Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/providers/implementations/kem/rsa_kem.c
48383 views
1
/*
2
* Copyright 2020-2025 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
/*
11
* RSA low level APIs are deprecated for public use, but still ok for
12
* internal use.
13
*/
14
#include "internal/deprecated.h"
15
#include "internal/nelem.h"
16
#include <openssl/crypto.h>
17
#include <openssl/evp.h>
18
#include <openssl/core_dispatch.h>
19
#include <openssl/core_names.h>
20
#include <openssl/rsa.h>
21
#include <openssl/params.h>
22
#include <openssl/err.h>
23
#include <openssl/proverr.h>
24
#include "crypto/rsa.h"
25
#include "prov/provider_ctx.h"
26
#include "prov/providercommon.h"
27
#include "prov/implementations.h"
28
#include "prov/securitycheck.h"
29
30
static OSSL_FUNC_kem_newctx_fn rsakem_newctx;
31
static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init;
32
static OSSL_FUNC_kem_encapsulate_fn rsakem_generate;
33
static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init;
34
static OSSL_FUNC_kem_decapsulate_fn rsakem_recover;
35
static OSSL_FUNC_kem_freectx_fn rsakem_freectx;
36
static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx;
37
static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params;
38
static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params;
39
static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params;
40
static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params;
41
42
/*
43
* Only the KEM for RSASVE as defined in SP800-56b r2 is implemented
44
* currently.
45
*/
46
#define KEM_OP_UNDEFINED -1
47
#define KEM_OP_RSASVE 0
48
49
/*
50
* What's passed as an actual key is defined by the KEYMGMT interface.
51
* We happen to know that our KEYMGMT simply passes RSA structures, so
52
* we use that here too.
53
*/
54
typedef struct {
55
OSSL_LIB_CTX *libctx;
56
RSA *rsa;
57
int op;
58
OSSL_FIPS_IND_DECLARE
59
} PROV_RSA_CTX;
60
61
static const OSSL_ITEM rsakem_opname_id_map[] = {
62
{ KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE },
63
};
64
65
static int name2id(const char *name, const OSSL_ITEM *map, size_t sz)
66
{
67
size_t i;
68
69
if (name == NULL)
70
return -1;
71
72
for (i = 0; i < sz; ++i) {
73
if (OPENSSL_strcasecmp(map[i].ptr, name) == 0)
74
return map[i].id;
75
}
76
return -1;
77
}
78
79
static int rsakem_opname2id(const char *name)
80
{
81
return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map));
82
}
83
84
static void *rsakem_newctx(void *provctx)
85
{
86
PROV_RSA_CTX *prsactx;
87
88
if (!ossl_prov_is_running())
89
return NULL;
90
91
prsactx = OPENSSL_zalloc(sizeof(PROV_RSA_CTX));
92
if (prsactx == NULL)
93
return NULL;
94
prsactx->libctx = PROV_LIBCTX_OF(provctx);
95
prsactx->op = KEM_OP_RSASVE;
96
OSSL_FIPS_IND_INIT(prsactx)
97
98
return prsactx;
99
}
100
101
static void rsakem_freectx(void *vprsactx)
102
{
103
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
104
105
RSA_free(prsactx->rsa);
106
OPENSSL_free(prsactx);
107
}
108
109
static void *rsakem_dupctx(void *vprsactx)
110
{
111
PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx;
112
PROV_RSA_CTX *dstctx;
113
114
if (!ossl_prov_is_running())
115
return NULL;
116
117
dstctx = OPENSSL_zalloc(sizeof(*srcctx));
118
if (dstctx == NULL)
119
return NULL;
120
121
*dstctx = *srcctx;
122
if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) {
123
OPENSSL_free(dstctx);
124
return NULL;
125
}
126
return dstctx;
127
}
128
129
static int rsakem_init(void *vprsactx, void *vrsa,
130
const OSSL_PARAM params[], int operation,
131
const char *desc)
132
{
133
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
134
int protect = 0;
135
136
if (!ossl_prov_is_running())
137
return 0;
138
139
if (prsactx == NULL || vrsa == NULL)
140
return 0;
141
142
if (!ossl_rsa_key_op_get_protect(vrsa, operation, &protect))
143
return 0;
144
if (!RSA_up_ref(vrsa))
145
return 0;
146
RSA_free(prsactx->rsa);
147
prsactx->rsa = vrsa;
148
149
OSSL_FIPS_IND_SET_APPROVED(prsactx)
150
if (!rsakem_set_ctx_params(prsactx, params))
151
return 0;
152
#ifdef FIPS_MODULE
153
if (!ossl_fips_ind_rsa_key_check(OSSL_FIPS_IND_GET(prsactx),
154
OSSL_FIPS_IND_SETTABLE0, prsactx->libctx,
155
prsactx->rsa, desc, protect))
156
return 0;
157
#endif
158
return 1;
159
}
160
161
static int rsakem_encapsulate_init(void *vprsactx, void *vrsa,
162
const OSSL_PARAM params[])
163
{
164
return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE,
165
"RSA Encapsulate Init");
166
}
167
168
static int rsakem_decapsulate_init(void *vprsactx, void *vrsa,
169
const OSSL_PARAM params[])
170
{
171
return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE,
172
"RSA Decapsulate Init");
173
}
174
175
static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params)
176
{
177
PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx;
178
179
if (ctx == NULL)
180
return 0;
181
182
if (!OSSL_FIPS_IND_GET_CTX_PARAM(ctx, params))
183
return 0;
184
return 1;
185
}
186
187
static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = {
188
OSSL_FIPS_IND_GETTABLE_CTX_PARAM()
189
OSSL_PARAM_END
190
};
191
192
static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx,
193
ossl_unused void *provctx)
194
{
195
return known_gettable_rsakem_ctx_params;
196
}
197
198
static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[])
199
{
200
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
201
const OSSL_PARAM *p;
202
int op;
203
204
if (prsactx == NULL)
205
return 0;
206
if (ossl_param_is_empty(params))
207
return 1;
208
209
if (!OSSL_FIPS_IND_SET_CTX_PARAM(prsactx, OSSL_FIPS_IND_SETTABLE0, params,
210
OSSL_KEM_PARAM_FIPS_KEY_CHECK))
211
return 0;
212
p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
213
if (p != NULL) {
214
if (p->data_type != OSSL_PARAM_UTF8_STRING)
215
return 0;
216
op = rsakem_opname2id(p->data);
217
if (op < 0)
218
return 0;
219
prsactx->op = op;
220
}
221
return 1;
222
}
223
224
static const OSSL_PARAM known_settable_rsakem_ctx_params[] = {
225
OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
226
OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KEM_PARAM_FIPS_KEY_CHECK)
227
OSSL_PARAM_END
228
};
229
230
static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx,
231
ossl_unused void *provctx)
232
{
233
return known_settable_rsakem_ctx_params;
234
}
235
236
/*
237
* NIST.SP.800-56Br2
238
* 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
239
*
240
* Generate a random in the range 1 < z < (n – 1)
241
*/
242
static int rsasve_gen_rand_bytes(RSA *rsa_pub,
243
unsigned char *out, int outlen)
244
{
245
int ret = 0;
246
BN_CTX *bnctx;
247
BIGNUM *z, *nminus3;
248
249
bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub));
250
if (bnctx == NULL)
251
return 0;
252
253
/*
254
* Generate a random in the range 1 < z < (n – 1).
255
* Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max
256
* We can achieve this by adding 2.. but then we need to subtract 3 from
257
* the upper bound i.e: 2 + (0 <= r < (n - 3))
258
*/
259
BN_CTX_start(bnctx);
260
nminus3 = BN_CTX_get(bnctx);
261
z = BN_CTX_get(bnctx);
262
ret = (z != NULL
263
&& (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL)
264
&& BN_sub_word(nminus3, 3)
265
&& BN_priv_rand_range_ex(z, nminus3, 0, bnctx)
266
&& BN_add_word(z, 2)
267
&& (BN_bn2binpad(z, out, outlen) == outlen));
268
BN_CTX_end(bnctx);
269
BN_CTX_free(bnctx);
270
return ret;
271
}
272
273
/*
274
* NIST.SP.800-56Br2
275
* 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
276
*/
277
static int rsasve_generate(PROV_RSA_CTX *prsactx,
278
unsigned char *out, size_t *outlen,
279
unsigned char *secret, size_t *secretlen)
280
{
281
int ret;
282
size_t nlen;
283
284
/* Step (1): nlen = Ceil(len(n)/8) */
285
nlen = RSA_size(prsactx->rsa);
286
287
if (out == NULL) {
288
if (nlen == 0) {
289
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
290
return 0;
291
}
292
if (outlen == NULL && secretlen == NULL)
293
return 0;
294
if (outlen != NULL)
295
*outlen = nlen;
296
if (secretlen != NULL)
297
*secretlen = nlen;
298
return 1;
299
}
300
301
/*
302
* If outlen is specified, then it must report the length
303
* of the out buffer on input so that we can confirm
304
* its size is sufficent for encapsulation
305
*/
306
if (outlen != NULL && *outlen < nlen) {
307
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
308
return 0;
309
}
310
311
/*
312
* Step (2): Generate a random byte string z of nlen bytes where
313
* 1 < z < n - 1
314
*/
315
if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen))
316
return 0;
317
318
/* Step(3): out = RSAEP((n,e), z) */
319
ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING);
320
if (ret) {
321
ret = 1;
322
if (outlen != NULL)
323
*outlen = nlen;
324
if (secretlen != NULL)
325
*secretlen = nlen;
326
} else {
327
OPENSSL_cleanse(secret, nlen);
328
}
329
return ret;
330
}
331
332
/**
333
* rsasve_recover - Recovers a secret value from ciphertext using an RSA
334
* private key. Once, recovered, the secret value is considered to be a
335
* shared secret. Algorithm is preformed as per
336
* NIST SP 800-56B Rev 2
337
* 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER).
338
*
339
* This function performs RSA decryption using the private key from the
340
* provided RSA context (`prsactx`). It takes the input ciphertext, decrypts
341
* it, and writes the decrypted message to the output buffer.
342
*
343
* @prsactx: The RSA context containing the private key.
344
* @out: The output buffer to store the decrypted message.
345
* @outlen: On input, the size of the output buffer. On successful
346
* completion, the actual length of the decrypted message.
347
* @in: The input buffer containing the ciphertext to be decrypted.
348
* @inlen: The length of the input ciphertext in bytes.
349
*
350
* Returns 1 on success, or 0 on error. In case of error, appropriate
351
* error messages are raised using the ERR_raise function.
352
*/
353
static int rsasve_recover(PROV_RSA_CTX *prsactx,
354
unsigned char *out, size_t *outlen,
355
const unsigned char *in, size_t inlen)
356
{
357
size_t nlen;
358
int ret;
359
360
/* Step (1): get the byte length of n */
361
nlen = RSA_size(prsactx->rsa);
362
363
if (out == NULL) {
364
if (nlen == 0) {
365
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
366
return 0;
367
}
368
*outlen = nlen;
369
return 1;
370
}
371
372
/*
373
* Step (2): check the input ciphertext 'inlen' matches the nlen
374
* and that outlen is at least nlen bytes
375
*/
376
if (inlen != nlen) {
377
ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
378
return 0;
379
}
380
381
/*
382
* If outlen is specified, then it must report the length
383
* of the out buffer, so that we can confirm that it is of
384
* sufficient size to hold the output of decapsulation
385
*/
386
if (outlen != NULL && *outlen < nlen) {
387
ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
388
return 0;
389
}
390
391
/* Step (3): out = RSADP((n,d), in) */
392
ret = RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING);
393
if (ret > 0 && outlen != NULL)
394
*outlen = ret;
395
return ret > 0;
396
}
397
398
static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen,
399
unsigned char *secret, size_t *secretlen)
400
{
401
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
402
403
if (!ossl_prov_is_running())
404
return 0;
405
406
switch (prsactx->op) {
407
case KEM_OP_RSASVE:
408
return rsasve_generate(prsactx, out, outlen, secret, secretlen);
409
default:
410
return -2;
411
}
412
}
413
414
static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen,
415
const unsigned char *in, size_t inlen)
416
{
417
PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
418
419
if (!ossl_prov_is_running())
420
return 0;
421
422
switch (prsactx->op) {
423
case KEM_OP_RSASVE:
424
return rsasve_recover(prsactx, out, outlen, in, inlen);
425
default:
426
return -2;
427
}
428
}
429
430
const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = {
431
{ OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx },
432
{ OSSL_FUNC_KEM_ENCAPSULATE_INIT,
433
(void (*)(void))rsakem_encapsulate_init },
434
{ OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate },
435
{ OSSL_FUNC_KEM_DECAPSULATE_INIT,
436
(void (*)(void))rsakem_decapsulate_init },
437
{ OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover },
438
{ OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx },
439
{ OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx },
440
{ OSSL_FUNC_KEM_GET_CTX_PARAMS,
441
(void (*)(void))rsakem_get_ctx_params },
442
{ OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS,
443
(void (*)(void))rsakem_gettable_ctx_params },
444
{ OSSL_FUNC_KEM_SET_CTX_PARAMS,
445
(void (*)(void))rsakem_set_ctx_params },
446
{ OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
447
(void (*)(void))rsakem_settable_ctx_params },
448
OSSL_DISPATCH_END
449
};
450
451