Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/providers/implementations/rands/seeding/rand_unix.c
108736 views
1
/*
2
* Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#ifndef _GNU_SOURCE
11
#define _GNU_SOURCE
12
#endif
13
#include "internal/e_os.h"
14
#include <stdio.h>
15
#include "internal/cryptlib.h"
16
#include <openssl/rand.h>
17
#include <openssl/crypto.h>
18
#include "crypto/rand_pool.h"
19
#include "crypto/rand.h"
20
#include "internal/dso.h"
21
#include "internal/nelem.h"
22
#include "prov/seeding.h"
23
24
#ifndef OPENSSL_SYS_UEFI
25
#ifdef __linux
26
#include <sys/syscall.h>
27
#ifdef DEVRANDOM_WAIT
28
#include <sys/shm.h>
29
#include <sys/utsname.h>
30
#endif
31
#endif
32
#if defined(__FreeBSD__) || defined(__NetBSD__)
33
#include <sys/types.h>
34
#include <sys/sysctl.h>
35
#include <sys/param.h>
36
#endif
37
#if defined(__FreeBSD__) && __FreeBSD_version >= 1200061
38
#include <sys/random.h>
39
#endif
40
#if defined(__OpenBSD__)
41
#include <sys/param.h>
42
#endif
43
#if defined(__DragonFly__)
44
#include <sys/param.h>
45
#include <sys/random.h>
46
#endif
47
#endif
48
49
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
50
|| defined(__DJGPP__)
51
#include <sys/types.h>
52
#include <sys/stat.h>
53
#include <fcntl.h>
54
#include <unistd.h>
55
#include <sys/time.h>
56
57
static uint64_t get_time_stamp(void);
58
59
/* Macro to convert two thirty two bit values into a sixty four bit one */
60
#define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
61
62
/*
63
* Check for the existence and support of POSIX timers. The standard
64
* says that the _POSIX_TIMERS macro will have a positive value if they
65
* are available.
66
*
67
* However, we want an additional constraint: that the timer support does
68
* not require an extra library dependency. Early versions of glibc
69
* require -lrt to be specified on the link line to access the timers,
70
* so this needs to be checked for.
71
*
72
* It is worse because some libraries define __GLIBC__ but don't
73
* support the version testing macro (e.g. uClibc). This means
74
* an extra check is needed.
75
*
76
* The final condition is:
77
* "have posix timers and either not glibc or glibc without -lrt"
78
*
79
* The nested #if sequences are required to avoid using a parameterised
80
* macro that might be undefined.
81
*/
82
#undef OSSL_POSIX_TIMER_OKAY
83
/* On some systems, _POSIX_TIMERS is defined but empty.
84
* Subtracting by 0 when comparing avoids an error in this case. */
85
#if defined(_POSIX_TIMERS) && _POSIX_TIMERS - 0 > 0
86
#if defined(__GLIBC__)
87
#if defined(__GLIBC_PREREQ)
88
#if __GLIBC_PREREQ(2, 17)
89
#define OSSL_POSIX_TIMER_OKAY
90
#endif
91
#endif
92
#else
93
#define OSSL_POSIX_TIMER_OKAY
94
#endif
95
#endif
96
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
97
|| defined(__DJGPP__) */
98
99
#if defined(OPENSSL_RAND_SEED_NONE)
100
/* none means none. this simplifies the following logic */
101
#undef OPENSSL_RAND_SEED_OS
102
#undef OPENSSL_RAND_SEED_GETRANDOM
103
#undef OPENSSL_RAND_SEED_DEVRANDOM
104
#undef OPENSSL_RAND_SEED_RDTSC
105
#undef OPENSSL_RAND_SEED_RDCPU
106
#undef OPENSSL_RAND_SEED_EGD
107
#endif
108
109
#if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
110
#error "UEFI only supports seeding NONE"
111
#endif
112
113
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
114
|| defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
115
|| defined(OPENSSL_SYS_UEFI))
116
117
#if defined(OPENSSL_SYS_VOS)
118
119
#ifndef OPENSSL_RAND_SEED_OS
120
#error "Unsupported seeding method configured; must be os"
121
#endif
122
123
#if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
124
#error "Unsupported HP-PA and IA32 at the same time."
125
#endif
126
#if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
127
#error "Must have one of HP-PA or IA32"
128
#endif
129
130
/*
131
* The following algorithm repeatedly samples the real-time clock (RTC) to
132
* generate a sequence of unpredictable data. The algorithm relies upon the
133
* uneven execution speed of the code (due to factors such as cache misses,
134
* interrupts, bus activity, and scheduling) and upon the rather large
135
* relative difference between the speed of the clock and the rate at which
136
* it can be read. If it is ported to an environment where execution speed
137
* is more constant or where the RTC ticks at a much slower rate, or the
138
* clock can be read with fewer instructions, it is likely that the results
139
* would be far more predictable. This should only be used for legacy
140
* platforms.
141
*
142
* As a precaution, we assume only 2 bits of entropy per byte.
143
*/
144
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
145
{
146
short int code;
147
int i, k;
148
size_t bytes_needed;
149
struct timespec ts;
150
unsigned char v;
151
#ifdef OPENSSL_SYS_VOS_HPPA
152
long duration;
153
extern void s$sleep(long *_duration, short int *_code);
154
#else
155
long long duration;
156
extern void s$sleep2(long long *_duration, short int *_code);
157
#endif
158
159
bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
160
161
for (i = 0; i < bytes_needed; i++) {
162
/*
163
* burn some cpu; hope for interrupts, cache collisions, bus
164
* interference, etc.
165
*/
166
for (k = 0; k < 99; k++)
167
ts.tv_nsec = random();
168
169
#ifdef OPENSSL_SYS_VOS_HPPA
170
/* sleep for 1/1024 of a second (976 us). */
171
duration = 1;
172
s$sleep(&duration, &code);
173
#else
174
/* sleep for 1/65536 of a second (15 us). */
175
duration = 1;
176
s$sleep2(&duration, &code);
177
#endif
178
179
/* Get wall clock time, take 8 bits. */
180
clock_gettime(CLOCK_REALTIME, &ts);
181
v = (unsigned char)(ts.tv_nsec & 0xFF);
182
ossl_rand_pool_add(pool, arg, &v, sizeof(v), 2);
183
}
184
return ossl_rand_pool_entropy_available(pool);
185
}
186
187
void ossl_rand_pool_cleanup(void)
188
{
189
}
190
191
void ossl_rand_pool_keep_random_devices_open(int keep)
192
{
193
}
194
195
#else
196
197
#if defined(OPENSSL_RAND_SEED_EGD) && (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
198
#error "Seeding uses EGD but EGD is turned off or no device given"
199
#endif
200
201
#if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
202
#error "Seeding uses urandom but DEVRANDOM is not configured"
203
#endif
204
205
#if defined(OPENSSL_RAND_SEED_OS)
206
#if !defined(DEVRANDOM)
207
#error "OS seeding requires DEVRANDOM to be configured"
208
#endif
209
#define OPENSSL_RAND_SEED_GETRANDOM
210
#define OPENSSL_RAND_SEED_DEVRANDOM
211
#endif
212
213
#if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
214
/*
215
* sysctl_random(): Use sysctl() to read a random number from the kernel
216
* Returns the number of bytes returned in buf on success, -1 on failure.
217
*/
218
static ssize_t sysctl_random(char *buf, size_t buflen)
219
{
220
int mib[2];
221
size_t done = 0;
222
size_t len;
223
224
/*
225
* Note: sign conversion between size_t and ssize_t is safe even
226
* without a range check, see comment in syscall_random()
227
*/
228
229
/*
230
* On FreeBSD old implementations returned longs, newer versions support
231
* variable sizes up to 256 byte. The code below would not work properly
232
* when the sysctl returns long and we want to request something not a
233
* multiple of longs, which should never be the case.
234
*/
235
#if defined(__FreeBSD__)
236
if (!ossl_assert(buflen % sizeof(long) == 0)) {
237
errno = EINVAL;
238
return -1;
239
}
240
#endif
241
242
/*
243
* On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
244
* filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
245
* it returns a variable number of bytes with the current version supporting
246
* up to 256 bytes.
247
* Just return an error on older NetBSD versions.
248
*/
249
#if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
250
errno = ENOSYS;
251
return -1;
252
#endif
253
254
mib[0] = CTL_KERN;
255
mib[1] = KERN_ARND;
256
257
do {
258
len = buflen > 256 ? 256 : buflen;
259
if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
260
return done > 0 ? done : -1;
261
done += len;
262
buf += len;
263
buflen -= len;
264
} while (buflen > 0);
265
266
return done;
267
}
268
#endif
269
270
#if defined(OPENSSL_RAND_SEED_GETRANDOM)
271
272
#if defined(__linux) && !defined(__NR_getrandom)
273
#if defined(__arm__)
274
#define __NR_getrandom (__NR_SYSCALL_BASE + 384)
275
#elif defined(__i386__)
276
#define __NR_getrandom 355
277
#elif defined(__x86_64__)
278
#if defined(__ILP32__)
279
#define __NR_getrandom (__X32_SYSCALL_BIT + 318)
280
#else
281
#define __NR_getrandom 318
282
#endif
283
#elif defined(__xtensa__)
284
#define __NR_getrandom 338
285
#elif defined(__s390__) || defined(__s390x__)
286
#define __NR_getrandom 349
287
#elif defined(__bfin__)
288
#define __NR_getrandom 389
289
#elif defined(__powerpc__)
290
#define __NR_getrandom 359
291
#elif defined(__mips__) || defined(__mips64)
292
#if _MIPS_SIM == _MIPS_SIM_ABI32
293
#define __NR_getrandom (__NR_Linux + 353)
294
#elif _MIPS_SIM == _MIPS_SIM_ABI64
295
#define __NR_getrandom (__NR_Linux + 313)
296
#elif _MIPS_SIM == _MIPS_SIM_NABI32
297
#define __NR_getrandom (__NR_Linux + 317)
298
#endif
299
#elif defined(__hppa__)
300
#define __NR_getrandom (__NR_Linux + 339)
301
#elif defined(__sparc__)
302
#define __NR_getrandom 347
303
#elif defined(__ia64__)
304
#define __NR_getrandom 1339
305
#elif defined(__alpha__)
306
#define __NR_getrandom 511
307
#elif defined(__sh__)
308
#if defined(__SH5__)
309
#define __NR_getrandom 373
310
#else
311
#define __NR_getrandom 384
312
#endif
313
#elif defined(__avr32__)
314
#define __NR_getrandom 317
315
#elif defined(__microblaze__)
316
#define __NR_getrandom 385
317
#elif defined(__m68k__)
318
#define __NR_getrandom 352
319
#elif defined(__cris__)
320
#define __NR_getrandom 356
321
#else /* generic (f.e. aarch64, loongarch, loongarch64) */
322
#define __NR_getrandom 278
323
#endif
324
#endif
325
326
/*
327
* syscall_random(): Try to get random data using a system call
328
* returns the number of bytes returned in buf, or < 0 on error.
329
*/
330
static ssize_t syscall_random(void *buf, size_t buflen)
331
{
332
/*
333
* Note: 'buflen' equals the size of the buffer which is used by the
334
* get_entropy() callback of the RAND_DRBG. It is roughly bounded by
335
*
336
* 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
337
*
338
* which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
339
* between size_t and ssize_t is safe even without a range check.
340
*/
341
342
/*
343
* Do runtime detection to find getentropy().
344
*
345
* Known OSs that should support this:
346
* - Darwin since 16 (OSX 10.12, IOS 10.0).
347
* - Solaris since 11.3
348
* - OpenBSD since 5.6
349
* - Linux since 3.17 with glibc 2.25
350
*
351
* Note: Sometimes getentropy() can be provided but not implemented
352
* internally. So we need to check errno for ENOSYS
353
*/
354
#if !defined(__DragonFly__) && !defined(__NetBSD__) && !defined(__FreeBSD__)
355
#if defined(__GNUC__) && __GNUC__ >= 2 && defined(__ELF__) && !defined(__hpux)
356
extern int getentropy(void *buffer, size_t length) __attribute__((weak));
357
358
if (getentropy != NULL) {
359
if (getentropy(buf, buflen) == 0)
360
return (ssize_t)buflen;
361
if (errno != ENOSYS)
362
return -1;
363
}
364
#elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
365
366
if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
367
return (ssize_t)buflen;
368
369
return -1;
370
#else
371
union {
372
void *p;
373
int (*f)(void *buffer, size_t length);
374
} p_getentropy;
375
376
/*
377
* We could cache the result of the lookup, but we normally don't
378
* call this function often.
379
*/
380
ERR_set_mark();
381
p_getentropy.p = DSO_global_lookup("getentropy");
382
ERR_pop_to_mark();
383
if (p_getentropy.p != NULL)
384
return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
385
#endif
386
#endif /* !__DragonFly__ && !__NetBSD__ && !__FreeBSD__ */
387
388
/* Linux supports this since version 3.17 */
389
#if defined(__linux) && defined(__NR_getrandom)
390
return syscall(__NR_getrandom, buf, buflen, 0);
391
#elif (defined(__DragonFly__) && __DragonFly_version >= 500700) \
392
|| (defined(__NetBSD__) && __NetBSD_Version >= 1000000000) \
393
|| (defined(__FreeBSD__) && __FreeBSD_version >= 1200061)
394
return getrandom(buf, buflen, 0);
395
#elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
396
return sysctl_random(buf, buflen);
397
#elif defined(__wasi__)
398
if (getentropy(buf, buflen) == 0)
399
return (ssize_t)buflen;
400
return -1;
401
#else
402
errno = ENOSYS;
403
return -1;
404
#endif
405
}
406
#endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
407
408
#if defined(OPENSSL_RAND_SEED_DEVRANDOM)
409
static const char *random_device_paths[] = { DEVRANDOM };
410
static struct random_device {
411
int fd;
412
dev_t dev;
413
ino_t ino;
414
mode_t mode;
415
dev_t rdev;
416
} random_devices[OSSL_NELEM(random_device_paths)];
417
static int keep_random_devices_open = 1;
418
419
#if defined(__linux) && defined(DEVRANDOM_WAIT) \
420
&& defined(OPENSSL_RAND_SEED_GETRANDOM)
421
static void *shm_addr;
422
423
static void cleanup_shm(void)
424
{
425
shmdt(shm_addr);
426
}
427
428
/*
429
* Ensure that the system randomness source has been adequately seeded.
430
* This is done by having the first start of libcrypto, wait until the device
431
* /dev/random becomes able to supply a byte of entropy. Subsequent starts
432
* of the library and later reseedings do not need to do this.
433
*/
434
static int wait_random_seeded(void)
435
{
436
static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
437
static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
438
int kernel[2];
439
int shm_id, fd, r;
440
char c, *p;
441
struct utsname un;
442
fd_set fds;
443
444
if (!seeded) {
445
/* See if anything has created the global seeded indication */
446
if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
447
/*
448
* Check the kernel's version and fail if it is too recent.
449
*
450
* Linux kernels from 4.8 onwards do not guarantee that
451
* /dev/urandom is properly seeded when /dev/random becomes
452
* readable. However, such kernels support the getentropy(2)
453
* system call and this should always succeed which renders
454
* this alternative but essentially identical source moot.
455
*/
456
if (uname(&un) == 0) {
457
kernel[0] = atoi(un.release);
458
p = strchr(un.release, '.');
459
kernel[1] = p == NULL ? 0 : atoi(p + 1);
460
if (kernel[0] > kernel_version[0]
461
|| (kernel[0] == kernel_version[0]
462
&& kernel[1] >= kernel_version[1])) {
463
return 0;
464
}
465
}
466
/* Open /dev/random and wait for it to be readable */
467
if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
468
if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
469
FD_ZERO(&fds);
470
FD_SET(fd, &fds);
471
while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
472
&& errno == EINTR)
473
;
474
} else {
475
while ((r = read(fd, &c, 1)) < 0 && errno == EINTR)
476
;
477
}
478
close(fd);
479
if (r == 1) {
480
seeded = 1;
481
/* Create the shared memory indicator */
482
shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
483
IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
484
}
485
}
486
}
487
if (shm_id != -1) {
488
seeded = 1;
489
/*
490
* Map the shared memory to prevent its premature destruction.
491
* If this call fails, it isn't a big problem.
492
*/
493
shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
494
if (shm_addr != (void *)-1)
495
OPENSSL_atexit(&cleanup_shm);
496
}
497
}
498
return seeded;
499
}
500
#else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
501
static int wait_random_seeded(void)
502
{
503
return 1;
504
}
505
#endif
506
507
/*
508
* Verify that the file descriptor associated with the random source is
509
* still valid. The rationale for doing this is the fact that it is not
510
* uncommon for daemons to close all open file handles when daemonizing.
511
* So the handle might have been closed or even reused for opening
512
* another file.
513
*/
514
static int check_random_device(struct random_device *rd)
515
{
516
struct stat st;
517
518
return rd->fd != -1
519
&& fstat(rd->fd, &st) != -1
520
&& rd->dev == st.st_dev
521
&& rd->ino == st.st_ino
522
&& ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
523
&& rd->rdev == st.st_rdev;
524
}
525
526
/*
527
* Open a random device if required and return its file descriptor or -1 on error
528
*/
529
static int get_random_device(size_t n)
530
{
531
struct stat st;
532
struct random_device *rd = &random_devices[n];
533
534
/* reuse existing file descriptor if it is (still) valid */
535
if (check_random_device(rd))
536
return rd->fd;
537
538
/* open the random device ... */
539
if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
540
return rd->fd;
541
542
/* ... and cache its relevant stat(2) data */
543
if (fstat(rd->fd, &st) != -1) {
544
rd->dev = st.st_dev;
545
rd->ino = st.st_ino;
546
rd->mode = st.st_mode;
547
rd->rdev = st.st_rdev;
548
} else {
549
close(rd->fd);
550
rd->fd = -1;
551
}
552
553
return rd->fd;
554
}
555
556
/*
557
* Close a random device making sure it is a random device
558
*/
559
static void close_random_device(size_t n)
560
{
561
struct random_device *rd = &random_devices[n];
562
563
if (check_random_device(rd))
564
close(rd->fd);
565
rd->fd = -1;
566
}
567
568
int ossl_rand_pool_init(void)
569
{
570
size_t i;
571
572
for (i = 0; i < OSSL_NELEM(random_devices); i++)
573
random_devices[i].fd = -1;
574
575
return 1;
576
}
577
578
void ossl_rand_pool_cleanup(void)
579
{
580
size_t i;
581
582
for (i = 0; i < OSSL_NELEM(random_devices); i++)
583
close_random_device(i);
584
}
585
586
void ossl_rand_pool_keep_random_devices_open(int keep)
587
{
588
if (!keep)
589
ossl_rand_pool_cleanup();
590
591
keep_random_devices_open = keep;
592
}
593
594
#else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
595
596
int ossl_rand_pool_init(void)
597
{
598
return 1;
599
}
600
601
void ossl_rand_pool_cleanup(void)
602
{
603
}
604
605
void ossl_rand_pool_keep_random_devices_open(int keep)
606
{
607
}
608
609
#endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
610
611
/*
612
* Try the various seeding methods in turn, exit when successful.
613
*
614
* If more than one entropy source is available, is it
615
* preferable to stop as soon as enough entropy has been collected
616
* (as favored by @rsalz) or should one rather be defensive and add
617
* more entropy than requested and/or from different sources?
618
*
619
* Currently, the user can select multiple entropy sources in the
620
* configure step, yet in practice only the first available source
621
* will be used. A more flexible solution has been requested, but
622
* currently it is not clear how this can be achieved without
623
* overengineering the problem. There are many parameters which
624
* could be taken into account when selecting the order and amount
625
* of input from the different entropy sources (trust, quality,
626
* possibility of blocking).
627
*/
628
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
629
{
630
#if defined(OPENSSL_RAND_SEED_NONE)
631
return ossl_rand_pool_entropy_available(pool);
632
#else
633
size_t entropy_available = 0;
634
635
(void)entropy_available; /* avoid compiler warning */
636
637
#if defined(OPENSSL_RAND_SEED_GETRANDOM)
638
{
639
size_t bytes_needed;
640
unsigned char *buffer;
641
ssize_t bytes;
642
/* Maximum allowed number of consecutive unsuccessful attempts */
643
int attempts = 3;
644
645
bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
646
while (bytes_needed != 0 && attempts-- > 0) {
647
buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
648
bytes = syscall_random(buffer, bytes_needed);
649
if (bytes > 0) {
650
ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
651
bytes_needed -= bytes;
652
attempts = 3; /* reset counter after successful attempt */
653
} else if (bytes < 0 && errno != EINTR) {
654
break;
655
}
656
}
657
}
658
entropy_available = ossl_rand_pool_entropy_available(pool);
659
if (entropy_available > 0)
660
return entropy_available;
661
#endif
662
663
#if defined(OPENSSL_RAND_SEED_DEVRANDOM)
664
if (wait_random_seeded()) {
665
size_t bytes_needed;
666
unsigned char *buffer;
667
size_t i;
668
669
bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
670
for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
671
i++) {
672
ssize_t bytes = 0;
673
/* Maximum number of consecutive unsuccessful attempts */
674
int attempts = 3;
675
const int fd = get_random_device(i);
676
677
if (fd == -1)
678
continue;
679
680
while (bytes_needed != 0 && attempts-- > 0) {
681
buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
682
bytes = read(fd, buffer, bytes_needed);
683
684
if (bytes > 0) {
685
ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
686
bytes_needed -= bytes;
687
attempts = 3; /* reset counter on successful attempt */
688
} else if (bytes < 0 && errno != EINTR) {
689
break;
690
}
691
}
692
if (bytes < 0 || !keep_random_devices_open)
693
close_random_device(i);
694
695
bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
696
}
697
entropy_available = ossl_rand_pool_entropy_available(pool);
698
if (entropy_available > 0)
699
return entropy_available;
700
}
701
#endif
702
703
#if defined(OPENSSL_RAND_SEED_RDTSC)
704
entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
705
if (entropy_available > 0)
706
return entropy_available;
707
#endif
708
709
#if defined(OPENSSL_RAND_SEED_RDCPU)
710
entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
711
if (entropy_available > 0)
712
return entropy_available;
713
#endif
714
715
#if defined(OPENSSL_RAND_SEED_EGD)
716
{
717
static const char *paths[] = { DEVRANDOM_EGD, NULL };
718
size_t bytes_needed;
719
unsigned char *buffer;
720
int i;
721
722
bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
723
for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
724
size_t bytes = 0;
725
int num;
726
727
buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
728
num = RAND_query_egd_bytes(paths[i],
729
buffer, (int)bytes_needed);
730
if (num == (int)bytes_needed)
731
bytes = bytes_needed;
732
733
ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
734
bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
735
}
736
entropy_available = ossl_rand_pool_entropy_available(pool);
737
if (entropy_available > 0)
738
return entropy_available;
739
}
740
#endif
741
742
return ossl_rand_pool_entropy_available(pool);
743
#endif
744
}
745
#endif
746
#endif
747
748
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
749
|| defined(__DJGPP__)
750
int ossl_pool_add_nonce_data(RAND_POOL *pool)
751
{
752
struct {
753
pid_t pid;
754
CRYPTO_THREAD_ID tid;
755
uint64_t time;
756
} data;
757
758
/* Erase the entire structure including any padding */
759
memset(&data, 0, sizeof(data));
760
761
/*
762
* Add process id, thread id, and a high resolution timestamp to
763
* ensure that the nonce is unique with high probability for
764
* different process instances.
765
*/
766
data.pid = getpid();
767
data.tid = CRYPTO_THREAD_get_current_id();
768
data.time = get_time_stamp();
769
770
return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
771
}
772
773
/*
774
* Get the current time with the highest possible resolution
775
*
776
* The time stamp is added to the nonce, so it is optimized for not repeating.
777
* The current time is ideal for this purpose, provided the computer's clock
778
* is synchronized.
779
*/
780
static uint64_t get_time_stamp(void)
781
{
782
#if defined(OSSL_POSIX_TIMER_OKAY)
783
{
784
struct timespec ts;
785
786
if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
787
return TWO32TO64(ts.tv_sec, ts.tv_nsec);
788
}
789
#endif
790
#if defined(__unix__) \
791
|| (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
792
{
793
struct timeval tv;
794
795
if (gettimeofday(&tv, NULL) == 0)
796
return TWO32TO64(tv.tv_sec, tv.tv_usec);
797
}
798
#endif
799
return time(NULL);
800
}
801
802
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
803
|| defined(__DJGPP__) */
804
805