Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/providers/implementations/kdfs/scrypt.c
48383 views
1
/*
2
* Copyright 2017-2025 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#include <stdlib.h>
11
#include <stdarg.h>
12
#include <string.h>
13
#include <openssl/evp.h>
14
#include <openssl/kdf.h>
15
#include <openssl/err.h>
16
#include <openssl/core_names.h>
17
#include <openssl/proverr.h>
18
#include "crypto/evp.h"
19
#include "internal/numbers.h"
20
#include "prov/implementations.h"
21
#include "prov/provider_ctx.h"
22
#include "prov/providercommon.h"
23
#include "prov/provider_util.h"
24
25
#ifndef OPENSSL_NO_SCRYPT
26
27
static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
28
static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
29
static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
30
static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
31
static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
32
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
33
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
34
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
35
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
36
37
static int scrypt_alg(const char *pass, size_t passlen,
38
const unsigned char *salt, size_t saltlen,
39
uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
40
unsigned char *key, size_t keylen, EVP_MD *sha256,
41
OSSL_LIB_CTX *libctx, const char *propq);
42
43
typedef struct {
44
OSSL_LIB_CTX *libctx;
45
char *propq;
46
unsigned char *pass;
47
size_t pass_len;
48
unsigned char *salt;
49
size_t salt_len;
50
uint64_t N;
51
uint64_t r, p;
52
uint64_t maxmem_bytes;
53
EVP_MD *sha256;
54
} KDF_SCRYPT;
55
56
static void kdf_scrypt_init(KDF_SCRYPT *ctx);
57
58
static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
59
{
60
KDF_SCRYPT *ctx;
61
62
if (!ossl_prov_is_running())
63
return NULL;
64
65
ctx = OPENSSL_zalloc(sizeof(*ctx));
66
if (ctx == NULL)
67
return NULL;
68
ctx->libctx = libctx;
69
kdf_scrypt_init(ctx);
70
return ctx;
71
}
72
73
static void *kdf_scrypt_new(void *provctx)
74
{
75
return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
76
}
77
78
static void kdf_scrypt_free(void *vctx)
79
{
80
KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
81
82
if (ctx != NULL) {
83
OPENSSL_free(ctx->propq);
84
EVP_MD_free(ctx->sha256);
85
kdf_scrypt_reset(ctx);
86
OPENSSL_free(ctx);
87
}
88
}
89
90
static void kdf_scrypt_reset(void *vctx)
91
{
92
KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
93
94
OPENSSL_free(ctx->salt);
95
ctx->salt = NULL;
96
OPENSSL_clear_free(ctx->pass, ctx->pass_len);
97
ctx->pass = NULL;
98
kdf_scrypt_init(ctx);
99
}
100
101
static void *kdf_scrypt_dup(void *vctx)
102
{
103
const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
104
KDF_SCRYPT *dest;
105
106
dest = kdf_scrypt_new_inner(src->libctx);
107
if (dest != NULL) {
108
if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
109
goto err;
110
if (src->propq != NULL) {
111
dest->propq = OPENSSL_strdup(src->propq);
112
if (dest->propq == NULL)
113
goto err;
114
}
115
if (!ossl_prov_memdup(src->salt, src->salt_len,
116
&dest->salt, &dest->salt_len)
117
|| !ossl_prov_memdup(src->pass, src->pass_len,
118
&dest->pass , &dest->pass_len))
119
goto err;
120
dest->N = src->N;
121
dest->r = src->r;
122
dest->p = src->p;
123
dest->maxmem_bytes = src->maxmem_bytes;
124
dest->sha256 = src->sha256;
125
}
126
return dest;
127
128
err:
129
kdf_scrypt_free(dest);
130
return NULL;
131
}
132
133
static void kdf_scrypt_init(KDF_SCRYPT *ctx)
134
{
135
/* Default values are the most conservative recommendation given in the
136
* original paper of C. Percival. Derivation uses roughly 1 GiB of memory
137
* for this parameter choice (approx. 128 * r * N * p bytes).
138
*/
139
ctx->N = 1 << 20;
140
ctx->r = 8;
141
ctx->p = 1;
142
ctx->maxmem_bytes = 1025 * 1024 * 1024;
143
}
144
145
static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
146
const OSSL_PARAM *p)
147
{
148
OPENSSL_clear_free(*buffer, *buflen);
149
*buffer = NULL;
150
*buflen = 0;
151
152
if (p->data_size == 0) {
153
if ((*buffer = OPENSSL_malloc(1)) == NULL)
154
return 0;
155
} else if (p->data != NULL) {
156
if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
157
return 0;
158
}
159
return 1;
160
}
161
162
static int set_digest(KDF_SCRYPT *ctx)
163
{
164
EVP_MD_free(ctx->sha256);
165
ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
166
if (ctx->sha256 == NULL) {
167
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
168
return 0;
169
}
170
return 1;
171
}
172
173
static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
174
{
175
OPENSSL_free(ctx->propq);
176
ctx->propq = NULL;
177
if (propq != NULL) {
178
ctx->propq = OPENSSL_strdup(propq);
179
if (ctx->propq == NULL)
180
return 0;
181
}
182
return 1;
183
}
184
185
static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
186
const OSSL_PARAM params[])
187
{
188
KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
189
190
if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
191
return 0;
192
193
if (ctx->pass == NULL) {
194
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
195
return 0;
196
}
197
198
if (ctx->salt == NULL) {
199
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
200
return 0;
201
}
202
203
if (ctx->sha256 == NULL && !set_digest(ctx))
204
return 0;
205
206
return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
207
ctx->salt_len, ctx->N, ctx->r, ctx->p,
208
ctx->maxmem_bytes, key, keylen, ctx->sha256,
209
ctx->libctx, ctx->propq);
210
}
211
212
static int is_power_of_two(uint64_t value)
213
{
214
return (value != 0) && ((value & (value - 1)) == 0);
215
}
216
217
static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
218
{
219
const OSSL_PARAM *p;
220
KDF_SCRYPT *ctx = vctx;
221
uint64_t u64_value;
222
223
if (ossl_param_is_empty(params))
224
return 1;
225
226
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
227
if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
228
return 0;
229
230
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
231
if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
232
return 0;
233
234
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
235
!= NULL) {
236
if (!OSSL_PARAM_get_uint64(p, &u64_value)
237
|| u64_value <= 1
238
|| !is_power_of_two(u64_value))
239
return 0;
240
ctx->N = u64_value;
241
}
242
243
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
244
!= NULL) {
245
if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
246
return 0;
247
ctx->r = u64_value;
248
}
249
250
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
251
!= NULL) {
252
if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
253
return 0;
254
ctx->p = u64_value;
255
}
256
257
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
258
!= NULL) {
259
if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
260
return 0;
261
ctx->maxmem_bytes = u64_value;
262
}
263
264
p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
265
if (p != NULL) {
266
if (p->data_type != OSSL_PARAM_UTF8_STRING
267
|| !set_property_query(ctx, p->data)
268
|| !set_digest(ctx))
269
return 0;
270
}
271
return 1;
272
}
273
274
static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
275
ossl_unused void *p_ctx)
276
{
277
static const OSSL_PARAM known_settable_ctx_params[] = {
278
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
279
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
280
OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
281
OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
282
OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
283
OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
284
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
285
OSSL_PARAM_END
286
};
287
return known_settable_ctx_params;
288
}
289
290
static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
291
{
292
OSSL_PARAM *p;
293
294
if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
295
return OSSL_PARAM_set_size_t(p, SIZE_MAX);
296
return -2;
297
}
298
299
static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
300
ossl_unused void *p_ctx)
301
{
302
static const OSSL_PARAM known_gettable_ctx_params[] = {
303
OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
304
OSSL_PARAM_END
305
};
306
return known_gettable_ctx_params;
307
}
308
309
const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
310
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
311
{ OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
312
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
313
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
314
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
315
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
316
(void(*)(void))kdf_scrypt_settable_ctx_params },
317
{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
318
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
319
(void(*)(void))kdf_scrypt_gettable_ctx_params },
320
{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
321
OSSL_DISPATCH_END
322
};
323
324
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
325
static void salsa208_word_specification(uint32_t inout[16])
326
{
327
int i;
328
uint32_t x[16];
329
330
memcpy(x, inout, sizeof(x));
331
for (i = 8; i > 0; i -= 2) {
332
x[4] ^= R(x[0] + x[12], 7);
333
x[8] ^= R(x[4] + x[0], 9);
334
x[12] ^= R(x[8] + x[4], 13);
335
x[0] ^= R(x[12] + x[8], 18);
336
x[9] ^= R(x[5] + x[1], 7);
337
x[13] ^= R(x[9] + x[5], 9);
338
x[1] ^= R(x[13] + x[9], 13);
339
x[5] ^= R(x[1] + x[13], 18);
340
x[14] ^= R(x[10] + x[6], 7);
341
x[2] ^= R(x[14] + x[10], 9);
342
x[6] ^= R(x[2] + x[14], 13);
343
x[10] ^= R(x[6] + x[2], 18);
344
x[3] ^= R(x[15] + x[11], 7);
345
x[7] ^= R(x[3] + x[15], 9);
346
x[11] ^= R(x[7] + x[3], 13);
347
x[15] ^= R(x[11] + x[7], 18);
348
x[1] ^= R(x[0] + x[3], 7);
349
x[2] ^= R(x[1] + x[0], 9);
350
x[3] ^= R(x[2] + x[1], 13);
351
x[0] ^= R(x[3] + x[2], 18);
352
x[6] ^= R(x[5] + x[4], 7);
353
x[7] ^= R(x[6] + x[5], 9);
354
x[4] ^= R(x[7] + x[6], 13);
355
x[5] ^= R(x[4] + x[7], 18);
356
x[11] ^= R(x[10] + x[9], 7);
357
x[8] ^= R(x[11] + x[10], 9);
358
x[9] ^= R(x[8] + x[11], 13);
359
x[10] ^= R(x[9] + x[8], 18);
360
x[12] ^= R(x[15] + x[14], 7);
361
x[13] ^= R(x[12] + x[15], 9);
362
x[14] ^= R(x[13] + x[12], 13);
363
x[15] ^= R(x[14] + x[13], 18);
364
}
365
for (i = 0; i < 16; ++i)
366
inout[i] += x[i];
367
OPENSSL_cleanse(x, sizeof(x));
368
}
369
370
static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
371
{
372
uint64_t i, j;
373
uint32_t X[16], *pB;
374
375
memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
376
pB = B;
377
for (i = 0; i < r * 2; i++) {
378
for (j = 0; j < 16; j++)
379
X[j] ^= *pB++;
380
salsa208_word_specification(X);
381
memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
382
}
383
OPENSSL_cleanse(X, sizeof(X));
384
}
385
386
static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
387
uint32_t *X, uint32_t *T, uint32_t *V)
388
{
389
unsigned char *pB;
390
uint32_t *pV;
391
uint64_t i, k;
392
393
/* Convert from little endian input */
394
for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
395
*pV = *pB++;
396
*pV |= *pB++ << 8;
397
*pV |= *pB++ << 16;
398
*pV |= (uint32_t)*pB++ << 24;
399
}
400
401
for (i = 1; i < N; i++, pV += 32 * r)
402
scryptBlockMix(pV, pV - 32 * r, r);
403
404
scryptBlockMix(X, V + (N - 1) * 32 * r, r);
405
406
for (i = 0; i < N; i++) {
407
uint32_t j;
408
j = X[16 * (2 * r - 1)] % N;
409
pV = V + 32 * r * j;
410
for (k = 0; k < 32 * r; k++)
411
T[k] = X[k] ^ *pV++;
412
scryptBlockMix(X, T, r);
413
}
414
/* Convert output to little endian */
415
for (i = 0, pB = B; i < 32 * r; i++) {
416
uint32_t xtmp = X[i];
417
*pB++ = xtmp & 0xff;
418
*pB++ = (xtmp >> 8) & 0xff;
419
*pB++ = (xtmp >> 16) & 0xff;
420
*pB++ = (xtmp >> 24) & 0xff;
421
}
422
}
423
424
#ifndef SIZE_MAX
425
# define SIZE_MAX ((size_t)-1)
426
#endif
427
428
/*
429
* Maximum power of two that will fit in uint64_t: this should work on
430
* most (all?) platforms.
431
*/
432
433
#define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1)
434
435
/*
436
* Maximum value of p * r:
437
* p <= ((2^32-1) * hLen) / MFLen =>
438
* p <= ((2^32-1) * 32) / (128 * r) =>
439
* p * r <= (2^30-1)
440
*/
441
442
#define SCRYPT_PR_MAX ((1 << 30) - 1)
443
444
static int scrypt_alg(const char *pass, size_t passlen,
445
const unsigned char *salt, size_t saltlen,
446
uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
447
unsigned char *key, size_t keylen, EVP_MD *sha256,
448
OSSL_LIB_CTX *libctx, const char *propq)
449
{
450
int rv = 0;
451
unsigned char *B;
452
uint32_t *X, *V, *T;
453
uint64_t i, Blen, Vlen;
454
455
/* Sanity check parameters */
456
/* initial check, r,p must be non zero, N >= 2 and a power of 2 */
457
if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
458
return 0;
459
/* Check p * r < SCRYPT_PR_MAX avoiding overflow */
460
if (p > SCRYPT_PR_MAX / r) {
461
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
462
return 0;
463
}
464
465
/*
466
* Need to check N: if 2^(128 * r / 8) overflows limit this is
467
* automatically satisfied since N <= UINT64_MAX.
468
*/
469
470
if (16 * r <= LOG2_UINT64_MAX) {
471
if (N >= (((uint64_t)1) << (16 * r))) {
472
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
473
return 0;
474
}
475
}
476
477
/* Memory checks: check total allocated buffer size fits in uint64_t */
478
479
/*
480
* B size in section 5 step 1.S
481
* Note: we know p * 128 * r < UINT64_MAX because we already checked
482
* p * r < SCRYPT_PR_MAX
483
*/
484
Blen = p * 128 * r;
485
/*
486
* Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
487
* have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
488
*/
489
if (Blen > INT_MAX) {
490
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
491
return 0;
492
}
493
494
/*
495
* Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
496
* This is combined size V, X and T (section 4)
497
*/
498
i = UINT64_MAX / (32 * sizeof(uint32_t));
499
if (N + 2 > i / r) {
500
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
501
return 0;
502
}
503
Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
504
505
/* check total allocated size fits in uint64_t */
506
if (Blen > UINT64_MAX - Vlen) {
507
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
508
return 0;
509
}
510
511
/* Check that the maximum memory doesn't exceed a size_t limits */
512
if (maxmem > SIZE_MAX)
513
maxmem = SIZE_MAX;
514
515
if (Blen + Vlen > maxmem) {
516
ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
517
return 0;
518
}
519
520
/* If no key return to indicate parameters are OK */
521
if (key == NULL)
522
return 1;
523
524
B = OPENSSL_malloc((size_t)(Blen + Vlen));
525
if (B == NULL)
526
return 0;
527
X = (uint32_t *)(B + Blen);
528
T = X + 32 * r;
529
V = T + 32 * r;
530
if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
531
(int)Blen, B, libctx, propq) == 0)
532
goto err;
533
534
for (i = 0; i < p; i++)
535
scryptROMix(B + 128 * r * i, r, N, X, T, V);
536
537
if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
538
keylen, key, libctx, propq) == 0)
539
goto err;
540
rv = 1;
541
err:
542
if (rv == 0)
543
ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
544
545
OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
546
return rv;
547
}
548
549
#endif
550
551