Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/krb5/src/plugins/kdb/db2/libdb2/btree/btree.h
34928 views
1
/*-
2
* Copyright (c) 1991, 1993, 1994
3
* The Regents of the University of California. All rights reserved.
4
*
5
* This code is derived from software contributed to Berkeley by
6
* Mike Olson.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
* 3. All advertising materials mentioning features or use of this software
17
* must display the following acknowledgement:
18
* This product includes software developed by the University of
19
* California, Berkeley and its contributors.
20
* 4. Neither the name of the University nor the names of its contributors
21
* may be used to endorse or promote products derived from this software
22
* without specific prior written permission.
23
*
24
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34
* SUCH DAMAGE.
35
*
36
* @(#)btree.h 8.11 (Berkeley) 8/17/94
37
*/
38
39
/* Macros to set/clear/test flags. */
40
#define F_SET(p, f) (p)->flags |= (f)
41
#define F_CLR(p, f) (p)->flags &= ~(f)
42
#define F_ISSET(p, f) ((p)->flags & (f))
43
44
#include "mpool.h"
45
46
#define DEFMINKEYPAGE (2) /* Minimum keys per page */
47
#define MINCACHE (5) /* Minimum cached pages */
48
#define MINPSIZE (512) /* Minimum page size */
49
50
/*
51
* Page 0 of a btree file contains a copy of the meta-data. This page is also
52
* used as an out-of-band page, i.e. page pointers that point to nowhere point
53
* to page 0. Page 1 is the root of the btree.
54
*/
55
#define P_INVALID 0 /* Invalid tree page number. */
56
#define P_META 0 /* Tree metadata page number. */
57
#define P_ROOT 1 /* Tree root page number. */
58
59
/*
60
* There are five page layouts in the btree: btree internal pages (BINTERNAL),
61
* btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
62
* (RLEAF) and overflow pages. All five page types have a page header (PAGE).
63
* This implementation requires that values within structures NOT be padded.
64
* (ANSI C permits random padding.) If your compiler pads randomly you'll have
65
* to do some work to get this package to run.
66
*/
67
typedef struct _page {
68
db_pgno_t pgno; /* this page's page number */
69
db_pgno_t prevpg; /* left sibling */
70
db_pgno_t nextpg; /* right sibling */
71
72
#define P_BINTERNAL 0x01 /* btree internal page */
73
#define P_BLEAF 0x02 /* leaf page */
74
#define P_OVERFLOW 0x04 /* overflow page */
75
#define P_RINTERNAL 0x08 /* recno internal page */
76
#define P_RLEAF 0x10 /* leaf page */
77
#define P_TYPE 0x1f /* type mask */
78
#define P_PRESERVE 0x20 /* never delete this chain of pages */
79
u_int32_t flags;
80
81
indx_t lower; /* lower bound of free space on page */
82
indx_t upper; /* upper bound of free space on page */
83
indx_t linp[1]; /* indx_t-aligned VAR. LENGTH DATA */
84
} PAGE;
85
86
/* First and next index. */
87
#define BTDATAOFF \
88
(sizeof(db_pgno_t) + sizeof(db_pgno_t) + sizeof(db_pgno_t) + \
89
sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
90
#define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
91
92
/*
93
* For pages other than overflow pages, there is an array of offsets into the
94
* rest of the page immediately following the page header. Each offset is to
95
* an item which is unique to the type of page. The h_lower offset is just
96
* past the last filled-in index. The h_upper offset is the first item on the
97
* page. Offsets are from the beginning of the page.
98
*
99
* If an item is too big to store on a single page, a flag is set and the item
100
* is a { page, size } pair such that the page is the first page of an overflow
101
* chain with size bytes of item. Overflow pages are simply bytes without any
102
* external structure.
103
*
104
* The page number and size fields in the items are db_pgno_t-aligned so they can
105
* be manipulated without copying. (This presumes that 32 bit items can be
106
* manipulated on this system.)
107
*/
108
#define LALIGN(n) (((n) + sizeof(db_pgno_t) - 1) & ~(sizeof(db_pgno_t) - 1))
109
#define NOVFLSIZE (sizeof(db_pgno_t) + sizeof(u_int32_t))
110
111
/*
112
* For the btree internal pages, the item is a key. BINTERNALs are {key, pgno}
113
* pairs, such that the key compares less than or equal to all of the records
114
* on that page. For a tree without duplicate keys, an internal page with two
115
* consecutive keys, a and b, will have all records greater than or equal to a
116
* and less than b stored on the page associated with a. Duplicate keys are
117
* somewhat special and can cause duplicate internal and leaf page records and
118
* some minor modifications of the above rule.
119
*/
120
typedef struct _binternal {
121
u_int32_t ksize; /* key size */
122
db_pgno_t pgno; /* page number stored on */
123
#define P_BIGDATA 0x01 /* overflow data */
124
#define P_BIGKEY 0x02 /* overflow key */
125
u_char flags;
126
char bytes[1]; /* data */
127
} BINTERNAL;
128
129
/* Get the page's BINTERNAL structure at index indx. */
130
#define GETBINTERNAL(pg, indx) \
131
((BINTERNAL *)(void *)((char *)(pg) + (pg)->linp[indx]))
132
133
/* Get the number of bytes in the entry. */
134
#define NBINTERNAL(len) \
135
LALIGN(sizeof(u_int32_t) + sizeof(db_pgno_t) + sizeof(u_char) + (len))
136
137
/* Copy a BINTERNAL entry to the page. */
138
#define WR_BINTERNAL(p, size, pgno, flags) { \
139
*(u_int32_t *)(void *)p = size; \
140
p += sizeof(u_int32_t); \
141
*(db_pgno_t *)(void *)p = pgno; \
142
p += sizeof(db_pgno_t); \
143
*(u_char *)p = flags; \
144
p += sizeof(u_char); \
145
}
146
147
/*
148
* For the recno internal pages, the item is a page number with the number of
149
* keys found on that page and below.
150
*/
151
typedef struct _rinternal {
152
recno_t nrecs; /* number of records */
153
db_pgno_t pgno; /* page number stored below */
154
} RINTERNAL;
155
156
/* Get the page's RINTERNAL structure at index indx. */
157
#define GETRINTERNAL(pg, indx) \
158
((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
159
160
/* Get the number of bytes in the entry. */
161
#define NRINTERNAL \
162
LALIGN(sizeof(recno_t) + sizeof(db_pgno_t))
163
164
/* Copy a RINTERAL entry to the page. */
165
#define WR_RINTERNAL(p, nrecs, pgno) { \
166
*(recno_t *)(void *)p = nrecs; \
167
p += sizeof(recno_t); \
168
*(db_pgno_t *)(void *)p = pgno; \
169
}
170
171
/* For the btree leaf pages, the item is a key and data pair. */
172
typedef struct _bleaf {
173
u_int32_t ksize; /* size of key */
174
u_int32_t dsize; /* size of data */
175
u_char flags; /* P_BIGDATA, P_BIGKEY */
176
char bytes[1]; /* data */
177
} BLEAF;
178
179
/* Get the page's BLEAF structure at index indx. */
180
#define GETBLEAF(pg, indx) \
181
((BLEAF *)(void *)((char *)(pg) + (pg)->linp[indx]))
182
183
/* Get the number of bytes in the entry. */
184
#define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize)
185
186
/* Get the number of bytes in the user's key/data pair. */
187
#define NBLEAFDBT(ksize, dsize) \
188
LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) + \
189
(ksize) + (dsize))
190
191
/* Copy a BLEAF entry to the page. */
192
#define WR_BLEAF(p, key, data, flags) { \
193
*(u_int32_t *)(void *)p = key->size; \
194
p += sizeof(u_int32_t); \
195
*(u_int32_t *)(void *)p = data->size; \
196
p += sizeof(u_int32_t); \
197
*(u_char *)p = flags; \
198
p += sizeof(u_char); \
199
memmove(p, key->data, key->size); \
200
p += key->size; \
201
memmove(p, data->data, data->size); \
202
}
203
204
/* For the recno leaf pages, the item is a data entry. */
205
typedef struct _rleaf {
206
u_int32_t dsize; /* size of data */
207
u_char flags; /* P_BIGDATA */
208
char bytes[1];
209
} RLEAF;
210
211
/* Get the page's RLEAF structure at index indx. */
212
#define GETRLEAF(pg, indx) \
213
((RLEAF *)(void *)((char *)(pg) + (pg)->linp[indx]))
214
215
/* Get the number of bytes in the entry. */
216
#define NRLEAF(p) NRLEAFDBT((p)->dsize)
217
218
/* Get the number of bytes from the user's data. */
219
#define NRLEAFDBT(dsize) \
220
LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
221
222
/* Copy a RLEAF entry to the page. */
223
#define WR_RLEAF(p, data, flags) { \
224
*(u_int32_t *)(void *)p = data->size; \
225
p += sizeof(u_int32_t); \
226
*(u_char *)p = flags; \
227
p += sizeof(u_char); \
228
memmove(p, data->data, data->size); \
229
}
230
231
/*
232
* A record in the tree is either a pointer to a page and an index in the page
233
* or a page number and an index. These structures are used as a cursor, stack
234
* entry and search returns as well as to pass records to other routines.
235
*
236
* One comment about searches. Internal page searches must find the largest
237
* record less than key in the tree so that descents work. Leaf page searches
238
* must find the smallest record greater than key so that the returned index
239
* is the record's correct position for insertion.
240
*/
241
typedef struct _epgno {
242
db_pgno_t pgno; /* the page number */
243
indx_t index; /* the index on the page */
244
} EPGNO;
245
246
typedef struct _epg {
247
PAGE *page; /* the (pinned) page */
248
indx_t index; /* the index on the page */
249
} EPG;
250
251
/*
252
* About cursors. The cursor (and the page that contained the key/data pair
253
* that it referenced) can be deleted, which makes things a bit tricky. If
254
* there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
255
* or there simply aren't any duplicates of the key) we copy the key that it
256
* referenced when it's deleted, and reacquire a new cursor key if the cursor
257
* is used again. If there are duplicates keys, we move to the next/previous
258
* key, and set a flag so that we know what happened. NOTE: if duplicate (to
259
* the cursor) keys are added to the tree during this process, it is undefined
260
* if they will be returned or not in a cursor scan.
261
*
262
* The flags determine the possible states of the cursor:
263
*
264
* CURS_INIT The cursor references *something*.
265
* CURS_ACQUIRE The cursor was deleted, and a key has been saved so that
266
* we can reacquire the right position in the tree.
267
* CURS_AFTER, CURS_BEFORE
268
* The cursor was deleted, and now references a key/data pair
269
* that has not yet been returned, either before or after the
270
* deleted key/data pair.
271
* XXX
272
* This structure is broken out so that we can eventually offer multiple
273
* cursors as part of the DB interface.
274
*/
275
typedef struct _cursor {
276
EPGNO pg; /* B: Saved tree reference. */
277
DBT key; /* B: Saved key, or key.data == NULL. */
278
recno_t rcursor; /* R: recno cursor (1-based) */
279
280
#define CURS_ACQUIRE 0x01 /* B: Cursor needs to be reacquired. */
281
#define CURS_AFTER 0x02 /* B: Unreturned cursor after key. */
282
#define CURS_BEFORE 0x04 /* B: Unreturned cursor before key. */
283
#define CURS_INIT 0x08 /* RB: Cursor initialized. */
284
u_int8_t flags;
285
} CURSOR;
286
287
/*
288
* The metadata of the tree. The nrecs field is used only by the RECNO code.
289
* This is because the btree doesn't really need it and it requires that every
290
* put or delete call modify the metadata.
291
*/
292
typedef struct _btmeta {
293
u_int32_t magic; /* magic number */
294
u_int32_t version; /* version */
295
u_int32_t psize; /* page size */
296
u_int32_t free; /* page number of first free page */
297
u_int32_t nrecs; /* R: number of records */
298
299
#define SAVEMETA (B_NODUPS | R_RECNO)
300
u_int32_t flags; /* bt_flags & SAVEMETA */
301
} BTMETA;
302
303
/* The in-memory btree/recno data structure. */
304
typedef struct _btree {
305
MPOOL *bt_mp; /* memory pool cookie */
306
307
DB *bt_dbp; /* pointer to enclosing DB */
308
309
EPG bt_cur; /* current (pinned) page */
310
PAGE *bt_pinned; /* page pinned across calls */
311
312
CURSOR bt_cursor; /* cursor */
313
314
#define BT_PUSH(t, p, i) { \
315
t->bt_sp->pgno = p; \
316
t->bt_sp->index = i; \
317
++t->bt_sp; \
318
}
319
#define BT_POP(t) (t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
320
#define BT_CLR(t) (t->bt_sp = t->bt_stack)
321
EPGNO bt_stack[50]; /* stack of parent pages */
322
EPGNO *bt_sp; /* current stack pointer */
323
324
DBT bt_rkey; /* returned key */
325
DBT bt_rdata; /* returned data */
326
327
int bt_fd; /* tree file descriptor */
328
329
db_pgno_t bt_free; /* next free page */
330
u_int32_t bt_psize; /* page size */
331
indx_t bt_ovflsize; /* cut-off for key/data overflow */
332
int bt_lorder; /* byte order */
333
/* sorted order */
334
enum { NOT, BACK, FORWARD } bt_order;
335
EPGNO bt_last; /* last insert */
336
337
/* B: key comparison function */
338
int (*bt_cmp) __P((const DBT *, const DBT *));
339
/* B: prefix comparison function */
340
size_t (*bt_pfx) __P((const DBT *, const DBT *));
341
/* R: recno input function */
342
int (*bt_irec) __P((struct _btree *, recno_t));
343
344
FILE *bt_rfp; /* R: record FILE pointer */
345
int bt_rfd; /* R: record file descriptor */
346
347
caddr_t bt_cmap; /* R: current point in mapped space */
348
caddr_t bt_smap; /* R: start of mapped space */
349
caddr_t bt_emap; /* R: end of mapped space */
350
size_t bt_msize; /* R: size of mapped region. */
351
352
recno_t bt_nrecs; /* R: number of records */
353
size_t bt_reclen; /* R: fixed record length */
354
u_char bt_bval; /* R: delimiting byte/pad character */
355
356
/*
357
* NB:
358
* B_NODUPS and R_RECNO are stored on disk, and may not be changed.
359
*/
360
#define B_INMEM 0x00001 /* in-memory tree */
361
#define B_METADIRTY 0x00002 /* need to write metadata */
362
#define B_MODIFIED 0x00004 /* tree modified */
363
#define B_NEEDSWAP 0x00008 /* if byte order requires swapping */
364
#define B_RDONLY 0x00010 /* read-only tree */
365
366
#define B_NODUPS 0x00020 /* no duplicate keys permitted */
367
#define R_RECNO 0x00080 /* record oriented tree */
368
369
#define R_CLOSEFP 0x00040 /* opened a file pointer */
370
#define R_EOF 0x00100 /* end of input file reached. */
371
#define R_FIXLEN 0x00200 /* fixed length records */
372
#define R_MEMMAPPED 0x00400 /* memory mapped file. */
373
#define R_INMEM 0x00800 /* in-memory file */
374
#define R_MODIFIED 0x01000 /* modified file */
375
#define R_RDONLY 0x02000 /* read-only file */
376
377
#define B_DB_LOCK 0x04000 /* DB_LOCK specified. */
378
#define B_DB_SHMEM 0x08000 /* DB_SHMEM specified. */
379
#define B_DB_TXN 0x10000 /* DB_TXN specified. */
380
u_int32_t flags;
381
} BTREE;
382
383
#include "extern.h"
384
385