Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/providers/implementations/kdfs/tls1_prf.c
108038 views
1
/*
2
* Copyright 2016-2026 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
/*
11
* Refer to "The TLS Protocol Version 1.0" Section 5
12
* (https://tools.ietf.org/html/rfc2246#section-5) and
13
* "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
14
* (https://tools.ietf.org/html/rfc5246#section-5).
15
*
16
* For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by:
17
*
18
* PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
19
* P_SHA-1(S2, label + seed)
20
*
21
* where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are
22
* two halves of the secret (with the possibility of one shared byte, in the
23
* case where the length of the original secret is odd). S1 is taken from the
24
* first half of the secret, S2 from the second half.
25
*
26
* For TLS v1.2 the TLS PRF algorithm is given by:
27
*
28
* PRF(secret, label, seed) = P_<hash>(secret, label + seed)
29
*
30
* where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as
31
* those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect,
32
* unless defined otherwise by the cipher suite.
33
*
34
* P_<hash> is an expansion function that uses a single hash function to expand
35
* a secret and seed into an arbitrary quantity of output:
36
*
37
* P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
38
* HMAC_<hash>(secret, A(2) + seed) +
39
* HMAC_<hash>(secret, A(3) + seed) + ...
40
*
41
* where + indicates concatenation. P_<hash> can be iterated as many times as
42
* is necessary to produce the required quantity of data.
43
*
44
* A(i) is defined as:
45
* A(0) = seed
46
* A(i) = HMAC_<hash>(secret, A(i-1))
47
*/
48
49
/*
50
* Low level APIs (such as DH) are deprecated for public use, but still ok for
51
* internal use.
52
*/
53
#include "internal/deprecated.h"
54
55
#include <stdio.h>
56
#include <stdarg.h>
57
#include <string.h>
58
#include <openssl/evp.h>
59
#include <openssl/kdf.h>
60
#include <openssl/core_names.h>
61
#include <openssl/params.h>
62
#include <openssl/proverr.h>
63
#include "internal/cryptlib.h"
64
#include "internal/numbers.h"
65
#include "crypto/evp.h"
66
#include "prov/provider_ctx.h"
67
#include "prov/providercommon.h"
68
#include "prov/implementations.h"
69
#include "prov/provider_util.h"
70
#include "prov/securitycheck.h"
71
#include "internal/e_os.h"
72
#include "internal/safe_math.h"
73
74
OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
75
76
static OSSL_FUNC_kdf_newctx_fn kdf_tls1_prf_new;
77
static OSSL_FUNC_kdf_dupctx_fn kdf_tls1_prf_dup;
78
static OSSL_FUNC_kdf_freectx_fn kdf_tls1_prf_free;
79
static OSSL_FUNC_kdf_reset_fn kdf_tls1_prf_reset;
80
static OSSL_FUNC_kdf_derive_fn kdf_tls1_prf_derive;
81
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params;
82
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params;
83
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_tls1_prf_gettable_ctx_params;
84
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_tls1_prf_get_ctx_params;
85
86
static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
87
const unsigned char *sec, size_t slen,
88
const unsigned char *seed, size_t seed_len,
89
unsigned char *out, size_t olen);
90
91
#define TLS_MD_MASTER_SECRET_CONST "\x6d\x61\x73\x74\x65\x72\x20\x73\x65\x63\x72\x65\x74"
92
#define TLS_MD_MASTER_SECRET_CONST_SIZE 13
93
94
/* TLS KDF kdf context structure */
95
typedef struct {
96
void *provctx;
97
98
/* MAC context for the main digest */
99
EVP_MAC_CTX *P_hash;
100
/* MAC context for SHA1 for the MD5/SHA-1 combined PRF */
101
EVP_MAC_CTX *P_sha1;
102
103
/* Secret value to use for PRF */
104
unsigned char *sec;
105
size_t seclen;
106
/* Concatenated seed data */
107
unsigned char *seed;
108
size_t seedlen;
109
110
OSSL_FIPS_IND_DECLARE
111
} TLS1_PRF;
112
113
static void *kdf_tls1_prf_new(void *provctx)
114
{
115
TLS1_PRF *ctx;
116
117
if (!ossl_prov_is_running())
118
return NULL;
119
120
if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) {
121
ctx->provctx = provctx;
122
OSSL_FIPS_IND_INIT(ctx)
123
}
124
return ctx;
125
}
126
127
static void kdf_tls1_prf_free(void *vctx)
128
{
129
TLS1_PRF *ctx = (TLS1_PRF *)vctx;
130
131
if (ctx != NULL) {
132
kdf_tls1_prf_reset(ctx);
133
OPENSSL_free(ctx);
134
}
135
}
136
137
static void kdf_tls1_prf_reset(void *vctx)
138
{
139
TLS1_PRF *ctx = (TLS1_PRF *)vctx;
140
void *provctx = ctx->provctx;
141
142
EVP_MAC_CTX_free(ctx->P_hash);
143
EVP_MAC_CTX_free(ctx->P_sha1);
144
OPENSSL_clear_free(ctx->sec, ctx->seclen);
145
OPENSSL_clear_free(ctx->seed, ctx->seedlen);
146
memset(ctx, 0, sizeof(*ctx));
147
ctx->provctx = provctx;
148
}
149
150
static void *kdf_tls1_prf_dup(void *vctx)
151
{
152
const TLS1_PRF *src = (const TLS1_PRF *)vctx;
153
TLS1_PRF *dest;
154
155
dest = kdf_tls1_prf_new(src->provctx);
156
if (dest != NULL) {
157
if (src->P_hash != NULL
158
&& (dest->P_hash = EVP_MAC_CTX_dup(src->P_hash)) == NULL)
159
goto err;
160
if (src->P_sha1 != NULL
161
&& (dest->P_sha1 = EVP_MAC_CTX_dup(src->P_sha1)) == NULL)
162
goto err;
163
if (!ossl_prov_memdup(src->sec, src->seclen, &dest->sec, &dest->seclen))
164
goto err;
165
if (!ossl_prov_memdup(src->seed, src->seedlen, &dest->seed,
166
&dest->seedlen))
167
goto err;
168
OSSL_FIPS_IND_COPY(dest, src)
169
}
170
return dest;
171
172
err:
173
kdf_tls1_prf_free(dest);
174
return NULL;
175
}
176
177
#ifdef FIPS_MODULE
178
179
static int fips_ems_check_passed(TLS1_PRF *ctx)
180
{
181
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
182
/*
183
* Check that TLS is using EMS.
184
*
185
* The seed buffer is prepended with a label.
186
* If EMS mode is enforced then the label "master secret" is not allowed,
187
* We do the check this way since the PRF is used for other purposes, as well
188
* as "extended master secret".
189
*/
190
int ems_approved = (ctx->seedlen < TLS_MD_MASTER_SECRET_CONST_SIZE
191
|| memcmp(ctx->seed, TLS_MD_MASTER_SECRET_CONST,
192
TLS_MD_MASTER_SECRET_CONST_SIZE)
193
!= 0);
194
195
if (!ems_approved) {
196
if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE0,
197
libctx, "TLS_PRF", "EMS",
198
ossl_fips_config_tls1_prf_ems_check)) {
199
ERR_raise(ERR_LIB_PROV, PROV_R_EMS_NOT_ENABLED);
200
return 0;
201
}
202
}
203
return 1;
204
}
205
206
static int fips_digest_check_passed(TLS1_PRF *ctx, const EVP_MD *md)
207
{
208
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
209
/*
210
* Perform digest check
211
*
212
* According to NIST SP 800-135r1 section 5.2, the valid hash functions are
213
* specified in FIPS 180-3. ACVP also only lists the same set of hash
214
* functions.
215
*/
216
int digest_unapproved = !EVP_MD_is_a(md, SN_sha256)
217
&& !EVP_MD_is_a(md, SN_sha384)
218
&& !EVP_MD_is_a(md, SN_sha512);
219
220
if (digest_unapproved) {
221
if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE1,
222
libctx, "TLS_PRF", "Digest",
223
ossl_fips_config_tls1_prf_digest_check)) {
224
ERR_raise(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED);
225
return 0;
226
}
227
}
228
return 1;
229
}
230
231
static int fips_key_check_passed(TLS1_PRF *ctx)
232
{
233
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
234
int key_approved = ossl_kdf_check_key_size(ctx->seclen);
235
236
if (!key_approved) {
237
if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE2,
238
libctx, "TLS_PRF", "Key size",
239
ossl_fips_config_tls1_prf_key_check)) {
240
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
241
return 0;
242
}
243
}
244
return 1;
245
}
246
#endif
247
248
static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, size_t keylen,
249
const OSSL_PARAM params[])
250
{
251
TLS1_PRF *ctx = (TLS1_PRF *)vctx;
252
253
if (!ossl_prov_is_running() || !kdf_tls1_prf_set_ctx_params(ctx, params))
254
return 0;
255
256
if (ctx->P_hash == NULL) {
257
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST);
258
return 0;
259
}
260
if (ctx->sec == NULL) {
261
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET);
262
return 0;
263
}
264
if (ctx->seedlen == 0) {
265
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED);
266
return 0;
267
}
268
if (keylen == 0) {
269
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
270
return 0;
271
}
272
273
#ifdef FIPS_MODULE
274
if (!fips_ems_check_passed(ctx))
275
return 0;
276
#endif
277
278
return tls1_prf_alg(ctx->P_hash, ctx->P_sha1,
279
ctx->sec, ctx->seclen,
280
ctx->seed, ctx->seedlen,
281
key, keylen);
282
}
283
284
static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[])
285
{
286
const OSSL_PARAM *p;
287
TLS1_PRF *ctx = vctx;
288
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
289
290
if (ossl_param_is_empty(params))
291
return 1;
292
293
if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE0, params,
294
OSSL_KDF_PARAM_FIPS_EMS_CHECK))
295
return 0;
296
if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE1, params,
297
OSSL_KDF_PARAM_FIPS_DIGEST_CHECK))
298
return 0;
299
if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE2, params,
300
OSSL_KDF_PARAM_FIPS_KEY_CHECK))
301
return 0;
302
303
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) {
304
PROV_DIGEST digest;
305
const EVP_MD *md = NULL;
306
307
if (OPENSSL_strcasecmp(p->data, SN_md5_sha1) == 0) {
308
if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params,
309
OSSL_MAC_NAME_HMAC,
310
NULL, SN_md5, libctx)
311
|| !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params,
312
OSSL_MAC_NAME_HMAC,
313
NULL, SN_sha1, libctx))
314
return 0;
315
} else {
316
EVP_MAC_CTX_free(ctx->P_sha1);
317
ctx->P_sha1 = NULL;
318
if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params,
319
OSSL_MAC_NAME_HMAC,
320
NULL, NULL, libctx))
321
return 0;
322
}
323
324
memset(&digest, 0, sizeof(digest));
325
if (!ossl_prov_digest_load_from_params(&digest, params, libctx))
326
return 0;
327
328
md = ossl_prov_digest_md(&digest);
329
if (EVP_MD_xof(md)) {
330
ERR_raise(ERR_LIB_PROV, PROV_R_XOF_DIGESTS_NOT_ALLOWED);
331
ossl_prov_digest_reset(&digest);
332
return 0;
333
}
334
335
#ifdef FIPS_MODULE
336
if (!fips_digest_check_passed(ctx, md)) {
337
ossl_prov_digest_reset(&digest);
338
return 0;
339
}
340
#endif
341
342
ossl_prov_digest_reset(&digest);
343
}
344
345
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) {
346
OPENSSL_clear_free(ctx->sec, ctx->seclen);
347
ctx->sec = NULL;
348
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen))
349
return 0;
350
351
#ifdef FIPS_MODULE
352
if (!fips_key_check_passed(ctx))
353
return 0;
354
#endif
355
}
356
/* The seed fields concatenate, so process them all */
357
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) {
358
for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1,
359
OSSL_KDF_PARAM_SEED)) {
360
if (p->data_size != 0 && p->data != NULL) {
361
const void *val = NULL;
362
size_t sz = 0;
363
unsigned char *seed;
364
size_t seedlen;
365
int err = 0;
366
367
if (!OSSL_PARAM_get_octet_string_ptr(p, &val, &sz))
368
return 0;
369
370
seedlen = safe_add_size_t(ctx->seedlen, sz, &err);
371
if (err)
372
return 0;
373
374
seed = OPENSSL_clear_realloc(ctx->seed, ctx->seedlen, seedlen);
375
if (!seed)
376
return 0;
377
378
ctx->seed = seed;
379
if (ossl_assert(sz != 0))
380
memcpy(ctx->seed + ctx->seedlen, val, sz);
381
ctx->seedlen = seedlen;
382
}
383
}
384
}
385
return 1;
386
}
387
388
static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params(
389
ossl_unused void *ctx, ossl_unused void *provctx)
390
{
391
static const OSSL_PARAM known_settable_ctx_params[] = {
392
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
393
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0),
394
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0),
395
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0),
396
OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_EMS_CHECK)
397
OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_DIGEST_CHECK)
398
OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_KEY_CHECK)
399
OSSL_PARAM_END
400
};
401
return known_settable_ctx_params;
402
}
403
404
static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[])
405
{
406
OSSL_PARAM *p;
407
408
if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) {
409
if (!OSSL_PARAM_set_size_t(p, SIZE_MAX))
410
return 0;
411
}
412
if (!OSSL_FIPS_IND_GET_CTX_PARAM(((TLS1_PRF *)vctx), params))
413
return 0;
414
return 1;
415
}
416
417
static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params(
418
ossl_unused void *ctx, ossl_unused void *provctx)
419
{
420
static const OSSL_PARAM known_gettable_ctx_params[] = {
421
OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
422
OSSL_FIPS_IND_GETTABLE_CTX_PARAM()
423
OSSL_PARAM_END
424
};
425
return known_gettable_ctx_params;
426
}
427
428
const OSSL_DISPATCH ossl_kdf_tls1_prf_functions[] = {
429
{ OSSL_FUNC_KDF_NEWCTX, (void (*)(void))kdf_tls1_prf_new },
430
{ OSSL_FUNC_KDF_DUPCTX, (void (*)(void))kdf_tls1_prf_dup },
431
{ OSSL_FUNC_KDF_FREECTX, (void (*)(void))kdf_tls1_prf_free },
432
{ OSSL_FUNC_KDF_RESET, (void (*)(void))kdf_tls1_prf_reset },
433
{ OSSL_FUNC_KDF_DERIVE, (void (*)(void))kdf_tls1_prf_derive },
434
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
435
(void (*)(void))kdf_tls1_prf_settable_ctx_params },
436
{ OSSL_FUNC_KDF_SET_CTX_PARAMS,
437
(void (*)(void))kdf_tls1_prf_set_ctx_params },
438
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
439
(void (*)(void))kdf_tls1_prf_gettable_ctx_params },
440
{ OSSL_FUNC_KDF_GET_CTX_PARAMS,
441
(void (*)(void))kdf_tls1_prf_get_ctx_params },
442
OSSL_DISPATCH_END
443
};
444
445
/*
446
* Refer to "The TLS Protocol Version 1.0" Section 5
447
* (https://tools.ietf.org/html/rfc2246#section-5) and
448
* "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
449
* (https://tools.ietf.org/html/rfc5246#section-5).
450
*
451
* P_<hash> is an expansion function that uses a single hash function to expand
452
* a secret and seed into an arbitrary quantity of output:
453
*
454
* P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
455
* HMAC_<hash>(secret, A(2) + seed) +
456
* HMAC_<hash>(secret, A(3) + seed) + ...
457
*
458
* where + indicates concatenation. P_<hash> can be iterated as many times as
459
* is necessary to produce the required quantity of data.
460
*
461
* A(i) is defined as:
462
* A(0) = seed
463
* A(i) = HMAC_<hash>(secret, A(i-1))
464
*/
465
static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init,
466
const unsigned char *sec, size_t sec_len,
467
const unsigned char *seed, size_t seed_len,
468
unsigned char *out, size_t olen)
469
{
470
size_t chunk;
471
EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL;
472
unsigned char Ai[EVP_MAX_MD_SIZE];
473
size_t Ai_len;
474
int ret = 0;
475
476
if (!EVP_MAC_init(ctx_init, sec, sec_len, NULL))
477
goto err;
478
chunk = EVP_MAC_CTX_get_mac_size(ctx_init);
479
if (chunk == 0)
480
goto err;
481
/* A(0) = seed */
482
ctx_Ai = EVP_MAC_CTX_dup(ctx_init);
483
if (ctx_Ai == NULL)
484
goto err;
485
if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len))
486
goto err;
487
488
for (;;) {
489
/* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */
490
if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai)))
491
goto err;
492
EVP_MAC_CTX_free(ctx_Ai);
493
ctx_Ai = NULL;
494
495
/* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */
496
ctx = EVP_MAC_CTX_dup(ctx_init);
497
if (ctx == NULL)
498
goto err;
499
if (!EVP_MAC_update(ctx, Ai, Ai_len))
500
goto err;
501
/* save state for calculating next A(i) value */
502
if (olen > chunk) {
503
ctx_Ai = EVP_MAC_CTX_dup(ctx);
504
if (ctx_Ai == NULL)
505
goto err;
506
}
507
if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len))
508
goto err;
509
if (olen <= chunk) {
510
/* last chunk - use Ai as temp bounce buffer */
511
if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai)))
512
goto err;
513
memcpy(out, Ai, olen);
514
break;
515
}
516
if (!EVP_MAC_final(ctx, out, NULL, olen))
517
goto err;
518
EVP_MAC_CTX_free(ctx);
519
ctx = NULL;
520
out += chunk;
521
olen -= chunk;
522
}
523
ret = 1;
524
err:
525
EVP_MAC_CTX_free(ctx);
526
EVP_MAC_CTX_free(ctx_Ai);
527
OPENSSL_cleanse(Ai, sizeof(Ai));
528
return ret;
529
}
530
531
/*
532
* Refer to "The TLS Protocol Version 1.0" Section 5
533
* (https://tools.ietf.org/html/rfc2246#section-5) and
534
* "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
535
* (https://tools.ietf.org/html/rfc5246#section-5).
536
*
537
* For TLS v1.0 and TLS v1.1:
538
*
539
* PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
540
* P_SHA-1(S2, label + seed)
541
*
542
* S1 is taken from the first half of the secret, S2 from the second half.
543
*
544
* L_S = length in bytes of secret;
545
* L_S1 = L_S2 = ceil(L_S / 2);
546
*
547
* For TLS v1.2:
548
*
549
* PRF(secret, label, seed) = P_<hash>(secret, label + seed)
550
*/
551
static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
552
const unsigned char *sec, size_t slen,
553
const unsigned char *seed, size_t seed_len,
554
unsigned char *out, size_t olen)
555
{
556
if (sha1ctx != NULL) {
557
/* TLS v1.0 and TLS v1.1 */
558
size_t i;
559
unsigned char *tmp;
560
/* calc: L_S1 = L_S2 = ceil(L_S / 2) */
561
size_t L_S1 = (slen + 1) / 2;
562
size_t L_S2 = L_S1;
563
564
if (!tls1_prf_P_hash(mdctx, sec, L_S1,
565
seed, seed_len, out, olen))
566
return 0;
567
568
if ((tmp = OPENSSL_malloc(olen)) == NULL)
569
return 0;
570
571
if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2,
572
seed, seed_len, tmp, olen)) {
573
OPENSSL_clear_free(tmp, olen);
574
return 0;
575
}
576
for (i = 0; i < olen; i++)
577
out[i] ^= tmp[i];
578
OPENSSL_clear_free(tmp, olen);
579
return 1;
580
}
581
582
/* TLS v1.2 */
583
if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen))
584
return 0;
585
586
return 1;
587
}
588
589