Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/ssl/priority_queue.c
48150 views
1
/*
2
* Copyright 2022-2024 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
10
#include <openssl/crypto.h>
11
#include <openssl/err.h>
12
#include <assert.h>
13
#include "internal/priority_queue.h"
14
#include "internal/safe_math.h"
15
#include "internal/numbers.h"
16
17
OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
18
19
/*
20
* Fundamental operations:
21
* Binary Heap Fibonacci Heap
22
* Get smallest O(1) O(1)
23
* Delete any O(log n) O(log n) average but worst O(n)
24
* Insert O(log n) O(1)
25
*
26
* Not supported:
27
* Merge two structures O(log n) O(1)
28
* Decrease key O(log n) O(1)
29
* Increase key O(log n) ?
30
*
31
* The Fibonacci heap is quite a bit more complicated to implement and has
32
* larger overhead in practice. We favour the binary heap here. A multi-way
33
* (ternary or quaternary) heap might elicit a performance advantage via better
34
* cache access patterns.
35
*/
36
37
struct pq_heap_st {
38
void *data; /* User supplied data pointer */
39
size_t index; /* Constant index in elements[] */
40
};
41
42
struct pq_elem_st {
43
size_t posn; /* Current index in heap[] or link in free list */
44
#ifndef NDEBUG
45
int used; /* Debug flag indicating that this is in use */
46
#endif
47
};
48
49
struct ossl_pqueue_st {
50
struct pq_heap_st *heap;
51
struct pq_elem_st *elements;
52
int (*compare)(const void *, const void *);
53
size_t htop; /* Highest used heap element */
54
size_t hmax; /* Allocated heap & element space */
55
size_t freelist; /* Index into elements[], start of free element list */
56
};
57
58
/*
59
* The initial and maximum number of elements in the heap.
60
*/
61
static const size_t min_nodes = 8;
62
static const size_t max_nodes =
63
SIZE_MAX / (sizeof(struct pq_heap_st) > sizeof(struct pq_elem_st)
64
? sizeof(struct pq_heap_st) : sizeof(struct pq_elem_st));
65
66
#ifndef NDEBUG
67
/* Some basic sanity checking of the data structure */
68
# define ASSERT_USED(pq, idx) \
69
assert(pq->elements[pq->heap[idx].index].used); \
70
assert(pq->elements[pq->heap[idx].index].posn == idx)
71
# define ASSERT_ELEM_USED(pq, elem) \
72
assert(pq->elements[elem].used)
73
#else
74
# define ASSERT_USED(pq, idx)
75
# define ASSERT_ELEM_USED(pq, elem)
76
#endif
77
78
/*
79
* Calculate the array growth based on the target size.
80
*
81
* The growth factor is a rational number and is defined by a numerator
82
* and a denominator. According to Andrew Koenig in his paper "Why Are
83
* Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
84
* than the golden ratio (1.618...).
85
*
86
* We use an expansion factor of 8 / 5 = 1.6
87
*/
88
static ossl_inline size_t compute_pqueue_growth(size_t target, size_t current)
89
{
90
int err = 0;
91
92
while (current < target) {
93
if (current >= max_nodes)
94
return 0;
95
96
current = safe_muldiv_size_t(current, 8, 5, &err);
97
if (err)
98
return 0;
99
if (current >= max_nodes)
100
current = max_nodes;
101
}
102
return current;
103
}
104
105
static ossl_inline void pqueue_swap_elem(OSSL_PQUEUE *pq, size_t i, size_t j)
106
{
107
struct pq_heap_st *h = pq->heap, t_h;
108
struct pq_elem_st *e = pq->elements;
109
110
ASSERT_USED(pq, i);
111
ASSERT_USED(pq, j);
112
113
t_h = h[i];
114
h[i] = h[j];
115
h[j] = t_h;
116
117
e[h[i].index].posn = i;
118
e[h[j].index].posn = j;
119
}
120
121
static ossl_inline void pqueue_move_elem(OSSL_PQUEUE *pq, size_t from, size_t to)
122
{
123
struct pq_heap_st *h = pq->heap;
124
struct pq_elem_st *e = pq->elements;
125
126
ASSERT_USED(pq, from);
127
128
h[to] = h[from];
129
e[h[to].index].posn = to;
130
}
131
132
/*
133
* Force the specified element to the front of the heap. This breaks
134
* the heap partial ordering pre-condition.
135
*/
136
static ossl_inline void pqueue_force_bottom(OSSL_PQUEUE *pq, size_t n)
137
{
138
ASSERT_USED(pq, n);
139
while (n > 0) {
140
const size_t p = (n - 1) / 2;
141
142
ASSERT_USED(pq, p);
143
pqueue_swap_elem(pq, n, p);
144
n = p;
145
}
146
}
147
148
/*
149
* Move an element down to its correct position to restore the partial
150
* order pre-condition.
151
*/
152
static ossl_inline void pqueue_move_down(OSSL_PQUEUE *pq, size_t n)
153
{
154
struct pq_heap_st *h = pq->heap;
155
156
ASSERT_USED(pq, n);
157
while (n > 0) {
158
const size_t p = (n - 1) / 2;
159
160
ASSERT_USED(pq, p);
161
if (pq->compare(h[n].data, h[p].data) >= 0)
162
break;
163
pqueue_swap_elem(pq, n, p);
164
n = p;
165
}
166
}
167
168
/*
169
* Move an element up to its correct position to restore the partial
170
* order pre-condition.
171
*/
172
static ossl_inline void pqueue_move_up(OSSL_PQUEUE *pq, size_t n)
173
{
174
struct pq_heap_st *h = pq->heap;
175
size_t p = n * 2 + 1;
176
177
ASSERT_USED(pq, n);
178
if (pq->htop > p + 1) {
179
ASSERT_USED(pq, p);
180
ASSERT_USED(pq, p + 1);
181
if (pq->compare(h[p].data, h[p + 1].data) > 0)
182
p++;
183
}
184
while (pq->htop > p && pq->compare(h[p].data, h[n].data) < 0) {
185
ASSERT_USED(pq, p);
186
pqueue_swap_elem(pq, n, p);
187
n = p;
188
p = n * 2 + 1;
189
if (pq->htop > p + 1) {
190
ASSERT_USED(pq, p + 1);
191
if (pq->compare(h[p].data, h[p + 1].data) > 0)
192
p++;
193
}
194
}
195
}
196
197
int ossl_pqueue_push(OSSL_PQUEUE *pq, void *data, size_t *elem)
198
{
199
size_t n, m;
200
201
if (!ossl_pqueue_reserve(pq, 1))
202
return 0;
203
204
n = pq->htop++;
205
m = pq->freelist;
206
pq->freelist = pq->elements[m].posn;
207
208
pq->heap[n].data = data;
209
pq->heap[n].index = m;
210
211
pq->elements[m].posn = n;
212
#ifndef NDEBUG
213
pq->elements[m].used = 1;
214
#endif
215
pqueue_move_down(pq, n);
216
if (elem != NULL)
217
*elem = m;
218
return 1;
219
}
220
221
void *ossl_pqueue_peek(const OSSL_PQUEUE *pq)
222
{
223
if (pq->htop > 0) {
224
ASSERT_USED(pq, 0);
225
return pq->heap->data;
226
}
227
return NULL;
228
}
229
230
void *ossl_pqueue_pop(OSSL_PQUEUE *pq)
231
{
232
void *res;
233
size_t elem;
234
235
if (pq == NULL || pq->htop == 0)
236
return NULL;
237
238
ASSERT_USED(pq, 0);
239
res = pq->heap->data;
240
elem = pq->heap->index;
241
242
if (--pq->htop != 0) {
243
pqueue_move_elem(pq, pq->htop, 0);
244
pqueue_move_up(pq, 0);
245
}
246
247
pq->elements[elem].posn = pq->freelist;
248
pq->freelist = elem;
249
#ifndef NDEBUG
250
pq->elements[elem].used = 0;
251
#endif
252
return res;
253
}
254
255
void *ossl_pqueue_remove(OSSL_PQUEUE *pq, size_t elem)
256
{
257
size_t n;
258
259
if (pq == NULL || elem >= pq->hmax || pq->htop == 0)
260
return 0;
261
262
ASSERT_ELEM_USED(pq, elem);
263
n = pq->elements[elem].posn;
264
265
ASSERT_USED(pq, n);
266
267
if (n == pq->htop - 1) {
268
pq->elements[elem].posn = pq->freelist;
269
pq->freelist = elem;
270
#ifndef NDEBUG
271
pq->elements[elem].used = 0;
272
#endif
273
return pq->heap[--pq->htop].data;
274
}
275
if (n > 0)
276
pqueue_force_bottom(pq, n);
277
return ossl_pqueue_pop(pq);
278
}
279
280
static void pqueue_add_freelist(OSSL_PQUEUE *pq, size_t from)
281
{
282
struct pq_elem_st *e = pq->elements;
283
size_t i;
284
285
#ifndef NDEBUG
286
for (i = from; i < pq->hmax; i++)
287
e[i].used = 0;
288
#endif
289
e[from].posn = pq->freelist;
290
for (i = from + 1; i < pq->hmax; i++)
291
e[i].posn = i - 1;
292
pq->freelist = pq->hmax - 1;
293
}
294
295
int ossl_pqueue_reserve(OSSL_PQUEUE *pq, size_t n)
296
{
297
size_t new_max, cur_max;
298
struct pq_heap_st *h;
299
struct pq_elem_st *e;
300
301
if (pq == NULL)
302
return 0;
303
cur_max = pq->hmax;
304
if (pq->htop + n < cur_max)
305
return 1;
306
307
new_max = compute_pqueue_growth(n + cur_max, cur_max);
308
if (new_max == 0) {
309
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
310
return 0;
311
}
312
313
h = OPENSSL_realloc(pq->heap, new_max * sizeof(*pq->heap));
314
if (h == NULL)
315
return 0;
316
pq->heap = h;
317
318
e = OPENSSL_realloc(pq->elements, new_max * sizeof(*pq->elements));
319
if (e == NULL)
320
return 0;
321
pq->elements = e;
322
323
pq->hmax = new_max;
324
pqueue_add_freelist(pq, cur_max);
325
return 1;
326
}
327
328
OSSL_PQUEUE *ossl_pqueue_new(int (*compare)(const void *, const void *))
329
{
330
OSSL_PQUEUE *pq;
331
332
if (compare == NULL)
333
return NULL;
334
335
pq = OPENSSL_malloc(sizeof(*pq));
336
if (pq == NULL)
337
return NULL;
338
pq->compare = compare;
339
pq->hmax = min_nodes;
340
pq->htop = 0;
341
pq->freelist = 0;
342
pq->heap = OPENSSL_malloc(sizeof(*pq->heap) * min_nodes);
343
pq->elements = OPENSSL_malloc(sizeof(*pq->elements) * min_nodes);
344
if (pq->heap == NULL || pq->elements == NULL) {
345
ossl_pqueue_free(pq);
346
return NULL;
347
}
348
pqueue_add_freelist(pq, 0);
349
return pq;
350
}
351
352
void ossl_pqueue_free(OSSL_PQUEUE *pq)
353
{
354
if (pq != NULL) {
355
OPENSSL_free(pq->heap);
356
OPENSSL_free(pq->elements);
357
OPENSSL_free(pq);
358
}
359
}
360
361
void ossl_pqueue_pop_free(OSSL_PQUEUE *pq, void (*freefunc)(void *))
362
{
363
size_t i;
364
365
if (pq != NULL) {
366
for (i = 0; i < pq->htop; i++)
367
(*freefunc)(pq->heap[i].data);
368
ossl_pqueue_free(pq);
369
}
370
}
371
372
size_t ossl_pqueue_num(const OSSL_PQUEUE *pq)
373
{
374
return pq != NULL ? pq->htop : 0;
375
}
376
377