Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/krb5/src/util/profile/prof_tree.c
34889 views
1
/* -*- mode: c; c-basic-offset: 4; indent-tabs-mode: nil -*- */
2
/*
3
* prof_tree.c --- these routines maintain the parse tree of the
4
* config file.
5
*
6
* All of the details of how the tree is stored is abstracted away in
7
* this file; all of the other profile routines build, access, and
8
* modify the tree via the accessor functions found in this file.
9
*
10
* Each node may represent either a relation or a section header.
11
*
12
* A section header must have its value field be null, and may have one
13
* or more child nodes, pointed to by first_child.
14
*
15
* A relation has as its value a pointer to allocated memory
16
* containing a string. Its first_child pointer must be null.
17
*
18
*/
19
20
21
#include "prof_int.h"
22
23
#include <stdio.h>
24
#include <string.h>
25
#ifdef HAVE_STDLIB_H
26
#include <stdlib.h>
27
#endif
28
#include <errno.h>
29
#include <ctype.h>
30
31
struct profile_node {
32
errcode_t magic;
33
char *name;
34
char *value;
35
int group_level;
36
unsigned int final:1; /* Indicate don't search next file */
37
unsigned int deleted:1;
38
struct profile_node *first_child;
39
struct profile_node *parent;
40
struct profile_node *next, *prev;
41
};
42
43
#define CHECK_MAGIC(node) \
44
if ((node)->magic != PROF_MAGIC_NODE) \
45
return PROF_MAGIC_NODE;
46
47
/*
48
* Free a node, and any children
49
*/
50
void profile_free_node(struct profile_node *node)
51
{
52
struct profile_node *child, *next;
53
54
if (node->magic != PROF_MAGIC_NODE)
55
return;
56
57
if (node->name)
58
free(node->name);
59
if (node->value)
60
free(node->value);
61
62
for (child=node->first_child; child; child = next) {
63
next = child->next;
64
profile_free_node(child);
65
}
66
node->magic = 0;
67
68
free(node);
69
}
70
71
#ifndef HAVE_STRDUP
72
#undef strdup
73
#define strdup MYstrdup
74
static char *MYstrdup (const char *s)
75
{
76
size_t sz = strlen(s) + 1;
77
char *p = malloc(sz);
78
if (p != 0)
79
memcpy(p, s, sz);
80
return p;
81
}
82
#endif
83
84
/*
85
* Create a node
86
*/
87
errcode_t profile_create_node(const char *name, const char *value,
88
struct profile_node **ret_node)
89
{
90
struct profile_node *new;
91
92
new = malloc(sizeof(struct profile_node));
93
if (!new)
94
return ENOMEM;
95
memset(new, 0, sizeof(struct profile_node));
96
/* Set magic here so profile_free_node will free memory */
97
new->magic = PROF_MAGIC_NODE;
98
new->name = strdup(name);
99
if (new->name == 0) {
100
profile_free_node(new);
101
return ENOMEM;
102
}
103
if (value) {
104
new->value = strdup(value);
105
if (new->value == 0) {
106
profile_free_node(new);
107
return ENOMEM;
108
}
109
}
110
111
*ret_node = new;
112
return 0;
113
}
114
115
/* Return a copy of oldnode. Recursively copy oldnode's children, but leave
116
* the parent, next, and prev pointers as null. */
117
struct profile_node *profile_copy_node(struct profile_node *oldnode)
118
{
119
struct profile_node *node = NULL, *p, *q, **nextp, *last;
120
121
if (oldnode->magic != PROF_MAGIC_NODE)
122
return NULL;
123
124
node = calloc(1, sizeof(*node));
125
node->magic = PROF_MAGIC_NODE;
126
node->name = strdup(oldnode->name);
127
if (node->name == NULL)
128
goto errout;
129
if (oldnode->value != NULL) {
130
node->value = strdup(oldnode->value);
131
if (oldnode->value == NULL)
132
goto errout;
133
}
134
node->group_level = oldnode->group_level;
135
node->final = oldnode->final;
136
node->deleted = oldnode->deleted;
137
138
nextp = &node->first_child;
139
last = NULL;
140
for (p = oldnode->first_child; p != NULL; p = p->next) {
141
q = profile_copy_node(p);
142
if (q == NULL)
143
goto errout;
144
145
/* Link in the new child and prepare for the next. */
146
q->parent = node;
147
q->prev = last;
148
last = q;
149
*nextp = q;
150
nextp = &q->next;
151
}
152
153
return node;
154
155
errout:
156
profile_free_node(node);
157
return NULL;
158
}
159
160
/*
161
* This function verifies that all of the representation invariants of
162
* the profile are true. If not, we have a programming bug somewhere,
163
* probably in this file.
164
*/
165
errcode_t profile_verify_node(struct profile_node *node)
166
{
167
struct profile_node *p, *last;
168
errcode_t retval;
169
170
CHECK_MAGIC(node);
171
172
if (node->value && node->first_child)
173
return PROF_SECTION_WITH_VALUE;
174
175
last = 0;
176
for (p = node->first_child; p; last = p, p = p->next) {
177
if (p->prev != last)
178
return PROF_BAD_LINK_LIST;
179
if (last && (last->next != p))
180
return PROF_BAD_LINK_LIST;
181
if (node->group_level+1 != p->group_level)
182
return PROF_BAD_GROUP_LVL;
183
if (p->parent != node)
184
return PROF_BAD_PARENT_PTR;
185
retval = profile_verify_node(p);
186
if (retval)
187
return retval;
188
}
189
return 0;
190
}
191
192
/*
193
* Add a node to a particular section. If check_final is true, don't add the
194
* node if we find a final node for the same name.
195
*/
196
errcode_t profile_add_node(struct profile_node *section, const char *name,
197
const char *value, int check_final,
198
struct profile_node **ret_node)
199
{
200
errcode_t retval;
201
struct profile_node *p, *last, *new;
202
203
CHECK_MAGIC(section);
204
205
if (section->value)
206
return PROF_ADD_NOT_SECTION;
207
208
/*
209
* Find the place to insert the new node. If we are adding a subsection
210
* and already have a subsection with that name, merge them. Otherwise,
211
* we look for the place *after* the last match of the node name, since
212
* order matters.
213
*/
214
for (p=section->first_child, last = 0; p; last = p, p = p->next) {
215
int cmp;
216
cmp = strcmp(p->name, name);
217
if (cmp > 0) {
218
break;
219
} else if (value == NULL && cmp == 0 &&
220
p->value == NULL && p->deleted != 1) {
221
/* Found duplicate subsection, so don't make a new one. */
222
if (ret_node)
223
*ret_node = p;
224
return 0;
225
} else if (check_final && cmp == 0 && p->final) {
226
/* This key already exists with the final flag and we were asked
227
* to check it, so don't add this node. */
228
if (ret_node)
229
*ret_node = NULL;
230
return 0;
231
}
232
}
233
retval = profile_create_node(name, value, &new);
234
if (retval)
235
return retval;
236
new->group_level = section->group_level+1;
237
new->deleted = 0;
238
new->parent = section;
239
new->prev = last;
240
new->next = p;
241
if (p)
242
p->prev = new;
243
if (last)
244
last->next = new;
245
else
246
section->first_child = new;
247
if (ret_node)
248
*ret_node = new;
249
return 0;
250
}
251
252
/*
253
* Set the final flag on a particular node.
254
*/
255
errcode_t profile_make_node_final(struct profile_node *node)
256
{
257
CHECK_MAGIC(node);
258
259
node->final = 1;
260
return 0;
261
}
262
263
/*
264
* Check the final flag on a node
265
*/
266
int profile_is_node_final(struct profile_node *node)
267
{
268
return (node->final != 0);
269
}
270
271
/*
272
* Return the name of a node. (Note: this is for internal functions
273
* only; if the name needs to be returned from an exported function,
274
* strdup it first!)
275
*/
276
const char *profile_get_node_name(struct profile_node *node)
277
{
278
return node->name;
279
}
280
281
/*
282
* Return the value of a node. (Note: this is for internal functions
283
* only; if the name needs to be returned from an exported function,
284
* strdup it first!)
285
*/
286
const char *profile_get_node_value(struct profile_node *node)
287
{
288
return node->value;
289
}
290
291
/*
292
* Iterate through the section, returning the nodes which match
293
* the given name. If name is NULL, then iterate through all the
294
* nodes in the section. If section_flag is non-zero, only return the
295
* section which matches the name; don't return relations. If value
296
* is non-NULL, then only return relations which match the requested
297
* value. (The value argument is ignored if section_flag is non-zero.)
298
*
299
* The first time this routine is called, the state pointer must be
300
* null. When this profile_find_node_relation() returns, if the state
301
* pointer is non-NULL, then this routine should be called again.
302
* (This won't happen if section_flag is non-zero, obviously.)
303
*
304
*/
305
errcode_t profile_find_node(struct profile_node *section, const char *name,
306
const char *value, int section_flag, void **state,
307
struct profile_node **node)
308
{
309
struct profile_node *p;
310
311
CHECK_MAGIC(section);
312
p = *state;
313
if (p) {
314
CHECK_MAGIC(p);
315
} else
316
p = section->first_child;
317
318
for (; p; p = p->next) {
319
if (name && (strcmp(p->name, name)))
320
continue;
321
if (section_flag) {
322
if (p->value)
323
continue;
324
} else {
325
if (!p->value)
326
continue;
327
if (value && (strcmp(p->value, value)))
328
continue;
329
}
330
if (p->deleted)
331
continue;
332
/* A match! */
333
if (node)
334
*node = p;
335
break;
336
}
337
if (p == 0) {
338
*state = 0;
339
return section_flag ? PROF_NO_SECTION : PROF_NO_RELATION;
340
}
341
/*
342
* OK, we've found one match; now let's try to find another
343
* one. This way, if we return a non-zero state pointer,
344
* there's guaranteed to be another match that's returned.
345
*/
346
for (p = p->next; p; p = p->next) {
347
if (name && (strcmp(p->name, name)))
348
continue;
349
if (section_flag) {
350
if (p->value)
351
continue;
352
} else {
353
if (!p->value)
354
continue;
355
if (value && (strcmp(p->value, value)))
356
continue;
357
}
358
if (p->deleted)
359
continue;
360
/* A match! */
361
break;
362
}
363
*state = p;
364
return 0;
365
}
366
367
368
/*
369
* Iterate through the section, returning the relations which match
370
* the given name. If name is NULL, then iterate through all the
371
* relations in the section. The first time this routine is called,
372
* the state pointer must be null. When this profile_find_node_relation()
373
* returns, if the state pointer is non-NULL, then this routine should
374
* be called again.
375
*
376
* The returned character string in value points to the stored
377
* character string in the parse string. Before this string value is
378
* returned to a calling application (profile_find_node_relation is not an
379
* exported interface), it should be strdup()'ed.
380
*/
381
errcode_t profile_find_node_relation(struct profile_node *section,
382
const char *name, void **state,
383
char **ret_name, char **value,
384
int *ret_final)
385
{
386
struct profile_node *p;
387
errcode_t retval;
388
389
retval = profile_find_node(section, name, 0, 0, state, &p);
390
if (retval)
391
return retval;
392
393
if (p) {
394
if (value)
395
*value = p->value;
396
if (ret_name)
397
*ret_name = p->name;
398
if (ret_final)
399
*ret_final = p->final;
400
}
401
return 0;
402
}
403
404
/*
405
* Iterate through the section, returning the subsections which match
406
* the given name. If name is NULL, then iterate through all the
407
* subsections in the section. The first time this routine is called,
408
* the state pointer must be null. When this profile_find_node_subsection()
409
* returns, if the state pointer is non-NULL, then this routine should
410
* be called again.
411
*
412
* This is (plus accessor functions for the name and value given a
413
* profile node) makes this function mostly syntactic sugar for
414
* profile_find_node.
415
*/
416
errcode_t profile_find_node_subsection(struct profile_node *section,
417
const char *name, void **state,
418
char **ret_name,
419
struct profile_node **subsection)
420
{
421
struct profile_node *p;
422
errcode_t retval;
423
424
retval = profile_find_node(section, name, 0, 1, state, &p);
425
if (retval)
426
return retval;
427
428
if (p) {
429
if (subsection)
430
*subsection = p;
431
if (ret_name)
432
*ret_name = p->name;
433
}
434
return 0;
435
}
436
437
/*
438
* This function returns the parent of a particular node.
439
*/
440
errcode_t profile_get_node_parent(struct profile_node *section,
441
struct profile_node **parent)
442
{
443
*parent = section->parent;
444
return 0;
445
}
446
447
/*
448
* This is a general-purpose iterator for returning all nodes that
449
* match the specified name array.
450
*/
451
struct profile_node_iterator {
452
prf_magic_t magic;
453
int flags;
454
const char *const *names;
455
const char *name;
456
prf_file_t file;
457
int file_serial;
458
int done_idx;
459
struct profile_node *node;
460
int num;
461
};
462
463
errcode_t profile_node_iterator_create(profile_t profile,
464
const char *const *names, int flags,
465
void **ret_iter)
466
{
467
struct profile_node_iterator *iter;
468
int done_idx = 0;
469
470
if (profile == 0)
471
return PROF_NO_PROFILE;
472
if (profile->magic != PROF_MAGIC_PROFILE)
473
return PROF_MAGIC_PROFILE;
474
if (!names)
475
return PROF_BAD_NAMESET;
476
if (!(flags & PROFILE_ITER_LIST_SECTION)) {
477
if (!names[0])
478
return PROF_BAD_NAMESET;
479
done_idx = 1;
480
}
481
482
iter = malloc(sizeof(*iter));
483
if (iter == NULL)
484
return ENOMEM;
485
486
iter->magic = PROF_MAGIC_NODE_ITERATOR;
487
iter->names = names;
488
iter->flags = flags;
489
iter->file = profile->first_file;
490
iter->done_idx = done_idx;
491
iter->node = 0;
492
iter->num = 0;
493
*ret_iter = iter;
494
return 0;
495
}
496
497
void profile_node_iterator_free(void **iter_p)
498
{
499
struct profile_node_iterator *iter;
500
501
if (!iter_p)
502
return;
503
iter = *iter_p;
504
if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR)
505
return;
506
free(iter);
507
*iter_p = 0;
508
}
509
510
/*
511
* Note: the returned character strings in ret_name and ret_value
512
* points to the stored character string in the parse string. Before
513
* this string value is returned to a calling application
514
* (profile_node_iterator is not an exported interface), it should be
515
* strdup()'ed.
516
*/
517
errcode_t profile_node_iterator(void **iter_p,
518
struct profile_node **ret_node,
519
char **ret_name, char **ret_value)
520
{
521
struct profile_node_iterator *iter = *iter_p;
522
struct profile_node *section, *p;
523
const char *const *cpp;
524
errcode_t retval;
525
int skip_num = 0;
526
527
if (!iter || iter->magic != PROF_MAGIC_NODE_ITERATOR)
528
return PROF_MAGIC_NODE_ITERATOR;
529
if (iter->file && iter->file->magic != PROF_MAGIC_FILE)
530
return PROF_MAGIC_FILE;
531
if (iter->file && iter->file->data->magic != PROF_MAGIC_FILE_DATA)
532
return PROF_MAGIC_FILE_DATA;
533
/*
534
* If the file has changed, then the node pointer is invalid,
535
* so we'll have search the file again looking for it.
536
*/
537
if (iter->file)
538
k5_mutex_lock(&iter->file->data->lock);
539
if (iter->node && (iter->file->data->upd_serial != iter->file_serial)) {
540
iter->flags &= ~PROFILE_ITER_FINAL_SEEN;
541
skip_num = iter->num;
542
iter->node = 0;
543
}
544
if (iter->node && iter->node->magic != PROF_MAGIC_NODE) {
545
if (iter->file)
546
k5_mutex_unlock(&iter->file->data->lock);
547
return PROF_MAGIC_NODE;
548
}
549
get_new_file:
550
if (iter->node == 0) {
551
if (iter->file == 0 ||
552
(iter->flags & PROFILE_ITER_FINAL_SEEN)) {
553
if (iter->file)
554
k5_mutex_unlock(&iter->file->data->lock);
555
profile_node_iterator_free(iter_p);
556
if (ret_node)
557
*ret_node = 0;
558
if (ret_name)
559
*ret_name = 0;
560
if (ret_value)
561
*ret_value =0;
562
return 0;
563
}
564
if ((retval = profile_update_file_locked(iter->file, NULL))) {
565
k5_mutex_unlock(&iter->file->data->lock);
566
if (retval == ENOENT || retval == EACCES) {
567
/* XXX memory leak? */
568
iter->file = iter->file->next;
569
if (iter->file)
570
k5_mutex_lock(&iter->file->data->lock);
571
skip_num = 0;
572
retval = 0;
573
goto get_new_file;
574
} else {
575
profile_node_iterator_free(iter_p);
576
return retval;
577
}
578
}
579
iter->file_serial = iter->file->data->upd_serial;
580
/*
581
* Find the section to list if we are a LIST_SECTION,
582
* or find the containing section if not.
583
*/
584
section = iter->file->data->root;
585
assert(section != NULL);
586
for (cpp = iter->names; cpp[iter->done_idx]; cpp++) {
587
for (p=section->first_child; p; p = p->next) {
588
if (!strcmp(p->name, *cpp) && !p->value && !p->deleted)
589
break;
590
}
591
if (!p) {
592
section = 0;
593
break;
594
}
595
section = p;
596
if (p->final)
597
iter->flags |= PROFILE_ITER_FINAL_SEEN;
598
}
599
if (!section) {
600
k5_mutex_unlock(&iter->file->data->lock);
601
iter->file = iter->file->next;
602
if (iter->file)
603
k5_mutex_lock(&iter->file->data->lock);
604
skip_num = 0;
605
goto get_new_file;
606
}
607
iter->name = *cpp;
608
iter->node = section->first_child;
609
}
610
/*
611
* OK, now we know iter->node is set up correctly. Let's do
612
* the search.
613
*/
614
for (p = iter->node; p; p = p->next) {
615
if (iter->name && strcmp(p->name, iter->name))
616
continue;
617
if ((iter->flags & PROFILE_ITER_SECTIONS_ONLY) &&
618
p->value)
619
continue;
620
if ((iter->flags & PROFILE_ITER_RELATIONS_ONLY) &&
621
!p->value)
622
continue;
623
if (skip_num > 0) {
624
skip_num--;
625
continue;
626
}
627
if (p->deleted)
628
continue;
629
if (p->final)
630
iter->flags |= PROFILE_ITER_FINAL_SEEN;
631
break;
632
}
633
iter->num++;
634
if (!p) {
635
k5_mutex_unlock(&iter->file->data->lock);
636
iter->file = iter->file->next;
637
if (iter->file)
638
k5_mutex_lock(&iter->file->data->lock);
639
iter->node = 0;
640
skip_num = 0;
641
goto get_new_file;
642
}
643
k5_mutex_unlock(&iter->file->data->lock);
644
if ((iter->node = p->next) == NULL)
645
iter->file = iter->file->next;
646
if (ret_node)
647
*ret_node = p;
648
if (ret_name)
649
*ret_name = p->name;
650
if (ret_value)
651
*ret_value = p->value;
652
return 0;
653
}
654
655
/*
656
* Remove a particular node.
657
*
658
* TYT, 2/25/99
659
*/
660
errcode_t profile_remove_node(struct profile_node *node)
661
{
662
CHECK_MAGIC(node);
663
664
if (node->parent == 0)
665
return PROF_EINVAL; /* Can't remove the root! */
666
667
node->deleted = 1;
668
669
return 0;
670
}
671
672
/*
673
* Set the value of a specific node containing a relation.
674
*
675
* TYT, 2/25/99
676
*/
677
errcode_t profile_set_relation_value(struct profile_node *node,
678
const char *new_value)
679
{
680
char *cp;
681
682
CHECK_MAGIC(node);
683
684
if (!node->value)
685
return PROF_SET_SECTION_VALUE;
686
687
cp = strdup(new_value);
688
if (!cp)
689
return ENOMEM;
690
691
free(node->value);
692
node->value = cp;
693
694
return 0;
695
}
696
697
/*
698
* Rename a specific node
699
*
700
* TYT 2/25/99
701
*/
702
errcode_t profile_rename_node(struct profile_node *node, const char *new_name)
703
{
704
char *new_string;
705
struct profile_node *p, *last;
706
707
CHECK_MAGIC(node);
708
709
if (strcmp(new_name, node->name) == 0)
710
return 0; /* It's the same name, return */
711
712
/*
713
* Make sure we can allocate memory for the new name, first!
714
*/
715
new_string = strdup(new_name);
716
if (!new_string)
717
return ENOMEM;
718
719
/*
720
* Find the place to where the new node should go. We look
721
* for the place *after* the last match of the node name,
722
* since order matters.
723
*/
724
for (p=node->parent->first_child, last = 0; p; last = p, p = p->next) {
725
if (strcmp(p->name, new_name) > 0)
726
break;
727
}
728
729
/*
730
* If we need to move the node, do it now.
731
*/
732
if ((p != node) && (last != node)) {
733
/*
734
* OK, let's detach the node
735
*/
736
if (node->prev)
737
node->prev->next = node->next;
738
else
739
node->parent->first_child = node->next;
740
if (node->next)
741
node->next->prev = node->prev;
742
743
/*
744
* Now let's reattach it in the right place.
745
*/
746
if (p)
747
p->prev = node;
748
if (last)
749
last->next = node;
750
else
751
node->parent->first_child = node;
752
node->next = p;
753
node->prev = last;
754
}
755
756
free(node->name);
757
node->name = new_string;
758
return 0;
759
}
760
761