Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/engines/e_padlock.c
105977 views
1
/*
2
* Copyright 2004-2023 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
/*
11
* This file uses the low level AES and engine functions (which are deprecated
12
* for non-internal use) in order to implement the padlock engine AES ciphers.
13
*/
14
#define OPENSSL_SUPPRESS_DEPRECATED
15
16
#include <stdio.h>
17
#include <string.h>
18
19
#include <openssl/opensslconf.h>
20
#include <openssl/crypto.h>
21
#include <openssl/engine.h>
22
#include <openssl/evp.h>
23
#include <openssl/aes.h>
24
#include <openssl/rand.h>
25
#include <openssl/err.h>
26
#include <openssl/modes.h>
27
28
#ifndef OPENSSL_NO_PADLOCKENG
29
30
/*
31
* VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it
32
* doesn't exist elsewhere, but it even can't be compiled on other platforms!
33
*/
34
35
#undef COMPILE_PADLOCKENG
36
#if defined(PADLOCK_ASM)
37
#define COMPILE_PADLOCKENG
38
#ifdef OPENSSL_NO_DYNAMIC_ENGINE
39
static ENGINE *ENGINE_padlock(void);
40
#endif
41
#endif
42
43
#ifdef OPENSSL_NO_DYNAMIC_ENGINE
44
void engine_load_padlock_int(void);
45
void engine_load_padlock_int(void)
46
{
47
/* On non-x86 CPUs it just returns. */
48
#ifdef COMPILE_PADLOCKENG
49
ENGINE *toadd = ENGINE_padlock();
50
if (!toadd)
51
return;
52
ERR_set_mark();
53
ENGINE_add(toadd);
54
/*
55
* If the "add" worked, it gets a structural reference. So either way, we
56
* release our just-created reference.
57
*/
58
ENGINE_free(toadd);
59
/*
60
* If the "add" didn't work, it was probably a conflict because it was
61
* already added (eg. someone calling ENGINE_load_blah then calling
62
* ENGINE_load_builtin_engines() perhaps).
63
*/
64
ERR_pop_to_mark();
65
#endif
66
}
67
68
#endif
69
70
#ifdef COMPILE_PADLOCKENG
71
72
/* Function for ENGINE detection and control */
73
static int padlock_available(void);
74
static int padlock_init(ENGINE *e);
75
76
/* RNG Stuff */
77
static RAND_METHOD padlock_rand;
78
79
/* Cipher Stuff */
80
static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
81
const int **nids, int nid);
82
83
/* Engine names */
84
static const char *padlock_id = "padlock";
85
static char padlock_name[100];
86
87
/* Available features */
88
static int padlock_use_ace = 0; /* Advanced Cryptography Engine */
89
static int padlock_use_rng = 0; /* Random Number Generator */
90
91
/* ===== Engine "management" functions ===== */
92
93
/* Prepare the ENGINE structure for registration */
94
static int padlock_bind_helper(ENGINE *e)
95
{
96
/* Check available features */
97
padlock_available();
98
99
/*
100
* RNG is currently disabled for reasons discussed in commentary just
101
* before padlock_rand_bytes function.
102
*/
103
padlock_use_rng = 0;
104
105
/* Generate a nice engine name with available features */
106
BIO_snprintf(padlock_name, sizeof(padlock_name),
107
"VIA PadLock (%s, %s)",
108
padlock_use_rng ? "RNG" : "no-RNG",
109
padlock_use_ace ? "ACE" : "no-ACE");
110
111
/* Register everything or return with an error */
112
if (!ENGINE_set_id(e, padlock_id) || !ENGINE_set_name(e, padlock_name) || !ENGINE_set_init_function(e, padlock_init) || (padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) || (padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) {
113
return 0;
114
}
115
116
/* Everything looks good */
117
return 1;
118
}
119
120
#ifdef OPENSSL_NO_DYNAMIC_ENGINE
121
/* Constructor */
122
static ENGINE *ENGINE_padlock(void)
123
{
124
ENGINE *eng = ENGINE_new();
125
126
if (eng == NULL) {
127
return NULL;
128
}
129
130
if (!padlock_bind_helper(eng)) {
131
ENGINE_free(eng);
132
return NULL;
133
}
134
135
return eng;
136
}
137
#endif
138
139
/* Check availability of the engine */
140
static int padlock_init(ENGINE *e)
141
{
142
return (padlock_use_rng || padlock_use_ace);
143
}
144
145
#ifndef AES_ASM
146
static int padlock_aes_set_encrypt_key(const unsigned char *userKey,
147
const int bits,
148
AES_KEY *key);
149
static int padlock_aes_set_decrypt_key(const unsigned char *userKey,
150
const int bits,
151
AES_KEY *key);
152
#define AES_ASM
153
#define AES_set_encrypt_key padlock_aes_set_encrypt_key
154
#define AES_set_decrypt_key padlock_aes_set_decrypt_key
155
/* clang-format off */
156
# include "../crypto/aes/aes_core.c"
157
/* clang-format on */
158
#endif
159
160
/*
161
* This stuff is needed if this ENGINE is being compiled into a
162
* self-contained shared-library.
163
*/
164
#ifndef OPENSSL_NO_DYNAMIC_ENGINE
165
static int padlock_bind_fn(ENGINE *e, const char *id)
166
{
167
if (id && (strcmp(id, padlock_id) != 0)) {
168
return 0;
169
}
170
171
if (!padlock_bind_helper(e)) {
172
return 0;
173
}
174
175
return 1;
176
}
177
178
IMPLEMENT_DYNAMIC_CHECK_FN()
179
IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn)
180
#endif /* !OPENSSL_NO_DYNAMIC_ENGINE */
181
/* ===== Here comes the "real" engine ===== */
182
183
/* Some AES-related constants */
184
#define AES_BLOCK_SIZE 16
185
#define AES_KEY_SIZE_128 16
186
#define AES_KEY_SIZE_192 24
187
#define AES_KEY_SIZE_256 32
188
/*
189
* Here we store the status information relevant to the current context.
190
*/
191
/*
192
* BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on
193
* the order of items in this structure. Don't blindly modify, reorder,
194
* etc!
195
*/
196
struct padlock_cipher_data {
197
unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */
198
union {
199
unsigned int pad[4];
200
struct {
201
int rounds : 4;
202
int dgst : 1; /* n/a in C3 */
203
int align : 1; /* n/a in C3 */
204
int ciphr : 1; /* n/a in C3 */ /* codespell:ignore */
205
unsigned int keygen : 1;
206
int interm : 1; /* codespell:ignore */
207
unsigned int encdec : 1;
208
int ksize : 2;
209
} b;
210
} cword; /* Control word */
211
AES_KEY ks; /* Encryption key */
212
};
213
214
/* Interface to assembler module */
215
unsigned int padlock_capability(void);
216
void padlock_key_bswap(AES_KEY *key);
217
void padlock_verify_context(struct padlock_cipher_data *ctx);
218
void padlock_reload_key(void);
219
void padlock_aes_block(void *out, const void *inp,
220
struct padlock_cipher_data *ctx);
221
int padlock_ecb_encrypt(void *out, const void *inp,
222
struct padlock_cipher_data *ctx, size_t len);
223
int padlock_cbc_encrypt(void *out, const void *inp,
224
struct padlock_cipher_data *ctx, size_t len);
225
int padlock_cfb_encrypt(void *out, const void *inp,
226
struct padlock_cipher_data *ctx, size_t len);
227
int padlock_ofb_encrypt(void *out, const void *inp,
228
struct padlock_cipher_data *ctx, size_t len);
229
int padlock_ctr32_encrypt(void *out, const void *inp,
230
struct padlock_cipher_data *ctx, size_t len);
231
int padlock_xstore(void *out, int edx);
232
void padlock_sha1_oneshot(void *ctx, const void *inp, size_t len);
233
void padlock_sha1(void *ctx, const void *inp, size_t len);
234
void padlock_sha256_oneshot(void *ctx, const void *inp, size_t len);
235
void padlock_sha256(void *ctx, const void *inp, size_t len);
236
237
/*
238
* Load supported features of the CPU to see if the PadLock is available.
239
*/
240
static int padlock_available(void)
241
{
242
unsigned int edx = padlock_capability();
243
244
/* Fill up some flags */
245
padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6));
246
padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2));
247
248
return padlock_use_ace + padlock_use_rng;
249
}
250
251
/* ===== AES encryption/decryption ===== */
252
253
#if defined(NID_aes_128_cfb128) && !defined(NID_aes_128_cfb)
254
#define NID_aes_128_cfb NID_aes_128_cfb128
255
#endif
256
257
#if defined(NID_aes_128_ofb128) && !defined(NID_aes_128_ofb)
258
#define NID_aes_128_ofb NID_aes_128_ofb128
259
#endif
260
261
#if defined(NID_aes_192_cfb128) && !defined(NID_aes_192_cfb)
262
#define NID_aes_192_cfb NID_aes_192_cfb128
263
#endif
264
265
#if defined(NID_aes_192_ofb128) && !defined(NID_aes_192_ofb)
266
#define NID_aes_192_ofb NID_aes_192_ofb128
267
#endif
268
269
#if defined(NID_aes_256_cfb128) && !defined(NID_aes_256_cfb)
270
#define NID_aes_256_cfb NID_aes_256_cfb128
271
#endif
272
273
#if defined(NID_aes_256_ofb128) && !defined(NID_aes_256_ofb)
274
#define NID_aes_256_ofb NID_aes_256_ofb128
275
#endif
276
277
/* List of supported ciphers. */
278
static const int padlock_cipher_nids[] = {
279
NID_aes_128_ecb,
280
NID_aes_128_cbc,
281
NID_aes_128_cfb,
282
NID_aes_128_ofb,
283
NID_aes_128_ctr,
284
285
NID_aes_192_ecb,
286
NID_aes_192_cbc,
287
NID_aes_192_cfb,
288
NID_aes_192_ofb,
289
NID_aes_192_ctr,
290
291
NID_aes_256_ecb,
292
NID_aes_256_cbc,
293
NID_aes_256_cfb,
294
NID_aes_256_ofb,
295
NID_aes_256_ctr
296
};
297
298
static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) / sizeof(padlock_cipher_nids[0]));
299
300
/* Function prototypes ... */
301
static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
302
const unsigned char *iv, int enc);
303
304
#define NEAREST_ALIGNED(ptr) ((unsigned char *)(ptr) + ((0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F))
305
#define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *) \
306
NEAREST_ALIGNED(EVP_CIPHER_CTX_get_cipher_data(ctx)))
307
308
static int
309
padlock_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
310
const unsigned char *in_arg, size_t nbytes)
311
{
312
return padlock_ecb_encrypt(out_arg, in_arg,
313
ALIGNED_CIPHER_DATA(ctx), nbytes);
314
}
315
316
static int
317
padlock_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
318
const unsigned char *in_arg, size_t nbytes)
319
{
320
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
321
int ret;
322
323
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
324
if ((ret = padlock_cbc_encrypt(out_arg, in_arg, cdata, nbytes)))
325
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
326
return ret;
327
}
328
329
static int
330
padlock_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
331
const unsigned char *in_arg, size_t nbytes)
332
{
333
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
334
size_t chunk;
335
336
if ((chunk = EVP_CIPHER_CTX_get_num(ctx))) { /* borrow chunk variable */
337
unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
338
339
if (chunk >= AES_BLOCK_SIZE)
340
return 0; /* bogus value */
341
342
if (EVP_CIPHER_CTX_is_encrypting(ctx))
343
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
344
ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk];
345
chunk++, nbytes--;
346
}
347
else
348
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
349
unsigned char c = *(in_arg++);
350
*(out_arg++) = c ^ ivp[chunk];
351
ivp[chunk++] = c, nbytes--;
352
}
353
354
EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
355
}
356
357
if (nbytes == 0)
358
return 1;
359
360
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
361
362
if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
363
if (!padlock_cfb_encrypt(out_arg, in_arg, cdata, chunk))
364
return 0;
365
nbytes -= chunk;
366
}
367
368
if (nbytes) {
369
unsigned char *ivp = cdata->iv;
370
371
out_arg += chunk;
372
in_arg += chunk;
373
EVP_CIPHER_CTX_set_num(ctx, nbytes);
374
if (cdata->cword.b.encdec) {
375
cdata->cword.b.encdec = 0;
376
padlock_reload_key();
377
padlock_aes_block(ivp, ivp, cdata);
378
cdata->cword.b.encdec = 1;
379
padlock_reload_key();
380
while (nbytes) {
381
unsigned char c = *(in_arg++);
382
*(out_arg++) = c ^ *ivp;
383
*(ivp++) = c, nbytes--;
384
}
385
} else {
386
padlock_reload_key();
387
padlock_aes_block(ivp, ivp, cdata);
388
padlock_reload_key();
389
while (nbytes) {
390
*ivp = *(out_arg++) = *(in_arg++) ^ *ivp;
391
ivp++, nbytes--;
392
}
393
}
394
}
395
396
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
397
398
return 1;
399
}
400
401
static int
402
padlock_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
403
const unsigned char *in_arg, size_t nbytes)
404
{
405
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
406
size_t chunk;
407
408
/*
409
* ctx->num is maintained in byte-oriented modes, such as CFB and OFB...
410
*/
411
if ((chunk = EVP_CIPHER_CTX_get_num(ctx))) { /* borrow chunk variable */
412
unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
413
414
if (chunk >= AES_BLOCK_SIZE)
415
return 0; /* bogus value */
416
417
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
418
*(out_arg++) = *(in_arg++) ^ ivp[chunk];
419
chunk++, nbytes--;
420
}
421
422
EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
423
}
424
425
if (nbytes == 0)
426
return 1;
427
428
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
429
430
if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
431
if (!padlock_ofb_encrypt(out_arg, in_arg, cdata, chunk))
432
return 0;
433
nbytes -= chunk;
434
}
435
436
if (nbytes) {
437
unsigned char *ivp = cdata->iv;
438
439
out_arg += chunk;
440
in_arg += chunk;
441
EVP_CIPHER_CTX_set_num(ctx, nbytes);
442
padlock_reload_key(); /* empirically found */
443
padlock_aes_block(ivp, ivp, cdata);
444
padlock_reload_key(); /* empirically found */
445
while (nbytes) {
446
*(out_arg++) = *(in_arg++) ^ *ivp;
447
ivp++, nbytes--;
448
}
449
}
450
451
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
452
453
return 1;
454
}
455
456
static void padlock_ctr32_encrypt_glue(const unsigned char *in,
457
unsigned char *out, size_t blocks,
458
struct padlock_cipher_data *ctx,
459
const unsigned char *ivec)
460
{
461
memcpy(ctx->iv, ivec, AES_BLOCK_SIZE);
462
padlock_ctr32_encrypt(out, in, ctx, AES_BLOCK_SIZE * blocks);
463
}
464
465
static int
466
padlock_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
467
const unsigned char *in_arg, size_t nbytes)
468
{
469
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
470
int n = EVP_CIPHER_CTX_get_num(ctx);
471
unsigned int num;
472
473
if (n < 0)
474
return 0;
475
num = (unsigned int)n;
476
477
CRYPTO_ctr128_encrypt_ctr32(in_arg, out_arg, nbytes,
478
cdata, EVP_CIPHER_CTX_iv_noconst(ctx),
479
EVP_CIPHER_CTX_buf_noconst(ctx), &num,
480
(ctr128_f)padlock_ctr32_encrypt_glue);
481
482
EVP_CIPHER_CTX_set_num(ctx, (size_t)num);
483
return 1;
484
}
485
486
#define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE
487
#define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE
488
#define EVP_CIPHER_block_size_OFB 1
489
#define EVP_CIPHER_block_size_CFB 1
490
#define EVP_CIPHER_block_size_CTR 1
491
492
/*
493
* Declaring so many ciphers by hand would be a pain. Instead introduce a bit
494
* of preprocessor magic :-)
495
*/
496
#define DECLARE_AES_EVP(ksize, lmode, umode) \
497
static EVP_CIPHER *_hidden_aes_##ksize##_##lmode = NULL; \
498
static const EVP_CIPHER *padlock_aes_##ksize##_##lmode(void) \
499
{ \
500
if (_hidden_aes_##ksize##_##lmode == NULL \
501
&& ((_hidden_aes_##ksize##_##lmode = EVP_CIPHER_meth_new(NID_aes_##ksize##_##lmode, \
502
EVP_CIPHER_block_size_##umode, \
503
AES_KEY_SIZE_##ksize)) \
504
== NULL \
505
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_##ksize##_##lmode, \
506
AES_BLOCK_SIZE) \
507
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_##ksize##_##lmode, \
508
0 | EVP_CIPH_##umode##_MODE) \
509
|| !EVP_CIPHER_meth_set_init(_hidden_aes_##ksize##_##lmode, \
510
padlock_aes_init_key) \
511
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_##ksize##_##lmode, \
512
padlock_##lmode##_cipher) \
513
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_##ksize##_##lmode, \
514
sizeof(struct padlock_cipher_data) + 16) \
515
|| !EVP_CIPHER_meth_set_set_asn1_params(_hidden_aes_##ksize##_##lmode, \
516
EVP_CIPHER_set_asn1_iv) \
517
|| !EVP_CIPHER_meth_set_get_asn1_params(_hidden_aes_##ksize##_##lmode, \
518
EVP_CIPHER_get_asn1_iv))) { \
519
EVP_CIPHER_meth_free(_hidden_aes_##ksize##_##lmode); \
520
_hidden_aes_##ksize##_##lmode = NULL; \
521
} \
522
return _hidden_aes_##ksize##_##lmode; \
523
}
524
525
DECLARE_AES_EVP(128, ecb, ECB)
526
DECLARE_AES_EVP(128, cbc, CBC)
527
DECLARE_AES_EVP(128, cfb, CFB)
528
DECLARE_AES_EVP(128, ofb, OFB)
529
DECLARE_AES_EVP(128, ctr, CTR)
530
531
DECLARE_AES_EVP(192, ecb, ECB)
532
DECLARE_AES_EVP(192, cbc, CBC)
533
DECLARE_AES_EVP(192, cfb, CFB)
534
DECLARE_AES_EVP(192, ofb, OFB)
535
DECLARE_AES_EVP(192, ctr, CTR)
536
537
DECLARE_AES_EVP(256, ecb, ECB)
538
DECLARE_AES_EVP(256, cbc, CBC)
539
DECLARE_AES_EVP(256, cfb, CFB)
540
DECLARE_AES_EVP(256, ofb, OFB)
541
DECLARE_AES_EVP(256, ctr, CTR)
542
543
static int
544
padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids,
545
int nid)
546
{
547
/* No specific cipher => return a list of supported nids ... */
548
if (!cipher) {
549
*nids = padlock_cipher_nids;
550
return padlock_cipher_nids_num;
551
}
552
553
/* ... or the requested "cipher" otherwise */
554
switch (nid) {
555
case NID_aes_128_ecb:
556
*cipher = padlock_aes_128_ecb();
557
break;
558
case NID_aes_128_cbc:
559
*cipher = padlock_aes_128_cbc();
560
break;
561
case NID_aes_128_cfb:
562
*cipher = padlock_aes_128_cfb();
563
break;
564
case NID_aes_128_ofb:
565
*cipher = padlock_aes_128_ofb();
566
break;
567
case NID_aes_128_ctr:
568
*cipher = padlock_aes_128_ctr();
569
break;
570
571
case NID_aes_192_ecb:
572
*cipher = padlock_aes_192_ecb();
573
break;
574
case NID_aes_192_cbc:
575
*cipher = padlock_aes_192_cbc();
576
break;
577
case NID_aes_192_cfb:
578
*cipher = padlock_aes_192_cfb();
579
break;
580
case NID_aes_192_ofb:
581
*cipher = padlock_aes_192_ofb();
582
break;
583
case NID_aes_192_ctr:
584
*cipher = padlock_aes_192_ctr();
585
break;
586
587
case NID_aes_256_ecb:
588
*cipher = padlock_aes_256_ecb();
589
break;
590
case NID_aes_256_cbc:
591
*cipher = padlock_aes_256_cbc();
592
break;
593
case NID_aes_256_cfb:
594
*cipher = padlock_aes_256_cfb();
595
break;
596
case NID_aes_256_ofb:
597
*cipher = padlock_aes_256_ofb();
598
break;
599
case NID_aes_256_ctr:
600
*cipher = padlock_aes_256_ctr();
601
break;
602
603
default:
604
/* Sorry, we don't support this NID */
605
*cipher = NULL;
606
return 0;
607
}
608
609
return 1;
610
}
611
612
/* Prepare the encryption key for PadLock usage */
613
static int
614
padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
615
const unsigned char *iv, int enc)
616
{
617
struct padlock_cipher_data *cdata;
618
int key_len = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
619
unsigned long mode = EVP_CIPHER_CTX_get_mode(ctx);
620
621
if (key == NULL)
622
return 0; /* ERROR */
623
624
cdata = ALIGNED_CIPHER_DATA(ctx);
625
memset(cdata, 0, sizeof(*cdata));
626
627
/* Prepare Control word. */
628
if (mode == EVP_CIPH_OFB_MODE || mode == EVP_CIPH_CTR_MODE)
629
cdata->cword.b.encdec = 0;
630
else
631
cdata->cword.b.encdec = (EVP_CIPHER_CTX_is_encrypting(ctx) == 0);
632
cdata->cword.b.rounds = 10 + (key_len - 128) / 32;
633
cdata->cword.b.ksize = (key_len - 128) / 64;
634
635
switch (key_len) {
636
case 128:
637
/*
638
* PadLock can generate an extended key for AES128 in hardware
639
*/
640
memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128);
641
cdata->cword.b.keygen = 0;
642
break;
643
644
case 192:
645
case 256:
646
/*
647
* Generate an extended AES key in software. Needed for AES192/AES256
648
*/
649
/*
650
* Well, the above applies to Stepping 8 CPUs and is listed as
651
* hardware errata. They most likely will fix it at some point and
652
* then a check for stepping would be due here.
653
*/
654
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
655
&& !enc)
656
AES_set_decrypt_key(key, key_len, &cdata->ks);
657
else
658
AES_set_encrypt_key(key, key_len, &cdata->ks);
659
/*
660
* OpenSSL C functions use byte-swapped extended key.
661
*/
662
padlock_key_bswap(&cdata->ks);
663
cdata->cword.b.keygen = 1;
664
break;
665
666
default:
667
/* ERROR */
668
return 0;
669
}
670
671
/*
672
* This is done to cover for cases when user reuses the
673
* context for new key. The catch is that if we don't do
674
* this, padlock_eas_cipher might proceed with old key...
675
*/
676
padlock_reload_key();
677
678
return 1;
679
}
680
681
/* ===== Random Number Generator ===== */
682
/*
683
* This code is not engaged. The reason is that it does not comply
684
* with recommendations for VIA RNG usage for secure applications
685
* (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it
686
* provide meaningful error control...
687
*/
688
/*
689
* Wrapper that provides an interface between the API and the raw PadLock
690
* RNG
691
*/
692
static int padlock_rand_bytes(unsigned char *output, int count)
693
{
694
unsigned int eax, buf;
695
696
while (count >= 8) {
697
eax = padlock_xstore(output, 0);
698
if (!(eax & (1 << 6)))
699
return 0; /* RNG disabled */
700
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
701
if (eax & (0x1F << 10))
702
return 0;
703
if ((eax & 0x1F) == 0)
704
continue; /* no data, retry... */
705
if ((eax & 0x1F) != 8)
706
return 0; /* fatal failure... */
707
output += 8;
708
count -= 8;
709
}
710
while (count > 0) {
711
eax = padlock_xstore(&buf, 3);
712
if (!(eax & (1 << 6)))
713
return 0; /* RNG disabled */
714
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
715
if (eax & (0x1F << 10))
716
return 0;
717
if ((eax & 0x1F) == 0)
718
continue; /* no data, retry... */
719
if ((eax & 0x1F) != 1)
720
return 0; /* fatal failure... */
721
*output++ = (unsigned char)buf;
722
count--;
723
}
724
OPENSSL_cleanse(&buf, sizeof(buf));
725
726
return 1;
727
}
728
729
/* Dummy but necessary function */
730
static int padlock_rand_status(void)
731
{
732
return 1;
733
}
734
735
/* Prepare structure for registration */
736
static RAND_METHOD padlock_rand = {
737
NULL, /* seed */
738
padlock_rand_bytes, /* bytes */
739
NULL, /* cleanup */
740
NULL, /* add */
741
padlock_rand_bytes, /* pseudorand */
742
padlock_rand_status, /* rand status */
743
};
744
745
#endif /* COMPILE_PADLOCKENG */
746
#endif /* !OPENSSL_NO_PADLOCKENG */
747
748
#if defined(OPENSSL_NO_PADLOCKENG) || !defined(COMPILE_PADLOCKENG)
749
#ifndef OPENSSL_NO_DYNAMIC_ENGINE
750
OPENSSL_EXPORT
751
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns);
752
OPENSSL_EXPORT
753
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns)
754
{
755
return 0;
756
}
757
758
IMPLEMENT_DYNAMIC_CHECK_FN()
759
#endif
760
#endif
761
762