Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/providers/implementations/kdfs/argon2.c
48383 views
1
/*
2
* Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*
9
* RFC 9106 Argon2 (see https://www.rfc-editor.org/rfc/rfc9106.txt)
10
*
11
*/
12
13
#include <stdlib.h>
14
#include <stddef.h>
15
#include <stdarg.h>
16
#include <string.h>
17
#include <openssl/e_os2.h>
18
#include <openssl/evp.h>
19
#include <openssl/objects.h>
20
#include <openssl/crypto.h>
21
#include <openssl/kdf.h>
22
#include <openssl/err.h>
23
#include <openssl/core_names.h>
24
#include <openssl/params.h>
25
#include <openssl/thread.h>
26
#include <openssl/proverr.h>
27
#include "internal/thread.h"
28
#include "internal/numbers.h"
29
#include "internal/endian.h"
30
#include "crypto/evp.h"
31
#include "prov/implementations.h"
32
#include "prov/provider_ctx.h"
33
#include "prov/providercommon.h"
34
#include "prov/blake2.h"
35
36
#if defined(OPENSSL_NO_DEFAULT_THREAD_POOL) && defined(OPENSSL_NO_THREAD_POOL)
37
# define ARGON2_NO_THREADS
38
#endif
39
40
#if !defined(OPENSSL_THREADS)
41
# define ARGON2_NO_THREADS
42
#endif
43
44
#ifndef OPENSSL_NO_ARGON2
45
46
# define ARGON2_MIN_LANES 1u
47
# define ARGON2_MAX_LANES 0xFFFFFFu
48
# define ARGON2_MIN_THREADS 1u
49
# define ARGON2_MAX_THREADS 0xFFFFFFu
50
# define ARGON2_SYNC_POINTS 4u
51
# define ARGON2_MIN_OUT_LENGTH 4u
52
# define ARGON2_MAX_OUT_LENGTH 0xFFFFFFFFu
53
# define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS)
54
# define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b))
55
# define ARGON2_MAX_MEMORY 0xFFFFFFFFu
56
# define ARGON2_MIN_TIME 1u
57
# define ARGON2_MAX_TIME 0xFFFFFFFFu
58
# define ARGON2_MIN_PWD_LENGTH 0u
59
# define ARGON2_MAX_PWD_LENGTH 0xFFFFFFFFu
60
# define ARGON2_MIN_AD_LENGTH 0u
61
# define ARGON2_MAX_AD_LENGTH 0xFFFFFFFFu
62
# define ARGON2_MIN_SALT_LENGTH 8u
63
# define ARGON2_MAX_SALT_LENGTH 0xFFFFFFFFu
64
# define ARGON2_MIN_SECRET 0u
65
# define ARGON2_MAX_SECRET 0xFFFFFFFFu
66
# define ARGON2_BLOCK_SIZE 1024
67
# define ARGON2_QWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 8)
68
# define ARGON2_OWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 16)
69
# define ARGON2_HWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 32)
70
# define ARGON2_512BIT_WORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 64)
71
# define ARGON2_ADDRESSES_IN_BLOCK 128
72
# define ARGON2_PREHASH_DIGEST_LENGTH 64
73
# define ARGON2_PREHASH_SEED_LENGTH \
74
(ARGON2_PREHASH_DIGEST_LENGTH + (2 * sizeof(uint32_t)))
75
76
# define ARGON2_DEFAULT_OUTLEN 64u
77
# define ARGON2_DEFAULT_T_COST 3u
78
# define ARGON2_DEFAULT_M_COST ARGON2_MIN_MEMORY
79
# define ARGON2_DEFAULT_LANES 1u
80
# define ARGON2_DEFAULT_THREADS 1u
81
# define ARGON2_DEFAULT_VERSION ARGON2_VERSION_NUMBER
82
83
# undef G
84
# define G(a, b, c, d) \
85
do { \
86
a = a + b + 2 * mul_lower(a, b); \
87
d = rotr64(d ^ a, 32); \
88
c = c + d + 2 * mul_lower(c, d); \
89
b = rotr64(b ^ c, 24); \
90
a = a + b + 2 * mul_lower(a, b); \
91
d = rotr64(d ^ a, 16); \
92
c = c + d + 2 * mul_lower(c, d); \
93
b = rotr64(b ^ c, 63); \
94
} while ((void)0, 0)
95
96
# undef PERMUTATION_P
97
# define PERMUTATION_P(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, \
98
v12, v13, v14, v15) \
99
do { \
100
G(v0, v4, v8, v12); \
101
G(v1, v5, v9, v13); \
102
G(v2, v6, v10, v14); \
103
G(v3, v7, v11, v15); \
104
G(v0, v5, v10, v15); \
105
G(v1, v6, v11, v12); \
106
G(v2, v7, v8, v13); \
107
G(v3, v4, v9, v14); \
108
} while ((void)0, 0)
109
110
# undef PERMUTATION_P_COLUMN
111
# define PERMUTATION_P_COLUMN(x, i) \
112
do { \
113
uint64_t *base = &x[16 * i]; \
114
PERMUTATION_P( \
115
*base, *(base + 1), *(base + 2), *(base + 3), \
116
*(base + 4), *(base + 5), *(base + 6), *(base + 7), \
117
*(base + 8), *(base + 9), *(base + 10), *(base + 11), \
118
*(base + 12), *(base + 13), *(base + 14), *(base + 15) \
119
); \
120
} while ((void)0, 0)
121
122
# undef PERMUTATION_P_ROW
123
# define PERMUTATION_P_ROW(x, i) \
124
do { \
125
uint64_t *base = &x[2 * i]; \
126
PERMUTATION_P( \
127
*base, *(base + 1), *(base + 16), *(base + 17), \
128
*(base + 32), *(base + 33), *(base + 48), *(base + 49), \
129
*(base + 64), *(base + 65), *(base + 80), *(base + 81), \
130
*(base + 96), *(base + 97), *(base + 112), *(base + 113) \
131
); \
132
} while ((void)0, 0)
133
134
typedef struct {
135
uint64_t v[ARGON2_QWORDS_IN_BLOCK];
136
} BLOCK;
137
138
typedef enum {
139
ARGON2_VERSION_10 = 0x10,
140
ARGON2_VERSION_13 = 0x13,
141
ARGON2_VERSION_NUMBER = ARGON2_VERSION_13
142
} ARGON2_VERSION;
143
144
typedef enum {
145
ARGON2_D = 0,
146
ARGON2_I = 1,
147
ARGON2_ID = 2
148
} ARGON2_TYPE;
149
150
typedef struct {
151
uint32_t pass;
152
uint32_t lane;
153
uint8_t slice;
154
uint32_t index;
155
} ARGON2_POS;
156
157
typedef struct {
158
void *provctx;
159
uint32_t outlen;
160
uint8_t *pwd;
161
uint32_t pwdlen;
162
uint8_t *salt;
163
uint32_t saltlen;
164
uint8_t *secret;
165
uint32_t secretlen;
166
uint8_t *ad;
167
uint32_t adlen;
168
uint32_t t_cost;
169
uint32_t m_cost;
170
uint32_t lanes;
171
uint32_t threads;
172
uint32_t version;
173
uint32_t early_clean;
174
ARGON2_TYPE type;
175
BLOCK *memory;
176
uint32_t passes;
177
uint32_t memory_blocks;
178
uint32_t segment_length;
179
uint32_t lane_length;
180
OSSL_LIB_CTX *libctx;
181
EVP_MD *md;
182
EVP_MAC *mac;
183
char *propq;
184
} KDF_ARGON2;
185
186
typedef struct {
187
ARGON2_POS pos;
188
KDF_ARGON2 *ctx;
189
} ARGON2_THREAD_DATA;
190
191
static OSSL_FUNC_kdf_newctx_fn kdf_argon2i_new;
192
static OSSL_FUNC_kdf_newctx_fn kdf_argon2d_new;
193
static OSSL_FUNC_kdf_newctx_fn kdf_argon2id_new;
194
static OSSL_FUNC_kdf_freectx_fn kdf_argon2_free;
195
static OSSL_FUNC_kdf_reset_fn kdf_argon2_reset;
196
static OSSL_FUNC_kdf_derive_fn kdf_argon2_derive;
197
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_argon2_settable_ctx_params;
198
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_argon2_set_ctx_params;
199
200
static void kdf_argon2_init(KDF_ARGON2 *ctx, ARGON2_TYPE t);
201
static void *kdf_argon2d_new(void *provctx);
202
static void *kdf_argon2i_new(void *provctx);
203
static void *kdf_argon2id_new(void *provctx);
204
static void kdf_argon2_free(void *vctx);
205
static int kdf_argon2_derive(void *vctx, unsigned char *out, size_t outlen,
206
const OSSL_PARAM params[]);
207
static void kdf_argon2_reset(void *vctx);
208
static int kdf_argon2_ctx_set_threads(KDF_ARGON2 *ctx, uint32_t threads);
209
static int kdf_argon2_ctx_set_lanes(KDF_ARGON2 *ctx, uint32_t lanes);
210
static int kdf_argon2_ctx_set_t_cost(KDF_ARGON2 *ctx, uint32_t t_cost);
211
static int kdf_argon2_ctx_set_m_cost(KDF_ARGON2 *ctx, uint32_t m_cost);
212
static int kdf_argon2_ctx_set_out_length(KDF_ARGON2 *ctx, uint32_t outlen);
213
static int kdf_argon2_ctx_set_secret(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
214
static int kdf_argon2_ctx_set_pwd(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
215
static int kdf_argon2_ctx_set_salt(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
216
static int kdf_argon2_ctx_set_ad(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
217
static int kdf_argon2_set_ctx_params(void *vctx, const OSSL_PARAM params[]);
218
static int kdf_argon2_get_ctx_params(void *vctx, OSSL_PARAM params[]);
219
static int kdf_argon2_ctx_set_version(KDF_ARGON2 *ctx, uint32_t version);
220
static const OSSL_PARAM *kdf_argon2_settable_ctx_params(ossl_unused void *ctx,
221
ossl_unused void *p_ctx);
222
static const OSSL_PARAM *kdf_argon2_gettable_ctx_params(ossl_unused void *ctx,
223
ossl_unused void *p_ctx);
224
225
static ossl_inline uint64_t load64(const uint8_t *src);
226
static ossl_inline void store32(uint8_t *dst, uint32_t w);
227
static ossl_inline void store64(uint8_t *dst, uint64_t w);
228
static ossl_inline uint64_t rotr64(const uint64_t w, const unsigned int c);
229
static ossl_inline uint64_t mul_lower(uint64_t x, uint64_t y);
230
231
static void init_block_value(BLOCK *b, uint8_t in);
232
static void copy_block(BLOCK *dst, const BLOCK *src);
233
static void xor_block(BLOCK *dst, const BLOCK *src);
234
static void load_block(BLOCK *dst, const void *input);
235
static void store_block(void *output, const BLOCK *src);
236
static void fill_first_blocks(uint8_t *blockhash, const KDF_ARGON2 *ctx);
237
static void fill_block(const BLOCK *prev, const BLOCK *ref, BLOCK *next,
238
int with_xor);
239
240
static void next_addresses(BLOCK *address_block, BLOCK *input_block,
241
const BLOCK *zero_block);
242
static int data_indep_addressing(const KDF_ARGON2 *ctx, uint32_t pass,
243
uint8_t slice);
244
static uint32_t index_alpha(const KDF_ARGON2 *ctx, uint32_t pass,
245
uint8_t slice, uint32_t index,
246
uint32_t pseudo_rand, int same_lane);
247
248
static void fill_segment(const KDF_ARGON2 *ctx, uint32_t pass, uint32_t lane,
249
uint8_t slice);
250
251
# if !defined(ARGON2_NO_THREADS)
252
static uint32_t fill_segment_thr(void *thread_data);
253
static int fill_mem_blocks_mt(KDF_ARGON2 *ctx);
254
# endif
255
256
static int fill_mem_blocks_st(KDF_ARGON2 *ctx);
257
static ossl_inline int fill_memory_blocks(KDF_ARGON2 *ctx);
258
259
static void initial_hash(uint8_t *blockhash, KDF_ARGON2 *ctx);
260
static int initialize(KDF_ARGON2 *ctx);
261
static void finalize(const KDF_ARGON2 *ctx, void *out);
262
263
static int blake2b(EVP_MD *md, EVP_MAC *mac, void *out, size_t outlen,
264
const void *in, size_t inlen, const void *key,
265
size_t keylen);
266
static int blake2b_long(EVP_MD *md, EVP_MAC *mac, unsigned char *out,
267
size_t outlen, const void *in, size_t inlen);
268
269
static ossl_inline uint64_t load64(const uint8_t *src)
270
{
271
return
272
(((uint64_t)src[0]) << 0)
273
| (((uint64_t)src[1]) << 8)
274
| (((uint64_t)src[2]) << 16)
275
| (((uint64_t)src[3]) << 24)
276
| (((uint64_t)src[4]) << 32)
277
| (((uint64_t)src[5]) << 40)
278
| (((uint64_t)src[6]) << 48)
279
| (((uint64_t)src[7]) << 56);
280
}
281
282
static ossl_inline void store32(uint8_t *dst, uint32_t w)
283
{
284
dst[0] = (uint8_t)(w >> 0);
285
dst[1] = (uint8_t)(w >> 8);
286
dst[2] = (uint8_t)(w >> 16);
287
dst[3] = (uint8_t)(w >> 24);
288
}
289
290
static ossl_inline void store64(uint8_t *dst, uint64_t w)
291
{
292
dst[0] = (uint8_t)(w >> 0);
293
dst[1] = (uint8_t)(w >> 8);
294
dst[2] = (uint8_t)(w >> 16);
295
dst[3] = (uint8_t)(w >> 24);
296
dst[4] = (uint8_t)(w >> 32);
297
dst[5] = (uint8_t)(w >> 40);
298
dst[6] = (uint8_t)(w >> 48);
299
dst[7] = (uint8_t)(w >> 56);
300
}
301
302
static ossl_inline uint64_t rotr64(const uint64_t w, const unsigned int c)
303
{
304
return (w >> c) | (w << (64 - c));
305
}
306
307
static ossl_inline uint64_t mul_lower(uint64_t x, uint64_t y)
308
{
309
const uint64_t m = 0xFFFFFFFFUL;
310
return (x & m) * (y & m);
311
}
312
313
static void init_block_value(BLOCK *b, uint8_t in)
314
{
315
memset(b->v, in, sizeof(b->v));
316
}
317
318
static void copy_block(BLOCK *dst, const BLOCK *src)
319
{
320
memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK);
321
}
322
323
static void xor_block(BLOCK *dst, const BLOCK *src)
324
{
325
int i;
326
327
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
328
dst->v[i] ^= src->v[i];
329
}
330
331
static void load_block(BLOCK *dst, const void *input)
332
{
333
unsigned i;
334
335
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
336
dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
337
}
338
339
static void store_block(void *output, const BLOCK *src)
340
{
341
unsigned i;
342
343
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
344
store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
345
}
346
347
static void fill_first_blocks(uint8_t *blockhash, const KDF_ARGON2 *ctx)
348
{
349
uint32_t l;
350
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
351
352
/*
353
* Make the first and second block in each lane as G(H0||0||i)
354
* or G(H0||1||i).
355
*/
356
for (l = 0; l < ctx->lanes; ++l) {
357
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
358
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
359
blake2b_long(ctx->md, ctx->mac, blockhash_bytes, ARGON2_BLOCK_SIZE,
360
blockhash, ARGON2_PREHASH_SEED_LENGTH);
361
load_block(&ctx->memory[l * ctx->lane_length + 0],
362
blockhash_bytes);
363
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
364
blake2b_long(ctx->md, ctx->mac, blockhash_bytes, ARGON2_BLOCK_SIZE,
365
blockhash, ARGON2_PREHASH_SEED_LENGTH);
366
load_block(&ctx->memory[l * ctx->lane_length + 1],
367
blockhash_bytes);
368
}
369
OPENSSL_cleanse(blockhash_bytes, ARGON2_BLOCK_SIZE);
370
}
371
372
static void fill_block(const BLOCK *prev, const BLOCK *ref,
373
BLOCK *next, int with_xor)
374
{
375
BLOCK blockR, tmp;
376
unsigned i;
377
378
copy_block(&blockR, ref);
379
xor_block(&blockR, prev);
380
copy_block(&tmp, &blockR);
381
382
if (with_xor)
383
xor_block(&tmp, next);
384
385
for (i = 0; i < 8; ++i)
386
PERMUTATION_P_COLUMN(blockR.v, i);
387
388
for (i = 0; i < 8; ++i)
389
PERMUTATION_P_ROW(blockR.v, i);
390
391
copy_block(next, &tmp);
392
xor_block(next, &blockR);
393
}
394
395
static void next_addresses(BLOCK *address_block, BLOCK *input_block,
396
const BLOCK *zero_block)
397
{
398
input_block->v[6]++;
399
fill_block(zero_block, input_block, address_block, 0);
400
fill_block(zero_block, address_block, address_block, 0);
401
}
402
403
static int data_indep_addressing(const KDF_ARGON2 *ctx, uint32_t pass,
404
uint8_t slice)
405
{
406
switch (ctx->type) {
407
case ARGON2_I:
408
return 1;
409
case ARGON2_ID:
410
return (pass == 0) && (slice < ARGON2_SYNC_POINTS / 2);
411
case ARGON2_D:
412
default:
413
return 0;
414
}
415
}
416
417
/*
418
* Pass 0 (pass = 0):
419
* This lane: all already finished segments plus already constructed blocks
420
* in this segment
421
* Other lanes: all already finished segments
422
*
423
* Pass 1+:
424
* This lane: (SYNC_POINTS - 1) last segments plus already constructed
425
* blocks in this segment
426
* Other lanes: (SYNC_POINTS - 1) last segments
427
*/
428
static uint32_t index_alpha(const KDF_ARGON2 *ctx, uint32_t pass,
429
uint8_t slice, uint32_t index,
430
uint32_t pseudo_rand, int same_lane)
431
{
432
uint32_t ref_area_sz;
433
uint64_t rel_pos;
434
uint32_t start_pos, abs_pos;
435
436
start_pos = 0;
437
switch (pass) {
438
case 0:
439
if (slice == 0)
440
ref_area_sz = index - 1;
441
else if (same_lane)
442
ref_area_sz = slice * ctx->segment_length + index - 1;
443
else
444
ref_area_sz = slice * ctx->segment_length +
445
((index == 0) ? (-1) : 0);
446
break;
447
default:
448
if (same_lane)
449
ref_area_sz = ctx->lane_length - ctx->segment_length + index - 1;
450
else
451
ref_area_sz = ctx->lane_length - ctx->segment_length +
452
((index == 0) ? (-1) : 0);
453
if (slice != ARGON2_SYNC_POINTS - 1)
454
start_pos = (slice + 1) * ctx->segment_length;
455
break;
456
}
457
458
rel_pos = pseudo_rand;
459
rel_pos = rel_pos * rel_pos >> 32;
460
rel_pos = ref_area_sz - 1 - (ref_area_sz * rel_pos >> 32);
461
abs_pos = (start_pos + rel_pos) % ctx->lane_length;
462
463
return abs_pos;
464
}
465
466
static void fill_segment(const KDF_ARGON2 *ctx, uint32_t pass, uint32_t lane,
467
uint8_t slice)
468
{
469
BLOCK *ref_block = NULL, *curr_block = NULL;
470
BLOCK address_block, input_block, zero_block;
471
uint64_t rnd, ref_index, ref_lane;
472
uint32_t prev_offset;
473
uint32_t start_idx;
474
uint32_t j;
475
uint32_t curr_offset; /* Offset of the current block */
476
477
memset(&input_block, 0, sizeof(BLOCK));
478
479
if (ctx == NULL)
480
return;
481
482
if (data_indep_addressing(ctx, pass, slice)) {
483
init_block_value(&zero_block, 0);
484
init_block_value(&input_block, 0);
485
486
input_block.v[0] = pass;
487
input_block.v[1] = lane;
488
input_block.v[2] = slice;
489
input_block.v[3] = ctx->memory_blocks;
490
input_block.v[4] = ctx->passes;
491
input_block.v[5] = ctx->type;
492
}
493
494
start_idx = 0;
495
496
/* We've generated the first two blocks. Generate the 1st block of addrs. */
497
if ((pass == 0) && (slice == 0)) {
498
start_idx = 2;
499
if (data_indep_addressing(ctx, pass, slice))
500
next_addresses(&address_block, &input_block, &zero_block);
501
}
502
503
curr_offset = lane * ctx->lane_length + slice * ctx->segment_length
504
+ start_idx;
505
506
if ((curr_offset % ctx->lane_length) == 0)
507
prev_offset = curr_offset + ctx->lane_length - 1;
508
else
509
prev_offset = curr_offset - 1;
510
511
for (j = start_idx; j < ctx->segment_length; ++j, ++curr_offset, ++prev_offset) {
512
if (curr_offset % ctx->lane_length == 1)
513
prev_offset = curr_offset - 1;
514
515
/* Taking pseudo-random value from the previous block. */
516
if (data_indep_addressing(ctx, pass, slice)) {
517
if (j % ARGON2_ADDRESSES_IN_BLOCK == 0)
518
next_addresses(&address_block, &input_block, &zero_block);
519
rnd = address_block.v[j % ARGON2_ADDRESSES_IN_BLOCK];
520
} else {
521
rnd = ctx->memory[prev_offset].v[0];
522
}
523
524
/* Computing the lane of the reference block */
525
ref_lane = ((rnd >> 32)) % ctx->lanes;
526
/* Can not reference other lanes yet */
527
if ((pass == 0) && (slice == 0))
528
ref_lane = lane;
529
530
/* Computing the number of possible reference block within the lane. */
531
ref_index = index_alpha(ctx, pass, slice, j, rnd & 0xFFFFFFFF,
532
ref_lane == lane);
533
534
/* Creating a new block */
535
ref_block = ctx->memory + ctx->lane_length * ref_lane + ref_index;
536
curr_block = ctx->memory + curr_offset;
537
if (ARGON2_VERSION_10 == ctx->version) {
538
/* Version 1.2.1 and earlier: overwrite, not XOR */
539
fill_block(ctx->memory + prev_offset, ref_block, curr_block, 0);
540
continue;
541
}
542
543
fill_block(ctx->memory + prev_offset, ref_block, curr_block,
544
pass == 0 ? 0 : 1);
545
}
546
}
547
548
# if !defined(ARGON2_NO_THREADS)
549
550
static uint32_t fill_segment_thr(void *thread_data)
551
{
552
ARGON2_THREAD_DATA *my_data;
553
554
my_data = (ARGON2_THREAD_DATA *) thread_data;
555
fill_segment(my_data->ctx, my_data->pos.pass, my_data->pos.lane,
556
my_data->pos.slice);
557
558
return 0;
559
}
560
561
static int fill_mem_blocks_mt(KDF_ARGON2 *ctx)
562
{
563
uint32_t r, s, l, ll;
564
void **t;
565
ARGON2_THREAD_DATA *t_data;
566
567
t = OPENSSL_zalloc(sizeof(void *)*ctx->lanes);
568
t_data = OPENSSL_zalloc(ctx->lanes * sizeof(ARGON2_THREAD_DATA));
569
570
if (t == NULL || t_data == NULL)
571
goto fail;
572
573
for (r = 0; r < ctx->passes; ++r) {
574
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
575
for (l = 0; l < ctx->lanes; ++l) {
576
ARGON2_POS p;
577
if (l >= ctx->threads) {
578
if (ossl_crypto_thread_join(t[l - ctx->threads], NULL) == 0)
579
goto fail;
580
if (ossl_crypto_thread_clean(t[l - ctx->threads]) == 0)
581
goto fail;
582
t[l] = NULL;
583
}
584
585
p.pass = r;
586
p.lane = l;
587
p.slice = (uint8_t)s;
588
p.index = 0;
589
590
t_data[l].ctx = ctx;
591
memcpy(&(t_data[l].pos), &p, sizeof(ARGON2_POS));
592
t[l] = ossl_crypto_thread_start(ctx->libctx, &fill_segment_thr,
593
(void *) &t_data[l]);
594
if (t[l] == NULL) {
595
for (ll = 0; ll < l; ++ll) {
596
if (ossl_crypto_thread_join(t[ll], NULL) == 0)
597
goto fail;
598
if (ossl_crypto_thread_clean(t[ll]) == 0)
599
goto fail;
600
t[ll] = NULL;
601
}
602
goto fail;
603
}
604
}
605
for (l = ctx->lanes - ctx->threads; l < ctx->lanes; ++l) {
606
if (ossl_crypto_thread_join(t[l], NULL) == 0)
607
goto fail;
608
if (ossl_crypto_thread_clean(t[l]) == 0)
609
goto fail;
610
t[l] = NULL;
611
}
612
}
613
}
614
615
OPENSSL_free(t_data);
616
OPENSSL_free(t);
617
618
return 1;
619
620
fail:
621
if (t_data != NULL)
622
OPENSSL_free(t_data);
623
if (t != NULL)
624
OPENSSL_free(t);
625
return 0;
626
}
627
628
# endif /* !defined(ARGON2_NO_THREADS) */
629
630
static int fill_mem_blocks_st(KDF_ARGON2 *ctx)
631
{
632
uint32_t r, s, l;
633
634
for (r = 0; r < ctx->passes; ++r)
635
for (s = 0; s < ARGON2_SYNC_POINTS; ++s)
636
for (l = 0; l < ctx->lanes; ++l)
637
fill_segment(ctx, r, l, s);
638
return 1;
639
}
640
641
static ossl_inline int fill_memory_blocks(KDF_ARGON2 *ctx)
642
{
643
# if !defined(ARGON2_NO_THREADS)
644
return ctx->threads == 1 ? fill_mem_blocks_st(ctx) : fill_mem_blocks_mt(ctx);
645
# else
646
return ctx->threads == 1 ? fill_mem_blocks_st(ctx) : 0;
647
# endif
648
}
649
650
static void initial_hash(uint8_t *blockhash, KDF_ARGON2 *ctx)
651
{
652
EVP_MD_CTX *mdctx;
653
uint8_t value[sizeof(uint32_t)];
654
unsigned int tmp;
655
uint32_t args[7];
656
657
if (ctx == NULL || blockhash == NULL)
658
return;
659
660
args[0] = ctx->lanes;
661
args[1] = ctx->outlen;
662
args[2] = ctx->m_cost;
663
args[3] = ctx->t_cost;
664
args[4] = ctx->version;
665
args[5] = (uint32_t) ctx->type;
666
args[6] = ctx->pwdlen;
667
668
mdctx = EVP_MD_CTX_create();
669
if (mdctx == NULL || EVP_DigestInit_ex(mdctx, ctx->md, NULL) != 1)
670
goto fail;
671
672
for (tmp = 0; tmp < sizeof(args) / sizeof(uint32_t); ++tmp) {
673
store32((uint8_t *) &value, args[tmp]);
674
if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
675
goto fail;
676
}
677
678
if (ctx->pwd != NULL) {
679
if (EVP_DigestUpdate(mdctx, ctx->pwd, ctx->pwdlen) != 1)
680
goto fail;
681
if (ctx->early_clean) {
682
OPENSSL_cleanse(ctx->pwd, ctx->pwdlen);
683
ctx->pwdlen = 0;
684
}
685
}
686
687
store32((uint8_t *) &value, ctx->saltlen);
688
689
if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
690
goto fail;
691
692
if (ctx->salt != NULL)
693
if (EVP_DigestUpdate(mdctx, ctx->salt, ctx->saltlen) != 1)
694
goto fail;
695
696
store32((uint8_t *) &value, ctx->secretlen);
697
if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
698
goto fail;
699
700
if (ctx->secret != NULL) {
701
if (EVP_DigestUpdate(mdctx, ctx->secret, ctx->secretlen) != 1)
702
goto fail;
703
if (ctx->early_clean) {
704
OPENSSL_cleanse(ctx->secret, ctx->secretlen);
705
ctx->secretlen = 0;
706
}
707
}
708
709
store32((uint8_t *) &value, ctx->adlen);
710
if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
711
goto fail;
712
713
if (ctx->ad != NULL)
714
if (EVP_DigestUpdate(mdctx, ctx->ad, ctx->adlen) != 1)
715
goto fail;
716
717
tmp = ARGON2_PREHASH_DIGEST_LENGTH;
718
if (EVP_DigestFinal_ex(mdctx, blockhash, &tmp) != 1)
719
goto fail;
720
721
fail:
722
EVP_MD_CTX_destroy(mdctx);
723
}
724
725
static int initialize(KDF_ARGON2 *ctx)
726
{
727
uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
728
729
if (ctx == NULL)
730
return 0;
731
732
if (ctx->memory_blocks * sizeof(BLOCK) / sizeof(BLOCK) != ctx->memory_blocks)
733
return 0;
734
735
if (ctx->type != ARGON2_D)
736
ctx->memory = OPENSSL_secure_zalloc(ctx->memory_blocks *
737
sizeof(BLOCK));
738
else
739
ctx->memory = OPENSSL_zalloc(ctx->memory_blocks *
740
sizeof(BLOCK));
741
742
if (ctx->memory == NULL) {
743
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE,
744
"cannot allocate required memory");
745
return 0;
746
}
747
748
initial_hash(blockhash, ctx);
749
OPENSSL_cleanse(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
750
ARGON2_PREHASH_SEED_LENGTH - ARGON2_PREHASH_DIGEST_LENGTH);
751
fill_first_blocks(blockhash, ctx);
752
OPENSSL_cleanse(blockhash, ARGON2_PREHASH_SEED_LENGTH);
753
754
return 1;
755
}
756
757
static void finalize(const KDF_ARGON2 *ctx, void *out)
758
{
759
BLOCK blockhash;
760
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
761
uint32_t last_block_in_lane;
762
uint32_t l;
763
764
if (ctx == NULL)
765
return;
766
767
copy_block(&blockhash, ctx->memory + ctx->lane_length - 1);
768
769
/* XOR the last blocks */
770
for (l = 1; l < ctx->lanes; ++l) {
771
last_block_in_lane = l * ctx->lane_length + (ctx->lane_length - 1);
772
xor_block(&blockhash, ctx->memory + last_block_in_lane);
773
}
774
775
/* Hash the result */
776
store_block(blockhash_bytes, &blockhash);
777
blake2b_long(ctx->md, ctx->mac, out, ctx->outlen, blockhash_bytes,
778
ARGON2_BLOCK_SIZE);
779
OPENSSL_cleanse(blockhash.v, ARGON2_BLOCK_SIZE);
780
OPENSSL_cleanse(blockhash_bytes, ARGON2_BLOCK_SIZE);
781
782
if (ctx->type != ARGON2_D)
783
OPENSSL_secure_clear_free(ctx->memory,
784
ctx->memory_blocks * sizeof(BLOCK));
785
else
786
OPENSSL_clear_free(ctx->memory,
787
ctx->memory_blocks * sizeof(BLOCK));
788
}
789
790
static int blake2b_mac(EVP_MAC *mac, void *out, size_t outlen, const void *in,
791
size_t inlen, const void *key, size_t keylen)
792
{
793
int ret = 0;
794
size_t par_n = 0, out_written;
795
EVP_MAC_CTX *ctx = NULL;
796
OSSL_PARAM par[3];
797
798
if ((ctx = EVP_MAC_CTX_new(mac)) == NULL)
799
goto fail;
800
801
par[par_n++] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
802
(void *) key, keylen);
803
par[par_n++] = OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, &outlen);
804
par[par_n++] = OSSL_PARAM_construct_end();
805
806
ret = EVP_MAC_CTX_set_params(ctx, par) == 1
807
&& EVP_MAC_init(ctx, NULL, 0, NULL) == 1
808
&& EVP_MAC_update(ctx, in, inlen) == 1
809
&& EVP_MAC_final(ctx, out, (size_t *) &out_written, outlen) == 1;
810
811
fail:
812
EVP_MAC_CTX_free(ctx);
813
return ret;
814
}
815
816
static int blake2b_md(EVP_MD *md, void *out, size_t outlen, const void *in,
817
size_t inlen)
818
{
819
int ret = 0;
820
EVP_MD_CTX *ctx = NULL;
821
OSSL_PARAM par[2];
822
823
if ((ctx = EVP_MD_CTX_create()) == NULL)
824
return 0;
825
826
par[0] = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_SIZE, &outlen);
827
par[1] = OSSL_PARAM_construct_end();
828
829
ret = EVP_DigestInit_ex2(ctx, md, par) == 1
830
&& EVP_DigestUpdate(ctx, in, inlen) == 1
831
&& EVP_DigestFinal_ex(ctx, out, NULL) == 1;
832
833
EVP_MD_CTX_free(ctx);
834
return ret;
835
}
836
837
static int blake2b(EVP_MD *md, EVP_MAC *mac, void *out, size_t outlen,
838
const void *in, size_t inlen, const void *key, size_t keylen)
839
{
840
if (out == NULL || outlen == 0)
841
return 0;
842
843
if (key == NULL || keylen == 0)
844
return blake2b_md(md, out, outlen, in, inlen);
845
846
return blake2b_mac(mac, out, outlen, in, inlen, key, keylen);
847
}
848
849
static int blake2b_long(EVP_MD *md, EVP_MAC *mac, unsigned char *out,
850
size_t outlen, const void *in, size_t inlen)
851
{
852
int ret = 0;
853
EVP_MD_CTX *ctx = NULL;
854
uint32_t outlen_curr;
855
uint8_t outbuf[BLAKE2B_OUTBYTES];
856
uint8_t inbuf[BLAKE2B_OUTBYTES];
857
uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
858
OSSL_PARAM par[2];
859
size_t outlen_md;
860
861
if (out == NULL || outlen == 0)
862
return 0;
863
864
/* Ensure little-endian byte order */
865
store32(outlen_bytes, (uint32_t)outlen);
866
867
if ((ctx = EVP_MD_CTX_create()) == NULL)
868
return 0;
869
870
outlen_md = (outlen <= BLAKE2B_OUTBYTES) ? outlen : BLAKE2B_OUTBYTES;
871
par[0] = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_SIZE, &outlen_md);
872
par[1] = OSSL_PARAM_construct_end();
873
874
ret = EVP_DigestInit_ex2(ctx, md, par) == 1
875
&& EVP_DigestUpdate(ctx, outlen_bytes, sizeof(outlen_bytes)) == 1
876
&& EVP_DigestUpdate(ctx, in, inlen) == 1
877
&& EVP_DigestFinal_ex(ctx, (outlen > BLAKE2B_OUTBYTES) ? outbuf : out,
878
NULL) == 1;
879
880
if (ret == 0)
881
goto fail;
882
883
if (outlen > BLAKE2B_OUTBYTES) {
884
memcpy(out, outbuf, BLAKE2B_OUTBYTES / 2);
885
out += BLAKE2B_OUTBYTES / 2;
886
outlen_curr = (uint32_t) outlen - BLAKE2B_OUTBYTES / 2;
887
888
while (outlen_curr > BLAKE2B_OUTBYTES) {
889
memcpy(inbuf, outbuf, BLAKE2B_OUTBYTES);
890
if (blake2b(md, mac, outbuf, BLAKE2B_OUTBYTES, inbuf,
891
BLAKE2B_OUTBYTES, NULL, 0) != 1)
892
goto fail;
893
memcpy(out, outbuf, BLAKE2B_OUTBYTES / 2);
894
out += BLAKE2B_OUTBYTES / 2;
895
outlen_curr -= BLAKE2B_OUTBYTES / 2;
896
}
897
898
memcpy(inbuf, outbuf, BLAKE2B_OUTBYTES);
899
if (blake2b(md, mac, outbuf, outlen_curr, inbuf, BLAKE2B_OUTBYTES,
900
NULL, 0) != 1)
901
goto fail;
902
memcpy(out, outbuf, outlen_curr);
903
}
904
ret = 1;
905
906
fail:
907
EVP_MD_CTX_free(ctx);
908
return ret;
909
}
910
911
static void kdf_argon2_init(KDF_ARGON2 *c, ARGON2_TYPE type)
912
{
913
OSSL_LIB_CTX *libctx;
914
915
libctx = c->libctx;
916
memset(c, 0, sizeof(*c));
917
918
c->libctx = libctx;
919
c->outlen = ARGON2_DEFAULT_OUTLEN;
920
c->t_cost = ARGON2_DEFAULT_T_COST;
921
c->m_cost = ARGON2_DEFAULT_M_COST;
922
c->lanes = ARGON2_DEFAULT_LANES;
923
c->threads = ARGON2_DEFAULT_THREADS;
924
c->version = ARGON2_DEFAULT_VERSION;
925
c->type = type;
926
}
927
928
static void *kdf_argon2d_new(void *provctx)
929
{
930
KDF_ARGON2 *ctx;
931
932
if (!ossl_prov_is_running())
933
return NULL;
934
935
ctx = OPENSSL_zalloc(sizeof(*ctx));
936
if (ctx == NULL) {
937
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
938
return NULL;
939
}
940
941
ctx->libctx = PROV_LIBCTX_OF(provctx);
942
943
kdf_argon2_init(ctx, ARGON2_D);
944
return ctx;
945
}
946
947
static void *kdf_argon2i_new(void *provctx)
948
{
949
KDF_ARGON2 *ctx;
950
951
if (!ossl_prov_is_running())
952
return NULL;
953
954
ctx = OPENSSL_zalloc(sizeof(*ctx));
955
if (ctx == NULL) {
956
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
957
return NULL;
958
}
959
960
ctx->libctx = PROV_LIBCTX_OF(provctx);
961
962
kdf_argon2_init(ctx, ARGON2_I);
963
return ctx;
964
}
965
966
static void *kdf_argon2id_new(void *provctx)
967
{
968
KDF_ARGON2 *ctx;
969
970
if (!ossl_prov_is_running())
971
return NULL;
972
973
ctx = OPENSSL_zalloc(sizeof(*ctx));
974
if (ctx == NULL) {
975
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
976
return NULL;
977
}
978
979
ctx->libctx = PROV_LIBCTX_OF(provctx);
980
981
kdf_argon2_init(ctx, ARGON2_ID);
982
return ctx;
983
}
984
985
static void kdf_argon2_free(void *vctx)
986
{
987
KDF_ARGON2 *ctx = (KDF_ARGON2 *)vctx;
988
989
if (ctx == NULL)
990
return;
991
992
if (ctx->pwd != NULL)
993
OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
994
995
if (ctx->salt != NULL)
996
OPENSSL_clear_free(ctx->salt, ctx->saltlen);
997
998
if (ctx->secret != NULL)
999
OPENSSL_clear_free(ctx->secret, ctx->secretlen);
1000
1001
if (ctx->ad != NULL)
1002
OPENSSL_clear_free(ctx->ad, ctx->adlen);
1003
1004
EVP_MD_free(ctx->md);
1005
EVP_MAC_free(ctx->mac);
1006
1007
OPENSSL_free(ctx->propq);
1008
1009
memset(ctx, 0, sizeof(*ctx));
1010
1011
OPENSSL_free(ctx);
1012
}
1013
1014
static int kdf_argon2_derive(void *vctx, unsigned char *out, size_t outlen,
1015
const OSSL_PARAM params[])
1016
{
1017
KDF_ARGON2 *ctx;
1018
uint32_t memory_blocks, segment_length;
1019
1020
ctx = (KDF_ARGON2 *)vctx;
1021
1022
if (!ossl_prov_is_running() || !kdf_argon2_set_ctx_params(vctx, params))
1023
return 0;
1024
1025
if (ctx->mac == NULL)
1026
ctx->mac = EVP_MAC_fetch(ctx->libctx, "blake2bmac", ctx->propq);
1027
if (ctx->mac == NULL) {
1028
ERR_raise_data(ERR_LIB_PROV, PROV_R_MISSING_MAC,
1029
"cannot fetch blake2bmac");
1030
return 0;
1031
}
1032
1033
if (ctx->md == NULL)
1034
ctx->md = EVP_MD_fetch(ctx->libctx, "blake2b512", ctx->propq);
1035
if (ctx->md == NULL) {
1036
ERR_raise_data(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST,
1037
"cannot fetch blake2b512");
1038
return 0;
1039
}
1040
1041
if (ctx->salt == NULL || ctx->saltlen == 0) {
1042
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
1043
return 0;
1044
}
1045
1046
if (outlen != ctx->outlen) {
1047
if (OSSL_PARAM_locate((OSSL_PARAM *)params, "size") != NULL) {
1048
ERR_raise(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
1049
return 0;
1050
}
1051
if (!kdf_argon2_ctx_set_out_length(ctx, (uint32_t) outlen))
1052
return 0;
1053
}
1054
1055
switch (ctx->type) {
1056
case ARGON2_D:
1057
case ARGON2_I:
1058
case ARGON2_ID:
1059
break;
1060
default:
1061
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MODE, "invalid Argon2 type");
1062
return 0;
1063
}
1064
1065
if (ctx->threads > 1) {
1066
# ifdef ARGON2_NO_THREADS
1067
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1068
"requested %u threads, single-threaded mode supported only",
1069
ctx->threads);
1070
return 0;
1071
# else
1072
if (ctx->threads > ossl_get_avail_threads(ctx->libctx)) {
1073
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1074
"requested %u threads, available: %u",
1075
ctx->threads, ossl_get_avail_threads(ctx->libctx));
1076
return 0;
1077
}
1078
# endif
1079
if (ctx->threads > ctx->lanes) {
1080
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1081
"requested more threads (%u) than lanes (%u)",
1082
ctx->threads, ctx->lanes);
1083
return 0;
1084
}
1085
}
1086
1087
if (ctx->m_cost < 8 * ctx->lanes) {
1088
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE,
1089
"m_cost must be greater or equal than 8 times the number of lanes");
1090
return 0;
1091
}
1092
1093
memory_blocks = ctx->m_cost;
1094
if (memory_blocks < 2 * ARGON2_SYNC_POINTS * ctx->lanes)
1095
memory_blocks = 2 * ARGON2_SYNC_POINTS * ctx->lanes;
1096
1097
/* Ensure that all segments have equal length */
1098
segment_length = memory_blocks / (ctx->lanes * ARGON2_SYNC_POINTS);
1099
memory_blocks = segment_length * (ctx->lanes * ARGON2_SYNC_POINTS);
1100
1101
ctx->memory = NULL;
1102
ctx->memory_blocks = memory_blocks;
1103
ctx->segment_length = segment_length;
1104
ctx->passes = ctx->t_cost;
1105
ctx->lane_length = segment_length * ARGON2_SYNC_POINTS;
1106
1107
if (initialize(ctx) != 1)
1108
return 0;
1109
1110
if (fill_memory_blocks(ctx) != 1)
1111
return 0;
1112
1113
finalize(ctx, out);
1114
1115
return 1;
1116
}
1117
1118
static void kdf_argon2_reset(void *vctx)
1119
{
1120
OSSL_LIB_CTX *libctx;
1121
KDF_ARGON2 *ctx;
1122
ARGON2_TYPE type;
1123
1124
ctx = (KDF_ARGON2 *) vctx;
1125
type = ctx->type;
1126
libctx = ctx->libctx;
1127
1128
EVP_MD_free(ctx->md);
1129
EVP_MAC_free(ctx->mac);
1130
1131
OPENSSL_free(ctx->propq);
1132
1133
if (ctx->pwd != NULL)
1134
OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
1135
1136
if (ctx->salt != NULL)
1137
OPENSSL_clear_free(ctx->salt, ctx->saltlen);
1138
1139
if (ctx->secret != NULL)
1140
OPENSSL_clear_free(ctx->secret, ctx->secretlen);
1141
1142
if (ctx->ad != NULL)
1143
OPENSSL_clear_free(ctx->ad, ctx->adlen);
1144
1145
memset(ctx, 0, sizeof(*ctx));
1146
ctx->libctx = libctx;
1147
kdf_argon2_init(ctx, type);
1148
}
1149
1150
static int kdf_argon2_ctx_set_threads(KDF_ARGON2 *ctx, uint32_t threads)
1151
{
1152
if (threads < ARGON2_MIN_THREADS) {
1153
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1154
"min threads: %u", ARGON2_MIN_THREADS);
1155
return 0;
1156
}
1157
1158
if (threads > ARGON2_MAX_THREADS) {
1159
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
1160
"max threads: %u", ARGON2_MAX_THREADS);
1161
return 0;
1162
}
1163
1164
ctx->threads = threads;
1165
return 1;
1166
}
1167
1168
static int kdf_argon2_ctx_set_lanes(KDF_ARGON2 *ctx, uint32_t lanes)
1169
{
1170
if (lanes > ARGON2_MAX_LANES) {
1171
ERR_raise_data(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER,
1172
"max lanes: %u", ARGON2_MAX_LANES);
1173
return 0;
1174
}
1175
1176
if (lanes < ARGON2_MIN_LANES) {
1177
ERR_raise_data(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER,
1178
"min lanes: %u", ARGON2_MIN_LANES);
1179
return 0;
1180
}
1181
1182
ctx->lanes = lanes;
1183
return 1;
1184
}
1185
1186
static int kdf_argon2_ctx_set_t_cost(KDF_ARGON2 *ctx, uint32_t t_cost)
1187
{
1188
/* ARGON2_MAX_MEMORY == max m_cost value, so skip check */
1189
1190
if (t_cost < ARGON2_MIN_TIME) {
1191
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_ITERATION_COUNT,
1192
"min: %u", ARGON2_MIN_TIME);
1193
return 0;
1194
}
1195
1196
ctx->t_cost = t_cost;
1197
return 1;
1198
}
1199
1200
static int kdf_argon2_ctx_set_m_cost(KDF_ARGON2 *ctx, uint32_t m_cost)
1201
{
1202
/* ARGON2_MAX_MEMORY == max m_cost value, so skip check */
1203
1204
if (m_cost < ARGON2_MIN_MEMORY) {
1205
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE, "min: %u",
1206
ARGON2_MIN_MEMORY);
1207
return 0;
1208
}
1209
1210
ctx->m_cost = m_cost;
1211
return 1;
1212
}
1213
1214
static int kdf_argon2_ctx_set_out_length(KDF_ARGON2 *ctx, uint32_t outlen)
1215
{
1216
/*
1217
* ARGON2_MAX_OUT_LENGTH == max outlen value, so upper bounds checks
1218
* are always satisfied; to suppress compiler if statement tautology
1219
* warnings, these checks are skipped.
1220
*/
1221
1222
if (outlen < ARGON2_MIN_OUT_LENGTH) {
1223
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH, "min: %u",
1224
ARGON2_MIN_OUT_LENGTH);
1225
return 0;
1226
}
1227
1228
ctx->outlen = outlen;
1229
return 1;
1230
}
1231
1232
static int kdf_argon2_ctx_set_secret(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1233
{
1234
size_t buflen;
1235
1236
if (p->data == NULL)
1237
return 0;
1238
1239
if (ctx->secret != NULL) {
1240
OPENSSL_clear_free(ctx->secret, ctx->secretlen);
1241
ctx->secret = NULL;
1242
ctx->secretlen = 0U;
1243
}
1244
1245
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->secret, 0, &buflen))
1246
return 0;
1247
1248
if (buflen > ARGON2_MAX_SECRET) {
1249
OPENSSL_free(ctx->secret);
1250
ctx->secret = NULL;
1251
ctx->secretlen = 0U;
1252
return 0;
1253
}
1254
1255
ctx->secretlen = (uint32_t) buflen;
1256
return 1;
1257
}
1258
1259
static int kdf_argon2_ctx_set_pwd(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1260
{
1261
size_t buflen;
1262
1263
if (p->data == NULL)
1264
return 0;
1265
1266
if (ctx->pwd != NULL) {
1267
OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
1268
ctx->pwd = NULL;
1269
ctx->pwdlen = 0U;
1270
}
1271
1272
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->pwd, 0, &buflen))
1273
return 0;
1274
1275
if (buflen > ARGON2_MAX_PWD_LENGTH) {
1276
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "max: %u",
1277
ARGON2_MAX_PWD_LENGTH);
1278
goto fail;
1279
}
1280
1281
ctx->pwdlen = (uint32_t) buflen;
1282
return 1;
1283
1284
fail:
1285
OPENSSL_free(ctx->pwd);
1286
ctx->pwd = NULL;
1287
ctx->pwdlen = 0U;
1288
return 0;
1289
}
1290
1291
static int kdf_argon2_ctx_set_salt(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1292
{
1293
size_t buflen;
1294
1295
if (p->data == NULL)
1296
return 0;
1297
1298
if (ctx->salt != NULL) {
1299
OPENSSL_clear_free(ctx->salt, ctx->saltlen);
1300
ctx->salt = NULL;
1301
ctx->saltlen = 0U;
1302
}
1303
1304
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->salt, 0, &buflen))
1305
return 0;
1306
1307
if (buflen < ARGON2_MIN_SALT_LENGTH) {
1308
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "min: %u",
1309
ARGON2_MIN_SALT_LENGTH);
1310
goto fail;
1311
}
1312
1313
if (buflen > ARGON2_MAX_SALT_LENGTH) {
1314
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "max: %u",
1315
ARGON2_MAX_SALT_LENGTH);
1316
goto fail;
1317
}
1318
1319
ctx->saltlen = (uint32_t) buflen;
1320
return 1;
1321
1322
fail:
1323
OPENSSL_free(ctx->salt);
1324
ctx->salt = NULL;
1325
ctx->saltlen = 0U;
1326
return 0;
1327
}
1328
1329
static int kdf_argon2_ctx_set_ad(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
1330
{
1331
size_t buflen;
1332
1333
if (p->data == NULL)
1334
return 0;
1335
1336
if (ctx->ad != NULL) {
1337
OPENSSL_clear_free(ctx->ad, ctx->adlen);
1338
ctx->ad = NULL;
1339
ctx->adlen = 0U;
1340
}
1341
1342
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->ad, 0, &buflen))
1343
return 0;
1344
1345
if (buflen > ARGON2_MAX_AD_LENGTH) {
1346
OPENSSL_free(ctx->ad);
1347
ctx->ad = NULL;
1348
ctx->adlen = 0U;
1349
return 0;
1350
}
1351
1352
ctx->adlen = (uint32_t) buflen;
1353
return 1;
1354
}
1355
1356
static void kdf_argon2_ctx_set_flag_early_clean(KDF_ARGON2 *ctx, uint32_t f)
1357
{
1358
ctx->early_clean = !!(f);
1359
}
1360
1361
static int kdf_argon2_ctx_set_version(KDF_ARGON2 *ctx, uint32_t version)
1362
{
1363
switch (version) {
1364
case ARGON2_VERSION_10:
1365
case ARGON2_VERSION_13:
1366
ctx->version = version;
1367
return 1;
1368
default:
1369
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MODE,
1370
"invalid Argon2 version");
1371
return 0;
1372
}
1373
}
1374
1375
static int set_property_query(KDF_ARGON2 *ctx, const char *propq)
1376
{
1377
OPENSSL_free(ctx->propq);
1378
ctx->propq = NULL;
1379
if (propq != NULL) {
1380
ctx->propq = OPENSSL_strdup(propq);
1381
if (ctx->propq == NULL)
1382
return 0;
1383
}
1384
EVP_MD_free(ctx->md);
1385
ctx->md = NULL;
1386
EVP_MAC_free(ctx->mac);
1387
ctx->mac = NULL;
1388
return 1;
1389
}
1390
1391
static int kdf_argon2_set_ctx_params(void *vctx, const OSSL_PARAM params[])
1392
{
1393
const OSSL_PARAM *p;
1394
KDF_ARGON2 *ctx;
1395
uint32_t u32_value;
1396
1397
if (ossl_param_is_empty(params))
1398
return 1;
1399
1400
ctx = (KDF_ARGON2 *) vctx;
1401
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
1402
if (!kdf_argon2_ctx_set_pwd(ctx, p))
1403
return 0;
1404
1405
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
1406
if (!kdf_argon2_ctx_set_salt(ctx, p))
1407
return 0;
1408
1409
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL)
1410
if (!kdf_argon2_ctx_set_secret(ctx, p))
1411
return 0;
1412
1413
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ARGON2_AD)) != NULL)
1414
if (!kdf_argon2_ctx_set_ad(ctx, p))
1415
return 0;
1416
1417
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SIZE)) != NULL) {
1418
if (!OSSL_PARAM_get_uint32(p, &u32_value))
1419
return 0;
1420
if (!kdf_argon2_ctx_set_out_length(ctx, u32_value))
1421
return 0;
1422
}
1423
1424
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ITER)) != NULL) {
1425
if (!OSSL_PARAM_get_uint32(p, &u32_value))
1426
return 0;
1427
if (!kdf_argon2_ctx_set_t_cost(ctx, u32_value))
1428
return 0;
1429
}
1430
1431
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_THREADS)) != NULL) {
1432
if (!OSSL_PARAM_get_uint32(p, &u32_value))
1433
return 0;
1434
if (!kdf_argon2_ctx_set_threads(ctx, u32_value))
1435
return 0;
1436
}
1437
1438
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ARGON2_LANES)) != NULL) {
1439
if (!OSSL_PARAM_get_uint32(p, &u32_value))
1440
return 0;
1441
if (!kdf_argon2_ctx_set_lanes(ctx, u32_value))
1442
return 0;
1443
}
1444
1445
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ARGON2_MEMCOST)) != NULL) {
1446
if (!OSSL_PARAM_get_uint32(p, &u32_value))
1447
return 0;
1448
if (!kdf_argon2_ctx_set_m_cost(ctx, u32_value))
1449
return 0;
1450
}
1451
1452
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_EARLY_CLEAN)) != NULL) {
1453
if (!OSSL_PARAM_get_uint32(p, &u32_value))
1454
return 0;
1455
kdf_argon2_ctx_set_flag_early_clean(ctx, u32_value);
1456
}
1457
1458
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ARGON2_VERSION)) != NULL) {
1459
if (!OSSL_PARAM_get_uint32(p, &u32_value))
1460
return 0;
1461
if (!kdf_argon2_ctx_set_version(ctx, u32_value))
1462
return 0;
1463
}
1464
1465
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES)) != NULL) {
1466
if (p->data_type != OSSL_PARAM_UTF8_STRING
1467
|| !set_property_query(ctx, p->data))
1468
return 0;
1469
}
1470
1471
return 1;
1472
}
1473
1474
static const OSSL_PARAM *kdf_argon2_settable_ctx_params(ossl_unused void *ctx,
1475
ossl_unused void *p_ctx)
1476
{
1477
static const OSSL_PARAM known_settable_ctx_params[] = {
1478
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
1479
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
1480
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0),
1481
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_ARGON2_AD, NULL, 0),
1482
OSSL_PARAM_uint32(OSSL_KDF_PARAM_SIZE, NULL),
1483
OSSL_PARAM_uint32(OSSL_KDF_PARAM_ITER, NULL),
1484
OSSL_PARAM_uint32(OSSL_KDF_PARAM_THREADS, NULL),
1485
OSSL_PARAM_uint32(OSSL_KDF_PARAM_ARGON2_LANES, NULL),
1486
OSSL_PARAM_uint32(OSSL_KDF_PARAM_ARGON2_MEMCOST, NULL),
1487
OSSL_PARAM_uint32(OSSL_KDF_PARAM_EARLY_CLEAN, NULL),
1488
OSSL_PARAM_uint32(OSSL_KDF_PARAM_ARGON2_VERSION, NULL),
1489
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
1490
OSSL_PARAM_END
1491
};
1492
1493
return known_settable_ctx_params;
1494
}
1495
1496
static int kdf_argon2_get_ctx_params(void *vctx, OSSL_PARAM params[])
1497
{
1498
OSSL_PARAM *p;
1499
1500
(void) vctx;
1501
if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
1502
return OSSL_PARAM_set_size_t(p, SIZE_MAX);
1503
1504
return -2;
1505
}
1506
1507
static const OSSL_PARAM *kdf_argon2_gettable_ctx_params(ossl_unused void *ctx,
1508
ossl_unused void *p_ctx)
1509
{
1510
static const OSSL_PARAM known_gettable_ctx_params[] = {
1511
OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
1512
OSSL_PARAM_END
1513
};
1514
1515
return known_gettable_ctx_params;
1516
}
1517
1518
const OSSL_DISPATCH ossl_kdf_argon2i_functions[] = {
1519
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2i_new },
1520
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
1521
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
1522
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
1523
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
1524
(void(*)(void))kdf_argon2_settable_ctx_params },
1525
{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
1526
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
1527
(void(*)(void))kdf_argon2_gettable_ctx_params },
1528
{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
1529
OSSL_DISPATCH_END
1530
};
1531
1532
const OSSL_DISPATCH ossl_kdf_argon2d_functions[] = {
1533
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2d_new },
1534
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
1535
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
1536
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
1537
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
1538
(void(*)(void))kdf_argon2_settable_ctx_params },
1539
{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
1540
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
1541
(void(*)(void))kdf_argon2_gettable_ctx_params },
1542
{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
1543
OSSL_DISPATCH_END
1544
};
1545
1546
const OSSL_DISPATCH ossl_kdf_argon2id_functions[] = {
1547
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2id_new },
1548
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
1549
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
1550
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
1551
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
1552
(void(*)(void))kdf_argon2_settable_ctx_params },
1553
{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
1554
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
1555
(void(*)(void))kdf_argon2_gettable_ctx_params },
1556
{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
1557
OSSL_DISPATCH_END
1558
};
1559
1560
#endif
1561
1562