Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/demos/keyexch/ecdh.c
34869 views
1
/*
2
* Copyright 2023-2024 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#include <stdio.h>
11
#include <string.h>
12
#include <openssl/core_names.h>
13
#include <openssl/evp.h>
14
#include <openssl/err.h>
15
16
/*
17
* This is a demonstration of key exchange using ECDH.
18
*
19
* EC key exchange requires 2 parties (peers) to first agree on shared group
20
* parameters (the EC curve name). Each peer then generates a public/private
21
* key pair using the shared curve name. Each peer then gives their public key
22
* to the other peer. A peer can then derive the same shared secret using their
23
* private key and the other peers public key.
24
*/
25
26
/* Object used to store information for a single Peer */
27
typedef struct peer_data_st {
28
const char *name; /* name of peer */
29
const char *curvename; /* The shared curve name */
30
EVP_PKEY *priv; /* private keypair */
31
EVP_PKEY *pub; /* public key to send to other peer */
32
unsigned char *secret; /* allocated shared secret buffer */
33
size_t secretlen;
34
} PEER_DATA;
35
36
/*
37
* The public key needs to be given to the other peer
38
* The following code extracts the public key data from the private key
39
* and then builds an EVP_KEY public key.
40
*/
41
static int get_peer_public_key(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
42
{
43
int ret = 0;
44
EVP_PKEY_CTX *ctx;
45
OSSL_PARAM params[3];
46
unsigned char pubkeydata[256];
47
size_t pubkeylen;
48
49
/* Get the EC encoded public key data from the peers private key */
50
if (!EVP_PKEY_get_octet_string_param(peer->priv, OSSL_PKEY_PARAM_PUB_KEY,
51
pubkeydata, sizeof(pubkeydata),
52
&pubkeylen))
53
return 0;
54
55
/* Create a EC public key from the public key data */
56
ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
57
if (ctx == NULL)
58
return 0;
59
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
60
(char *)peer->curvename, 0);
61
params[1] = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
62
pubkeydata, pubkeylen);
63
params[2] = OSSL_PARAM_construct_end();
64
ret = EVP_PKEY_fromdata_init(ctx) > 0
65
&& (EVP_PKEY_fromdata(ctx, &peer->pub, EVP_PKEY_PUBLIC_KEY,
66
params) > 0);
67
EVP_PKEY_CTX_free(ctx);
68
return ret;
69
}
70
71
static int create_peer(PEER_DATA *peer, OSSL_LIB_CTX *libctx)
72
{
73
int ret = 0;
74
EVP_PKEY_CTX *ctx = NULL;
75
OSSL_PARAM params[2];
76
77
params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
78
(char *)peer->curvename, 0);
79
params[1] = OSSL_PARAM_construct_end();
80
81
ctx = EVP_PKEY_CTX_new_from_name(libctx, "EC", NULL);
82
if (ctx == NULL)
83
return 0;
84
85
if (EVP_PKEY_keygen_init(ctx) <= 0
86
|| !EVP_PKEY_CTX_set_params(ctx, params)
87
|| EVP_PKEY_generate(ctx, &peer->priv) <= 0
88
|| !get_peer_public_key(peer, libctx)) {
89
EVP_PKEY_free(peer->priv);
90
peer->priv = NULL;
91
goto err;
92
}
93
ret = 1;
94
err:
95
EVP_PKEY_CTX_free(ctx);
96
return ret;
97
}
98
99
static void destroy_peer(PEER_DATA *peer)
100
{
101
EVP_PKEY_free(peer->priv);
102
EVP_PKEY_free(peer->pub);
103
}
104
105
static int generate_secret(PEER_DATA *peerA, EVP_PKEY *peerBpub,
106
OSSL_LIB_CTX *libctx)
107
{
108
unsigned char *secret = NULL;
109
size_t secretlen = 0;
110
EVP_PKEY_CTX *derivectx;
111
112
/* Create an EVP_PKEY_CTX that contains peerA's private key */
113
derivectx = EVP_PKEY_CTX_new_from_pkey(libctx, peerA->priv, NULL);
114
if (derivectx == NULL)
115
return 0;
116
117
if (EVP_PKEY_derive_init(derivectx) <= 0)
118
goto cleanup;
119
/* Set up peerB's public key */
120
if (EVP_PKEY_derive_set_peer(derivectx, peerBpub) <= 0)
121
goto cleanup;
122
123
/*
124
* For backwards compatibility purposes the OpenSSL ECDH provider supports
125
* optionally using a X963KDF to expand the secret data. This can be done
126
* with code similar to the following.
127
*
128
* OSSL_PARAM params[5];
129
* size_t outlen = 128;
130
* unsigned char ukm[] = { 1, 2, 3, 4 };
131
* params[0] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_TYPE,
132
* "X963KDF", 0);
133
* params[1] = OSSL_PARAM_construct_utf8_string(OSSL_EXCHANGE_PARAM_KDF_DIGEST,
134
* "SHA256", 0);
135
* params[2] = OSSL_PARAM_construct_size_t(OSSL_EXCHANGE_PARAM_KDF_OUTLEN,
136
* &outlen);
137
* params[3] = OSSL_PARAM_construct_octet_string(OSSL_EXCHANGE_PARAM_KDF_UKM,
138
* ukm, sizeof(ukm));
139
* params[4] = OSSL_PARAM_construct_end();
140
* if (!EVP_PKEY_CTX_set_params(derivectx, params))
141
* goto cleanup;
142
*
143
* Note: After the secret is generated below, the peer could alternatively
144
* pass the secret to a KDF to derive additional key data from the secret.
145
* See demos/kdf/hkdf.c for an example (where ikm is the secret key)
146
*/
147
148
/* Calculate the size of the secret and allocate space */
149
if (EVP_PKEY_derive(derivectx, NULL, &secretlen) <= 0)
150
goto cleanup;
151
secret = (unsigned char *)OPENSSL_malloc(secretlen);
152
if (secret == NULL)
153
goto cleanup;
154
155
/*
156
* Derive the shared secret. In this example 32 bytes are generated.
157
* For EC curves the secret size is related to the degree of the curve
158
* which is 256 bits for P-256.
159
*/
160
if (EVP_PKEY_derive(derivectx, secret, &secretlen) <= 0)
161
goto cleanup;
162
peerA->secret = secret;
163
peerA->secretlen = secretlen;
164
165
printf("Shared secret (%s):\n", peerA->name);
166
BIO_dump_indent_fp(stdout, peerA->secret, peerA->secretlen, 2);
167
putchar('\n');
168
169
return 1;
170
cleanup:
171
OPENSSL_free(secret);
172
EVP_PKEY_CTX_free(derivectx);
173
return 0;
174
}
175
176
int main(void)
177
{
178
int ret = EXIT_FAILURE;
179
/* Initialise the 2 peers that will share a secret */
180
PEER_DATA peer1 = {"peer 1", "P-256"};
181
PEER_DATA peer2 = {"peer 2", "P-256"};
182
/*
183
* Setting libctx to NULL uses the default library context
184
* Use OSSL_LIB_CTX_new() to create a non default library context
185
*/
186
OSSL_LIB_CTX *libctx = NULL;
187
188
/* Each peer creates a (Ephemeral) keypair */
189
if (!create_peer(&peer1, libctx)
190
|| !create_peer(&peer2, libctx)) {
191
fprintf(stderr, "Create peer failed\n");
192
goto cleanup;
193
}
194
195
/*
196
* Each peer uses its private key and the other peers public key to
197
* derive a shared secret
198
*/
199
if (!generate_secret(&peer1, peer2.pub, libctx)
200
|| !generate_secret(&peer2, peer1.pub, libctx)) {
201
fprintf(stderr, "Generate secrets failed\n");
202
goto cleanup;
203
}
204
205
/* For illustrative purposes demonstrate that the derived secrets are equal */
206
if (peer1.secretlen != peer2.secretlen
207
|| CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secretlen) != 0) {
208
fprintf(stderr, "Derived secrets do not match\n");
209
goto cleanup;
210
} else {
211
fprintf(stdout, "Derived secrets match\n");
212
}
213
214
ret = EXIT_SUCCESS;
215
cleanup:
216
if (ret != EXIT_SUCCESS)
217
ERR_print_errors_fp(stderr);
218
destroy_peer(&peer2);
219
destroy_peer(&peer1);
220
return ret;
221
}
222
223