Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/providers/implementations/kdfs/tls1_prf.c
48383 views
1
/*
2
* Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
/*
11
* Refer to "The TLS Protocol Version 1.0" Section 5
12
* (https://tools.ietf.org/html/rfc2246#section-5) and
13
* "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
14
* (https://tools.ietf.org/html/rfc5246#section-5).
15
*
16
* For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by:
17
*
18
* PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
19
* P_SHA-1(S2, label + seed)
20
*
21
* where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are
22
* two halves of the secret (with the possibility of one shared byte, in the
23
* case where the length of the original secret is odd). S1 is taken from the
24
* first half of the secret, S2 from the second half.
25
*
26
* For TLS v1.2 the TLS PRF algorithm is given by:
27
*
28
* PRF(secret, label, seed) = P_<hash>(secret, label + seed)
29
*
30
* where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as
31
* those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect,
32
* unless defined otherwise by the cipher suite.
33
*
34
* P_<hash> is an expansion function that uses a single hash function to expand
35
* a secret and seed into an arbitrary quantity of output:
36
*
37
* P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
38
* HMAC_<hash>(secret, A(2) + seed) +
39
* HMAC_<hash>(secret, A(3) + seed) + ...
40
*
41
* where + indicates concatenation. P_<hash> can be iterated as many times as
42
* is necessary to produce the required quantity of data.
43
*
44
* A(i) is defined as:
45
* A(0) = seed
46
* A(i) = HMAC_<hash>(secret, A(i-1))
47
*/
48
49
/*
50
* Low level APIs (such as DH) are deprecated for public use, but still ok for
51
* internal use.
52
*/
53
#include "internal/deprecated.h"
54
55
#include <stdio.h>
56
#include <stdarg.h>
57
#include <string.h>
58
#include <openssl/evp.h>
59
#include <openssl/kdf.h>
60
#include <openssl/core_names.h>
61
#include <openssl/params.h>
62
#include <openssl/proverr.h>
63
#include "internal/cryptlib.h"
64
#include "internal/numbers.h"
65
#include "crypto/evp.h"
66
#include "prov/provider_ctx.h"
67
#include "prov/providercommon.h"
68
#include "prov/implementations.h"
69
#include "prov/provider_util.h"
70
#include "prov/securitycheck.h"
71
#include "internal/e_os.h"
72
#include "internal/safe_math.h"
73
74
OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
75
76
static OSSL_FUNC_kdf_newctx_fn kdf_tls1_prf_new;
77
static OSSL_FUNC_kdf_dupctx_fn kdf_tls1_prf_dup;
78
static OSSL_FUNC_kdf_freectx_fn kdf_tls1_prf_free;
79
static OSSL_FUNC_kdf_reset_fn kdf_tls1_prf_reset;
80
static OSSL_FUNC_kdf_derive_fn kdf_tls1_prf_derive;
81
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params;
82
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params;
83
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_tls1_prf_gettable_ctx_params;
84
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_tls1_prf_get_ctx_params;
85
86
static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
87
const unsigned char *sec, size_t slen,
88
const unsigned char *seed, size_t seed_len,
89
unsigned char *out, size_t olen);
90
91
#define TLS_MD_MASTER_SECRET_CONST "\x6d\x61\x73\x74\x65\x72\x20\x73\x65\x63\x72\x65\x74"
92
#define TLS_MD_MASTER_SECRET_CONST_SIZE 13
93
94
/* TLS KDF kdf context structure */
95
typedef struct {
96
void *provctx;
97
98
/* MAC context for the main digest */
99
EVP_MAC_CTX *P_hash;
100
/* MAC context for SHA1 for the MD5/SHA-1 combined PRF */
101
EVP_MAC_CTX *P_sha1;
102
103
/* Secret value to use for PRF */
104
unsigned char *sec;
105
size_t seclen;
106
/* Concatenated seed data */
107
unsigned char *seed;
108
size_t seedlen;
109
110
OSSL_FIPS_IND_DECLARE
111
} TLS1_PRF;
112
113
static void *kdf_tls1_prf_new(void *provctx)
114
{
115
TLS1_PRF *ctx;
116
117
if (!ossl_prov_is_running())
118
return NULL;
119
120
if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) {
121
ctx->provctx = provctx;
122
OSSL_FIPS_IND_INIT(ctx)
123
}
124
return ctx;
125
}
126
127
static void kdf_tls1_prf_free(void *vctx)
128
{
129
TLS1_PRF *ctx = (TLS1_PRF *)vctx;
130
131
if (ctx != NULL) {
132
kdf_tls1_prf_reset(ctx);
133
OPENSSL_free(ctx);
134
}
135
}
136
137
static void kdf_tls1_prf_reset(void *vctx)
138
{
139
TLS1_PRF *ctx = (TLS1_PRF *)vctx;
140
void *provctx = ctx->provctx;
141
142
EVP_MAC_CTX_free(ctx->P_hash);
143
EVP_MAC_CTX_free(ctx->P_sha1);
144
OPENSSL_clear_free(ctx->sec, ctx->seclen);
145
OPENSSL_clear_free(ctx->seed, ctx->seedlen);
146
memset(ctx, 0, sizeof(*ctx));
147
ctx->provctx = provctx;
148
}
149
150
static void *kdf_tls1_prf_dup(void *vctx)
151
{
152
const TLS1_PRF *src = (const TLS1_PRF *)vctx;
153
TLS1_PRF *dest;
154
155
dest = kdf_tls1_prf_new(src->provctx);
156
if (dest != NULL) {
157
if (src->P_hash != NULL
158
&& (dest->P_hash = EVP_MAC_CTX_dup(src->P_hash)) == NULL)
159
goto err;
160
if (src->P_sha1 != NULL
161
&& (dest->P_sha1 = EVP_MAC_CTX_dup(src->P_sha1)) == NULL)
162
goto err;
163
if (!ossl_prov_memdup(src->sec, src->seclen, &dest->sec, &dest->seclen))
164
goto err;
165
if (!ossl_prov_memdup(src->seed, src->seedlen, &dest->seed,
166
&dest->seedlen))
167
goto err;
168
OSSL_FIPS_IND_COPY(dest, src)
169
}
170
return dest;
171
172
err:
173
kdf_tls1_prf_free(dest);
174
return NULL;
175
}
176
177
#ifdef FIPS_MODULE
178
179
static int fips_ems_check_passed(TLS1_PRF *ctx)
180
{
181
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
182
/*
183
* Check that TLS is using EMS.
184
*
185
* The seed buffer is prepended with a label.
186
* If EMS mode is enforced then the label "master secret" is not allowed,
187
* We do the check this way since the PRF is used for other purposes, as well
188
* as "extended master secret".
189
*/
190
int ems_approved = (ctx->seedlen < TLS_MD_MASTER_SECRET_CONST_SIZE
191
|| memcmp(ctx->seed, TLS_MD_MASTER_SECRET_CONST,
192
TLS_MD_MASTER_SECRET_CONST_SIZE) != 0);
193
194
if (!ems_approved) {
195
if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE0,
196
libctx, "TLS_PRF", "EMS",
197
ossl_fips_config_tls1_prf_ems_check)) {
198
ERR_raise(ERR_LIB_PROV, PROV_R_EMS_NOT_ENABLED);
199
return 0;
200
}
201
}
202
return 1;
203
}
204
205
static int fips_digest_check_passed(TLS1_PRF *ctx, const EVP_MD *md)
206
{
207
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
208
/*
209
* Perform digest check
210
*
211
* According to NIST SP 800-135r1 section 5.2, the valid hash functions are
212
* specified in FIPS 180-3. ACVP also only lists the same set of hash
213
* functions.
214
*/
215
int digest_unapproved = !EVP_MD_is_a(md, SN_sha256)
216
&& !EVP_MD_is_a(md, SN_sha384)
217
&& !EVP_MD_is_a(md, SN_sha512);
218
219
if (digest_unapproved) {
220
if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE1,
221
libctx, "TLS_PRF", "Digest",
222
ossl_fips_config_tls1_prf_digest_check)) {
223
ERR_raise(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED);
224
return 0;
225
}
226
}
227
return 1;
228
}
229
230
static int fips_key_check_passed(TLS1_PRF *ctx)
231
{
232
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
233
int key_approved = ossl_kdf_check_key_size(ctx->seclen);
234
235
if (!key_approved) {
236
if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE2,
237
libctx, "TLS_PRF", "Key size",
238
ossl_fips_config_tls1_prf_key_check)) {
239
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
240
return 0;
241
}
242
}
243
return 1;
244
}
245
#endif
246
247
static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, size_t keylen,
248
const OSSL_PARAM params[])
249
{
250
TLS1_PRF *ctx = (TLS1_PRF *)vctx;
251
252
if (!ossl_prov_is_running() || !kdf_tls1_prf_set_ctx_params(ctx, params))
253
return 0;
254
255
if (ctx->P_hash == NULL) {
256
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST);
257
return 0;
258
}
259
if (ctx->sec == NULL) {
260
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET);
261
return 0;
262
}
263
if (ctx->seedlen == 0) {
264
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED);
265
return 0;
266
}
267
if (keylen == 0) {
268
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
269
return 0;
270
}
271
272
#ifdef FIPS_MODULE
273
if (!fips_ems_check_passed(ctx))
274
return 0;
275
#endif
276
277
return tls1_prf_alg(ctx->P_hash, ctx->P_sha1,
278
ctx->sec, ctx->seclen,
279
ctx->seed, ctx->seedlen,
280
key, keylen);
281
}
282
283
static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[])
284
{
285
const OSSL_PARAM *p;
286
TLS1_PRF *ctx = vctx;
287
OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
288
289
if (ossl_param_is_empty(params))
290
return 1;
291
292
if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE0, params,
293
OSSL_KDF_PARAM_FIPS_EMS_CHECK))
294
return 0;
295
if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE1, params,
296
OSSL_KDF_PARAM_FIPS_DIGEST_CHECK))
297
return 0;
298
if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE2, params,
299
OSSL_KDF_PARAM_FIPS_KEY_CHECK))
300
return 0;
301
302
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) {
303
PROV_DIGEST digest;
304
const EVP_MD *md = NULL;
305
306
if (OPENSSL_strcasecmp(p->data, SN_md5_sha1) == 0) {
307
if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params,
308
OSSL_MAC_NAME_HMAC,
309
NULL, SN_md5, libctx)
310
|| !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params,
311
OSSL_MAC_NAME_HMAC,
312
NULL, SN_sha1, libctx))
313
return 0;
314
} else {
315
EVP_MAC_CTX_free(ctx->P_sha1);
316
if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params,
317
OSSL_MAC_NAME_HMAC,
318
NULL, NULL, libctx))
319
return 0;
320
}
321
322
memset(&digest, 0, sizeof(digest));
323
if (!ossl_prov_digest_load_from_params(&digest, params, libctx))
324
return 0;
325
326
md = ossl_prov_digest_md(&digest);
327
if (EVP_MD_xof(md)) {
328
ERR_raise(ERR_LIB_PROV, PROV_R_XOF_DIGESTS_NOT_ALLOWED);
329
ossl_prov_digest_reset(&digest);
330
return 0;
331
}
332
333
#ifdef FIPS_MODULE
334
if (!fips_digest_check_passed(ctx, md)) {
335
ossl_prov_digest_reset(&digest);
336
return 0;
337
}
338
#endif
339
340
ossl_prov_digest_reset(&digest);
341
}
342
343
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) {
344
OPENSSL_clear_free(ctx->sec, ctx->seclen);
345
ctx->sec = NULL;
346
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen))
347
return 0;
348
349
#ifdef FIPS_MODULE
350
if (!fips_key_check_passed(ctx))
351
return 0;
352
#endif
353
}
354
/* The seed fields concatenate, so process them all */
355
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) {
356
for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1,
357
OSSL_KDF_PARAM_SEED)) {
358
if (p->data_size != 0 && p->data != NULL) {
359
const void *val = NULL;
360
size_t sz = 0;
361
unsigned char *seed;
362
size_t seedlen;
363
int err = 0;
364
365
if (!OSSL_PARAM_get_octet_string_ptr(p, &val, &sz))
366
return 0;
367
368
seedlen = safe_add_size_t(ctx->seedlen, sz, &err);
369
if (err)
370
return 0;
371
372
seed = OPENSSL_clear_realloc(ctx->seed, ctx->seedlen, seedlen);
373
if (!seed)
374
return 0;
375
376
ctx->seed = seed;
377
if (ossl_assert(sz != 0))
378
memcpy(ctx->seed + ctx->seedlen, val, sz);
379
ctx->seedlen = seedlen;
380
}
381
}
382
}
383
return 1;
384
}
385
386
static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params(
387
ossl_unused void *ctx, ossl_unused void *provctx)
388
{
389
static const OSSL_PARAM known_settable_ctx_params[] = {
390
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
391
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0),
392
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0),
393
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0),
394
OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_EMS_CHECK)
395
OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_DIGEST_CHECK)
396
OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_KEY_CHECK)
397
OSSL_PARAM_END
398
};
399
return known_settable_ctx_params;
400
}
401
402
static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[])
403
{
404
OSSL_PARAM *p;
405
406
if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) {
407
if (!OSSL_PARAM_set_size_t(p, SIZE_MAX))
408
return 0;
409
}
410
if (!OSSL_FIPS_IND_GET_CTX_PARAM(((TLS1_PRF *)vctx), params))
411
return 0;
412
return 1;
413
}
414
415
static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params(
416
ossl_unused void *ctx, ossl_unused void *provctx)
417
{
418
static const OSSL_PARAM known_gettable_ctx_params[] = {
419
OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
420
OSSL_FIPS_IND_GETTABLE_CTX_PARAM()
421
OSSL_PARAM_END
422
};
423
return known_gettable_ctx_params;
424
}
425
426
const OSSL_DISPATCH ossl_kdf_tls1_prf_functions[] = {
427
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_tls1_prf_new },
428
{ OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_tls1_prf_dup },
429
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_tls1_prf_free },
430
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_tls1_prf_reset },
431
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_tls1_prf_derive },
432
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
433
(void(*)(void))kdf_tls1_prf_settable_ctx_params },
434
{ OSSL_FUNC_KDF_SET_CTX_PARAMS,
435
(void(*)(void))kdf_tls1_prf_set_ctx_params },
436
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
437
(void(*)(void))kdf_tls1_prf_gettable_ctx_params },
438
{ OSSL_FUNC_KDF_GET_CTX_PARAMS,
439
(void(*)(void))kdf_tls1_prf_get_ctx_params },
440
OSSL_DISPATCH_END
441
};
442
443
/*
444
* Refer to "The TLS Protocol Version 1.0" Section 5
445
* (https://tools.ietf.org/html/rfc2246#section-5) and
446
* "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
447
* (https://tools.ietf.org/html/rfc5246#section-5).
448
*
449
* P_<hash> is an expansion function that uses a single hash function to expand
450
* a secret and seed into an arbitrary quantity of output:
451
*
452
* P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
453
* HMAC_<hash>(secret, A(2) + seed) +
454
* HMAC_<hash>(secret, A(3) + seed) + ...
455
*
456
* where + indicates concatenation. P_<hash> can be iterated as many times as
457
* is necessary to produce the required quantity of data.
458
*
459
* A(i) is defined as:
460
* A(0) = seed
461
* A(i) = HMAC_<hash>(secret, A(i-1))
462
*/
463
static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init,
464
const unsigned char *sec, size_t sec_len,
465
const unsigned char *seed, size_t seed_len,
466
unsigned char *out, size_t olen)
467
{
468
size_t chunk;
469
EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL;
470
unsigned char Ai[EVP_MAX_MD_SIZE];
471
size_t Ai_len;
472
int ret = 0;
473
474
if (!EVP_MAC_init(ctx_init, sec, sec_len, NULL))
475
goto err;
476
chunk = EVP_MAC_CTX_get_mac_size(ctx_init);
477
if (chunk == 0)
478
goto err;
479
/* A(0) = seed */
480
ctx_Ai = EVP_MAC_CTX_dup(ctx_init);
481
if (ctx_Ai == NULL)
482
goto err;
483
if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len))
484
goto err;
485
486
for (;;) {
487
/* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */
488
if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai)))
489
goto err;
490
EVP_MAC_CTX_free(ctx_Ai);
491
ctx_Ai = NULL;
492
493
/* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */
494
ctx = EVP_MAC_CTX_dup(ctx_init);
495
if (ctx == NULL)
496
goto err;
497
if (!EVP_MAC_update(ctx, Ai, Ai_len))
498
goto err;
499
/* save state for calculating next A(i) value */
500
if (olen > chunk) {
501
ctx_Ai = EVP_MAC_CTX_dup(ctx);
502
if (ctx_Ai == NULL)
503
goto err;
504
}
505
if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len))
506
goto err;
507
if (olen <= chunk) {
508
/* last chunk - use Ai as temp bounce buffer */
509
if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai)))
510
goto err;
511
memcpy(out, Ai, olen);
512
break;
513
}
514
if (!EVP_MAC_final(ctx, out, NULL, olen))
515
goto err;
516
EVP_MAC_CTX_free(ctx);
517
ctx = NULL;
518
out += chunk;
519
olen -= chunk;
520
}
521
ret = 1;
522
err:
523
EVP_MAC_CTX_free(ctx);
524
EVP_MAC_CTX_free(ctx_Ai);
525
OPENSSL_cleanse(Ai, sizeof(Ai));
526
return ret;
527
}
528
529
/*
530
* Refer to "The TLS Protocol Version 1.0" Section 5
531
* (https://tools.ietf.org/html/rfc2246#section-5) and
532
* "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
533
* (https://tools.ietf.org/html/rfc5246#section-5).
534
*
535
* For TLS v1.0 and TLS v1.1:
536
*
537
* PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
538
* P_SHA-1(S2, label + seed)
539
*
540
* S1 is taken from the first half of the secret, S2 from the second half.
541
*
542
* L_S = length in bytes of secret;
543
* L_S1 = L_S2 = ceil(L_S / 2);
544
*
545
* For TLS v1.2:
546
*
547
* PRF(secret, label, seed) = P_<hash>(secret, label + seed)
548
*/
549
static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
550
const unsigned char *sec, size_t slen,
551
const unsigned char *seed, size_t seed_len,
552
unsigned char *out, size_t olen)
553
{
554
if (sha1ctx != NULL) {
555
/* TLS v1.0 and TLS v1.1 */
556
size_t i;
557
unsigned char *tmp;
558
/* calc: L_S1 = L_S2 = ceil(L_S / 2) */
559
size_t L_S1 = (slen + 1) / 2;
560
size_t L_S2 = L_S1;
561
562
if (!tls1_prf_P_hash(mdctx, sec, L_S1,
563
seed, seed_len, out, olen))
564
return 0;
565
566
if ((tmp = OPENSSL_malloc(olen)) == NULL)
567
return 0;
568
569
if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2,
570
seed, seed_len, tmp, olen)) {
571
OPENSSL_clear_free(tmp, olen);
572
return 0;
573
}
574
for (i = 0; i < olen; i++)
575
out[i] ^= tmp[i];
576
OPENSSL_clear_free(tmp, olen);
577
return 1;
578
}
579
580
/* TLS v1.2 */
581
if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen))
582
return 0;
583
584
return 1;
585
}
586
587