Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/libecc/src/examples/hash/sha0.c
34889 views
1
/*
2
* Copyright (C) 2021 - This file is part of libecc project
3
*
4
* Authors:
5
* Ryad BENADJILA <[email protected]>
6
* Arnaud EBALARD <[email protected]>
7
*
8
* This software is licensed under a dual BSD and GPL v2 license.
9
* See LICENSE file at the root folder of the project.
10
*/
11
#include "sha0.h"
12
13
#define ROTL_SHA0(x, n) ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n))))
14
15
/* All the inner SHA-0 operations */
16
#define K1_SHA0 0x5a827999
17
#define K2_SHA0 0x6ed9eba1
18
#define K3_SHA0 0x8f1bbcdc
19
#define K4_SHA0 0xca62c1d6
20
21
#define F1_SHA0(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
22
#define F2_SHA0(x, y, z) ((x) ^ (y) ^ (z))
23
#define F3_SHA0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
24
#define F4_SHA0(x, y, z) ((x) ^ (y) ^ (z))
25
26
#define SHA0_EXPAND(W, i) (W[i & 15] = (W[i & 15] ^ W[(i - 14) & 15] ^ W[(i - 8) & 15] ^ W[(i - 3) & 15]))
27
28
#define SHA0_SUBROUND(a, b, c, d, e, F, K, data) do { \
29
u32 A_, B_, C_, D_, E_; \
30
A_ = (e + ROTL_SHA0(a, 5) + F(b, c, d) + K + data); \
31
B_ = a; \
32
C_ = ROTL_SHA0(b, 30); \
33
D_ = c; \
34
E_ = d; \
35
/**/ \
36
a = A_; b = B_; c = C_; d = D_; e = E_; \
37
} while(0)
38
39
/* SHA-0 core processing. Returns 0 on success, -1 on error. */
40
ATTRIBUTE_WARN_UNUSED_RET static inline int sha0_process(sha0_context *ctx,
41
const u8 data[SHA0_BLOCK_SIZE])
42
{
43
u32 A, B, C, D, E;
44
u32 W[16];
45
int ret;
46
unsigned int i;
47
48
MUST_HAVE((data != NULL), ret, err);
49
SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err);
50
51
/* Init our inner variables */
52
A = ctx->sha0_state[0];
53
B = ctx->sha0_state[1];
54
C = ctx->sha0_state[2];
55
D = ctx->sha0_state[3];
56
E = ctx->sha0_state[4];
57
58
/* Load data */
59
for (i = 0; i < 16; i++) {
60
GET_UINT32_BE(W[i], data, (4 * i));
61
}
62
for (i = 0; i < 80; i++) {
63
if(i <= 15){
64
SHA0_SUBROUND(A, B, C, D, E, F1_SHA0, K1_SHA0, W[i]);
65
}
66
else if((i >= 16) && (i <= 19)){
67
SHA0_SUBROUND(A, B, C, D, E, F1_SHA0, K1_SHA0, SHA0_EXPAND(W, i));
68
}
69
else if((i >= 20) && (i <= 39)){
70
SHA0_SUBROUND(A, B, C, D, E, F2_SHA0, K2_SHA0, SHA0_EXPAND(W, i));
71
}
72
else if((i >= 40) && (i <= 59)){
73
SHA0_SUBROUND(A, B, C, D, E, F3_SHA0, K3_SHA0, SHA0_EXPAND(W, i));
74
}
75
else{
76
SHA0_SUBROUND(A, B, C, D, E, F4_SHA0, K4_SHA0, SHA0_EXPAND(W, i));
77
}
78
}
79
80
/* Update state */
81
ctx->sha0_state[0] += A;
82
ctx->sha0_state[1] += B;
83
ctx->sha0_state[2] += C;
84
ctx->sha0_state[3] += D;
85
ctx->sha0_state[4] += E;
86
87
ret = 0;
88
89
err:
90
return ret;
91
}
92
93
/* Init hash function. Returns 0 on success, -1 on error. */
94
ATTRIBUTE_WARN_UNUSED_RET int sha0_init(sha0_context *ctx)
95
{
96
int ret;
97
98
MUST_HAVE((ctx != NULL), ret, err);
99
100
/* Sanity check on size */
101
MUST_HAVE((SHA0_DIGEST_SIZE <= MAX_DIGEST_SIZE), ret, err);
102
103
ctx->sha0_total = 0;
104
ctx->sha0_state[0] = 0x67452301;
105
ctx->sha0_state[1] = 0xefcdab89;
106
ctx->sha0_state[2] = 0x98badcfe;
107
ctx->sha0_state[3] = 0x10325476;
108
ctx->sha0_state[4] = 0xc3d2e1f0;
109
110
/* Tell that we are initialized */
111
ctx->magic = SHA0_HASH_MAGIC;
112
113
ret = 0;
114
115
err:
116
return ret;
117
}
118
119
ATTRIBUTE_WARN_UNUSED_RET int sha0_update(sha0_context *ctx, const u8 *input, u32 ilen)
120
{
121
const u8 *data_ptr = input;
122
u32 remain_ilen = ilen;
123
u16 fill;
124
u8 left;
125
int ret;
126
127
MUST_HAVE((input != NULL) || (ilen == 0), ret, err);
128
SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err);
129
130
/* Nothing to process, return */
131
if (ilen == 0) {
132
ret = 0;
133
goto err;
134
}
135
136
/* Get what's left in our local buffer */
137
left = (ctx->sha0_total & 0x3F);
138
fill = (u16)(SHA0_BLOCK_SIZE - left);
139
140
ctx->sha0_total += ilen;
141
142
if ((left > 0) && (remain_ilen >= fill)) {
143
/* Copy data at the end of the buffer */
144
ret = local_memcpy(ctx->sha0_buffer + left, data_ptr, fill); EG(ret, err);
145
ret = sha0_process(ctx, ctx->sha0_buffer); EG(ret, err);
146
data_ptr += fill;
147
remain_ilen -= fill;
148
left = 0;
149
}
150
151
while (remain_ilen >= SHA0_BLOCK_SIZE) {
152
ret = sha0_process(ctx, data_ptr); EG(ret, err);
153
data_ptr += SHA0_BLOCK_SIZE;
154
remain_ilen -= SHA0_BLOCK_SIZE;
155
}
156
157
if (remain_ilen > 0) {
158
ret = local_memcpy(ctx->sha0_buffer + left, data_ptr, remain_ilen); EG(ret, err);
159
}
160
161
ret = 0;
162
163
err:
164
return ret;
165
}
166
167
/* Finalize. Returns 0 on success, -1 on error.*/
168
ATTRIBUTE_WARN_UNUSED_RET int sha0_final(sha0_context *ctx, u8 output[SHA0_DIGEST_SIZE])
169
{
170
unsigned int block_present = 0;
171
u8 last_padded_block[2 * SHA0_BLOCK_SIZE];
172
int ret;
173
174
MUST_HAVE((output != NULL), ret, err);
175
SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err);
176
177
/* Fill in our last block with zeroes */
178
ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err);
179
180
/* This is our final step, so we proceed with the padding */
181
block_present = ctx->sha0_total % SHA0_BLOCK_SIZE;
182
if (block_present != 0) {
183
/* Copy what's left in our temporary context buffer */
184
ret = local_memcpy(last_padded_block, ctx->sha0_buffer,
185
block_present); EG(ret, err);
186
}
187
188
/* Put the 0x80 byte, beginning of padding */
189
last_padded_block[block_present] = 0x80;
190
191
/* Handle possible additional block */
192
if (block_present > (SHA0_BLOCK_SIZE - 1 - sizeof(u64))) {
193
/* We need an additional block */
194
PUT_UINT64_BE(8 * ctx->sha0_total, last_padded_block,
195
(2 * SHA0_BLOCK_SIZE) - sizeof(u64));
196
ret = sha0_process(ctx, last_padded_block); EG(ret, err);
197
ret = sha0_process(ctx, last_padded_block + SHA0_BLOCK_SIZE); EG(ret, err);
198
} else {
199
/* We do not need an additional block */
200
PUT_UINT64_BE(8 * ctx->sha0_total, last_padded_block,
201
SHA0_BLOCK_SIZE - sizeof(u64));
202
ret = sha0_process(ctx, last_padded_block); EG(ret, err);
203
}
204
205
/* Output the hash result */
206
PUT_UINT32_BE(ctx->sha0_state[0], output, 0);
207
PUT_UINT32_BE(ctx->sha0_state[1], output, 4);
208
PUT_UINT32_BE(ctx->sha0_state[2], output, 8);
209
PUT_UINT32_BE(ctx->sha0_state[3], output, 12);
210
PUT_UINT32_BE(ctx->sha0_state[4], output, 16);
211
212
/* Tell that we are uninitialized */
213
ctx->magic = WORD(0);
214
215
ret = 0;
216
217
err:
218
return ret;
219
}
220
221
222
/*
223
* Scattered version performing init/update/finalize on a vector of buffers
224
* 'inputs' with the length of each buffer passed via 'ilens'. The function
225
* loops on pointers in 'inputs' until it finds a NULL pointer. The function
226
* returns 0 on success, -1 on error.
227
*/
228
ATTRIBUTE_WARN_UNUSED_RET int sha0_scattered(const u8 **inputs, const u32 *ilens,
229
u8 output[SHA0_DIGEST_SIZE])
230
{
231
sha0_context ctx;
232
int ret, pos = 0;
233
234
MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
235
236
ret = sha0_init(&ctx); EG(ret, err);
237
238
while (inputs[pos] != NULL) {
239
ret = sha0_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err);
240
pos += 1;
241
}
242
243
ret = sha0_final(&ctx, output);
244
245
err:
246
return ret;
247
}
248
249
/*
250
* Single call version performing init/update/final on given input.
251
* Returns 0 on success, -1 on error.
252
*/
253
ATTRIBUTE_WARN_UNUSED_RET int sha0(const u8 *input, u32 ilen, u8 output[SHA0_DIGEST_SIZE])
254
{
255
sha0_context ctx;
256
int ret;
257
258
ret = sha0_init(&ctx); EG(ret, err);
259
ret = sha0_update(&ctx, input, ilen); EG(ret, err);
260
ret = sha0_final(&ctx, output);
261
262
err:
263
return ret;
264
}
265
266