Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/providers/implementations/rands/seeding/rand_vms.c
48531 views
1
/*
2
* Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#include "internal/e_os.h"
11
12
#define __NEW_STARLET 1 /* New starlet definitions since VMS 7.0 */
13
#include <unistd.h>
14
#include "internal/cryptlib.h"
15
#include "internal/nelem.h"
16
#include <openssl/rand.h>
17
#include "crypto/rand.h"
18
#include "crypto/rand_pool.h"
19
#include "prov/seeding.h"
20
#include <descrip.h>
21
#include <dvidef.h>
22
#include <jpidef.h>
23
#include <rmidef.h>
24
#include <syidef.h>
25
#include <ssdef.h>
26
#include <starlet.h>
27
#include <efndef.h>
28
#include <gen64def.h>
29
#include <iosbdef.h>
30
#include <iledef.h>
31
#include <lib$routines.h>
32
#ifdef __DECC
33
# pragma message disable DOLLARID
34
#endif
35
36
#include <dlfcn.h> /* SYS$GET_ENTROPY presence */
37
38
#ifndef OPENSSL_RAND_SEED_OS
39
# error "Unsupported seeding method configured; must be os"
40
#endif
41
42
/*
43
* DATA COLLECTION METHOD
44
* ======================
45
*
46
* This is a method to get low quality entropy.
47
* It works by collecting all kinds of statistical data that
48
* VMS offers and using them as random seed.
49
*/
50
51
/* We need to make sure we have the right size pointer in some cases */
52
#if __INITIAL_POINTER_SIZE == 64
53
# pragma pointer_size save
54
# pragma pointer_size 32
55
#endif
56
typedef uint32_t *uint32_t__ptr32;
57
#if __INITIAL_POINTER_SIZE == 64
58
# pragma pointer_size restore
59
#endif
60
61
struct item_st {
62
short length, code; /* length is number of bytes */
63
};
64
65
static const struct item_st DVI_item_data[] = {
66
{4, DVI$_ERRCNT},
67
{4, DVI$_REFCNT},
68
};
69
70
static const struct item_st JPI_item_data[] = {
71
{4, JPI$_BUFIO},
72
{4, JPI$_CPUTIM},
73
{4, JPI$_DIRIO},
74
{4, JPI$_IMAGECOUNT},
75
{4, JPI$_PAGEFLTS},
76
{4, JPI$_PID},
77
{4, JPI$_PPGCNT},
78
{4, JPI$_WSPEAK},
79
/*
80
* Note: the direct result is just a 32-bit address. However, it points
81
* to a list of 4 32-bit words, so we make extra space for them so we can
82
* do in-place replacement of values
83
*/
84
{16, JPI$_FINALEXC},
85
};
86
87
static const struct item_st JPI_item_data_64bit[] = {
88
{8, JPI$_LAST_LOGIN_I},
89
{8, JPI$_LOGINTIM},
90
};
91
92
static const struct item_st RMI_item_data[] = {
93
{4, RMI$_COLPG},
94
{4, RMI$_MWAIT},
95
{4, RMI$_CEF},
96
{4, RMI$_PFW},
97
{4, RMI$_LEF},
98
{4, RMI$_LEFO},
99
{4, RMI$_HIB},
100
{4, RMI$_HIBO},
101
{4, RMI$_SUSP},
102
{4, RMI$_SUSPO},
103
{4, RMI$_FPG},
104
{4, RMI$_COM},
105
{4, RMI$_COMO},
106
{4, RMI$_CUR},
107
#if defined __alpha
108
{4, RMI$_FRLIST},
109
{4, RMI$_MODLIST},
110
#endif
111
{4, RMI$_FAULTS},
112
{4, RMI$_PREADS},
113
{4, RMI$_PWRITES},
114
{4, RMI$_PWRITIO},
115
{4, RMI$_PREADIO},
116
{4, RMI$_GVALFLTS},
117
{4, RMI$_WRTINPROG},
118
{4, RMI$_FREFLTS},
119
{4, RMI$_DZROFLTS},
120
{4, RMI$_SYSFAULTS},
121
{4, RMI$_ISWPCNT},
122
{4, RMI$_DIRIO},
123
{4, RMI$_BUFIO},
124
{4, RMI$_MBREADS},
125
{4, RMI$_MBWRITES},
126
{4, RMI$_LOGNAM},
127
{4, RMI$_FCPCALLS},
128
{4, RMI$_FCPREAD},
129
{4, RMI$_FCPWRITE},
130
{4, RMI$_FCPCACHE},
131
{4, RMI$_FCPCPU},
132
{4, RMI$_FCPHIT},
133
{4, RMI$_FCPSPLIT},
134
{4, RMI$_FCPFAULT},
135
{4, RMI$_ENQNEW},
136
{4, RMI$_ENQCVT},
137
{4, RMI$_DEQ},
138
{4, RMI$_BLKAST},
139
{4, RMI$_ENQWAIT},
140
{4, RMI$_ENQNOTQD},
141
{4, RMI$_DLCKSRCH},
142
{4, RMI$_DLCKFND},
143
{4, RMI$_NUMLOCKS},
144
{4, RMI$_NUMRES},
145
{4, RMI$_ARRLOCPK},
146
{4, RMI$_DEPLOCPK},
147
{4, RMI$_ARRTRAPK},
148
{4, RMI$_TRCNGLOS},
149
{4, RMI$_RCVBUFFL},
150
{4, RMI$_ENQNEWLOC},
151
{4, RMI$_ENQNEWIN},
152
{4, RMI$_ENQNEWOUT},
153
{4, RMI$_ENQCVTLOC},
154
{4, RMI$_ENQCVTIN},
155
{4, RMI$_ENQCVTOUT},
156
{4, RMI$_DEQLOC},
157
{4, RMI$_DEQIN},
158
{4, RMI$_DEQOUT},
159
{4, RMI$_BLKLOC},
160
{4, RMI$_BLKIN},
161
{4, RMI$_BLKOUT},
162
{4, RMI$_DIRIN},
163
{4, RMI$_DIROUT},
164
/* We currently get a fault when trying these */
165
#if 0
166
{140, RMI$_MSCP_EVERYTHING}, /* 35 32-bit words */
167
{152, RMI$_DDTM_ALL}, /* 38 32-bit words */
168
{80, RMI$_TMSCP_EVERYTHING} /* 20 32-bit words */
169
#endif
170
{4, RMI$_LPZ_PAGCNT},
171
{4, RMI$_LPZ_HITS},
172
{4, RMI$_LPZ_MISSES},
173
{4, RMI$_LPZ_EXPCNT},
174
{4, RMI$_LPZ_ALLOCF},
175
{4, RMI$_LPZ_ALLOC2},
176
{4, RMI$_ACCESS},
177
{4, RMI$_ALLOC},
178
{4, RMI$_FCPCREATE},
179
{4, RMI$_VOLWAIT},
180
{4, RMI$_FCPTURN},
181
{4, RMI$_FCPERASE},
182
{4, RMI$_OPENS},
183
{4, RMI$_FIDHIT},
184
{4, RMI$_FIDMISS},
185
{4, RMI$_FILHDR_HIT},
186
{4, RMI$_DIRFCB_HIT},
187
{4, RMI$_DIRFCB_MISS},
188
{4, RMI$_DIRDATA_HIT},
189
{4, RMI$_EXTHIT},
190
{4, RMI$_EXTMISS},
191
{4, RMI$_QUOHIT},
192
{4, RMI$_QUOMISS},
193
{4, RMI$_STORAGMAP_HIT},
194
{4, RMI$_VOLLCK},
195
{4, RMI$_SYNCHLCK},
196
{4, RMI$_SYNCHWAIT},
197
{4, RMI$_ACCLCK},
198
{4, RMI$_XQPCACHEWAIT},
199
{4, RMI$_DIRDATA_MISS},
200
{4, RMI$_FILHDR_MISS},
201
{4, RMI$_STORAGMAP_MISS},
202
{4, RMI$_PROCCNTMAX},
203
{4, RMI$_PROCBATCNT},
204
{4, RMI$_PROCINTCNT},
205
{4, RMI$_PROCNETCNT},
206
{4, RMI$_PROCSWITCHCNT},
207
{4, RMI$_PROCBALSETCNT},
208
{4, RMI$_PROCLOADCNT},
209
{4, RMI$_BADFLTS},
210
{4, RMI$_EXEFAULTS},
211
{4, RMI$_HDRINSWAPS},
212
{4, RMI$_HDROUTSWAPS},
213
{4, RMI$_IOPAGCNT},
214
{4, RMI$_ISWPCNTPG},
215
{4, RMI$_OSWPCNT},
216
{4, RMI$_OSWPCNTPG},
217
{4, RMI$_RDFAULTS},
218
{4, RMI$_TRANSFLTS},
219
{4, RMI$_WRTFAULTS},
220
#if defined __alpha
221
{4, RMI$_USERPAGES},
222
#endif
223
{4, RMI$_VMSPAGES},
224
{4, RMI$_TTWRITES},
225
{4, RMI$_BUFOBJPAG},
226
{4, RMI$_BUFOBJPAGPEAK},
227
{4, RMI$_BUFOBJPAGS01},
228
{4, RMI$_BUFOBJPAGS2},
229
{4, RMI$_BUFOBJPAGMAXS01},
230
{4, RMI$_BUFOBJPAGMAXS2},
231
{4, RMI$_BUFOBJPAGPEAKS01},
232
{4, RMI$_BUFOBJPAGPEAKS2},
233
{4, RMI$_BUFOBJPGLTMAXS01},
234
{4, RMI$_BUFOBJPGLTMAXS2},
235
{4, RMI$_DLCK_INCMPLT},
236
{4, RMI$_DLCKMSGS_IN},
237
{4, RMI$_DLCKMSGS_OUT},
238
{4, RMI$_MCHKERRS},
239
{4, RMI$_MEMERRS},
240
};
241
242
static const struct item_st RMI_item_data_64bit[] = {
243
#if defined __ia64
244
{8, RMI$_FRLIST},
245
{8, RMI$_MODLIST},
246
#endif
247
{8, RMI$_LCKMGR_REQCNT},
248
{8, RMI$_LCKMGR_REQTIME},
249
{8, RMI$_LCKMGR_SPINCNT},
250
{8, RMI$_LCKMGR_SPINTIME},
251
{8, RMI$_CPUINTSTK},
252
{8, RMI$_CPUMPSYNCH},
253
{8, RMI$_CPUKERNEL},
254
{8, RMI$_CPUEXEC},
255
{8, RMI$_CPUSUPER},
256
{8, RMI$_CPUUSER},
257
#if defined __ia64
258
{8, RMI$_USERPAGES},
259
#endif
260
{8, RMI$_TQETOTAL},
261
{8, RMI$_TQESYSUB},
262
{8, RMI$_TQEUSRTIMR},
263
{8, RMI$_TQEUSRWAKE},
264
};
265
266
static const struct item_st SYI_item_data[] = {
267
{4, SYI$_PAGEFILE_FREE},
268
};
269
270
/*
271
* Input:
272
* items_data - an array of lengths and codes
273
* items_data_num - number of elements in that array
274
*
275
* Output:
276
* items - pre-allocated ILE3 array to be filled.
277
* It's assumed to have items_data_num elements plus
278
* one extra for the terminating NULL element
279
* databuffer - pre-allocated 32-bit word array.
280
*
281
* Returns the number of elements used in databuffer
282
*/
283
static size_t prepare_item_list(const struct item_st *items_input,
284
size_t items_input_num,
285
ILE3 *items,
286
uint32_t__ptr32 databuffer)
287
{
288
size_t data_sz = 0;
289
290
for (; items_input_num-- > 0; items_input++, items++) {
291
292
items->ile3$w_code = items_input->code;
293
/* Special treatment of JPI$_FINALEXC */
294
if (items->ile3$w_code == JPI$_FINALEXC)
295
items->ile3$w_length = 4;
296
else
297
items->ile3$w_length = items_input->length;
298
299
items->ile3$ps_bufaddr = databuffer;
300
items->ile3$ps_retlen_addr = 0;
301
302
databuffer += items_input->length / sizeof(databuffer[0]);
303
data_sz += items_input->length;
304
}
305
/* Terminating NULL entry */
306
items->ile3$w_length = items->ile3$w_code = 0;
307
items->ile3$ps_bufaddr = items->ile3$ps_retlen_addr = NULL;
308
309
return data_sz / sizeof(databuffer[0]);
310
}
311
312
static void massage_JPI(ILE3 *items)
313
{
314
/*
315
* Special treatment of JPI$_FINALEXC
316
* The result of that item's data buffer is a 32-bit address to a list of
317
* 4 32-bit words.
318
*/
319
for (; items->ile3$w_length != 0; items++) {
320
if (items->ile3$w_code == JPI$_FINALEXC) {
321
uint32_t *data = items->ile3$ps_bufaddr;
322
uint32_t *ptr = (uint32_t *)*data;
323
size_t j;
324
325
/*
326
* We know we made space for 4 32-bit words, so we can do in-place
327
* replacement.
328
*/
329
for (j = 0; j < 4; j++)
330
data[j] = ptr[j];
331
332
break;
333
}
334
}
335
}
336
337
/*
338
* This number expresses how many bits of data contain 1 bit of entropy.
339
*
340
* For the moment, we assume about 0.05 entropy bits per data bit, or 1
341
* bit of entropy per 20 data bits.
342
*/
343
#define ENTROPY_FACTOR 20
344
345
size_t data_collect_method(RAND_POOL *pool)
346
{
347
ILE3 JPI_items_64bit[OSSL_NELEM(JPI_item_data_64bit) + 1];
348
ILE3 RMI_items_64bit[OSSL_NELEM(RMI_item_data_64bit) + 1];
349
ILE3 DVI_items[OSSL_NELEM(DVI_item_data) + 1];
350
ILE3 JPI_items[OSSL_NELEM(JPI_item_data) + 1];
351
ILE3 RMI_items[OSSL_NELEM(RMI_item_data) + 1];
352
ILE3 SYI_items[OSSL_NELEM(SYI_item_data) + 1];
353
union {
354
/* This ensures buffer starts at 64 bit boundary */
355
uint64_t dummy;
356
uint32_t buffer[OSSL_NELEM(JPI_item_data_64bit) * 2
357
+ OSSL_NELEM(RMI_item_data_64bit) * 2
358
+ OSSL_NELEM(DVI_item_data)
359
+ OSSL_NELEM(JPI_item_data)
360
+ OSSL_NELEM(RMI_item_data)
361
+ OSSL_NELEM(SYI_item_data)
362
+ 4 /* For JPI$_FINALEXC */];
363
} data;
364
size_t total_elems = 0;
365
size_t total_length = 0;
366
size_t bytes_needed = ossl_rand_pool_bytes_needed(pool, ENTROPY_FACTOR);
367
size_t bytes_remaining = ossl_rand_pool_bytes_remaining(pool);
368
369
/* Take all the 64-bit items first, to ensure proper alignment of data */
370
total_elems +=
371
prepare_item_list(JPI_item_data_64bit, OSSL_NELEM(JPI_item_data_64bit),
372
JPI_items_64bit, &data.buffer[total_elems]);
373
total_elems +=
374
prepare_item_list(RMI_item_data_64bit, OSSL_NELEM(RMI_item_data_64bit),
375
RMI_items_64bit, &data.buffer[total_elems]);
376
/* Now the 32-bit items */
377
total_elems += prepare_item_list(DVI_item_data, OSSL_NELEM(DVI_item_data),
378
DVI_items, &data.buffer[total_elems]);
379
total_elems += prepare_item_list(JPI_item_data, OSSL_NELEM(JPI_item_data),
380
JPI_items, &data.buffer[total_elems]);
381
total_elems += prepare_item_list(RMI_item_data, OSSL_NELEM(RMI_item_data),
382
RMI_items, &data.buffer[total_elems]);
383
total_elems += prepare_item_list(SYI_item_data, OSSL_NELEM(SYI_item_data),
384
SYI_items, &data.buffer[total_elems]);
385
total_length = total_elems * sizeof(data.buffer[0]);
386
387
/* Fill data.buffer with various info bits from this process */
388
{
389
uint32_t status;
390
uint32_t efn;
391
IOSB iosb;
392
$DESCRIPTOR(SYSDEVICE, "SYS$SYSDEVICE:");
393
394
if ((status = sys$getdviw(EFN$C_ENF, 0, &SYSDEVICE, DVI_items,
395
0, 0, 0, 0, 0)) != SS$_NORMAL) {
396
lib$signal(status);
397
return 0;
398
}
399
if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items_64bit, 0, 0, 0))
400
!= SS$_NORMAL) {
401
lib$signal(status);
402
return 0;
403
}
404
if ((status = sys$getjpiw(EFN$C_ENF, 0, 0, JPI_items, 0, 0, 0))
405
!= SS$_NORMAL) {
406
lib$signal(status);
407
return 0;
408
}
409
if ((status = sys$getsyiw(EFN$C_ENF, 0, 0, SYI_items, 0, 0, 0))
410
!= SS$_NORMAL) {
411
lib$signal(status);
412
return 0;
413
}
414
/*
415
* The RMI service is a bit special, as there is no synchronous
416
* variant, so we MUST create an event flag to synchronise on.
417
*/
418
if ((status = lib$get_ef(&efn)) != SS$_NORMAL) {
419
lib$signal(status);
420
return 0;
421
}
422
if ((status = sys$getrmi(efn, 0, 0, RMI_items_64bit, &iosb, 0, 0))
423
!= SS$_NORMAL) {
424
lib$signal(status);
425
return 0;
426
}
427
if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
428
lib$signal(status);
429
return 0;
430
}
431
if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
432
lib$signal(iosb.iosb$l_getxxi_status);
433
return 0;
434
}
435
if ((status = sys$getrmi(efn, 0, 0, RMI_items, &iosb, 0, 0))
436
!= SS$_NORMAL) {
437
lib$signal(status);
438
return 0;
439
}
440
if ((status = sys$synch(efn, &iosb)) != SS$_NORMAL) {
441
lib$signal(status);
442
return 0;
443
}
444
if (iosb.iosb$l_getxxi_status != SS$_NORMAL) {
445
lib$signal(iosb.iosb$l_getxxi_status);
446
return 0;
447
}
448
if ((status = lib$free_ef(&efn)) != SS$_NORMAL) {
449
lib$signal(status);
450
return 0;
451
}
452
}
453
454
massage_JPI(JPI_items);
455
456
/*
457
* If we can't feed the requirements from the caller, we're in deep trouble.
458
*/
459
if (!ossl_assert(total_length >= bytes_needed)) {
460
ERR_raise_data(ERR_LIB_RAND, RAND_R_RANDOM_POOL_UNDERFLOW,
461
"Needed: %zu, Available: %zu",
462
bytes_needed, total_length);
463
return 0;
464
}
465
466
/*
467
* Try not to overfeed the pool
468
*/
469
if (total_length > bytes_remaining)
470
total_length = bytes_remaining;
471
472
/* We give the pessimistic value for the amount of entropy */
473
ossl_rand_pool_add(pool, (unsigned char *)data.buffer, total_length,
474
8 * total_length / ENTROPY_FACTOR);
475
return ossl_rand_pool_entropy_available(pool);
476
}
477
478
/*
479
* SYS$GET_ENTROPY METHOD
480
* ======================
481
*
482
* This is a high entropy method based on a new system service that is
483
* based on getentropy() from FreeBSD 12. It's only used if available,
484
* and its availability is detected at run-time.
485
*
486
* We assume that this function provides full entropy random output.
487
*/
488
#define PUBLIC_VECTORS "SYS$LIBRARY:SYS$PUBLIC_VECTORS.EXE"
489
#define GET_ENTROPY "SYS$GET_ENTROPY"
490
491
static int get_entropy_address_flag = 0;
492
static int (*get_entropy_address)(void *buffer, size_t buffer_size) = NULL;
493
static int init_get_entropy_address(void)
494
{
495
if (get_entropy_address_flag == 0)
496
get_entropy_address = dlsym(dlopen(PUBLIC_VECTORS, 0), GET_ENTROPY);
497
get_entropy_address_flag = 1;
498
return get_entropy_address != NULL;
499
}
500
501
size_t get_entropy_method(RAND_POOL *pool)
502
{
503
/*
504
* The documentation says that SYS$GET_ENTROPY will give a maximum of
505
* 256 bytes of data.
506
*/
507
unsigned char buffer[256];
508
size_t bytes_needed;
509
size_t bytes_to_get = 0;
510
uint32_t status;
511
512
for (bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
513
bytes_needed > 0;
514
bytes_needed -= bytes_to_get) {
515
bytes_to_get =
516
bytes_needed > sizeof(buffer) ? sizeof(buffer) : bytes_needed;
517
518
status = get_entropy_address(buffer, bytes_to_get);
519
if (status == SS$_RETRY) {
520
/* Set to zero so the loop doesn't diminish |bytes_needed| */
521
bytes_to_get = 0;
522
/* Should sleep some amount of time */
523
continue;
524
}
525
526
if (status != SS$_NORMAL) {
527
lib$signal(status);
528
return 0;
529
}
530
531
ossl_rand_pool_add(pool, buffer, bytes_to_get, 8 * bytes_to_get);
532
}
533
534
return ossl_rand_pool_entropy_available(pool);
535
}
536
537
/*
538
* MAIN ENTROPY ACQUISITION FUNCTIONS
539
* ==================================
540
*
541
* These functions are called by the RAND / DRBG functions
542
*/
543
544
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
545
{
546
if (init_get_entropy_address())
547
return get_entropy_method(pool);
548
return data_collect_method(pool);
549
}
550
551
int ossl_pool_add_nonce_data(RAND_POOL *pool)
552
{
553
/*
554
* Two variables to ensure that two nonces won't ever be the same
555
*/
556
static unsigned __int64 last_time = 0;
557
static unsigned __int32 last_seq = 0;
558
559
struct {
560
pid_t pid;
561
CRYPTO_THREAD_ID tid;
562
unsigned __int64 time;
563
unsigned __int32 seq;
564
} data;
565
566
/* Erase the entire structure including any padding */
567
memset(&data, 0, sizeof(data));
568
569
/*
570
* Add process id, thread id, a timestamp, and a sequence number in case
571
* the same time stamp is repeated, to ensure that the nonce is unique
572
* with high probability for different process instances.
573
*
574
* The normal OpenVMS time is specified to be high granularity (100ns),
575
* but the time update granularity given by sys$gettim() may be lower.
576
*
577
* OpenVMS version 8.4 (which is the latest for Alpha and Itanium) and
578
* on have sys$gettim_prec() as well, which is supposedly having a better
579
* time update granularity, but tests on Itanium (and even Alpha) have
580
* shown that compared with sys$gettim(), the difference is marginal,
581
* so of very little significance in terms of entropy.
582
* Given that, and that it's a high ask to expect everyone to have
583
* upgraded to OpenVMS version 8.4, only sys$gettim() is used, and a
584
* sequence number is added as well, in case sys$gettim() returns the
585
* same time value more than once.
586
*
587
* This function is assumed to be called under thread lock, and does
588
* therefore not take concurrency into account.
589
*/
590
data.pid = getpid();
591
data.tid = CRYPTO_THREAD_get_current_id();
592
data.seq = 0;
593
sys$gettim((void*)&data.time);
594
595
if (data.time == last_time) {
596
data.seq = ++last_seq;
597
} else {
598
last_time = data.time;
599
last_seq = 0;
600
}
601
602
return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
603
}
604
605
int ossl_rand_pool_init(void)
606
{
607
return 1;
608
}
609
610
void ossl_rand_pool_cleanup(void)
611
{
612
}
613
614
void ossl_rand_pool_keep_random_devices_open(int keep)
615
{
616
}
617
618