Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/crypto/bn/bn_local.h
108036 views
1
/*
2
* Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#ifndef OSSL_CRYPTO_BN_LOCAL_H
11
#define OSSL_CRYPTO_BN_LOCAL_H
12
13
/*
14
* The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
15
* SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
16
* Configure script and needs to support both 32-bit and 64-bit.
17
*/
18
#include <openssl/opensslconf.h>
19
20
#if !defined(OPENSSL_SYS_UEFI)
21
#include "crypto/bn_conf.h"
22
#endif
23
24
#include "crypto/bn.h"
25
#include "internal/cryptlib.h"
26
#include "internal/numbers.h"
27
28
/*
29
* These preprocessor symbols control various aspects of the bignum headers
30
* and library code. They're not defined by any "normal" configuration, as
31
* they are intended for development and testing purposes. NB: defining
32
* them can be useful for debugging application code as well as openssl
33
* itself. BN_DEBUG - turn on various debugging alterations to the bignum
34
* code BN_RAND_DEBUG - uses random poisoning of unused words to trip up
35
* mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to
36
* break some of the OpenSSL tests.
37
*/
38
#if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG)
39
#define BN_DEBUG
40
#endif
41
#if defined(BN_RAND_DEBUG)
42
#include <openssl/rand.h>
43
#endif
44
45
/*
46
* This should limit the stack usage due to alloca to about 4K.
47
* BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS.
48
* Beyond that size bn_mul_mont is no longer used, and the constant time
49
* assembler code is disabled, due to the blatant alloca and bn_mul_mont usage.
50
* Note that bn_mul_mont does an alloca that is hidden away in assembly.
51
* It is not recommended to do computations with numbers exceeding this limit,
52
* since the result will be highly version dependent:
53
* While the current OpenSSL version will use non-optimized, but safe code,
54
* previous versions will use optimized code, that may crash due to unexpected
55
* stack overflow, and future versions may very well turn this into a hard
56
* limit.
57
* Note however, that it is possible to override the size limit using
58
* "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific
59
* stack limit is known and taken into consideration.
60
*/
61
#ifndef BN_SOFT_LIMIT
62
#define BN_SOFT_LIMIT (4096 / BN_BYTES)
63
#endif
64
65
#ifndef OPENSSL_SMALL_FOOTPRINT
66
#define BN_MUL_COMBA
67
#define BN_SQR_COMBA
68
#define BN_RECURSION
69
#endif
70
71
/*
72
* This next option uses the C libraries (2 word)/(1 word) function. If it is
73
* not defined, I use my C version (which is slower). The reason for this
74
* flag is that when the particular C compiler library routine is used, and
75
* the library is linked with a different compiler, the library is missing.
76
* This mostly happens when the library is built with gcc and then linked
77
* using normal cc. This would be a common occurrence because gcc normally
78
* produces code that is 2 times faster than system compilers for the big
79
* number stuff. For machines with only one compiler (or shared libraries),
80
* this should be on. Again this in only really a problem on machines using
81
* "long long's", are 32bit, and are not using my assembler code.
82
*/
83
#if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) || defined(linux)
84
#define BN_DIV2W
85
#endif
86
87
/*
88
* 64-bit processor with LP64 ABI
89
*/
90
#ifdef SIXTY_FOUR_BIT_LONG
91
#define BN_ULLONG unsigned long long
92
#define BN_BITS4 32
93
#define BN_MASK2 (0xffffffffffffffffL)
94
#define BN_MASK2l (0xffffffffL)
95
#define BN_MASK2h (0xffffffff00000000L)
96
#define BN_MASK2h1 (0xffffffff80000000L)
97
#define BN_DEC_CONV (10000000000000000000UL)
98
#define BN_DEC_NUM 19
99
#define BN_DEC_FMT1 "%lu"
100
#define BN_DEC_FMT2 "%019lu"
101
#endif
102
103
/*
104
* 64-bit processor other than LP64 ABI
105
*/
106
#ifdef SIXTY_FOUR_BIT
107
#undef BN_LLONG
108
#undef BN_ULLONG
109
#define BN_BITS4 32
110
#define BN_MASK2 (0xffffffffffffffffLL)
111
#define BN_MASK2l (0xffffffffL)
112
#define BN_MASK2h (0xffffffff00000000LL)
113
#define BN_MASK2h1 (0xffffffff80000000LL)
114
#define BN_DEC_CONV (10000000000000000000ULL)
115
#define BN_DEC_NUM 19
116
#define BN_DEC_FMT1 "%llu"
117
#define BN_DEC_FMT2 "%019llu"
118
#endif
119
120
#ifdef THIRTY_TWO_BIT
121
#ifdef BN_LLONG
122
#if defined(_WIN32) && !defined(__GNUC__)
123
#define BN_ULLONG unsigned __int64
124
#else
125
#define BN_ULLONG unsigned long long
126
#endif
127
#endif
128
#define BN_BITS4 16
129
#define BN_MASK2 (0xffffffffL)
130
#define BN_MASK2l (0xffff)
131
#define BN_MASK2h1 (0xffff8000L)
132
#define BN_MASK2h (0xffff0000L)
133
#define BN_DEC_CONV (1000000000L)
134
#define BN_DEC_NUM 9
135
#define BN_DEC_FMT1 "%u"
136
#define BN_DEC_FMT2 "%09u"
137
#endif
138
139
/*-
140
* Bignum consistency macros
141
* There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
142
* bignum data after direct manipulations on the data. There is also an
143
* "internal" macro, bn_check_top(), for verifying that there are no leading
144
* zeroes. Unfortunately, some auditing is required due to the fact that
145
* bn_fix_top() has become an overabused duct-tape because bignum data is
146
* occasionally passed around in an inconsistent state. So the following
147
* changes have been made to sort this out;
148
* - bn_fix_top()s implementation has been moved to bn_correct_top()
149
* - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
150
* bn_check_top() is as before.
151
* - if BN_DEBUG *is* defined;
152
* - bn_check_top() tries to pollute unused words even if the bignum 'top' is
153
* consistent. (ed: only if BN_RAND_DEBUG is defined)
154
* - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
155
* The idea is to have debug builds flag up inconsistent bignums when they
156
* occur. If that occurs in a bn_fix_top(), we examine the code in question; if
157
* the use of bn_fix_top() was appropriate (ie. it follows directly after code
158
* that manipulates the bignum) it is converted to bn_correct_top(), and if it
159
* was not appropriate, we convert it permanently to bn_check_top() and track
160
* down the cause of the bug. Eventually, no internal code should be using the
161
* bn_fix_top() macro. External applications and libraries should try this with
162
* their own code too, both in terms of building against the openssl headers
163
* with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
164
* defined. This not only improves external code, it provides more test
165
* coverage for openssl's own code.
166
*/
167
168
#ifdef BN_DEBUG
169
/*
170
* The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
171
* bn_correct_top, in other words such vectors are permitted to have zeros
172
* in most significant limbs. Such vectors are used internally to achieve
173
* execution time invariance for critical operations with private keys.
174
* It's BN_DEBUG-only flag, because user application is not supposed to
175
* observe it anyway. Moreover, optimizing compiler would actually remove
176
* all operations manipulating the bit in question in non-BN_DEBUG build.
177
*/
178
#define BN_FLG_FIXED_TOP 0x10000
179
#ifdef BN_RAND_DEBUG
180
#define bn_pollute(a) \
181
do { \
182
const BIGNUM *_bnum1 = (a); \
183
if (_bnum1->top < _bnum1->dmax) { \
184
unsigned char _tmp_char; \
185
/* We cast away const without the compiler knowing, any \
186
* *genuinely* constant variables that aren't mutable \
187
* wouldn't be constructed with top!=dmax. */ \
188
BN_ULONG *_not_const; \
189
memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
190
(void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */ \
191
memset(_not_const + _bnum1->top, _tmp_char, \
192
sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
193
} \
194
} while (0)
195
#else
196
#define bn_pollute(a)
197
#endif
198
#define bn_check_top(a) \
199
do { \
200
const BIGNUM *_bnum2 = (a); \
201
if (_bnum2 != NULL) { \
202
int _top = _bnum2->top; \
203
(void)ossl_assert((_top == 0 && !_bnum2->neg) || (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) || _bnum2->d[_top - 1] != 0))); \
204
bn_pollute(_bnum2); \
205
} \
206
} while (0)
207
208
#define bn_fix_top(a) bn_check_top(a)
209
210
#define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits + BN_BITS2 - 1)) / BN_BITS2)
211
#define bn_wcheck_size(bn, words) \
212
do { \
213
const BIGNUM *_bnum2 = (bn); \
214
assert((words) <= (_bnum2)->dmax && (words) >= (_bnum2)->top); \
215
/* avoid unused variable warning with NDEBUG */ \
216
(void)(_bnum2); \
217
} while (0)
218
219
#else /* !BN_DEBUG */
220
221
#define BN_FLG_FIXED_TOP 0
222
#define bn_pollute(a)
223
#define bn_check_top(a)
224
#define bn_fix_top(a) bn_correct_top(a)
225
#define bn_check_size(bn, bits)
226
#define bn_wcheck_size(bn, words)
227
228
#endif
229
230
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
231
BN_ULONG w);
232
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
233
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
234
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
235
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
236
int num);
237
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
238
int num);
239
240
struct bignum_st {
241
BN_ULONG *d; /*
242
* Pointer to an array of 'BN_BITS2' bit
243
* chunks. These chunks are organised in
244
* a least significant chunk first order.
245
*/
246
int top; /* Index of last used d +1. */
247
/* The next are internal book keeping for bn_expand. */
248
int dmax; /* Size of the d array. */
249
int neg; /* one if the number is negative */
250
int flags;
251
};
252
253
/* Used for montgomery multiplication */
254
struct bn_mont_ctx_st {
255
int ri; /* number of bits in R */
256
BIGNUM RR; /* used to convert to montgomery form,
257
possibly zero-padded */
258
BIGNUM N; /* The modulus */
259
BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only
260
* stored for bignum algorithm) */
261
BN_ULONG n0[2]; /* least significant word(s) of Ni; (type
262
* changed with 0.9.9, was "BN_ULONG n0;"
263
* before) */
264
int flags;
265
};
266
267
/*
268
* Used for reciprocal division/mod functions It cannot be shared between
269
* threads
270
*/
271
struct bn_recp_ctx_st {
272
BIGNUM N; /* the divisor */
273
BIGNUM Nr; /* the reciprocal */
274
int num_bits;
275
int shift;
276
int flags;
277
};
278
279
/* Used for slow "generation" functions. */
280
struct bn_gencb_st {
281
unsigned int ver; /* To handle binary (in)compatibility */
282
void *arg; /* callback-specific data */
283
union {
284
/* if (ver==1) - handles old style callbacks */
285
void (*cb_1)(int, int, void *);
286
/* if (ver==2) - new callback style */
287
int (*cb_2)(int, int, BN_GENCB *);
288
} cb;
289
};
290
291
/*-
292
* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
293
*
294
*
295
* For window size 'w' (w >= 2) and a random 'b' bits exponent,
296
* the number of multiplications is a constant plus on average
297
*
298
* 2^(w-1) + (b-w)/(w+1);
299
*
300
* here 2^(w-1) is for precomputing the table (we actually need
301
* entries only for windows that have the lowest bit set), and
302
* (b-w)/(w+1) is an approximation for the expected number of
303
* w-bit windows, not counting the first one.
304
*
305
* Thus we should use
306
*
307
* w >= 6 if b > 671
308
* w = 5 if 671 > b > 239
309
* w = 4 if 239 > b > 79
310
* w = 3 if 79 > b > 23
311
* w <= 2 if 23 > b
312
*
313
* (with draws in between). Very small exponents are often selected
314
* with low Hamming weight, so we use w = 1 for b <= 23.
315
*/
316
#define BN_window_bits_for_exponent_size(b) \
317
((b) > 671 ? 6 : (b) > 239 ? 5 \
318
: (b) > 79 ? 4 \
319
: (b) > 23 ? 3 \
320
: 1)
321
322
/*
323
* BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
324
* line width of the target processor is at least the following value.
325
*/
326
#define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
327
#define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
328
329
/*
330
* Window sizes optimized for fixed window size modular exponentiation
331
* algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
332
* BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
333
* log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
334
* defined for cache line sizes of 32 and 64, cache line sizes where
335
* log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
336
* used on processors that have a 128 byte or greater cache line size.
337
*/
338
#if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
339
340
#define BN_window_bits_for_ctime_exponent_size(b) \
341
((b) > 937 ? 6 : (b) > 306 ? 5 \
342
: (b) > 89 ? 4 \
343
: (b) > 22 ? 3 \
344
: 1)
345
#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
346
347
#elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
348
349
#define BN_window_bits_for_ctime_exponent_size(b) \
350
((b) > 306 ? 5 : (b) > 89 ? 4 \
351
: (b) > 22 ? 3 \
352
: 1)
353
#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
354
355
#endif
356
357
/* Pentium pro 16,16,16,32,64 */
358
/* Alpha 16,16,16,16.64 */
359
#define BN_MULL_SIZE_NORMAL (16) /* 32 */
360
#define BN_MUL_RECURSIVE_SIZE_NORMAL (16) /* 32 less than */
361
#define BN_SQR_RECURSIVE_SIZE_NORMAL (16) /* 32 */
362
#define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32) /* 32 */
363
#define BN_MONT_CTX_SET_SIZE_WORD (64) /* 32 */
364
365
#if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
366
/*
367
* BN_UMULT_HIGH section.
368
* If the compiler doesn't support 2*N integer type, then you have to
369
* replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
370
* shifts and additions which unavoidably results in severe performance
371
* penalties. Of course provided that the hardware is capable of producing
372
* 2*N result... That's when you normally start considering assembler
373
* implementation. However! It should be pointed out that some CPUs (e.g.,
374
* PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
375
* the upper half of the product placing the result into a general
376
* purpose register. Now *if* the compiler supports inline assembler,
377
* then it's not impossible to implement the "bignum" routines (and have
378
* the compiler optimize 'em) exhibiting "native" performance in C. That's
379
* what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
380
* support 2*64 integer type, which is also used here.
381
*/
382
#if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__ == 16 && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
383
#define BN_UMULT_HIGH(a, b) (((uint128_t)(a) * (b)) >> 64)
384
#define BN_UMULT_LOHI(low, high, a, b) ({ \
385
uint128_t ret=(uint128_t)(a)*(b); \
386
(high)=ret>>64; (low)=ret; })
387
#elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
388
#if defined(__DECC)
389
#include <c_asm.h>
390
#define BN_UMULT_HIGH(a, b) (BN_ULONG) asm("umulh %a0,%a1,%v0", (a), (b))
391
#elif defined(__GNUC__) && __GNUC__ >= 2
392
#define BN_UMULT_HIGH(a, b) ({ \
393
register BN_ULONG ret; \
394
asm ("umulh %1,%2,%0" \
395
: "=r"(ret) \
396
: "r"(a), "r"(b)); \
397
ret; })
398
#endif /* compiler */
399
#elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
400
#if defined(__GNUC__) && __GNUC__ >= 2
401
#define BN_UMULT_HIGH(a, b) ({ \
402
register BN_ULONG ret; \
403
asm ("mulhdu %0,%1,%2" \
404
: "=r"(ret) \
405
: "r"(a), "r"(b)); \
406
ret; })
407
#endif /* compiler */
408
#elif (defined(__x86_64) || defined(__x86_64__)) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
409
#if defined(__GNUC__) && __GNUC__ >= 2
410
#define BN_UMULT_HIGH(a, b) ({ \
411
register BN_ULONG ret,discard; \
412
asm ("mulq %3" \
413
: "=a"(discard),"=d"(ret) \
414
: "a"(a), "g"(b) \
415
: "cc"); \
416
ret; })
417
#define BN_UMULT_LOHI(low, high, a, b) \
418
asm("mulq %3" \
419
: "=a"(low), "=d"(high) \
420
: "a"(a), "g"(b) \
421
: "cc");
422
#endif
423
#elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
424
#if defined(_MSC_VER) && _MSC_VER >= 1400
425
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
426
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
427
unsigned __int64 *h);
428
#pragma intrinsic(__umulh, _umul128)
429
#define BN_UMULT_HIGH(a, b) __umulh((a), (b))
430
#define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
431
#endif
432
#elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
433
#if defined(__GNUC__) && __GNUC__ >= 2
434
#define BN_UMULT_HIGH(a, b) ({ \
435
register BN_ULONG ret; \
436
asm ("dmultu %1,%2" \
437
: "=h"(ret) \
438
: "r"(a), "r"(b) : "l"); \
439
ret; })
440
#define BN_UMULT_LOHI(low, high, a, b) \
441
asm("dmultu %2,%3" \
442
: "=l"(low), "=h"(high) \
443
: "r"(a), "r"(b));
444
#endif
445
#elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
446
#if defined(__GNUC__) && __GNUC__ >= 2
447
#define BN_UMULT_HIGH(a, b) ({ \
448
register BN_ULONG ret; \
449
asm ("umulh %0,%1,%2" \
450
: "=r"(ret) \
451
: "r"(a), "r"(b)); \
452
ret; })
453
#endif
454
#endif /* cpu */
455
#endif /* OPENSSL_NO_ASM */
456
457
#ifdef BN_RAND_DEBUG
458
#define bn_clear_top2max(a) \
459
{ \
460
int ind = (a)->dmax - (a)->top; \
461
BN_ULONG *ftl = &(a)->d[(a)->top - 1]; \
462
for (; ind != 0; ind--) \
463
*(++ftl) = 0x0; \
464
}
465
#else
466
#define bn_clear_top2max(a)
467
#endif
468
469
#ifdef BN_LLONG
470
/*******************************************************************
471
* Using the long long type, has to be twice as wide as BN_ULONG...
472
*/
473
#define Lw(t) (((BN_ULONG)(t)) & BN_MASK2)
474
#define Hw(t) (((BN_ULONG)((t) >> BN_BITS2)) & BN_MASK2)
475
476
#define mul_add(r, a, w, c) \
477
{ \
478
BN_ULLONG t; \
479
t = (BN_ULLONG)w * (a) + (r) + (c); \
480
(r) = Lw(t); \
481
(c) = Hw(t); \
482
}
483
484
#define mul(r, a, w, c) \
485
{ \
486
BN_ULLONG t; \
487
t = (BN_ULLONG)w * (a) + (c); \
488
(r) = Lw(t); \
489
(c) = Hw(t); \
490
}
491
492
#define sqr(r0, r1, a) \
493
{ \
494
BN_ULLONG t; \
495
t = (BN_ULLONG)(a) * (a); \
496
(r0) = Lw(t); \
497
(r1) = Hw(t); \
498
}
499
500
#elif defined(BN_UMULT_LOHI)
501
#define mul_add(r, a, w, c) \
502
{ \
503
BN_ULONG high, low, ret, tmp = (a); \
504
ret = (r); \
505
BN_UMULT_LOHI(low, high, w, tmp); \
506
ret += (c); \
507
(c) = (ret < (c)); \
508
(c) += high; \
509
ret += low; \
510
(c) += (ret < low); \
511
(r) = ret; \
512
}
513
514
#define mul(r, a, w, c) \
515
{ \
516
BN_ULONG high, low, ret, ta = (a); \
517
BN_UMULT_LOHI(low, high, w, ta); \
518
ret = low + (c); \
519
(c) = high; \
520
(c) += (ret < low); \
521
(r) = ret; \
522
}
523
524
#define sqr(r0, r1, a) \
525
{ \
526
BN_ULONG tmp = (a); \
527
BN_UMULT_LOHI(r0, r1, tmp, tmp); \
528
}
529
530
#elif defined(BN_UMULT_HIGH)
531
#define mul_add(r, a, w, c) \
532
{ \
533
BN_ULONG high, low, ret, tmp = (a); \
534
ret = (r); \
535
high = BN_UMULT_HIGH(w, tmp); \
536
ret += (c); \
537
low = (w) * tmp; \
538
(c) = (ret < (c)); \
539
(c) += high; \
540
ret += low; \
541
(c) += (ret < low); \
542
(r) = ret; \
543
}
544
545
#define mul(r, a, w, c) \
546
{ \
547
BN_ULONG high, low, ret, ta = (a); \
548
low = (w) * ta; \
549
high = BN_UMULT_HIGH(w, ta); \
550
ret = low + (c); \
551
(c) = high; \
552
(c) += (ret < low); \
553
(r) = ret; \
554
}
555
556
#define sqr(r0, r1, a) \
557
{ \
558
BN_ULONG tmp = (a); \
559
(r0) = tmp * tmp; \
560
(r1) = BN_UMULT_HIGH(tmp, tmp); \
561
}
562
563
#else
564
/*************************************************************
565
* No long long type
566
*/
567
568
#define LBITS(a) ((a) & BN_MASK2l)
569
#define HBITS(a) (((a) >> BN_BITS4) & BN_MASK2l)
570
#define L2HBITS(a) (((a) << BN_BITS4) & BN_MASK2)
571
572
#define LLBITS(a) ((a) & BN_MASKl)
573
#define LHBITS(a) (((a) >> BN_BITS2) & BN_MASKl)
574
#define LL2HBITS(a) ((BN_ULLONG)((a) & BN_MASKl) << BN_BITS2)
575
576
#define mul64(l, h, bl, bh) \
577
{ \
578
BN_ULONG m, m1, lt, ht; \
579
\
580
lt = l; \
581
ht = h; \
582
m = (bh) * (lt); \
583
lt = (bl) * (lt); \
584
m1 = (bl) * (ht); \
585
ht = (bh) * (ht); \
586
m = (m + m1) & BN_MASK2; \
587
ht += L2HBITS((BN_ULONG)(m < m1)); \
588
ht += HBITS(m); \
589
m1 = L2HBITS(m); \
590
lt = (lt + m1) & BN_MASK2; \
591
ht += (lt < m1); \
592
(l) = lt; \
593
(h) = ht; \
594
}
595
596
#define sqr64(lo, ho, in) \
597
{ \
598
BN_ULONG l, h, m; \
599
\
600
h = (in); \
601
l = LBITS(h); \
602
h = HBITS(h); \
603
m = (l) * (h); \
604
l *= l; \
605
h *= h; \
606
h += (m & BN_MASK2h1) >> (BN_BITS4 - 1); \
607
m = (m & BN_MASK2l) << (BN_BITS4 + 1); \
608
l = (l + m) & BN_MASK2; \
609
h += (l < m); \
610
(lo) = l; \
611
(ho) = h; \
612
}
613
614
#define mul_add(r, a, bl, bh, c) \
615
{ \
616
BN_ULONG l, h; \
617
\
618
h = (a); \
619
l = LBITS(h); \
620
h = HBITS(h); \
621
mul64(l, h, (bl), (bh)); \
622
\
623
/* non-multiply part */ \
624
l = (l + (c)) & BN_MASK2; \
625
h += (l < (c)); \
626
(c) = (r); \
627
l = (l + (c)) & BN_MASK2; \
628
h += (l < (c)); \
629
(c) = h & BN_MASK2; \
630
(r) = l; \
631
}
632
633
#define mul(r, a, bl, bh, c) \
634
{ \
635
BN_ULONG l, h; \
636
\
637
h = (a); \
638
l = LBITS(h); \
639
h = HBITS(h); \
640
mul64(l, h, (bl), (bh)); \
641
\
642
/* non-multiply part */ \
643
l += (c); \
644
h += ((l & BN_MASK2) < (c)); \
645
(c) = h & BN_MASK2; \
646
(r) = l & BN_MASK2; \
647
}
648
#endif /* !BN_LLONG */
649
650
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
651
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
652
653
void bn_init(BIGNUM *a);
654
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
655
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
656
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
657
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
658
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
659
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
660
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
661
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
662
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
663
int dna, int dnb, BN_ULONG *t);
664
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
665
int n, int tna, int tnb, BN_ULONG *t);
666
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
667
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
668
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
669
BN_ULONG *t);
670
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
671
int cl, int dl);
672
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
673
const BN_ULONG *np, const BN_ULONG *n0, int num);
674
void bn_correct_top_consttime(BIGNUM *a);
675
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
676
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
677
int *noinv);
678
679
static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
680
{
681
if (bits > (INT_MAX - BN_BITS2 + 1))
682
return NULL;
683
684
if (((bits + BN_BITS2 - 1) / BN_BITS2) <= (a)->dmax)
685
return a;
686
687
return bn_expand2((a), (bits + BN_BITS2 - 1) / BN_BITS2);
688
}
689
690
int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
691
int do_trial_division, BN_GENCB *cb);
692
693
#endif
694
695