Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/libecc/src/hash/ripemd160.c
34869 views
1
/*
2
* Copyright (C) 2021 - This file is part of libecc project
3
*
4
* Authors:
5
* Arnaud EBALARD <[email protected]>
6
* Ryad BENADJILA <[email protected]>
7
*
8
* This software is licensed under a dual BSD and GPL v2 license.
9
* See LICENSE file at the root folder of the project.
10
*/
11
#include <libecc/lib_ecc_config.h>
12
#ifdef WITH_HASH_RIPEMD160
13
14
#include <libecc/hash/ripemd160.h>
15
16
/****************************************************/
17
/*
18
* 32-bit integer manipulation macros (big endian)
19
*/
20
#ifndef GET_UINT32_LE
21
#define GET_UINT32_LE(n, b, i) \
22
do { \
23
(n) = ( ((u32) (b)[(i) + 3]) << 24 ) \
24
| ( ((u32) (b)[(i) + 2]) << 16 ) \
25
| ( ((u32) (b)[(i) + 1]) << 8 ) \
26
| ( ((u32) (b)[(i) ]) ); \
27
} while( 0 )
28
#endif
29
30
#ifndef PUT_UINT32_LE
31
#define PUT_UINT32_LE(n, b, i) \
32
do { \
33
(b)[(i) + 3] = (u8) ( (n) >> 24 ); \
34
(b)[(i) + 2] = (u8) ( (n) >> 16 ); \
35
(b)[(i) + 1] = (u8) ( (n) >> 8 ); \
36
(b)[(i) ] = (u8) ( (n) ); \
37
} while( 0 )
38
#endif
39
40
/*
41
* 64-bit integer manipulation macros (big endian)
42
*/
43
#ifndef PUT_UINT64_LE
44
#define PUT_UINT64_LE(n,b,i) \
45
do { \
46
(b)[(i) + 7] = (u8) ( (n) >> 56 ); \
47
(b)[(i) + 6] = (u8) ( (n) >> 48 ); \
48
(b)[(i) + 5] = (u8) ( (n) >> 40 ); \
49
(b)[(i) + 4] = (u8) ( (n) >> 32 ); \
50
(b)[(i) + 3] = (u8) ( (n) >> 24 ); \
51
(b)[(i) + 2] = (u8) ( (n) >> 16 ); \
52
(b)[(i) + 1] = (u8) ( (n) >> 8 ); \
53
(b)[(i) ] = (u8) ( (n) ); \
54
} while( 0 )
55
#endif /* PUT_UINT64_LE */
56
57
/* Elements related to RIPEMD160 */
58
#define ROTL_RIPEMD160(x, n) ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n))))
59
60
#define F1_RIPEMD160(x, y, z) ((x) ^ (y) ^ (z))
61
#define F2_RIPEMD160(x, y, z) (((x) & (y)) | ((~(x)) & (z)))
62
#define F3_RIPEMD160(x, y, z) (((x) | (~(y))) ^ (z))
63
#define F4_RIPEMD160(x, y, z) (((x) & (z)) | ((y) & (~(z))))
64
#define F5_RIPEMD160(x, y, z) ((x) ^ ((y) | (~(z))))
65
66
/* Left constants */
67
static const u32 KL_RIPEMD160[5] = {
68
0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e
69
};
70
/* Right constants */
71
static const u32 KR_RIPEMD160[5] = {
72
0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000
73
};
74
75
/* Left line */
76
static const u8 RL_RIPEMD160[5][16] = {
77
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
78
{ 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 },
79
{ 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 },
80
{ 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 },
81
{ 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 }
82
};
83
static const u8 SL_RIPEMD160[5][16] = {
84
{ 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 },
85
{ 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 },
86
{ 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 },
87
{ 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 },
88
{ 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 }
89
};
90
91
/* Right line */
92
static const u8 RR_RIPEMD160[5][16] = {
93
{ 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 },
94
{ 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 },
95
{ 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 },
96
{ 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 },
97
{ 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 }
98
};
99
static const u8 SR_RIPEMD160[5][16] = {
100
{ 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 },
101
{ 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 },
102
{ 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 },
103
{ 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 },
104
{ 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 }
105
};
106
107
#define RIPEMD160_CORE(a, b, c, d, e, round, idx, w, F, S, R, K) do { \
108
u32 t = ROTL_RIPEMD160(a + F(b, c, d) + w[R[round][idx]] + K[round], S[round][idx]) + e;\
109
a = e; e = d; d = ROTL_RIPEMD160(c, 10); c = b; b = t; \
110
} while(0)
111
112
/* RIPEMD160 core processing */
113
ATTRIBUTE_WARN_UNUSED_RET static int ripemd160_process(ripemd160_context *ctx,
114
const u8 data[RIPEMD160_BLOCK_SIZE])
115
{
116
/* Left line */
117
u32 al, bl, cl, dl, el;
118
/* Right line */
119
u32 ar, br, cr, dr, er;
120
/* Temporary data */
121
u32 tt;
122
/* Data */
123
u32 W[16];
124
unsigned int i;
125
int ret;
126
127
MUST_HAVE((data != NULL), ret, err);
128
RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err);
129
130
/* Init our inner variables */
131
al = ar = ctx->ripemd160_state[0];
132
bl = br = ctx->ripemd160_state[1];
133
cl = cr = ctx->ripemd160_state[2];
134
dl = dr = ctx->ripemd160_state[3];
135
el = er = ctx->ripemd160_state[4];
136
137
/* Load data */
138
for (i = 0; i < 16; i++) {
139
GET_UINT32_LE(W[i], data, (4 * i));
140
}
141
142
/* Round 1 */
143
for(i = 0; i < 16; i++){
144
RIPEMD160_CORE(al, bl, cl, dl, el, 0, i, W, F1_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
145
RIPEMD160_CORE(ar, br, cr, dr, er, 0, i, W, F5_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
146
}
147
/* Round 2 */
148
for(i = 0; i < 16; i++){
149
RIPEMD160_CORE(al, bl, cl, dl, el, 1, i, W, F2_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
150
RIPEMD160_CORE(ar, br, cr, dr, er, 1, i, W, F4_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
151
}
152
/* Round 3 */
153
for(i = 0; i < 16; i++){
154
RIPEMD160_CORE(al, bl, cl, dl, el, 2, i, W, F3_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
155
RIPEMD160_CORE(ar, br, cr, dr, er, 2, i, W, F3_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
156
}
157
/* Round 4 */
158
for(i = 0; i < 16; i++){
159
RIPEMD160_CORE(al, bl, cl, dl, el, 3, i, W, F4_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
160
RIPEMD160_CORE(ar, br, cr, dr, er, 3, i, W, F2_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
161
}
162
/* Round 5 */
163
for(i = 0; i < 16; i++){
164
RIPEMD160_CORE(al, bl, cl, dl, el, 4, i, W, F5_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
165
RIPEMD160_CORE(ar, br, cr, dr, er, 4, i, W, F1_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
166
}
167
168
/* Mix the lines and update state */
169
tt = (ctx->ripemd160_state[1] + cl + dr);
170
ctx->ripemd160_state[1] = (ctx->ripemd160_state[2] + dl + er);
171
ctx->ripemd160_state[2] = (ctx->ripemd160_state[3] + el + ar);
172
ctx->ripemd160_state[3] = (ctx->ripemd160_state[4] + al + br);
173
ctx->ripemd160_state[4] = (ctx->ripemd160_state[0] + bl + cr);
174
ctx->ripemd160_state[0] = tt;
175
176
ret = 0;
177
178
err:
179
return ret;
180
}
181
182
/* Init hash function */
183
int ripemd160_init(ripemd160_context *ctx)
184
{
185
int ret;
186
187
MUST_HAVE((ctx != NULL), ret, err);
188
189
ctx->ripemd160_total = 0;
190
ctx->ripemd160_state[0] = 0x67452301;
191
ctx->ripemd160_state[1] = 0xefcdab89;
192
ctx->ripemd160_state[2] = 0x98badcfe;
193
ctx->ripemd160_state[3] = 0x10325476;
194
ctx->ripemd160_state[4] = 0xc3d2e1f0;
195
196
/* Tell that we are initialized */
197
ctx->magic = RIPEMD160_HASH_MAGIC;
198
199
ret = 0;
200
201
err:
202
return ret;
203
}
204
205
/* Update hash function */
206
int ripemd160_update(ripemd160_context *ctx, const u8 *input, u32 ilen)
207
{
208
const u8 *data_ptr = input;
209
u32 remain_ilen = ilen;
210
u16 fill;
211
u8 left;
212
int ret;
213
214
MUST_HAVE((input != NULL) || (ilen == 0), ret, err);
215
RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err);
216
217
/* Nothing to process, return */
218
if (ilen == 0) {
219
ret = 0;
220
goto err;
221
}
222
223
/* Get what's left in our local buffer */
224
left = (ctx->ripemd160_total & 0x3F);
225
fill = (u16)(RIPEMD160_BLOCK_SIZE - left);
226
227
ctx->ripemd160_total += ilen;
228
229
if ((left > 0) && (remain_ilen >= fill)) {
230
/* Copy data at the end of the buffer */
231
ret = local_memcpy(ctx->ripemd160_buffer + left, data_ptr, fill); EG(ret, err);
232
ret = ripemd160_process(ctx, ctx->ripemd160_buffer); EG(ret, err);
233
data_ptr += fill;
234
remain_ilen -= fill;
235
left = 0;
236
}
237
238
while (remain_ilen >= RIPEMD160_BLOCK_SIZE) {
239
ret = ripemd160_process(ctx, data_ptr); EG(ret, err);
240
data_ptr += RIPEMD160_BLOCK_SIZE;
241
remain_ilen -= RIPEMD160_BLOCK_SIZE;
242
}
243
244
if (remain_ilen > 0) {
245
ret = local_memcpy(ctx->ripemd160_buffer + left, data_ptr, remain_ilen); EG(ret, err);
246
}
247
248
ret = 0;
249
250
err:
251
return ret;
252
}
253
254
/* Finalize */
255
int ripemd160_final(ripemd160_context *ctx, u8 output[RIPEMD160_DIGEST_SIZE])
256
{
257
unsigned int block_present = 0;
258
u8 last_padded_block[2 * RIPEMD160_BLOCK_SIZE];
259
int ret;
260
261
MUST_HAVE((output != NULL), ret, err);
262
RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err);
263
264
/* Fill in our last block with zeroes */
265
ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err);
266
267
/* This is our final step, so we proceed with the padding */
268
block_present = (ctx->ripemd160_total % RIPEMD160_BLOCK_SIZE);
269
if (block_present != 0) {
270
/* Copy what's left in our temporary context buffer */
271
ret = local_memcpy(last_padded_block, ctx->ripemd160_buffer,
272
block_present); EG(ret, err);
273
}
274
275
/* Put the 0x80 byte, beginning of padding */
276
last_padded_block[block_present] = 0x80;
277
278
/* Handle possible additional block */
279
if (block_present > (RIPEMD160_BLOCK_SIZE - 1 - sizeof(u64))) {
280
/* We need an additional block */
281
PUT_UINT64_LE(8 * ctx->ripemd160_total, last_padded_block,
282
(2 * RIPEMD160_BLOCK_SIZE) - sizeof(u64));
283
ret = ripemd160_process(ctx, last_padded_block); EG(ret, err);
284
ret = ripemd160_process(ctx, last_padded_block + RIPEMD160_BLOCK_SIZE); EG(ret, err);
285
} else {
286
/* We do not need an additional block */
287
PUT_UINT64_LE(8 * ctx->ripemd160_total, last_padded_block,
288
RIPEMD160_BLOCK_SIZE - sizeof(u64));
289
ret = ripemd160_process(ctx, last_padded_block); EG(ret, err);
290
}
291
292
/* Output the hash result */
293
PUT_UINT32_LE(ctx->ripemd160_state[0], output, 0);
294
PUT_UINT32_LE(ctx->ripemd160_state[1], output, 4);
295
PUT_UINT32_LE(ctx->ripemd160_state[2], output, 8);
296
PUT_UINT32_LE(ctx->ripemd160_state[3], output, 12);
297
PUT_UINT32_LE(ctx->ripemd160_state[4], output, 16);
298
299
/* Tell that we are uninitialized */
300
ctx->magic = WORD(0);
301
302
ret = 0;
303
304
err:
305
return ret;
306
}
307
308
int ripemd160_scattered(const u8 **inputs, const u32 *ilens,
309
u8 output[RIPEMD160_DIGEST_SIZE])
310
{
311
ripemd160_context ctx;
312
int ret, pos = 0;
313
314
MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
315
316
ret = ripemd160_init(&ctx); EG(ret, err);
317
318
while (inputs[pos] != NULL) {
319
ret = ripemd160_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err);
320
pos += 1;
321
}
322
323
ret = ripemd160_final(&ctx, output);
324
325
err:
326
return ret;
327
}
328
329
int ripemd160(const u8 *input, u32 ilen, u8 output[RIPEMD160_DIGEST_SIZE])
330
{
331
ripemd160_context ctx;
332
int ret;
333
334
ret = ripemd160_init(&ctx); EG(ret, err);
335
ret = ripemd160_update(&ctx, input, ilen); EG(ret, err);
336
ret = ripemd160_final(&ctx, output);
337
338
err:
339
return ret;
340
}
341
342
#else /* WITH_HASH_RIPEMD160 */
343
344
/*
345
* Dummy definition to avoid the empty translation unit ISO C warning
346
*/
347
typedef int dummy;
348
#endif /* WITH_HASH_RIPEMD160 */
349
350