Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/engines/e_dasync.c
34884 views
1
/*
2
* Copyright 2015-2024 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
/* We need to use some engine deprecated APIs */
11
#define OPENSSL_SUPPRESS_DEPRECATED
12
13
/*
14
* SHA-1 low level APIs are deprecated for public use, but still ok for
15
* internal use. Note, that due to symbols not being exported, only the
16
* #defines and structures can be accessed, in this case SHA_CBLOCK and
17
* sizeof(SHA_CTX).
18
*/
19
#include "internal/deprecated.h"
20
21
#include <openssl/opensslconf.h>
22
#if defined(_WIN32)
23
# include <windows.h>
24
#endif
25
26
#include <stdio.h>
27
#include <string.h>
28
29
#include <openssl/engine.h>
30
#include <openssl/sha.h>
31
#include <openssl/aes.h>
32
#include <openssl/rsa.h>
33
#include <openssl/evp.h>
34
#include <openssl/async.h>
35
#include <openssl/bn.h>
36
#include <openssl/crypto.h>
37
#include <openssl/ssl.h>
38
#include <openssl/modes.h>
39
40
#if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
41
# undef ASYNC_POSIX
42
# define ASYNC_POSIX
43
# include <unistd.h>
44
#elif defined(_WIN32)
45
# undef ASYNC_WIN
46
# define ASYNC_WIN
47
#endif
48
49
#include "e_dasync_err.c"
50
51
/* Engine Id and Name */
52
static const char *engine_dasync_id = "dasync";
53
static const char *engine_dasync_name = "Dummy Async engine support";
54
55
56
/* Engine Lifetime functions */
57
static int dasync_destroy(ENGINE *e);
58
static int dasync_init(ENGINE *e);
59
static int dasync_finish(ENGINE *e);
60
void engine_load_dasync_int(void);
61
62
63
/* Set up digests. Just SHA1 for now */
64
static int dasync_digests(ENGINE *e, const EVP_MD **digest,
65
const int **nids, int nid);
66
67
static void dummy_pause_job(void);
68
69
/* SHA1 */
70
static int dasync_sha1_init(EVP_MD_CTX *ctx);
71
static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
72
size_t count);
73
static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md);
74
75
/*
76
* Holds the EVP_MD object for sha1 in this engine. Set up once only during
77
* engine bind and can then be reused many times.
78
*/
79
static EVP_MD *_hidden_sha1_md = NULL;
80
static const EVP_MD *dasync_sha1(void)
81
{
82
return _hidden_sha1_md;
83
}
84
static void destroy_digests(void)
85
{
86
EVP_MD_meth_free(_hidden_sha1_md);
87
_hidden_sha1_md = NULL;
88
}
89
90
static int dasync_digest_nids(const int **nids)
91
{
92
static int digest_nids[2] = { 0, 0 };
93
static int pos = 0;
94
static int init = 0;
95
96
if (!init) {
97
const EVP_MD *md;
98
if ((md = dasync_sha1()) != NULL)
99
digest_nids[pos++] = EVP_MD_get_type(md);
100
digest_nids[pos] = 0;
101
init = 1;
102
}
103
*nids = digest_nids;
104
return pos;
105
}
106
107
/* RSA */
108
static int dasync_pkey(ENGINE *e, EVP_PKEY_METHOD **pmeth,
109
const int **pnids, int nid);
110
111
static int dasync_rsa_init(EVP_PKEY_CTX *ctx);
112
static void dasync_rsa_cleanup(EVP_PKEY_CTX *ctx);
113
static int dasync_rsa_paramgen_init(EVP_PKEY_CTX *ctx);
114
static int dasync_rsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
115
static int dasync_rsa_keygen_init(EVP_PKEY_CTX *ctx);
116
static int dasync_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);
117
static int dasync_rsa_encrypt_init(EVP_PKEY_CTX *ctx);
118
static int dasync_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
119
size_t *outlen, const unsigned char *in,
120
size_t inlen);
121
static int dasync_rsa_decrypt_init(EVP_PKEY_CTX *ctx);
122
static int dasync_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
123
size_t *outlen, const unsigned char *in,
124
size_t inlen);
125
static int dasync_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
126
static int dasync_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
127
const char *value);
128
129
static EVP_PKEY_METHOD *dasync_rsa;
130
static const EVP_PKEY_METHOD *dasync_rsa_orig;
131
132
/* AES */
133
134
static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
135
void *ptr);
136
static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
137
const unsigned char *iv, int enc);
138
static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
139
const unsigned char *in, size_t inl);
140
static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx);
141
142
static int dasync_aes256_ctr_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
143
void *ptr);
144
static int dasync_aes256_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
145
const unsigned char *iv, int enc);
146
static int dasync_aes256_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
147
const unsigned char *in, size_t inl);
148
static int dasync_aes256_ctr_cleanup(EVP_CIPHER_CTX *ctx);
149
150
static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
151
int arg, void *ptr);
152
static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
153
const unsigned char *key,
154
const unsigned char *iv,
155
int enc);
156
static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
157
unsigned char *out,
158
const unsigned char *in,
159
size_t inl);
160
static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx);
161
162
struct dasync_pipeline_ctx {
163
void *inner_cipher_data;
164
unsigned int numpipes;
165
unsigned char **inbufs;
166
unsigned char **outbufs;
167
size_t *lens;
168
unsigned char tlsaad[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN];
169
unsigned int aadctr;
170
};
171
172
/*
173
* Holds the EVP_CIPHER object for aes_128_cbc in this engine. Set up once only
174
* during engine bind and can then be reused many times.
175
*/
176
static EVP_CIPHER *_hidden_aes_128_cbc = NULL;
177
static const EVP_CIPHER *dasync_aes_128_cbc(void)
178
{
179
return _hidden_aes_128_cbc;
180
}
181
182
static EVP_CIPHER *_hidden_aes_256_ctr = NULL;
183
static const EVP_CIPHER *dasync_aes_256_ctr(void)
184
{
185
return _hidden_aes_256_ctr;
186
}
187
188
/*
189
* Holds the EVP_CIPHER object for aes_128_cbc_hmac_sha1 in this engine. Set up
190
* once only during engine bind and can then be reused many times.
191
*
192
* This 'stitched' cipher depends on the EVP_aes_128_cbc_hmac_sha1() cipher,
193
* which is implemented only if the AES-NI instruction set extension is available
194
* (see OPENSSL_IA32CAP(3)). If that's not the case, then this cipher will not
195
* be available either.
196
*
197
* Note: Since it is a legacy mac-then-encrypt cipher, modern TLS peers (which
198
* negotiate the encrypt-then-mac extension) won't negotiate it anyway.
199
*/
200
static EVP_CIPHER *_hidden_aes_128_cbc_hmac_sha1 = NULL;
201
static const EVP_CIPHER *dasync_aes_128_cbc_hmac_sha1(void)
202
{
203
return _hidden_aes_128_cbc_hmac_sha1;
204
}
205
206
static void destroy_ciphers(void)
207
{
208
EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
209
EVP_CIPHER_meth_free(_hidden_aes_256_ctr);
210
EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
211
_hidden_aes_128_cbc = NULL;
212
_hidden_aes_256_ctr = NULL;
213
_hidden_aes_128_cbc_hmac_sha1 = NULL;
214
}
215
216
static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
217
const int **nids, int nid);
218
219
static int dasync_cipher_nids[] = {
220
NID_aes_128_cbc,
221
NID_aes_256_ctr,
222
NID_aes_128_cbc_hmac_sha1,
223
0
224
};
225
226
static int bind_dasync(ENGINE *e)
227
{
228
/* Setup RSA */
229
if ((dasync_rsa_orig = EVP_PKEY_meth_find(EVP_PKEY_RSA)) == NULL
230
|| (dasync_rsa = EVP_PKEY_meth_new(EVP_PKEY_RSA,
231
EVP_PKEY_FLAG_AUTOARGLEN)) == NULL)
232
return 0;
233
EVP_PKEY_meth_set_init(dasync_rsa, dasync_rsa_init);
234
EVP_PKEY_meth_set_cleanup(dasync_rsa, dasync_rsa_cleanup);
235
EVP_PKEY_meth_set_paramgen(dasync_rsa, dasync_rsa_paramgen_init,
236
dasync_rsa_paramgen);
237
EVP_PKEY_meth_set_keygen(dasync_rsa, dasync_rsa_keygen_init,
238
dasync_rsa_keygen);
239
EVP_PKEY_meth_set_encrypt(dasync_rsa, dasync_rsa_encrypt_init,
240
dasync_rsa_encrypt);
241
EVP_PKEY_meth_set_decrypt(dasync_rsa, dasync_rsa_decrypt_init,
242
dasync_rsa_decrypt);
243
EVP_PKEY_meth_set_ctrl(dasync_rsa, dasync_rsa_ctrl,
244
dasync_rsa_ctrl_str);
245
246
/* Ensure the dasync error handling is set up */
247
ERR_load_DASYNC_strings();
248
249
if (!ENGINE_set_id(e, engine_dasync_id)
250
|| !ENGINE_set_name(e, engine_dasync_name)
251
|| !ENGINE_set_pkey_meths(e, dasync_pkey)
252
|| !ENGINE_set_digests(e, dasync_digests)
253
|| !ENGINE_set_ciphers(e, dasync_ciphers)
254
|| !ENGINE_set_destroy_function(e, dasync_destroy)
255
|| !ENGINE_set_init_function(e, dasync_init)
256
|| !ENGINE_set_finish_function(e, dasync_finish)) {
257
DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
258
return 0;
259
}
260
261
/*
262
* Set up the EVP_CIPHER and EVP_MD objects for the ciphers/digests
263
* supplied by this engine
264
*/
265
_hidden_sha1_md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption);
266
if (_hidden_sha1_md == NULL
267
|| !EVP_MD_meth_set_result_size(_hidden_sha1_md, SHA_DIGEST_LENGTH)
268
|| !EVP_MD_meth_set_input_blocksize(_hidden_sha1_md, SHA_CBLOCK)
269
|| !EVP_MD_meth_set_app_datasize(_hidden_sha1_md,
270
sizeof(EVP_MD *) + sizeof(SHA_CTX))
271
|| !EVP_MD_meth_set_flags(_hidden_sha1_md, EVP_MD_FLAG_DIGALGID_ABSENT)
272
|| !EVP_MD_meth_set_init(_hidden_sha1_md, dasync_sha1_init)
273
|| !EVP_MD_meth_set_update(_hidden_sha1_md, dasync_sha1_update)
274
|| !EVP_MD_meth_set_final(_hidden_sha1_md, dasync_sha1_final)) {
275
EVP_MD_meth_free(_hidden_sha1_md);
276
_hidden_sha1_md = NULL;
277
}
278
279
_hidden_aes_128_cbc = EVP_CIPHER_meth_new(NID_aes_128_cbc,
280
16 /* block size */,
281
16 /* key len */);
282
if (_hidden_aes_128_cbc == NULL
283
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc,16)
284
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc,
285
EVP_CIPH_FLAG_DEFAULT_ASN1
286
| EVP_CIPH_CBC_MODE
287
| EVP_CIPH_FLAG_PIPELINE
288
| EVP_CIPH_CUSTOM_COPY)
289
|| !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc,
290
dasync_aes128_init_key)
291
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc,
292
dasync_aes128_cbc_cipher)
293
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc,
294
dasync_aes128_cbc_cleanup)
295
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc,
296
dasync_aes128_cbc_ctrl)
297
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc,
298
sizeof(struct dasync_pipeline_ctx))) {
299
EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
300
_hidden_aes_128_cbc = NULL;
301
}
302
303
_hidden_aes_256_ctr = EVP_CIPHER_meth_new(NID_aes_256_ctr,
304
1 /* block size */,
305
32 /* key len */);
306
if (_hidden_aes_256_ctr == NULL
307
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_256_ctr,16)
308
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_256_ctr,
309
EVP_CIPH_FLAG_DEFAULT_ASN1
310
| EVP_CIPH_CTR_MODE
311
| EVP_CIPH_FLAG_PIPELINE
312
| EVP_CIPH_CUSTOM_COPY)
313
|| !EVP_CIPHER_meth_set_init(_hidden_aes_256_ctr,
314
dasync_aes256_init_key)
315
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_256_ctr,
316
dasync_aes256_ctr_cipher)
317
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_256_ctr,
318
dasync_aes256_ctr_cleanup)
319
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_256_ctr,
320
dasync_aes256_ctr_ctrl)
321
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_256_ctr,
322
sizeof(struct dasync_pipeline_ctx))) {
323
EVP_CIPHER_meth_free(_hidden_aes_256_ctr);
324
_hidden_aes_256_ctr = NULL;
325
}
326
327
_hidden_aes_128_cbc_hmac_sha1 = EVP_CIPHER_meth_new(
328
NID_aes_128_cbc_hmac_sha1,
329
16 /* block size */,
330
16 /* key len */);
331
if (_hidden_aes_128_cbc_hmac_sha1 == NULL
332
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc_hmac_sha1,16)
333
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc_hmac_sha1,
334
EVP_CIPH_CBC_MODE
335
| EVP_CIPH_FLAG_DEFAULT_ASN1
336
| EVP_CIPH_FLAG_AEAD_CIPHER
337
| EVP_CIPH_FLAG_PIPELINE
338
| EVP_CIPH_CUSTOM_COPY)
339
|| !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc_hmac_sha1,
340
dasync_aes128_cbc_hmac_sha1_init_key)
341
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc_hmac_sha1,
342
dasync_aes128_cbc_hmac_sha1_cipher)
343
|| !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc_hmac_sha1,
344
dasync_aes128_cbc_hmac_sha1_cleanup)
345
|| !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc_hmac_sha1,
346
dasync_aes128_cbc_hmac_sha1_ctrl)
347
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc_hmac_sha1,
348
sizeof(struct dasync_pipeline_ctx))) {
349
EVP_CIPHER_meth_free(_hidden_aes_128_cbc_hmac_sha1);
350
_hidden_aes_128_cbc_hmac_sha1 = NULL;
351
}
352
353
return 1;
354
}
355
356
static void destroy_pkey(void)
357
{
358
/*
359
* We don't actually need to free the dasync_rsa method since this is
360
* automatically freed for us by libcrypto.
361
*/
362
dasync_rsa_orig = NULL;
363
dasync_rsa = NULL;
364
}
365
366
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
367
static int bind_helper(ENGINE *e, const char *id)
368
{
369
if (id && (strcmp(id, engine_dasync_id) != 0))
370
return 0;
371
if (!bind_dasync(e))
372
return 0;
373
return 1;
374
}
375
376
IMPLEMENT_DYNAMIC_CHECK_FN()
377
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
378
# endif
379
380
static ENGINE *engine_dasync(void)
381
{
382
ENGINE *ret = ENGINE_new();
383
if (!ret)
384
return NULL;
385
if (!bind_dasync(ret)) {
386
ENGINE_free(ret);
387
return NULL;
388
}
389
return ret;
390
}
391
392
void engine_load_dasync_int(void)
393
{
394
ENGINE *toadd = engine_dasync();
395
if (!toadd)
396
return;
397
ERR_set_mark();
398
ENGINE_add(toadd);
399
/*
400
* If the "add" worked, it gets a structural reference. So either way, we
401
* release our just-created reference.
402
*/
403
ENGINE_free(toadd);
404
/*
405
* If the "add" didn't work, it was probably a conflict because it was
406
* already added (eg. someone calling ENGINE_load_blah then calling
407
* ENGINE_load_builtin_engines() perhaps).
408
*/
409
ERR_pop_to_mark();
410
}
411
412
static int dasync_init(ENGINE *e)
413
{
414
return 1;
415
}
416
417
418
static int dasync_finish(ENGINE *e)
419
{
420
return 1;
421
}
422
423
424
static int dasync_destroy(ENGINE *e)
425
{
426
destroy_digests();
427
destroy_ciphers();
428
destroy_pkey();
429
ERR_unload_DASYNC_strings();
430
return 1;
431
}
432
433
static int dasync_pkey(ENGINE *e, EVP_PKEY_METHOD **pmeth,
434
const int **pnids, int nid)
435
{
436
static const int rnid = EVP_PKEY_RSA;
437
438
if (pmeth == NULL) {
439
*pnids = &rnid;
440
return 1;
441
}
442
443
if (nid == EVP_PKEY_RSA) {
444
*pmeth = dasync_rsa;
445
return 1;
446
}
447
448
*pmeth = NULL;
449
return 0;
450
}
451
452
static int dasync_digests(ENGINE *e, const EVP_MD **digest,
453
const int **nids, int nid)
454
{
455
int ok = 1;
456
if (!digest) {
457
/* We are returning a list of supported nids */
458
return dasync_digest_nids(nids);
459
}
460
/* We are being asked for a specific digest */
461
switch (nid) {
462
case NID_sha1:
463
*digest = dasync_sha1();
464
break;
465
default:
466
ok = 0;
467
*digest = NULL;
468
break;
469
}
470
return ok;
471
}
472
473
static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
474
const int **nids, int nid)
475
{
476
int ok = 1;
477
if (cipher == NULL) {
478
/* We are returning a list of supported nids */
479
*nids = dasync_cipher_nids;
480
return (sizeof(dasync_cipher_nids) -
481
1) / sizeof(dasync_cipher_nids[0]);
482
}
483
/* We are being asked for a specific cipher */
484
switch (nid) {
485
case NID_aes_128_cbc:
486
*cipher = dasync_aes_128_cbc();
487
break;
488
case NID_aes_256_ctr:
489
*cipher = dasync_aes_256_ctr();
490
break;
491
case NID_aes_128_cbc_hmac_sha1:
492
*cipher = dasync_aes_128_cbc_hmac_sha1();
493
break;
494
default:
495
ok = 0;
496
*cipher = NULL;
497
break;
498
}
499
return ok;
500
}
501
502
static void wait_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
503
OSSL_ASYNC_FD readfd, void *pvwritefd)
504
{
505
OSSL_ASYNC_FD *pwritefd = (OSSL_ASYNC_FD *)pvwritefd;
506
#if defined(ASYNC_WIN)
507
CloseHandle(readfd);
508
CloseHandle(*pwritefd);
509
#elif defined(ASYNC_POSIX)
510
close(readfd);
511
close(*pwritefd);
512
#endif
513
OPENSSL_free(pwritefd);
514
}
515
516
#define DUMMY_CHAR 'X'
517
518
static void dummy_pause_job(void) {
519
ASYNC_JOB *job;
520
ASYNC_WAIT_CTX *waitctx;
521
ASYNC_callback_fn callback;
522
void *callback_arg;
523
OSSL_ASYNC_FD pipefds[2] = {0, 0};
524
OSSL_ASYNC_FD *writefd;
525
#if defined(ASYNC_WIN)
526
DWORD numwritten, numread;
527
char buf = DUMMY_CHAR;
528
#elif defined(ASYNC_POSIX)
529
char buf = DUMMY_CHAR;
530
#endif
531
532
if ((job = ASYNC_get_current_job()) == NULL)
533
return;
534
535
waitctx = ASYNC_get_wait_ctx(job);
536
537
if (ASYNC_WAIT_CTX_get_callback(waitctx, &callback, &callback_arg) && callback != NULL) {
538
/*
539
* In the Dummy async engine we are cheating. We call the callback that the job
540
* is complete before the call to ASYNC_pause_job(). A real
541
* async engine would only call the callback when the job was actually complete
542
*/
543
(*callback)(callback_arg);
544
ASYNC_pause_job();
545
return;
546
}
547
548
549
if (ASYNC_WAIT_CTX_get_fd(waitctx, engine_dasync_id, &pipefds[0],
550
(void **)&writefd)) {
551
pipefds[1] = *writefd;
552
} else {
553
writefd = OPENSSL_malloc(sizeof(*writefd));
554
if (writefd == NULL)
555
return;
556
#if defined(ASYNC_WIN)
557
if (CreatePipe(&pipefds[0], &pipefds[1], NULL, 256) == 0) {
558
OPENSSL_free(writefd);
559
return;
560
}
561
#elif defined(ASYNC_POSIX)
562
if (pipe(pipefds) != 0) {
563
OPENSSL_free(writefd);
564
return;
565
}
566
#endif
567
*writefd = pipefds[1];
568
569
if (!ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_dasync_id, pipefds[0],
570
writefd, wait_cleanup)) {
571
wait_cleanup(waitctx, engine_dasync_id, pipefds[0], writefd);
572
return;
573
}
574
}
575
/*
576
* In the Dummy async engine we are cheating. We signal that the job
577
* is complete by waking it before the call to ASYNC_pause_job(). A real
578
* async engine would only wake when the job was actually complete
579
*/
580
#if defined(ASYNC_WIN)
581
WriteFile(pipefds[1], &buf, 1, &numwritten, NULL);
582
#elif defined(ASYNC_POSIX)
583
if (write(pipefds[1], &buf, 1) < 0)
584
return;
585
#endif
586
587
/* Ignore errors - we carry on anyway */
588
ASYNC_pause_job();
589
590
/* Clear the wake signal */
591
#if defined(ASYNC_WIN)
592
ReadFile(pipefds[0], &buf, 1, &numread, NULL);
593
#elif defined(ASYNC_POSIX)
594
if (read(pipefds[0], &buf, 1) < 0)
595
return;
596
#endif
597
}
598
599
/*
600
* SHA1 implementation. At the moment we just defer to the standard
601
* implementation
602
*/
603
static int dasync_sha1_init(EVP_MD_CTX *ctx)
604
{
605
dummy_pause_job();
606
607
return EVP_MD_meth_get_init(EVP_sha1())(ctx);
608
}
609
610
static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
611
size_t count)
612
{
613
dummy_pause_job();
614
615
return EVP_MD_meth_get_update(EVP_sha1())(ctx, data, count);
616
}
617
618
static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md)
619
{
620
dummy_pause_job();
621
622
return EVP_MD_meth_get_final(EVP_sha1())(ctx, md);
623
}
624
625
/* Cipher helper functions */
626
627
static int dasync_cipher_ctrl_helper(EVP_CIPHER_CTX *ctx, int type, int arg,
628
void *ptr, int aeadcapable,
629
const EVP_CIPHER *ciph)
630
{
631
int ret;
632
struct dasync_pipeline_ctx *pipe_ctx =
633
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
634
635
if (pipe_ctx == NULL)
636
return 0;
637
638
switch (type) {
639
case EVP_CTRL_COPY:
640
{
641
size_t sz = EVP_CIPHER_impl_ctx_size(ciph);
642
void *inner_cipher_data = OPENSSL_malloc(sz);
643
644
if (inner_cipher_data == NULL)
645
return -1;
646
memcpy(inner_cipher_data, pipe_ctx->inner_cipher_data, sz);
647
pipe_ctx->inner_cipher_data = inner_cipher_data;
648
}
649
break;
650
651
case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
652
pipe_ctx->numpipes = arg;
653
pipe_ctx->outbufs = (unsigned char **)ptr;
654
break;
655
656
case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
657
pipe_ctx->numpipes = arg;
658
pipe_ctx->inbufs = (unsigned char **)ptr;
659
break;
660
661
case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
662
pipe_ctx->numpipes = arg;
663
pipe_ctx->lens = (size_t *)ptr;
664
break;
665
666
case EVP_CTRL_AEAD_SET_MAC_KEY:
667
if (!aeadcapable)
668
return -1;
669
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
670
ret = EVP_CIPHER_meth_get_ctrl(EVP_aes_128_cbc_hmac_sha1())
671
(ctx, type, arg, ptr);
672
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
673
return ret;
674
675
case EVP_CTRL_AEAD_TLS1_AAD:
676
{
677
unsigned char *p = ptr;
678
unsigned int len;
679
680
if (!aeadcapable || arg != EVP_AEAD_TLS1_AAD_LEN)
681
return -1;
682
683
if (pipe_ctx->aadctr >= SSL_MAX_PIPELINES)
684
return -1;
685
686
memcpy(pipe_ctx->tlsaad[pipe_ctx->aadctr], ptr,
687
EVP_AEAD_TLS1_AAD_LEN);
688
pipe_ctx->aadctr++;
689
690
len = p[arg - 2] << 8 | p[arg - 1];
691
692
if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
693
if ((p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
694
if (len < AES_BLOCK_SIZE)
695
return 0;
696
len -= AES_BLOCK_SIZE;
697
}
698
699
return ((len + SHA_DIGEST_LENGTH + AES_BLOCK_SIZE)
700
& -AES_BLOCK_SIZE) - len;
701
} else {
702
return SHA_DIGEST_LENGTH;
703
}
704
}
705
706
default:
707
return 0;
708
}
709
710
return 1;
711
}
712
713
static int dasync_cipher_init_key_helper(EVP_CIPHER_CTX *ctx,
714
const unsigned char *key,
715
const unsigned char *iv, int enc,
716
const EVP_CIPHER *cipher)
717
{
718
int ret;
719
struct dasync_pipeline_ctx *pipe_ctx =
720
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
721
722
if (pipe_ctx->inner_cipher_data == NULL
723
&& EVP_CIPHER_impl_ctx_size(cipher) != 0) {
724
pipe_ctx->inner_cipher_data = OPENSSL_zalloc(
725
EVP_CIPHER_impl_ctx_size(cipher));
726
if (pipe_ctx->inner_cipher_data == NULL)
727
return 0;
728
}
729
730
pipe_ctx->numpipes = 0;
731
pipe_ctx->aadctr = 0;
732
733
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
734
ret = EVP_CIPHER_meth_get_init(cipher)(ctx, key, iv, enc);
735
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
736
737
return ret;
738
}
739
740
static int dasync_cipher_helper(EVP_CIPHER_CTX *ctx, unsigned char *out,
741
const unsigned char *in, size_t inl,
742
const EVP_CIPHER *cipher)
743
{
744
int ret = 1;
745
unsigned int i, pipes;
746
struct dasync_pipeline_ctx *pipe_ctx =
747
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
748
749
pipes = pipe_ctx->numpipes;
750
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
751
if (pipes == 0) {
752
if (pipe_ctx->aadctr != 0) {
753
if (pipe_ctx->aadctr != 1)
754
return -1;
755
EVP_CIPHER_meth_get_ctrl(cipher)
756
(ctx, EVP_CTRL_AEAD_TLS1_AAD,
757
EVP_AEAD_TLS1_AAD_LEN,
758
pipe_ctx->tlsaad[0]);
759
}
760
ret = EVP_CIPHER_meth_get_do_cipher(cipher)
761
(ctx, out, in, inl);
762
} else {
763
if (pipe_ctx->aadctr > 0 && pipe_ctx->aadctr != pipes)
764
return -1;
765
for (i = 0; i < pipes; i++) {
766
if (pipe_ctx->aadctr > 0) {
767
EVP_CIPHER_meth_get_ctrl(cipher)
768
(ctx, EVP_CTRL_AEAD_TLS1_AAD,
769
EVP_AEAD_TLS1_AAD_LEN,
770
pipe_ctx->tlsaad[i]);
771
}
772
ret = ret && EVP_CIPHER_meth_get_do_cipher(cipher)
773
(ctx, pipe_ctx->outbufs[i], pipe_ctx->inbufs[i],
774
pipe_ctx->lens[i]);
775
}
776
pipe_ctx->numpipes = 0;
777
}
778
pipe_ctx->aadctr = 0;
779
EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
780
return ret;
781
}
782
783
static int dasync_cipher_cleanup_helper(EVP_CIPHER_CTX *ctx,
784
const EVP_CIPHER *cipher)
785
{
786
struct dasync_pipeline_ctx *pipe_ctx =
787
(struct dasync_pipeline_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
788
789
OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
790
EVP_CIPHER_impl_ctx_size(cipher));
791
792
return 1;
793
}
794
795
/*
796
* AES128 CBC Implementation
797
*/
798
799
static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
800
void *ptr)
801
{
802
return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 0, EVP_aes_128_cbc());
803
}
804
805
static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
806
const unsigned char *iv, int enc)
807
{
808
return dasync_cipher_init_key_helper(ctx, key, iv, enc, EVP_aes_128_cbc());
809
}
810
811
static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
812
const unsigned char *in, size_t inl)
813
{
814
return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc());
815
}
816
817
static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx)
818
{
819
return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc());
820
}
821
822
static int dasync_aes256_ctr_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
823
void *ptr)
824
{
825
return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 0, EVP_aes_256_ctr());
826
}
827
828
static int dasync_aes256_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
829
const unsigned char *iv, int enc)
830
{
831
return dasync_cipher_init_key_helper(ctx, key, iv, enc, EVP_aes_256_ctr());
832
}
833
834
static int dasync_aes256_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
835
const unsigned char *in, size_t inl)
836
{
837
return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_256_ctr());
838
}
839
840
static int dasync_aes256_ctr_cleanup(EVP_CIPHER_CTX *ctx)
841
{
842
return dasync_cipher_cleanup_helper(ctx, EVP_aes_256_ctr());
843
}
844
845
846
/*
847
* AES128 CBC HMAC SHA1 Implementation
848
*/
849
850
static int dasync_aes128_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type,
851
int arg, void *ptr)
852
{
853
return dasync_cipher_ctrl_helper(ctx, type, arg, ptr, 1, EVP_aes_128_cbc_hmac_sha1());
854
}
855
856
static int dasync_aes128_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
857
const unsigned char *key,
858
const unsigned char *iv,
859
int enc)
860
{
861
/*
862
* We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
863
* see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
864
*/
865
return dasync_cipher_init_key_helper(ctx, key, iv, enc,
866
EVP_aes_128_cbc_hmac_sha1());
867
}
868
869
static int dasync_aes128_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx,
870
unsigned char *out,
871
const unsigned char *in,
872
size_t inl)
873
{
874
return dasync_cipher_helper(ctx, out, in, inl, EVP_aes_128_cbc_hmac_sha1());
875
}
876
877
static int dasync_aes128_cbc_hmac_sha1_cleanup(EVP_CIPHER_CTX *ctx)
878
{
879
/*
880
* We can safely assume that EVP_aes_128_cbc_hmac_sha1() != NULL,
881
* see comment before the definition of dasync_aes_128_cbc_hmac_sha1().
882
*/
883
return dasync_cipher_cleanup_helper(ctx, EVP_aes_128_cbc_hmac_sha1());
884
}
885
886
887
/*
888
* RSA implementation
889
*/
890
static int dasync_rsa_init(EVP_PKEY_CTX *ctx)
891
{
892
static int (*pinit)(EVP_PKEY_CTX *ctx);
893
894
if (pinit == NULL)
895
EVP_PKEY_meth_get_init(dasync_rsa_orig, &pinit);
896
return pinit(ctx);
897
}
898
899
static void dasync_rsa_cleanup(EVP_PKEY_CTX *ctx)
900
{
901
static void (*pcleanup)(EVP_PKEY_CTX *ctx);
902
903
if (pcleanup == NULL)
904
EVP_PKEY_meth_get_cleanup(dasync_rsa_orig, &pcleanup);
905
pcleanup(ctx);
906
}
907
908
static int dasync_rsa_paramgen_init(EVP_PKEY_CTX *ctx)
909
{
910
static int (*pparamgen_init)(EVP_PKEY_CTX *ctx);
911
912
if (pparamgen_init == NULL)
913
EVP_PKEY_meth_get_paramgen(dasync_rsa_orig, &pparamgen_init, NULL);
914
return pparamgen_init != NULL ? pparamgen_init(ctx) : 1;
915
}
916
917
static int dasync_rsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
918
{
919
static int (*pparamgen)(EVP_PKEY_CTX *c, EVP_PKEY *pkey);
920
921
if (pparamgen == NULL)
922
EVP_PKEY_meth_get_paramgen(dasync_rsa_orig, NULL, &pparamgen);
923
return pparamgen != NULL ? pparamgen(ctx, pkey) : 1;
924
}
925
926
static int dasync_rsa_keygen_init(EVP_PKEY_CTX *ctx)
927
{
928
static int (*pkeygen_init)(EVP_PKEY_CTX *ctx);
929
930
if (pkeygen_init == NULL)
931
EVP_PKEY_meth_get_keygen(dasync_rsa_orig, &pkeygen_init, NULL);
932
return pkeygen_init != NULL ? pkeygen_init(ctx) : 1;
933
}
934
935
static int dasync_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
936
{
937
static int (*pkeygen)(EVP_PKEY_CTX *c, EVP_PKEY *pkey);
938
939
if (pkeygen == NULL)
940
EVP_PKEY_meth_get_keygen(dasync_rsa_orig, NULL, &pkeygen);
941
return pkeygen(ctx, pkey);
942
}
943
944
static int dasync_rsa_encrypt_init(EVP_PKEY_CTX *ctx)
945
{
946
static int (*pencrypt_init)(EVP_PKEY_CTX *ctx);
947
948
if (pencrypt_init == NULL)
949
EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, &pencrypt_init, NULL);
950
return pencrypt_init != NULL ? pencrypt_init(ctx) : 1;
951
}
952
953
static int dasync_rsa_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
954
size_t *outlen, const unsigned char *in,
955
size_t inlen)
956
{
957
static int (*pencryptfn)(EVP_PKEY_CTX *ctx, unsigned char *out,
958
size_t *outlen, const unsigned char *in,
959
size_t inlen);
960
961
if (pencryptfn == NULL)
962
EVP_PKEY_meth_get_encrypt(dasync_rsa_orig, NULL, &pencryptfn);
963
return pencryptfn(ctx, out, outlen, in, inlen);
964
}
965
966
static int dasync_rsa_decrypt_init(EVP_PKEY_CTX *ctx)
967
{
968
static int (*pdecrypt_init)(EVP_PKEY_CTX *ctx);
969
970
if (pdecrypt_init == NULL)
971
EVP_PKEY_meth_get_decrypt(dasync_rsa_orig, &pdecrypt_init, NULL);
972
return pdecrypt_init != NULL ? pdecrypt_init(ctx) : 1;
973
}
974
975
static int dasync_rsa_decrypt(EVP_PKEY_CTX *ctx, unsigned char *out,
976
size_t *outlen, const unsigned char *in,
977
size_t inlen)
978
{
979
static int (*pdecrypt)(EVP_PKEY_CTX *ctx, unsigned char *out,
980
size_t *outlen, const unsigned char *in,
981
size_t inlen);
982
983
if (pdecrypt == NULL)
984
EVP_PKEY_meth_get_decrypt(dasync_rsa_orig, NULL, &pdecrypt);
985
return pdecrypt(ctx, out, outlen, in, inlen);
986
}
987
988
static int dasync_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
989
{
990
static int (*pctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
991
992
if (pctrl == NULL)
993
EVP_PKEY_meth_get_ctrl(dasync_rsa_orig, &pctrl, NULL);
994
return pctrl(ctx, type, p1, p2);
995
}
996
997
static int dasync_rsa_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
998
const char *value)
999
{
1000
static int (*pctrl_str)(EVP_PKEY_CTX *ctx, const char *type,
1001
const char *value);
1002
1003
if (pctrl_str == NULL)
1004
EVP_PKEY_meth_get_ctrl(dasync_rsa_orig, NULL, &pctrl_str);
1005
return pctrl_str(ctx, type, value);
1006
}
1007
1008