Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/crypto/bn/bn_local.h
34875 views
1
/*
2
* Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#ifndef OSSL_CRYPTO_BN_LOCAL_H
11
# define OSSL_CRYPTO_BN_LOCAL_H
12
13
/*
14
* The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
15
* SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
16
* Configure script and needs to support both 32-bit and 64-bit.
17
*/
18
# include <openssl/opensslconf.h>
19
20
# if !defined(OPENSSL_SYS_UEFI)
21
# include "crypto/bn_conf.h"
22
# endif
23
24
# include "crypto/bn.h"
25
# include "internal/cryptlib.h"
26
# include "internal/numbers.h"
27
28
/*
29
* These preprocessor symbols control various aspects of the bignum headers
30
* and library code. They're not defined by any "normal" configuration, as
31
* they are intended for development and testing purposes. NB: defining
32
* them can be useful for debugging application code as well as openssl
33
* itself. BN_DEBUG - turn on various debugging alterations to the bignum
34
* code BN_RAND_DEBUG - uses random poisoning of unused words to trip up
35
* mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to
36
* break some of the OpenSSL tests.
37
*/
38
# if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG)
39
# define BN_DEBUG
40
# endif
41
# if defined(BN_RAND_DEBUG)
42
# include <openssl/rand.h>
43
# endif
44
45
/*
46
* This should limit the stack usage due to alloca to about 4K.
47
* BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS.
48
* Beyond that size bn_mul_mont is no longer used, and the constant time
49
* assembler code is disabled, due to the blatant alloca and bn_mul_mont usage.
50
* Note that bn_mul_mont does an alloca that is hidden away in assembly.
51
* It is not recommended to do computations with numbers exceeding this limit,
52
* since the result will be highly version dependent:
53
* While the current OpenSSL version will use non-optimized, but safe code,
54
* previous versions will use optimized code, that may crash due to unexpected
55
* stack overflow, and future versions may very well turn this into a hard
56
* limit.
57
* Note however, that it is possible to override the size limit using
58
* "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific
59
* stack limit is known and taken into consideration.
60
*/
61
# ifndef BN_SOFT_LIMIT
62
# define BN_SOFT_LIMIT (4096 / BN_BYTES)
63
# endif
64
65
# ifndef OPENSSL_SMALL_FOOTPRINT
66
# define BN_MUL_COMBA
67
# define BN_SQR_COMBA
68
# define BN_RECURSION
69
# endif
70
71
/*
72
* This next option uses the C libraries (2 word)/(1 word) function. If it is
73
* not defined, I use my C version (which is slower). The reason for this
74
* flag is that when the particular C compiler library routine is used, and
75
* the library is linked with a different compiler, the library is missing.
76
* This mostly happens when the library is built with gcc and then linked
77
* using normal cc. This would be a common occurrence because gcc normally
78
* produces code that is 2 times faster than system compilers for the big
79
* number stuff. For machines with only one compiler (or shared libraries),
80
* this should be on. Again this in only really a problem on machines using
81
* "long long's", are 32bit, and are not using my assembler code.
82
*/
83
# if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
84
defined(OPENSSL_SYS_WIN32) || defined(linux)
85
# define BN_DIV2W
86
# endif
87
88
/*
89
* 64-bit processor with LP64 ABI
90
*/
91
# ifdef SIXTY_FOUR_BIT_LONG
92
# define BN_ULLONG unsigned long long
93
# define BN_BITS4 32
94
# define BN_MASK2 (0xffffffffffffffffL)
95
# define BN_MASK2l (0xffffffffL)
96
# define BN_MASK2h (0xffffffff00000000L)
97
# define BN_MASK2h1 (0xffffffff80000000L)
98
# define BN_DEC_CONV (10000000000000000000UL)
99
# define BN_DEC_NUM 19
100
# define BN_DEC_FMT1 "%lu"
101
# define BN_DEC_FMT2 "%019lu"
102
# endif
103
104
/*
105
* 64-bit processor other than LP64 ABI
106
*/
107
# ifdef SIXTY_FOUR_BIT
108
# undef BN_LLONG
109
# undef BN_ULLONG
110
# define BN_BITS4 32
111
# define BN_MASK2 (0xffffffffffffffffLL)
112
# define BN_MASK2l (0xffffffffL)
113
# define BN_MASK2h (0xffffffff00000000LL)
114
# define BN_MASK2h1 (0xffffffff80000000LL)
115
# define BN_DEC_CONV (10000000000000000000ULL)
116
# define BN_DEC_NUM 19
117
# define BN_DEC_FMT1 "%llu"
118
# define BN_DEC_FMT2 "%019llu"
119
# endif
120
121
# ifdef THIRTY_TWO_BIT
122
# ifdef BN_LLONG
123
# if defined(_WIN32) && !defined(__GNUC__)
124
# define BN_ULLONG unsigned __int64
125
# else
126
# define BN_ULLONG unsigned long long
127
# endif
128
# endif
129
# define BN_BITS4 16
130
# define BN_MASK2 (0xffffffffL)
131
# define BN_MASK2l (0xffff)
132
# define BN_MASK2h1 (0xffff8000L)
133
# define BN_MASK2h (0xffff0000L)
134
# define BN_DEC_CONV (1000000000L)
135
# define BN_DEC_NUM 9
136
# define BN_DEC_FMT1 "%u"
137
# define BN_DEC_FMT2 "%09u"
138
# endif
139
140
141
/*-
142
* Bignum consistency macros
143
* There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
144
* bignum data after direct manipulations on the data. There is also an
145
* "internal" macro, bn_check_top(), for verifying that there are no leading
146
* zeroes. Unfortunately, some auditing is required due to the fact that
147
* bn_fix_top() has become an overabused duct-tape because bignum data is
148
* occasionally passed around in an inconsistent state. So the following
149
* changes have been made to sort this out;
150
* - bn_fix_top()s implementation has been moved to bn_correct_top()
151
* - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
152
* bn_check_top() is as before.
153
* - if BN_DEBUG *is* defined;
154
* - bn_check_top() tries to pollute unused words even if the bignum 'top' is
155
* consistent. (ed: only if BN_RAND_DEBUG is defined)
156
* - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
157
* The idea is to have debug builds flag up inconsistent bignums when they
158
* occur. If that occurs in a bn_fix_top(), we examine the code in question; if
159
* the use of bn_fix_top() was appropriate (ie. it follows directly after code
160
* that manipulates the bignum) it is converted to bn_correct_top(), and if it
161
* was not appropriate, we convert it permanently to bn_check_top() and track
162
* down the cause of the bug. Eventually, no internal code should be using the
163
* bn_fix_top() macro. External applications and libraries should try this with
164
* their own code too, both in terms of building against the openssl headers
165
* with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
166
* defined. This not only improves external code, it provides more test
167
* coverage for openssl's own code.
168
*/
169
170
# ifdef BN_DEBUG
171
/*
172
* The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
173
* bn_correct_top, in other words such vectors are permitted to have zeros
174
* in most significant limbs. Such vectors are used internally to achieve
175
* execution time invariance for critical operations with private keys.
176
* It's BN_DEBUG-only flag, because user application is not supposed to
177
* observe it anyway. Moreover, optimizing compiler would actually remove
178
* all operations manipulating the bit in question in non-BN_DEBUG build.
179
*/
180
# define BN_FLG_FIXED_TOP 0x10000
181
# ifdef BN_RAND_DEBUG
182
# define bn_pollute(a) \
183
do { \
184
const BIGNUM *_bnum1 = (a); \
185
if (_bnum1->top < _bnum1->dmax) { \
186
unsigned char _tmp_char; \
187
/* We cast away const without the compiler knowing, any \
188
* *genuinely* constant variables that aren't mutable \
189
* wouldn't be constructed with top!=dmax. */ \
190
BN_ULONG *_not_const; \
191
memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
192
(void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
193
memset(_not_const + _bnum1->top, _tmp_char, \
194
sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
195
} \
196
} while(0)
197
# else
198
# define bn_pollute(a)
199
# endif
200
# define bn_check_top(a) \
201
do { \
202
const BIGNUM *_bnum2 = (a); \
203
if (_bnum2 != NULL) { \
204
int _top = _bnum2->top; \
205
(void)ossl_assert((_top == 0 && !_bnum2->neg) || \
206
(_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
207
|| _bnum2->d[_top - 1] != 0))); \
208
bn_pollute(_bnum2); \
209
} \
210
} while(0)
211
212
# define bn_fix_top(a) bn_check_top(a)
213
214
# define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
215
# define bn_wcheck_size(bn, words) \
216
do { \
217
const BIGNUM *_bnum2 = (bn); \
218
assert((words) <= (_bnum2)->dmax && \
219
(words) >= (_bnum2)->top); \
220
/* avoid unused variable warning with NDEBUG */ \
221
(void)(_bnum2); \
222
} while(0)
223
224
# else /* !BN_DEBUG */
225
226
# define BN_FLG_FIXED_TOP 0
227
# define bn_pollute(a)
228
# define bn_check_top(a)
229
# define bn_fix_top(a) bn_correct_top(a)
230
# define bn_check_size(bn, bits)
231
# define bn_wcheck_size(bn, words)
232
233
# endif
234
235
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
236
BN_ULONG w);
237
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
238
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
239
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
240
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
241
int num);
242
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
243
int num);
244
245
struct bignum_st {
246
BN_ULONG *d; /*
247
* Pointer to an array of 'BN_BITS2' bit
248
* chunks. These chunks are organised in
249
* a least significant chunk first order.
250
*/
251
int top; /* Index of last used d +1. */
252
/* The next are internal book keeping for bn_expand. */
253
int dmax; /* Size of the d array. */
254
int neg; /* one if the number is negative */
255
int flags;
256
};
257
258
/* Used for montgomery multiplication */
259
struct bn_mont_ctx_st {
260
int ri; /* number of bits in R */
261
BIGNUM RR; /* used to convert to montgomery form,
262
possibly zero-padded */
263
BIGNUM N; /* The modulus */
264
BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only
265
* stored for bignum algorithm) */
266
BN_ULONG n0[2]; /* least significant word(s) of Ni; (type
267
* changed with 0.9.9, was "BN_ULONG n0;"
268
* before) */
269
int flags;
270
};
271
272
/*
273
* Used for reciprocal division/mod functions It cannot be shared between
274
* threads
275
*/
276
struct bn_recp_ctx_st {
277
BIGNUM N; /* the divisor */
278
BIGNUM Nr; /* the reciprocal */
279
int num_bits;
280
int shift;
281
int flags;
282
};
283
284
/* Used for slow "generation" functions. */
285
struct bn_gencb_st {
286
unsigned int ver; /* To handle binary (in)compatibility */
287
void *arg; /* callback-specific data */
288
union {
289
/* if (ver==1) - handles old style callbacks */
290
void (*cb_1) (int, int, void *);
291
/* if (ver==2) - new callback style */
292
int (*cb_2) (int, int, BN_GENCB *);
293
} cb;
294
};
295
296
/*-
297
* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
298
*
299
*
300
* For window size 'w' (w >= 2) and a random 'b' bits exponent,
301
* the number of multiplications is a constant plus on average
302
*
303
* 2^(w-1) + (b-w)/(w+1);
304
*
305
* here 2^(w-1) is for precomputing the table (we actually need
306
* entries only for windows that have the lowest bit set), and
307
* (b-w)/(w+1) is an approximation for the expected number of
308
* w-bit windows, not counting the first one.
309
*
310
* Thus we should use
311
*
312
* w >= 6 if b > 671
313
* w = 5 if 671 > b > 239
314
* w = 4 if 239 > b > 79
315
* w = 3 if 79 > b > 23
316
* w <= 2 if 23 > b
317
*
318
* (with draws in between). Very small exponents are often selected
319
* with low Hamming weight, so we use w = 1 for b <= 23.
320
*/
321
# define BN_window_bits_for_exponent_size(b) \
322
((b) > 671 ? 6 : \
323
(b) > 239 ? 5 : \
324
(b) > 79 ? 4 : \
325
(b) > 23 ? 3 : 1)
326
327
/*
328
* BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
329
* line width of the target processor is at least the following value.
330
*/
331
# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
332
# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
333
334
/*
335
* Window sizes optimized for fixed window size modular exponentiation
336
* algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
337
* BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
338
* log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
339
* defined for cache line sizes of 32 and 64, cache line sizes where
340
* log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
341
* used on processors that have a 128 byte or greater cache line size.
342
*/
343
# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
344
345
# define BN_window_bits_for_ctime_exponent_size(b) \
346
((b) > 937 ? 6 : \
347
(b) > 306 ? 5 : \
348
(b) > 89 ? 4 : \
349
(b) > 22 ? 3 : 1)
350
# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
351
352
# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
353
354
# define BN_window_bits_for_ctime_exponent_size(b) \
355
((b) > 306 ? 5 : \
356
(b) > 89 ? 4 : \
357
(b) > 22 ? 3 : 1)
358
# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
359
360
# endif
361
362
/* Pentium pro 16,16,16,32,64 */
363
/* Alpha 16,16,16,16.64 */
364
# define BN_MULL_SIZE_NORMAL (16)/* 32 */
365
# define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
366
# define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
367
# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
368
# define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
369
370
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
371
/*
372
* BN_UMULT_HIGH section.
373
* If the compiler doesn't support 2*N integer type, then you have to
374
* replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
375
* shifts and additions which unavoidably results in severe performance
376
* penalties. Of course provided that the hardware is capable of producing
377
* 2*N result... That's when you normally start considering assembler
378
* implementation. However! It should be pointed out that some CPUs (e.g.,
379
* PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
380
* the upper half of the product placing the result into a general
381
* purpose register. Now *if* the compiler supports inline assembler,
382
* then it's not impossible to implement the "bignum" routines (and have
383
* the compiler optimize 'em) exhibiting "native" performance in C. That's
384
* what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
385
* support 2*64 integer type, which is also used here.
386
*/
387
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
388
(defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
389
# define BN_UMULT_HIGH(a,b) (((uint128_t)(a)*(b))>>64)
390
# define BN_UMULT_LOHI(low,high,a,b) ({ \
391
uint128_t ret=(uint128_t)(a)*(b); \
392
(high)=ret>>64; (low)=ret; })
393
# elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
394
# if defined(__DECC)
395
# include <c_asm.h>
396
# define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
397
# elif defined(__GNUC__) && __GNUC__>=2
398
# define BN_UMULT_HIGH(a,b) ({ \
399
register BN_ULONG ret; \
400
asm ("umulh %1,%2,%0" \
401
: "=r"(ret) \
402
: "r"(a), "r"(b)); \
403
ret; })
404
# endif /* compiler */
405
# elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
406
# if defined(__GNUC__) && __GNUC__>=2
407
# define BN_UMULT_HIGH(a,b) ({ \
408
register BN_ULONG ret; \
409
asm ("mulhdu %0,%1,%2" \
410
: "=r"(ret) \
411
: "r"(a), "r"(b)); \
412
ret; })
413
# endif /* compiler */
414
# elif (defined(__x86_64) || defined(__x86_64__)) && \
415
(defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
416
# if defined(__GNUC__) && __GNUC__>=2
417
# define BN_UMULT_HIGH(a,b) ({ \
418
register BN_ULONG ret,discard; \
419
asm ("mulq %3" \
420
: "=a"(discard),"=d"(ret) \
421
: "a"(a), "g"(b) \
422
: "cc"); \
423
ret; })
424
# define BN_UMULT_LOHI(low,high,a,b) \
425
asm ("mulq %3" \
426
: "=a"(low),"=d"(high) \
427
: "a"(a),"g"(b) \
428
: "cc");
429
# endif
430
# elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
431
# if defined(_MSC_VER) && _MSC_VER>=1400
432
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
433
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
434
unsigned __int64 *h);
435
# pragma intrinsic(__umulh,_umul128)
436
# define BN_UMULT_HIGH(a,b) __umulh((a),(b))
437
# define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
438
# endif
439
# elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
440
# if defined(__GNUC__) && __GNUC__>=2
441
# define BN_UMULT_HIGH(a,b) ({ \
442
register BN_ULONG ret; \
443
asm ("dmultu %1,%2" \
444
: "=h"(ret) \
445
: "r"(a), "r"(b) : "l"); \
446
ret; })
447
# define BN_UMULT_LOHI(low,high,a,b) \
448
asm ("dmultu %2,%3" \
449
: "=l"(low),"=h"(high) \
450
: "r"(a), "r"(b));
451
# endif
452
# elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
453
# if defined(__GNUC__) && __GNUC__>=2
454
# define BN_UMULT_HIGH(a,b) ({ \
455
register BN_ULONG ret; \
456
asm ("umulh %0,%1,%2" \
457
: "=r"(ret) \
458
: "r"(a), "r"(b)); \
459
ret; })
460
# endif
461
# endif /* cpu */
462
# endif /* OPENSSL_NO_ASM */
463
464
# ifdef BN_RAND_DEBUG
465
# define bn_clear_top2max(a) \
466
{ \
467
int ind = (a)->dmax - (a)->top; \
468
BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
469
for (; ind != 0; ind--) \
470
*(++ftl) = 0x0; \
471
}
472
# else
473
# define bn_clear_top2max(a)
474
# endif
475
476
# ifdef BN_LLONG
477
/*******************************************************************
478
* Using the long long type, has to be twice as wide as BN_ULONG...
479
*/
480
# define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
481
# define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
482
483
# define mul_add(r,a,w,c) { \
484
BN_ULLONG t; \
485
t=(BN_ULLONG)w * (a) + (r) + (c); \
486
(r)= Lw(t); \
487
(c)= Hw(t); \
488
}
489
490
# define mul(r,a,w,c) { \
491
BN_ULLONG t; \
492
t=(BN_ULLONG)w * (a) + (c); \
493
(r)= Lw(t); \
494
(c)= Hw(t); \
495
}
496
497
# define sqr(r0,r1,a) { \
498
BN_ULLONG t; \
499
t=(BN_ULLONG)(a)*(a); \
500
(r0)=Lw(t); \
501
(r1)=Hw(t); \
502
}
503
504
# elif defined(BN_UMULT_LOHI)
505
# define mul_add(r,a,w,c) { \
506
BN_ULONG high,low,ret,tmp=(a); \
507
ret = (r); \
508
BN_UMULT_LOHI(low,high,w,tmp); \
509
ret += (c); \
510
(c) = (ret<(c)); \
511
(c) += high; \
512
ret += low; \
513
(c) += (ret<low); \
514
(r) = ret; \
515
}
516
517
# define mul(r,a,w,c) { \
518
BN_ULONG high,low,ret,ta=(a); \
519
BN_UMULT_LOHI(low,high,w,ta); \
520
ret = low + (c); \
521
(c) = high; \
522
(c) += (ret<low); \
523
(r) = ret; \
524
}
525
526
# define sqr(r0,r1,a) { \
527
BN_ULONG tmp=(a); \
528
BN_UMULT_LOHI(r0,r1,tmp,tmp); \
529
}
530
531
# elif defined(BN_UMULT_HIGH)
532
# define mul_add(r,a,w,c) { \
533
BN_ULONG high,low,ret,tmp=(a); \
534
ret = (r); \
535
high= BN_UMULT_HIGH(w,tmp); \
536
ret += (c); \
537
low = (w) * tmp; \
538
(c) = (ret<(c)); \
539
(c) += high; \
540
ret += low; \
541
(c) += (ret<low); \
542
(r) = ret; \
543
}
544
545
# define mul(r,a,w,c) { \
546
BN_ULONG high,low,ret,ta=(a); \
547
low = (w) * ta; \
548
high= BN_UMULT_HIGH(w,ta); \
549
ret = low + (c); \
550
(c) = high; \
551
(c) += (ret<low); \
552
(r) = ret; \
553
}
554
555
# define sqr(r0,r1,a) { \
556
BN_ULONG tmp=(a); \
557
(r0) = tmp * tmp; \
558
(r1) = BN_UMULT_HIGH(tmp,tmp); \
559
}
560
561
# else
562
/*************************************************************
563
* No long long type
564
*/
565
566
# define LBITS(a) ((a)&BN_MASK2l)
567
# define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
568
# define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
569
570
# define LLBITS(a) ((a)&BN_MASKl)
571
# define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
572
# define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
573
574
# define mul64(l,h,bl,bh) \
575
{ \
576
BN_ULONG m,m1,lt,ht; \
577
\
578
lt=l; \
579
ht=h; \
580
m =(bh)*(lt); \
581
lt=(bl)*(lt); \
582
m1=(bl)*(ht); \
583
ht =(bh)*(ht); \
584
m=(m+m1)&BN_MASK2; ht += L2HBITS((BN_ULONG)(m < m1)); \
585
ht+=HBITS(m); \
586
m1=L2HBITS(m); \
587
lt=(lt+m1)&BN_MASK2; ht += (lt < m1); \
588
(l)=lt; \
589
(h)=ht; \
590
}
591
592
# define sqr64(lo,ho,in) \
593
{ \
594
BN_ULONG l,h,m; \
595
\
596
h=(in); \
597
l=LBITS(h); \
598
h=HBITS(h); \
599
m =(l)*(h); \
600
l*=l; \
601
h*=h; \
602
h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
603
m =(m&BN_MASK2l)<<(BN_BITS4+1); \
604
l=(l+m)&BN_MASK2; h += (l < m); \
605
(lo)=l; \
606
(ho)=h; \
607
}
608
609
# define mul_add(r,a,bl,bh,c) { \
610
BN_ULONG l,h; \
611
\
612
h= (a); \
613
l=LBITS(h); \
614
h=HBITS(h); \
615
mul64(l,h,(bl),(bh)); \
616
\
617
/* non-multiply part */ \
618
l=(l+(c))&BN_MASK2; h += (l < (c)); \
619
(c)=(r); \
620
l=(l+(c))&BN_MASK2; h += (l < (c)); \
621
(c)=h&BN_MASK2; \
622
(r)=l; \
623
}
624
625
# define mul(r,a,bl,bh,c) { \
626
BN_ULONG l,h; \
627
\
628
h= (a); \
629
l=LBITS(h); \
630
h=HBITS(h); \
631
mul64(l,h,(bl),(bh)); \
632
\
633
/* non-multiply part */ \
634
l+=(c); h += ((l&BN_MASK2) < (c)); \
635
(c)=h&BN_MASK2; \
636
(r)=l&BN_MASK2; \
637
}
638
# endif /* !BN_LLONG */
639
640
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
641
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
642
643
void bn_init(BIGNUM *a);
644
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
645
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
646
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
647
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
648
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
649
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
650
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
651
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
652
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
653
int dna, int dnb, BN_ULONG *t);
654
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
655
int n, int tna, int tnb, BN_ULONG *t);
656
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
657
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
658
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
659
BN_ULONG *t);
660
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
661
int cl, int dl);
662
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
663
const BN_ULONG *np, const BN_ULONG *n0, int num);
664
void bn_correct_top_consttime(BIGNUM *a);
665
BIGNUM *int_bn_mod_inverse(BIGNUM *in,
666
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
667
int *noinv);
668
669
static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
670
{
671
if (bits > (INT_MAX - BN_BITS2 + 1))
672
return NULL;
673
674
if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
675
return a;
676
677
return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
678
}
679
680
int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
681
int do_trial_division, BN_GENCB *cb);
682
683
#endif
684
685