Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/libecc/src/fp/fp_mul.c
34870 views
1
/*
2
* Copyright (C) 2017 - This file is part of libecc project
3
*
4
* Authors:
5
* Ryad BENADJILA <[email protected]>
6
* Arnaud EBALARD <[email protected]>
7
* Jean-Pierre FLORI <[email protected]>
8
*
9
* Contributors:
10
* Nicolas VIVET <[email protected]>
11
* Karim KHALFALLAH <[email protected]>
12
*
13
* This software is licensed under a dual BSD and GPL v2 license.
14
* See LICENSE file at the root folder of the project.
15
*/
16
#include <libecc/fp/fp_mul.h>
17
#include <libecc/fp/fp_pow.h>
18
#include <libecc/nn/nn_add.h>
19
#include <libecc/nn/nn_mul_public.h>
20
#include <libecc/nn/nn_modinv.h>
21
/* Include the "internal" header as we use non public API here */
22
#include "../nn/nn_div.h"
23
24
/*
25
* Compute out = in1 * in2 mod p. 'out' parameter must have been initialized
26
* by the caller. Returns 0 on success, -1 on error.
27
*
28
* Aliasing is supported.
29
*/
30
int fp_mul(fp_t out, fp_src_t in1, fp_src_t in2)
31
{
32
int ret;
33
34
ret = fp_check_initialized(in1); EG(ret, err);
35
ret = fp_check_initialized(in2); EG(ret, err);
36
ret = fp_check_initialized(out); EG(ret, err);
37
38
MUST_HAVE(out->ctx == in1->ctx, ret, err);
39
MUST_HAVE(out->ctx == in2->ctx, ret, err);
40
41
ret = nn_mul(&(out->fp_val), &(in1->fp_val), &(in2->fp_val)); EG(ret, err);
42
ret = nn_mod_unshifted(&(out->fp_val), &(out->fp_val), &(in1->ctx->p_normalized),
43
in1->ctx->p_reciprocal, in1->ctx->p_shift);
44
45
err:
46
return ret;
47
}
48
49
/*
50
* Compute out = in * in mod p. 'out' parameter must have been initialized
51
* by the caller. Returns 0 on success, -1 on error.
52
*
53
* Aliasing is supported.
54
*/
55
int fp_sqr(fp_t out, fp_src_t in)
56
{
57
return fp_mul(out, in, in);
58
}
59
60
/* We use Fermat's little theorem for our inversion in Fp:
61
* x^(p-1) = 1 mod (p) means that x^(p-2) mod(p) is the modular
62
* inverse of x mod (p)
63
*
64
* Aliasing is supported.
65
*/
66
int fp_inv(fp_t out, fp_src_t in)
67
{
68
/* Use our lower layer Fermat modular inversion with precomputed
69
* Montgomery coefficients.
70
*/
71
int ret;
72
73
ret = fp_check_initialized(in); EG(ret, err);
74
ret = fp_check_initialized(out); EG(ret, err);
75
76
MUST_HAVE(out->ctx == in->ctx, ret, err);
77
78
/* We can use the Fermat inversion as p is surely prime here */
79
ret = nn_modinv_fermat_redc(&(out->fp_val), &(in->fp_val), &(in->ctx->p), &(in->ctx->r), &(in->ctx->r_square), in->ctx->mpinv);
80
81
err:
82
return ret;
83
}
84
85
/*
86
* Compute out = w^-1 mod p. 'out' parameter must have been initialized
87
* by the caller. Returns 0 on success, -1 on error.
88
*/
89
int fp_inv_word(fp_t out, word_t w)
90
{
91
int ret;
92
93
ret = fp_check_initialized(out); EG(ret, err);
94
95
ret = nn_modinv_word(&(out->fp_val), w, &(out->ctx->p));
96
97
err:
98
return ret;
99
}
100
101
/*
102
* Compute out such that num = out * den mod p. 'out' parameter must have been initialized
103
* by the caller. Returns 0 on success, -1 on error.
104
*
105
* Aliasing is supported.
106
*/
107
int fp_div(fp_t out, fp_src_t num, fp_src_t den)
108
{
109
int ret;
110
111
ret = fp_check_initialized(num); EG(ret, err);
112
ret = fp_check_initialized(den); EG(ret, err);
113
ret = fp_check_initialized(out); EG(ret, err);
114
115
MUST_HAVE(out->ctx == num->ctx, ret, err);
116
MUST_HAVE(out->ctx == den->ctx, ret, err);
117
118
if(out == num){
119
/* Handle aliasing of out and num */
120
fp _num;
121
_num.magic = WORD(0);
122
123
ret = fp_copy(&_num, num); EG(ret, err1);
124
ret = fp_inv(out, den); EG(ret, err1);
125
ret = fp_mul(out, &_num, out);
126
127
err1:
128
fp_uninit(&_num);
129
EG(ret, err);
130
}
131
else{
132
ret = fp_inv(out, den); EG(ret, err);
133
ret = fp_mul(out, num, out);
134
}
135
136
err:
137
return ret;
138
}
139
140