Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/ssl/priority_queue.c
102349 views
1
/*
2
* Copyright 2022-2024 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#include <openssl/crypto.h>
11
#include <openssl/err.h>
12
#include <assert.h>
13
#include "internal/priority_queue.h"
14
#include "internal/safe_math.h"
15
#include "internal/numbers.h"
16
17
OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
18
19
/*
20
* Fundamental operations:
21
* Binary Heap Fibonacci Heap
22
* Get smallest O(1) O(1)
23
* Delete any O(log n) O(log n) average but worst O(n)
24
* Insert O(log n) O(1)
25
*
26
* Not supported:
27
* Merge two structures O(log n) O(1)
28
* Decrease key O(log n) O(1)
29
* Increase key O(log n) ?
30
*
31
* The Fibonacci heap is quite a bit more complicated to implement and has
32
* larger overhead in practice. We favour the binary heap here. A multi-way
33
* (ternary or quaternary) heap might elicit a performance advantage via better
34
* cache access patterns.
35
*/
36
37
struct pq_heap_st {
38
void *data; /* User supplied data pointer */
39
size_t index; /* Constant index in elements[] */
40
};
41
42
struct pq_elem_st {
43
size_t posn; /* Current index in heap[] or link in free list */
44
#ifndef NDEBUG
45
int used; /* Debug flag indicating that this is in use */
46
#endif
47
};
48
49
struct ossl_pqueue_st {
50
struct pq_heap_st *heap;
51
struct pq_elem_st *elements;
52
int (*compare)(const void *, const void *);
53
size_t htop; /* Highest used heap element */
54
size_t hmax; /* Allocated heap & element space */
55
size_t freelist; /* Index into elements[], start of free element list */
56
};
57
58
/*
59
* The initial and maximum number of elements in the heap.
60
*/
61
static const size_t min_nodes = 8;
62
static const size_t max_nodes = SIZE_MAX / (sizeof(struct pq_heap_st) > sizeof(struct pq_elem_st) ? sizeof(struct pq_heap_st) : sizeof(struct pq_elem_st));
63
64
#ifndef NDEBUG
65
/* Some basic sanity checking of the data structure */
66
#define ASSERT_USED(pq, idx) \
67
assert(pq->elements[pq->heap[idx].index].used); \
68
assert(pq->elements[pq->heap[idx].index].posn == idx)
69
#define ASSERT_ELEM_USED(pq, elem) \
70
assert(pq->elements[elem].used)
71
#else
72
#define ASSERT_USED(pq, idx)
73
#define ASSERT_ELEM_USED(pq, elem)
74
#endif
75
76
/*
77
* Calculate the array growth based on the target size.
78
*
79
* The growth factor is a rational number and is defined by a numerator
80
* and a denominator. According to Andrew Koenig in his paper "Why Are
81
* Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
82
* than the golden ratio (1.618...).
83
*
84
* We use an expansion factor of 8 / 5 = 1.6
85
*/
86
static ossl_inline size_t compute_pqueue_growth(size_t target, size_t current)
87
{
88
int err = 0;
89
90
while (current < target) {
91
if (current >= max_nodes)
92
return 0;
93
94
current = safe_muldiv_size_t(current, 8, 5, &err);
95
if (err)
96
return 0;
97
if (current >= max_nodes)
98
current = max_nodes;
99
}
100
return current;
101
}
102
103
static ossl_inline void pqueue_swap_elem(OSSL_PQUEUE *pq, size_t i, size_t j)
104
{
105
struct pq_heap_st *h = pq->heap, t_h;
106
struct pq_elem_st *e = pq->elements;
107
108
ASSERT_USED(pq, i);
109
ASSERT_USED(pq, j);
110
111
t_h = h[i];
112
h[i] = h[j];
113
h[j] = t_h;
114
115
e[h[i].index].posn = i;
116
e[h[j].index].posn = j;
117
}
118
119
static ossl_inline void pqueue_move_elem(OSSL_PQUEUE *pq, size_t from, size_t to)
120
{
121
struct pq_heap_st *h = pq->heap;
122
struct pq_elem_st *e = pq->elements;
123
124
ASSERT_USED(pq, from);
125
126
h[to] = h[from];
127
e[h[to].index].posn = to;
128
}
129
130
/*
131
* Force the specified element to the front of the heap. This breaks
132
* the heap partial ordering pre-condition.
133
*/
134
static ossl_inline void pqueue_force_bottom(OSSL_PQUEUE *pq, size_t n)
135
{
136
ASSERT_USED(pq, n);
137
while (n > 0) {
138
const size_t p = (n - 1) / 2;
139
140
ASSERT_USED(pq, p);
141
pqueue_swap_elem(pq, n, p);
142
n = p;
143
}
144
}
145
146
/*
147
* Move an element down to its correct position to restore the partial
148
* order pre-condition.
149
*/
150
static ossl_inline void pqueue_move_down(OSSL_PQUEUE *pq, size_t n)
151
{
152
struct pq_heap_st *h = pq->heap;
153
154
ASSERT_USED(pq, n);
155
while (n > 0) {
156
const size_t p = (n - 1) / 2;
157
158
ASSERT_USED(pq, p);
159
if (pq->compare(h[n].data, h[p].data) >= 0)
160
break;
161
pqueue_swap_elem(pq, n, p);
162
n = p;
163
}
164
}
165
166
/*
167
* Move an element up to its correct position to restore the partial
168
* order pre-condition.
169
*/
170
static ossl_inline void pqueue_move_up(OSSL_PQUEUE *pq, size_t n)
171
{
172
struct pq_heap_st *h = pq->heap;
173
size_t p = n * 2 + 1;
174
175
ASSERT_USED(pq, n);
176
if (pq->htop > p + 1) {
177
ASSERT_USED(pq, p);
178
ASSERT_USED(pq, p + 1);
179
if (pq->compare(h[p].data, h[p + 1].data) > 0)
180
p++;
181
}
182
while (pq->htop > p && pq->compare(h[p].data, h[n].data) < 0) {
183
ASSERT_USED(pq, p);
184
pqueue_swap_elem(pq, n, p);
185
n = p;
186
p = n * 2 + 1;
187
if (pq->htop > p + 1) {
188
ASSERT_USED(pq, p + 1);
189
if (pq->compare(h[p].data, h[p + 1].data) > 0)
190
p++;
191
}
192
}
193
}
194
195
int ossl_pqueue_push(OSSL_PQUEUE *pq, void *data, size_t *elem)
196
{
197
size_t n, m;
198
199
if (!ossl_pqueue_reserve(pq, 1))
200
return 0;
201
202
n = pq->htop++;
203
m = pq->freelist;
204
pq->freelist = pq->elements[m].posn;
205
206
pq->heap[n].data = data;
207
pq->heap[n].index = m;
208
209
pq->elements[m].posn = n;
210
#ifndef NDEBUG
211
pq->elements[m].used = 1;
212
#endif
213
pqueue_move_down(pq, n);
214
if (elem != NULL)
215
*elem = m;
216
return 1;
217
}
218
219
void *ossl_pqueue_peek(const OSSL_PQUEUE *pq)
220
{
221
if (pq->htop > 0) {
222
ASSERT_USED(pq, 0);
223
return pq->heap->data;
224
}
225
return NULL;
226
}
227
228
void *ossl_pqueue_pop(OSSL_PQUEUE *pq)
229
{
230
void *res;
231
size_t elem;
232
233
if (pq == NULL || pq->htop == 0)
234
return NULL;
235
236
ASSERT_USED(pq, 0);
237
res = pq->heap->data;
238
elem = pq->heap->index;
239
240
if (--pq->htop != 0) {
241
pqueue_move_elem(pq, pq->htop, 0);
242
pqueue_move_up(pq, 0);
243
}
244
245
pq->elements[elem].posn = pq->freelist;
246
pq->freelist = elem;
247
#ifndef NDEBUG
248
pq->elements[elem].used = 0;
249
#endif
250
return res;
251
}
252
253
void *ossl_pqueue_remove(OSSL_PQUEUE *pq, size_t elem)
254
{
255
size_t n;
256
257
if (pq == NULL || elem >= pq->hmax || pq->htop == 0)
258
return 0;
259
260
ASSERT_ELEM_USED(pq, elem);
261
n = pq->elements[elem].posn;
262
263
ASSERT_USED(pq, n);
264
265
if (n == pq->htop - 1) {
266
pq->elements[elem].posn = pq->freelist;
267
pq->freelist = elem;
268
#ifndef NDEBUG
269
pq->elements[elem].used = 0;
270
#endif
271
return pq->heap[--pq->htop].data;
272
}
273
if (n > 0)
274
pqueue_force_bottom(pq, n);
275
return ossl_pqueue_pop(pq);
276
}
277
278
static void pqueue_add_freelist(OSSL_PQUEUE *pq, size_t from)
279
{
280
struct pq_elem_st *e = pq->elements;
281
size_t i;
282
283
#ifndef NDEBUG
284
for (i = from; i < pq->hmax; i++)
285
e[i].used = 0;
286
#endif
287
e[from].posn = pq->freelist;
288
for (i = from + 1; i < pq->hmax; i++)
289
e[i].posn = i - 1;
290
pq->freelist = pq->hmax - 1;
291
}
292
293
int ossl_pqueue_reserve(OSSL_PQUEUE *pq, size_t n)
294
{
295
size_t new_max, cur_max;
296
struct pq_heap_st *h;
297
struct pq_elem_st *e;
298
299
if (pq == NULL)
300
return 0;
301
cur_max = pq->hmax;
302
if (pq->htop + n < cur_max)
303
return 1;
304
305
new_max = compute_pqueue_growth(n + cur_max, cur_max);
306
if (new_max == 0) {
307
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
308
return 0;
309
}
310
311
h = OPENSSL_realloc(pq->heap, new_max * sizeof(*pq->heap));
312
if (h == NULL)
313
return 0;
314
pq->heap = h;
315
316
e = OPENSSL_realloc(pq->elements, new_max * sizeof(*pq->elements));
317
if (e == NULL)
318
return 0;
319
pq->elements = e;
320
321
pq->hmax = new_max;
322
pqueue_add_freelist(pq, cur_max);
323
return 1;
324
}
325
326
OSSL_PQUEUE *ossl_pqueue_new(int (*compare)(const void *, const void *))
327
{
328
OSSL_PQUEUE *pq;
329
330
if (compare == NULL)
331
return NULL;
332
333
pq = OPENSSL_malloc(sizeof(*pq));
334
if (pq == NULL)
335
return NULL;
336
pq->compare = compare;
337
pq->hmax = min_nodes;
338
pq->htop = 0;
339
pq->freelist = 0;
340
pq->heap = OPENSSL_malloc(sizeof(*pq->heap) * min_nodes);
341
pq->elements = OPENSSL_malloc(sizeof(*pq->elements) * min_nodes);
342
if (pq->heap == NULL || pq->elements == NULL) {
343
ossl_pqueue_free(pq);
344
return NULL;
345
}
346
pqueue_add_freelist(pq, 0);
347
return pq;
348
}
349
350
void ossl_pqueue_free(OSSL_PQUEUE *pq)
351
{
352
if (pq != NULL) {
353
OPENSSL_free(pq->heap);
354
OPENSSL_free(pq->elements);
355
OPENSSL_free(pq);
356
}
357
}
358
359
void ossl_pqueue_pop_free(OSSL_PQUEUE *pq, void (*freefunc)(void *))
360
{
361
size_t i;
362
363
if (pq != NULL) {
364
for (i = 0; i < pq->htop; i++)
365
(*freefunc)(pq->heap[i].data);
366
ossl_pqueue_free(pq);
367
}
368
}
369
370
size_t ossl_pqueue_num(const OSSL_PQUEUE *pq)
371
{
372
return pq != NULL ? pq->htop : 0;
373
}
374
375