Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/crypto/bn/bn_asm.c
106751 views
1
/*
2
* Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#include <assert.h>
11
#include <openssl/crypto.h>
12
#include "internal/cryptlib.h"
13
#include "bn_local.h"
14
15
#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
16
17
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
18
BN_ULONG w)
19
{
20
BN_ULONG c1 = 0;
21
22
assert(num >= 0);
23
if (num <= 0)
24
return c1;
25
26
#ifndef OPENSSL_SMALL_FOOTPRINT
27
while (num & ~3) {
28
mul_add(rp[0], ap[0], w, c1);
29
mul_add(rp[1], ap[1], w, c1);
30
mul_add(rp[2], ap[2], w, c1);
31
mul_add(rp[3], ap[3], w, c1);
32
ap += 4;
33
rp += 4;
34
num -= 4;
35
}
36
#endif
37
while (num) {
38
mul_add(rp[0], ap[0], w, c1);
39
ap++;
40
rp++;
41
num--;
42
}
43
44
return c1;
45
}
46
47
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
48
{
49
BN_ULONG c1 = 0;
50
51
assert(num >= 0);
52
if (num <= 0)
53
return c1;
54
55
#ifndef OPENSSL_SMALL_FOOTPRINT
56
while (num & ~3) {
57
mul(rp[0], ap[0], w, c1);
58
mul(rp[1], ap[1], w, c1);
59
mul(rp[2], ap[2], w, c1);
60
mul(rp[3], ap[3], w, c1);
61
ap += 4;
62
rp += 4;
63
num -= 4;
64
}
65
#endif
66
while (num) {
67
mul(rp[0], ap[0], w, c1);
68
ap++;
69
rp++;
70
num--;
71
}
72
return c1;
73
}
74
75
void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
76
{
77
assert(n >= 0);
78
if (n <= 0)
79
return;
80
81
#ifndef OPENSSL_SMALL_FOOTPRINT
82
while (n & ~3) {
83
sqr(r[0], r[1], a[0]);
84
sqr(r[2], r[3], a[1]);
85
sqr(r[4], r[5], a[2]);
86
sqr(r[6], r[7], a[3]);
87
a += 4;
88
r += 8;
89
n -= 4;
90
}
91
#endif
92
while (n) {
93
sqr(r[0], r[1], a[0]);
94
a++;
95
r += 2;
96
n--;
97
}
98
}
99
100
#else /* !(defined(BN_LLONG) || \
101
* defined(BN_UMULT_HIGH)) */
102
103
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
104
BN_ULONG w)
105
{
106
BN_ULONG c = 0;
107
BN_ULONG bl, bh;
108
109
assert(num >= 0);
110
if (num <= 0)
111
return (BN_ULONG)0;
112
113
bl = LBITS(w);
114
bh = HBITS(w);
115
116
#ifndef OPENSSL_SMALL_FOOTPRINT
117
while (num & ~3) {
118
mul_add(rp[0], ap[0], bl, bh, c);
119
mul_add(rp[1], ap[1], bl, bh, c);
120
mul_add(rp[2], ap[2], bl, bh, c);
121
mul_add(rp[3], ap[3], bl, bh, c);
122
ap += 4;
123
rp += 4;
124
num -= 4;
125
}
126
#endif
127
while (num) {
128
mul_add(rp[0], ap[0], bl, bh, c);
129
ap++;
130
rp++;
131
num--;
132
}
133
return c;
134
}
135
136
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
137
{
138
BN_ULONG carry = 0;
139
BN_ULONG bl, bh;
140
141
assert(num >= 0);
142
if (num <= 0)
143
return (BN_ULONG)0;
144
145
bl = LBITS(w);
146
bh = HBITS(w);
147
148
#ifndef OPENSSL_SMALL_FOOTPRINT
149
while (num & ~3) {
150
mul(rp[0], ap[0], bl, bh, carry);
151
mul(rp[1], ap[1], bl, bh, carry);
152
mul(rp[2], ap[2], bl, bh, carry);
153
mul(rp[3], ap[3], bl, bh, carry);
154
ap += 4;
155
rp += 4;
156
num -= 4;
157
}
158
#endif
159
while (num) {
160
mul(rp[0], ap[0], bl, bh, carry);
161
ap++;
162
rp++;
163
num--;
164
}
165
return carry;
166
}
167
168
void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
169
{
170
assert(n >= 0);
171
if (n <= 0)
172
return;
173
174
#ifndef OPENSSL_SMALL_FOOTPRINT
175
while (n & ~3) {
176
sqr64(r[0], r[1], a[0]);
177
sqr64(r[2], r[3], a[1]);
178
sqr64(r[4], r[5], a[2]);
179
sqr64(r[6], r[7], a[3]);
180
a += 4;
181
r += 8;
182
n -= 4;
183
}
184
#endif
185
while (n) {
186
sqr64(r[0], r[1], a[0]);
187
a++;
188
r += 2;
189
n--;
190
}
191
}
192
193
#endif /* !(defined(BN_LLONG) || \
194
* defined(BN_UMULT_HIGH)) */
195
196
#if defined(BN_LLONG) && defined(BN_DIV2W)
197
198
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
199
{
200
return ((BN_ULONG)(((((BN_ULLONG)h) << BN_BITS2) | l) / (BN_ULLONG)d));
201
}
202
203
#else
204
205
/* Divide h,l by d and return the result. */
206
/* I need to test this some more :-( */
207
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
208
{
209
BN_ULONG dh, dl, q, ret = 0, th, tl, t;
210
int i, count = 2;
211
212
if (d == 0)
213
return BN_MASK2;
214
215
i = BN_num_bits_word(d);
216
assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
217
218
i = BN_BITS2 - i;
219
if (h >= d)
220
h -= d;
221
222
if (i) {
223
d <<= i;
224
h = (h << i) | (l >> (BN_BITS2 - i));
225
l <<= i;
226
}
227
dh = (d & BN_MASK2h) >> BN_BITS4;
228
dl = (d & BN_MASK2l);
229
for (;;) {
230
if ((h >> BN_BITS4) == dh)
231
q = BN_MASK2l;
232
else
233
q = h / dh;
234
235
th = q * dh;
236
tl = dl * q;
237
for (;;) {
238
t = h - th;
239
if ((t & BN_MASK2h) || ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4))))
240
break;
241
q--;
242
th -= dh;
243
tl -= dl;
244
}
245
t = (tl >> BN_BITS4);
246
tl = (tl << BN_BITS4) & BN_MASK2h;
247
th += t;
248
249
if (l < tl)
250
th++;
251
l -= tl;
252
if (h < th) {
253
h += d;
254
q--;
255
}
256
h -= th;
257
258
if (--count == 0)
259
break;
260
261
ret = q << BN_BITS4;
262
h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
263
l = (l & BN_MASK2l) << BN_BITS4;
264
}
265
ret |= q;
266
return ret;
267
}
268
#endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
269
270
#ifdef BN_LLONG
271
BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
272
int n)
273
{
274
BN_ULLONG ll = 0;
275
276
assert(n >= 0);
277
if (n <= 0)
278
return (BN_ULONG)0;
279
280
#ifndef OPENSSL_SMALL_FOOTPRINT
281
while (n & ~3) {
282
ll += (BN_ULLONG)a[0] + b[0];
283
r[0] = (BN_ULONG)ll & BN_MASK2;
284
ll >>= BN_BITS2;
285
ll += (BN_ULLONG)a[1] + b[1];
286
r[1] = (BN_ULONG)ll & BN_MASK2;
287
ll >>= BN_BITS2;
288
ll += (BN_ULLONG)a[2] + b[2];
289
r[2] = (BN_ULONG)ll & BN_MASK2;
290
ll >>= BN_BITS2;
291
ll += (BN_ULLONG)a[3] + b[3];
292
r[3] = (BN_ULONG)ll & BN_MASK2;
293
ll >>= BN_BITS2;
294
a += 4;
295
b += 4;
296
r += 4;
297
n -= 4;
298
}
299
#endif
300
while (n) {
301
ll += (BN_ULLONG)a[0] + b[0];
302
r[0] = (BN_ULONG)ll & BN_MASK2;
303
ll >>= BN_BITS2;
304
a++;
305
b++;
306
r++;
307
n--;
308
}
309
return (BN_ULONG)ll;
310
}
311
#else /* !BN_LLONG */
312
BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
313
int n)
314
{
315
BN_ULONG c, l, t;
316
317
assert(n >= 0);
318
if (n <= 0)
319
return (BN_ULONG)0;
320
321
c = 0;
322
#ifndef OPENSSL_SMALL_FOOTPRINT
323
while (n & ~3) {
324
t = a[0];
325
t = (t + c) & BN_MASK2;
326
c = (t < c);
327
l = (t + b[0]) & BN_MASK2;
328
c += (l < t);
329
r[0] = l;
330
t = a[1];
331
t = (t + c) & BN_MASK2;
332
c = (t < c);
333
l = (t + b[1]) & BN_MASK2;
334
c += (l < t);
335
r[1] = l;
336
t = a[2];
337
t = (t + c) & BN_MASK2;
338
c = (t < c);
339
l = (t + b[2]) & BN_MASK2;
340
c += (l < t);
341
r[2] = l;
342
t = a[3];
343
t = (t + c) & BN_MASK2;
344
c = (t < c);
345
l = (t + b[3]) & BN_MASK2;
346
c += (l < t);
347
r[3] = l;
348
a += 4;
349
b += 4;
350
r += 4;
351
n -= 4;
352
}
353
#endif
354
while (n) {
355
t = a[0];
356
t = (t + c) & BN_MASK2;
357
c = (t < c);
358
l = (t + b[0]) & BN_MASK2;
359
c += (l < t);
360
r[0] = l;
361
a++;
362
b++;
363
r++;
364
n--;
365
}
366
return (BN_ULONG)c;
367
}
368
#endif /* !BN_LLONG */
369
370
BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
371
int n)
372
{
373
BN_ULONG t1, t2;
374
int c = 0;
375
376
assert(n >= 0);
377
if (n <= 0)
378
return (BN_ULONG)0;
379
380
#ifndef OPENSSL_SMALL_FOOTPRINT
381
while (n & ~3) {
382
t1 = a[0];
383
t2 = (t1 - c) & BN_MASK2;
384
c = (t2 > t1);
385
t1 = b[0];
386
t1 = (t2 - t1) & BN_MASK2;
387
r[0] = t1;
388
c += (t1 > t2);
389
t1 = a[1];
390
t2 = (t1 - c) & BN_MASK2;
391
c = (t2 > t1);
392
t1 = b[1];
393
t1 = (t2 - t1) & BN_MASK2;
394
r[1] = t1;
395
c += (t1 > t2);
396
t1 = a[2];
397
t2 = (t1 - c) & BN_MASK2;
398
c = (t2 > t1);
399
t1 = b[2];
400
t1 = (t2 - t1) & BN_MASK2;
401
r[2] = t1;
402
c += (t1 > t2);
403
t1 = a[3];
404
t2 = (t1 - c) & BN_MASK2;
405
c = (t2 > t1);
406
t1 = b[3];
407
t1 = (t2 - t1) & BN_MASK2;
408
r[3] = t1;
409
c += (t1 > t2);
410
a += 4;
411
b += 4;
412
r += 4;
413
n -= 4;
414
}
415
#endif
416
while (n) {
417
t1 = a[0];
418
t2 = (t1 - c) & BN_MASK2;
419
c = (t2 > t1);
420
t1 = b[0];
421
t1 = (t2 - t1) & BN_MASK2;
422
r[0] = t1;
423
c += (t1 > t2);
424
a++;
425
b++;
426
r++;
427
n--;
428
}
429
return c;
430
}
431
432
#if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
433
434
/* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
435
/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
436
/* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
437
/*
438
* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number
439
* c=(c2,c1,c0)
440
*/
441
442
#ifdef BN_LLONG
443
/*
444
* Keep in mind that additions to multiplication result can not
445
* overflow, because its high half cannot be all-ones.
446
*/
447
#define mul_add_c(a, b, c0, c1, c2) \
448
do { \
449
BN_ULONG hi; \
450
BN_ULLONG t = (BN_ULLONG)(a) * (b); \
451
t += c0; /* no carry */ \
452
c0 = (BN_ULONG)Lw(t); \
453
hi = (BN_ULONG)Hw(t); \
454
c1 = (c1 + hi) & BN_MASK2; \
455
c2 += (c1 < hi); \
456
} while (0)
457
458
#define mul_add_c2(a, b, c0, c1, c2) \
459
do { \
460
BN_ULONG hi; \
461
BN_ULLONG t = (BN_ULLONG)(a) * (b); \
462
BN_ULLONG tt = t + c0; /* no carry */ \
463
c0 = (BN_ULONG)Lw(tt); \
464
hi = (BN_ULONG)Hw(tt); \
465
c1 = (c1 + hi) & BN_MASK2; \
466
c2 += (c1 < hi); \
467
t += c0; /* no carry */ \
468
c0 = (BN_ULONG)Lw(t); \
469
hi = (BN_ULONG)Hw(t); \
470
c1 = (c1 + hi) & BN_MASK2; \
471
c2 += (c1 < hi); \
472
} while (0)
473
474
#define sqr_add_c(a, i, c0, c1, c2) \
475
do { \
476
BN_ULONG hi; \
477
BN_ULLONG t = (BN_ULLONG)a[i] * a[i]; \
478
t += c0; /* no carry */ \
479
c0 = (BN_ULONG)Lw(t); \
480
hi = (BN_ULONG)Hw(t); \
481
c1 = (c1 + hi) & BN_MASK2; \
482
c2 += (c1 < hi); \
483
} while (0)
484
485
#define sqr_add_c2(a, i, j, c0, c1, c2) \
486
mul_add_c2((a)[i], (a)[j], c0, c1, c2)
487
488
#elif defined(BN_UMULT_LOHI)
489
/*
490
* Keep in mind that additions to hi can not overflow, because
491
* the high word of a multiplication result cannot be all-ones.
492
*/
493
#define mul_add_c(a, b, c0, c1, c2) \
494
do { \
495
BN_ULONG ta = (a), tb = (b); \
496
BN_ULONG lo, hi; \
497
BN_UMULT_LOHI(lo, hi, ta, tb); \
498
c0 += lo; \
499
hi += (c0 < lo); \
500
c1 += hi; \
501
c2 += (c1 < hi); \
502
} while (0)
503
504
#define mul_add_c2(a, b, c0, c1, c2) \
505
do { \
506
BN_ULONG ta = (a), tb = (b); \
507
BN_ULONG lo, hi, tt; \
508
BN_UMULT_LOHI(lo, hi, ta, tb); \
509
c0 += lo; \
510
tt = hi + (c0 < lo); \
511
c1 += tt; \
512
c2 += (c1 < tt); \
513
c0 += lo; \
514
hi += (c0 < lo); \
515
c1 += hi; \
516
c2 += (c1 < hi); \
517
} while (0)
518
519
#define sqr_add_c(a, i, c0, c1, c2) \
520
do { \
521
BN_ULONG ta = (a)[i]; \
522
BN_ULONG lo, hi; \
523
BN_UMULT_LOHI(lo, hi, ta, ta); \
524
c0 += lo; \
525
hi += (c0 < lo); \
526
c1 += hi; \
527
c2 += (c1 < hi); \
528
} while (0)
529
530
#define sqr_add_c2(a, i, j, c0, c1, c2) \
531
mul_add_c2((a)[i], (a)[j], c0, c1, c2)
532
533
#elif defined(BN_UMULT_HIGH)
534
/*
535
* Keep in mind that additions to hi can not overflow, because
536
* the high word of a multiplication result cannot be all-ones.
537
*/
538
#define mul_add_c(a, b, c0, c1, c2) \
539
do { \
540
BN_ULONG ta = (a), tb = (b); \
541
BN_ULONG lo = ta * tb; \
542
BN_ULONG hi = BN_UMULT_HIGH(ta, tb); \
543
c0 += lo; \
544
hi += (c0 < lo); \
545
c1 += hi; \
546
c2 += (c1 < hi); \
547
} while (0)
548
549
#define mul_add_c2(a, b, c0, c1, c2) \
550
do { \
551
BN_ULONG ta = (a), tb = (b), tt; \
552
BN_ULONG lo = ta * tb; \
553
BN_ULONG hi = BN_UMULT_HIGH(ta, tb); \
554
c0 += lo; \
555
tt = hi + (c0 < lo); \
556
c1 += tt; \
557
c2 += (c1 < tt); \
558
c0 += lo; \
559
hi += (c0 < lo); \
560
c1 += hi; \
561
c2 += (c1 < hi); \
562
} while (0)
563
564
#define sqr_add_c(a, i, c0, c1, c2) \
565
do { \
566
BN_ULONG ta = (a)[i]; \
567
BN_ULONG lo = ta * ta; \
568
BN_ULONG hi = BN_UMULT_HIGH(ta, ta); \
569
c0 += lo; \
570
hi += (c0 < lo); \
571
c1 += hi; \
572
c2 += (c1 < hi); \
573
} while (0)
574
575
#define sqr_add_c2(a, i, j, c0, c1, c2) \
576
mul_add_c2((a)[i], (a)[j], c0, c1, c2)
577
578
#else /* !BN_LLONG */
579
/*
580
* Keep in mind that additions to hi can not overflow, because
581
* the high word of a multiplication result cannot be all-ones.
582
*/
583
#define mul_add_c(a, b, c0, c1, c2) \
584
do { \
585
BN_ULONG lo = LBITS(a), hi = HBITS(a); \
586
BN_ULONG bl = LBITS(b), bh = HBITS(b); \
587
mul64(lo, hi, bl, bh); \
588
c0 = (c0 + lo) & BN_MASK2; \
589
hi += (c0 < lo); \
590
c1 = (c1 + hi) & BN_MASK2; \
591
c2 += (c1 < hi); \
592
} while (0)
593
594
#define mul_add_c2(a, b, c0, c1, c2) \
595
do { \
596
BN_ULONG tt; \
597
BN_ULONG lo = LBITS(a), hi = HBITS(a); \
598
BN_ULONG bl = LBITS(b), bh = HBITS(b); \
599
mul64(lo, hi, bl, bh); \
600
tt = hi; \
601
c0 = (c0 + lo) & BN_MASK2; \
602
tt += (c0 < lo); \
603
c1 = (c1 + tt) & BN_MASK2; \
604
c2 += (c1 < tt); \
605
c0 = (c0 + lo) & BN_MASK2; \
606
hi += (c0 < lo); \
607
c1 = (c1 + hi) & BN_MASK2; \
608
c2 += (c1 < hi); \
609
} while (0)
610
611
#define sqr_add_c(a, i, c0, c1, c2) \
612
do { \
613
BN_ULONG lo, hi; \
614
sqr64(lo, hi, (a)[i]); \
615
c0 = (c0 + lo) & BN_MASK2; \
616
hi += (c0 < lo); \
617
c1 = (c1 + hi) & BN_MASK2; \
618
c2 += (c1 < hi); \
619
} while (0)
620
621
#define sqr_add_c2(a, i, j, c0, c1, c2) \
622
mul_add_c2((a)[i], (a)[j], c0, c1, c2)
623
#endif /* !BN_LLONG */
624
625
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
626
{
627
BN_ULONG c1, c2, c3;
628
629
c1 = 0;
630
c2 = 0;
631
c3 = 0;
632
mul_add_c(a[0], b[0], c1, c2, c3);
633
r[0] = c1;
634
c1 = 0;
635
mul_add_c(a[0], b[1], c2, c3, c1);
636
mul_add_c(a[1], b[0], c2, c3, c1);
637
r[1] = c2;
638
c2 = 0;
639
mul_add_c(a[2], b[0], c3, c1, c2);
640
mul_add_c(a[1], b[1], c3, c1, c2);
641
mul_add_c(a[0], b[2], c3, c1, c2);
642
r[2] = c3;
643
c3 = 0;
644
mul_add_c(a[0], b[3], c1, c2, c3);
645
mul_add_c(a[1], b[2], c1, c2, c3);
646
mul_add_c(a[2], b[1], c1, c2, c3);
647
mul_add_c(a[3], b[0], c1, c2, c3);
648
r[3] = c1;
649
c1 = 0;
650
mul_add_c(a[4], b[0], c2, c3, c1);
651
mul_add_c(a[3], b[1], c2, c3, c1);
652
mul_add_c(a[2], b[2], c2, c3, c1);
653
mul_add_c(a[1], b[3], c2, c3, c1);
654
mul_add_c(a[0], b[4], c2, c3, c1);
655
r[4] = c2;
656
c2 = 0;
657
mul_add_c(a[0], b[5], c3, c1, c2);
658
mul_add_c(a[1], b[4], c3, c1, c2);
659
mul_add_c(a[2], b[3], c3, c1, c2);
660
mul_add_c(a[3], b[2], c3, c1, c2);
661
mul_add_c(a[4], b[1], c3, c1, c2);
662
mul_add_c(a[5], b[0], c3, c1, c2);
663
r[5] = c3;
664
c3 = 0;
665
mul_add_c(a[6], b[0], c1, c2, c3);
666
mul_add_c(a[5], b[1], c1, c2, c3);
667
mul_add_c(a[4], b[2], c1, c2, c3);
668
mul_add_c(a[3], b[3], c1, c2, c3);
669
mul_add_c(a[2], b[4], c1, c2, c3);
670
mul_add_c(a[1], b[5], c1, c2, c3);
671
mul_add_c(a[0], b[6], c1, c2, c3);
672
r[6] = c1;
673
c1 = 0;
674
mul_add_c(a[0], b[7], c2, c3, c1);
675
mul_add_c(a[1], b[6], c2, c3, c1);
676
mul_add_c(a[2], b[5], c2, c3, c1);
677
mul_add_c(a[3], b[4], c2, c3, c1);
678
mul_add_c(a[4], b[3], c2, c3, c1);
679
mul_add_c(a[5], b[2], c2, c3, c1);
680
mul_add_c(a[6], b[1], c2, c3, c1);
681
mul_add_c(a[7], b[0], c2, c3, c1);
682
r[7] = c2;
683
c2 = 0;
684
mul_add_c(a[7], b[1], c3, c1, c2);
685
mul_add_c(a[6], b[2], c3, c1, c2);
686
mul_add_c(a[5], b[3], c3, c1, c2);
687
mul_add_c(a[4], b[4], c3, c1, c2);
688
mul_add_c(a[3], b[5], c3, c1, c2);
689
mul_add_c(a[2], b[6], c3, c1, c2);
690
mul_add_c(a[1], b[7], c3, c1, c2);
691
r[8] = c3;
692
c3 = 0;
693
mul_add_c(a[2], b[7], c1, c2, c3);
694
mul_add_c(a[3], b[6], c1, c2, c3);
695
mul_add_c(a[4], b[5], c1, c2, c3);
696
mul_add_c(a[5], b[4], c1, c2, c3);
697
mul_add_c(a[6], b[3], c1, c2, c3);
698
mul_add_c(a[7], b[2], c1, c2, c3);
699
r[9] = c1;
700
c1 = 0;
701
mul_add_c(a[7], b[3], c2, c3, c1);
702
mul_add_c(a[6], b[4], c2, c3, c1);
703
mul_add_c(a[5], b[5], c2, c3, c1);
704
mul_add_c(a[4], b[6], c2, c3, c1);
705
mul_add_c(a[3], b[7], c2, c3, c1);
706
r[10] = c2;
707
c2 = 0;
708
mul_add_c(a[4], b[7], c3, c1, c2);
709
mul_add_c(a[5], b[6], c3, c1, c2);
710
mul_add_c(a[6], b[5], c3, c1, c2);
711
mul_add_c(a[7], b[4], c3, c1, c2);
712
r[11] = c3;
713
c3 = 0;
714
mul_add_c(a[7], b[5], c1, c2, c3);
715
mul_add_c(a[6], b[6], c1, c2, c3);
716
mul_add_c(a[5], b[7], c1, c2, c3);
717
r[12] = c1;
718
c1 = 0;
719
mul_add_c(a[6], b[7], c2, c3, c1);
720
mul_add_c(a[7], b[6], c2, c3, c1);
721
r[13] = c2;
722
c2 = 0;
723
mul_add_c(a[7], b[7], c3, c1, c2);
724
r[14] = c3;
725
r[15] = c1;
726
}
727
728
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
729
{
730
BN_ULONG c1, c2, c3;
731
732
c1 = 0;
733
c2 = 0;
734
c3 = 0;
735
mul_add_c(a[0], b[0], c1, c2, c3);
736
r[0] = c1;
737
c1 = 0;
738
mul_add_c(a[0], b[1], c2, c3, c1);
739
mul_add_c(a[1], b[0], c2, c3, c1);
740
r[1] = c2;
741
c2 = 0;
742
mul_add_c(a[2], b[0], c3, c1, c2);
743
mul_add_c(a[1], b[1], c3, c1, c2);
744
mul_add_c(a[0], b[2], c3, c1, c2);
745
r[2] = c3;
746
c3 = 0;
747
mul_add_c(a[0], b[3], c1, c2, c3);
748
mul_add_c(a[1], b[2], c1, c2, c3);
749
mul_add_c(a[2], b[1], c1, c2, c3);
750
mul_add_c(a[3], b[0], c1, c2, c3);
751
r[3] = c1;
752
c1 = 0;
753
mul_add_c(a[3], b[1], c2, c3, c1);
754
mul_add_c(a[2], b[2], c2, c3, c1);
755
mul_add_c(a[1], b[3], c2, c3, c1);
756
r[4] = c2;
757
c2 = 0;
758
mul_add_c(a[2], b[3], c3, c1, c2);
759
mul_add_c(a[3], b[2], c3, c1, c2);
760
r[5] = c3;
761
c3 = 0;
762
mul_add_c(a[3], b[3], c1, c2, c3);
763
r[6] = c1;
764
r[7] = c2;
765
}
766
767
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
768
{
769
BN_ULONG c1, c2, c3;
770
771
c1 = 0;
772
c2 = 0;
773
c3 = 0;
774
sqr_add_c(a, 0, c1, c2, c3);
775
r[0] = c1;
776
c1 = 0;
777
sqr_add_c2(a, 1, 0, c2, c3, c1);
778
r[1] = c2;
779
c2 = 0;
780
sqr_add_c(a, 1, c3, c1, c2);
781
sqr_add_c2(a, 2, 0, c3, c1, c2);
782
r[2] = c3;
783
c3 = 0;
784
sqr_add_c2(a, 3, 0, c1, c2, c3);
785
sqr_add_c2(a, 2, 1, c1, c2, c3);
786
r[3] = c1;
787
c1 = 0;
788
sqr_add_c(a, 2, c2, c3, c1);
789
sqr_add_c2(a, 3, 1, c2, c3, c1);
790
sqr_add_c2(a, 4, 0, c2, c3, c1);
791
r[4] = c2;
792
c2 = 0;
793
sqr_add_c2(a, 5, 0, c3, c1, c2);
794
sqr_add_c2(a, 4, 1, c3, c1, c2);
795
sqr_add_c2(a, 3, 2, c3, c1, c2);
796
r[5] = c3;
797
c3 = 0;
798
sqr_add_c(a, 3, c1, c2, c3);
799
sqr_add_c2(a, 4, 2, c1, c2, c3);
800
sqr_add_c2(a, 5, 1, c1, c2, c3);
801
sqr_add_c2(a, 6, 0, c1, c2, c3);
802
r[6] = c1;
803
c1 = 0;
804
sqr_add_c2(a, 7, 0, c2, c3, c1);
805
sqr_add_c2(a, 6, 1, c2, c3, c1);
806
sqr_add_c2(a, 5, 2, c2, c3, c1);
807
sqr_add_c2(a, 4, 3, c2, c3, c1);
808
r[7] = c2;
809
c2 = 0;
810
sqr_add_c(a, 4, c3, c1, c2);
811
sqr_add_c2(a, 5, 3, c3, c1, c2);
812
sqr_add_c2(a, 6, 2, c3, c1, c2);
813
sqr_add_c2(a, 7, 1, c3, c1, c2);
814
r[8] = c3;
815
c3 = 0;
816
sqr_add_c2(a, 7, 2, c1, c2, c3);
817
sqr_add_c2(a, 6, 3, c1, c2, c3);
818
sqr_add_c2(a, 5, 4, c1, c2, c3);
819
r[9] = c1;
820
c1 = 0;
821
sqr_add_c(a, 5, c2, c3, c1);
822
sqr_add_c2(a, 6, 4, c2, c3, c1);
823
sqr_add_c2(a, 7, 3, c2, c3, c1);
824
r[10] = c2;
825
c2 = 0;
826
sqr_add_c2(a, 7, 4, c3, c1, c2);
827
sqr_add_c2(a, 6, 5, c3, c1, c2);
828
r[11] = c3;
829
c3 = 0;
830
sqr_add_c(a, 6, c1, c2, c3);
831
sqr_add_c2(a, 7, 5, c1, c2, c3);
832
r[12] = c1;
833
c1 = 0;
834
sqr_add_c2(a, 7, 6, c2, c3, c1);
835
r[13] = c2;
836
c2 = 0;
837
sqr_add_c(a, 7, c3, c1, c2);
838
r[14] = c3;
839
r[15] = c1;
840
}
841
842
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
843
{
844
BN_ULONG c1, c2, c3;
845
846
c1 = 0;
847
c2 = 0;
848
c3 = 0;
849
sqr_add_c(a, 0, c1, c2, c3);
850
r[0] = c1;
851
c1 = 0;
852
sqr_add_c2(a, 1, 0, c2, c3, c1);
853
r[1] = c2;
854
c2 = 0;
855
sqr_add_c(a, 1, c3, c1, c2);
856
sqr_add_c2(a, 2, 0, c3, c1, c2);
857
r[2] = c3;
858
c3 = 0;
859
sqr_add_c2(a, 3, 0, c1, c2, c3);
860
sqr_add_c2(a, 2, 1, c1, c2, c3);
861
r[3] = c1;
862
c1 = 0;
863
sqr_add_c(a, 2, c2, c3, c1);
864
sqr_add_c2(a, 3, 1, c2, c3, c1);
865
r[4] = c2;
866
c2 = 0;
867
sqr_add_c2(a, 3, 2, c3, c1, c2);
868
r[5] = c3;
869
c3 = 0;
870
sqr_add_c(a, 3, c1, c2, c3);
871
r[6] = c1;
872
r[7] = c2;
873
}
874
875
#ifdef OPENSSL_NO_ASM
876
#ifdef OPENSSL_BN_ASM_MONT
877
#include <alloca.h>
878
/*
879
* This is essentially reference implementation, which may or may not
880
* result in performance improvement. E.g. on IA-32 this routine was
881
* observed to give 40% faster rsa1024 private key operations and 10%
882
* faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
883
* by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
884
* reference implementation, one to be used as starting point for
885
* platform-specific assembler. Mentioned numbers apply to compiler
886
* generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
887
* can vary not only from platform to platform, but even for compiler
888
* versions. Assembler vs. assembler improvement coefficients can
889
* [and are known to] differ and are to be documented elsewhere.
890
*/
891
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
892
const BN_ULONG *np, const BN_ULONG *n0p, int num)
893
{
894
BN_ULONG c0, c1, ml, *tp, n0;
895
#ifdef mul64
896
BN_ULONG mh;
897
#endif
898
volatile BN_ULONG *vp;
899
int i = 0, j;
900
901
#if 0 /* template for platform-specific \
902
* implementation */
903
if (ap == bp)
904
return bn_sqr_mont(rp, ap, np, n0p, num);
905
#endif
906
vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
907
908
n0 = *n0p;
909
910
c0 = 0;
911
ml = bp[0];
912
#ifdef mul64
913
mh = HBITS(ml);
914
ml = LBITS(ml);
915
for (j = 0; j < num; ++j)
916
mul(tp[j], ap[j], ml, mh, c0);
917
#else
918
for (j = 0; j < num; ++j)
919
mul(tp[j], ap[j], ml, c0);
920
#endif
921
922
tp[num] = c0;
923
tp[num + 1] = 0;
924
goto enter;
925
926
for (i = 0; i < num; i++) {
927
c0 = 0;
928
ml = bp[i];
929
#ifdef mul64
930
mh = HBITS(ml);
931
ml = LBITS(ml);
932
for (j = 0; j < num; ++j)
933
mul_add(tp[j], ap[j], ml, mh, c0);
934
#else
935
for (j = 0; j < num; ++j)
936
mul_add(tp[j], ap[j], ml, c0);
937
#endif
938
c1 = (tp[num] + c0) & BN_MASK2;
939
tp[num] = c1;
940
tp[num + 1] = (c1 < c0 ? 1 : 0);
941
enter:
942
c1 = tp[0];
943
ml = (c1 * n0) & BN_MASK2;
944
c0 = 0;
945
#ifdef mul64
946
mh = HBITS(ml);
947
ml = LBITS(ml);
948
mul_add(c1, np[0], ml, mh, c0);
949
#else
950
mul_add(c1, ml, np[0], c0);
951
#endif
952
for (j = 1; j < num; j++) {
953
c1 = tp[j];
954
#ifdef mul64
955
mul_add(c1, np[j], ml, mh, c0);
956
#else
957
mul_add(c1, ml, np[j], c0);
958
#endif
959
tp[j - 1] = c1 & BN_MASK2;
960
}
961
c1 = (tp[num] + c0) & BN_MASK2;
962
tp[num - 1] = c1;
963
tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0);
964
}
965
966
if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
967
c0 = bn_sub_words(rp, tp, np, num);
968
if (tp[num] != 0 || c0 == 0) {
969
for (i = 0; i < num + 2; i++)
970
vp[i] = 0;
971
return 1;
972
}
973
}
974
for (i = 0; i < num; i++)
975
rp[i] = tp[i], vp[i] = 0;
976
vp[num] = 0;
977
vp[num + 1] = 0;
978
return 1;
979
}
980
#else
981
/*
982
* Return value of 0 indicates that multiplication/convolution was not
983
* performed to signal the caller to fall down to alternative/original
984
* code-path.
985
*/
986
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
987
const BN_ULONG *np, const BN_ULONG *n0, int num)
988
{
989
return 0;
990
}
991
#endif /* OPENSSL_BN_ASM_MONT */
992
#endif
993
994
#else /* !BN_MUL_COMBA */
995
996
/* hmm... is it faster just to do a multiply? */
997
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
998
{
999
BN_ULONG t[8];
1000
bn_sqr_normal(r, a, 4, t);
1001
}
1002
1003
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
1004
{
1005
BN_ULONG t[16];
1006
bn_sqr_normal(r, a, 8, t);
1007
}
1008
1009
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1010
{
1011
r[4] = bn_mul_words(&(r[0]), a, 4, b[0]);
1012
r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]);
1013
r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]);
1014
r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]);
1015
}
1016
1017
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1018
{
1019
r[8] = bn_mul_words(&(r[0]), a, 8, b[0]);
1020
r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]);
1021
r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]);
1022
r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]);
1023
r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]);
1024
r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]);
1025
r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]);
1026
r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]);
1027
}
1028
1029
#ifdef OPENSSL_NO_ASM
1030
#ifdef OPENSSL_BN_ASM_MONT
1031
#include <alloca.h>
1032
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
1033
const BN_ULONG *np, const BN_ULONG *n0p, int num)
1034
{
1035
BN_ULONG c0, c1, *tp, n0 = *n0p;
1036
volatile BN_ULONG *vp;
1037
int i = 0, j;
1038
1039
vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
1040
1041
for (i = 0; i <= num; i++)
1042
tp[i] = 0;
1043
1044
for (i = 0; i < num; i++) {
1045
c0 = bn_mul_add_words(tp, ap, num, bp[i]);
1046
c1 = (tp[num] + c0) & BN_MASK2;
1047
tp[num] = c1;
1048
tp[num + 1] = (c1 < c0 ? 1 : 0);
1049
1050
c0 = bn_mul_add_words(tp, np, num, tp[0] * n0);
1051
c1 = (tp[num] + c0) & BN_MASK2;
1052
tp[num] = c1;
1053
tp[num + 1] += (c1 < c0 ? 1 : 0);
1054
for (j = 0; j <= num; j++)
1055
tp[j] = tp[j + 1];
1056
}
1057
1058
if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
1059
c0 = bn_sub_words(rp, tp, np, num);
1060
if (tp[num] != 0 || c0 == 0) {
1061
for (i = 0; i < num + 2; i++)
1062
vp[i] = 0;
1063
return 1;
1064
}
1065
}
1066
for (i = 0; i < num; i++)
1067
rp[i] = tp[i], vp[i] = 0;
1068
vp[num] = 0;
1069
vp[num + 1] = 0;
1070
return 1;
1071
}
1072
#else
1073
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
1074
const BN_ULONG *np, const BN_ULONG *n0, int num)
1075
{
1076
return 0;
1077
}
1078
#endif /* OPENSSL_BN_ASM_MONT */
1079
#endif
1080
1081
#endif /* !BN_MUL_COMBA */
1082
1083