
433
434
For now, plugins should use the exported functions, and not the
435
above macros, and use krb5int_mutex_alloc for allocations. */
436
#if defined(PLUGIN) || (defined(CONFIG_SMALL) && !defined(THREAD_SUPPORT_IMPL))
437
#undef k5_mutex_lock
438
#define k5_mutex_lock krb5int_mutex_lock
439
#undef k5_mutex_unlock
440
#define k5_mutex_unlock krb5int_mutex_unlock
441
#endif
442
443
#endif /* multiple inclusion? */
444
445