Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/ssl/quic/quic_reactor.c
48261 views
1
/*
2
* Copyright 2022-2025 The OpenSSL Project Authors. All Rights Reserved.
3
*
4
* Licensed under the Apache License 2.0 (the "License"). You may not use
5
* this file except in compliance with the License. You can obtain a copy
6
* in the file LICENSE in the source distribution or at
7
* https://www.openssl.org/source/license.html
8
*/
9
#include "internal/quic_reactor.h"
10
#include "internal/common.h"
11
#include "internal/thread_arch.h"
12
#include <assert.h>
13
14
/*
15
* Core I/O Reactor Framework
16
* ==========================
17
*/
18
static void rtor_notify_other_threads(QUIC_REACTOR *rtor);
19
20
int ossl_quic_reactor_init(QUIC_REACTOR *rtor,
21
void (*tick_cb)(QUIC_TICK_RESULT *res, void *arg,
22
uint32_t flags),
23
void *tick_cb_arg,
24
CRYPTO_MUTEX *mutex,
25
OSSL_TIME initial_tick_deadline,
26
uint64_t flags)
27
{
28
rtor->poll_r.type = BIO_POLL_DESCRIPTOR_TYPE_NONE;
29
rtor->poll_w.type = BIO_POLL_DESCRIPTOR_TYPE_NONE;
30
rtor->net_read_desired = 0;
31
rtor->net_write_desired = 0;
32
rtor->can_poll_r = 0;
33
rtor->can_poll_w = 0;
34
rtor->tick_deadline = initial_tick_deadline;
35
36
rtor->tick_cb = tick_cb;
37
rtor->tick_cb_arg = tick_cb_arg;
38
rtor->mutex = mutex;
39
40
rtor->cur_blocking_waiters = 0;
41
42
if ((flags & QUIC_REACTOR_FLAG_USE_NOTIFIER) != 0) {
43
if (!ossl_rio_notifier_init(&rtor->notifier))
44
return 0;
45
46
if ((rtor->notifier_cv = ossl_crypto_condvar_new()) == NULL) {
47
ossl_rio_notifier_cleanup(&rtor->notifier);
48
return 0;
49
}
50
51
rtor->have_notifier = 1;
52
} else {
53
rtor->have_notifier = 0;
54
}
55
56
return 1;
57
}
58
59
void ossl_quic_reactor_cleanup(QUIC_REACTOR *rtor)
60
{
61
if (rtor == NULL)
62
return;
63
64
if (rtor->have_notifier) {
65
ossl_rio_notifier_cleanup(&rtor->notifier);
66
rtor->have_notifier = 0;
67
68
ossl_crypto_condvar_free(&rtor->notifier_cv);
69
}
70
}
71
72
void ossl_quic_reactor_set_poll_r(QUIC_REACTOR *rtor, const BIO_POLL_DESCRIPTOR *r)
73
{
74
if (r == NULL)
75
rtor->poll_r.type = BIO_POLL_DESCRIPTOR_TYPE_NONE;
76
else
77
rtor->poll_r = *r;
78
79
rtor->can_poll_r
80
= ossl_quic_reactor_can_support_poll_descriptor(rtor, &rtor->poll_r);
81
}
82
83
void ossl_quic_reactor_set_poll_w(QUIC_REACTOR *rtor, const BIO_POLL_DESCRIPTOR *w)
84
{
85
if (w == NULL)
86
rtor->poll_w.type = BIO_POLL_DESCRIPTOR_TYPE_NONE;
87
else
88
rtor->poll_w = *w;
89
90
rtor->can_poll_w
91
= ossl_quic_reactor_can_support_poll_descriptor(rtor, &rtor->poll_w);
92
}
93
94
const BIO_POLL_DESCRIPTOR *ossl_quic_reactor_get_poll_r(const QUIC_REACTOR *rtor)
95
{
96
return &rtor->poll_r;
97
}
98
99
const BIO_POLL_DESCRIPTOR *ossl_quic_reactor_get_poll_w(const QUIC_REACTOR *rtor)
100
{
101
return &rtor->poll_w;
102
}
103
104
int ossl_quic_reactor_can_support_poll_descriptor(const QUIC_REACTOR *rtor,
105
const BIO_POLL_DESCRIPTOR *d)
106
{
107
return d->type == BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD;
108
}
109
110
int ossl_quic_reactor_can_poll_r(const QUIC_REACTOR *rtor)
111
{
112
return rtor->can_poll_r;
113
}
114
115
int ossl_quic_reactor_can_poll_w(const QUIC_REACTOR *rtor)
116
{
117
return rtor->can_poll_w;
118
}
119
120
int ossl_quic_reactor_net_read_desired(QUIC_REACTOR *rtor)
121
{
122
return rtor->net_read_desired;
123
}
124
125
int ossl_quic_reactor_net_write_desired(QUIC_REACTOR *rtor)
126
{
127
return rtor->net_write_desired;
128
}
129
130
OSSL_TIME ossl_quic_reactor_get_tick_deadline(QUIC_REACTOR *rtor)
131
{
132
return rtor->tick_deadline;
133
}
134
135
int ossl_quic_reactor_tick(QUIC_REACTOR *rtor, uint32_t flags)
136
{
137
QUIC_TICK_RESULT res = {0};
138
139
/*
140
* Note that the tick callback cannot fail; this is intentional. Arguably it
141
* does not make that much sense for ticking to 'fail' (in the sense of an
142
* explicit error indicated to the user) because ticking is by its nature
143
* best effort. If something fatal happens with a connection we can report
144
* it on the next actual application I/O call.
145
*/
146
rtor->tick_cb(&res, rtor->tick_cb_arg, flags);
147
148
rtor->net_read_desired = res.net_read_desired;
149
rtor->net_write_desired = res.net_write_desired;
150
rtor->tick_deadline = res.tick_deadline;
151
if (res.notify_other_threads)
152
rtor_notify_other_threads(rtor);
153
154
return 1;
155
}
156
157
RIO_NOTIFIER *ossl_quic_reactor_get0_notifier(QUIC_REACTOR *rtor)
158
{
159
return rtor->have_notifier ? &rtor->notifier : NULL;
160
}
161
162
/*
163
* Blocking I/O Adaptation Layer
164
* =============================
165
*/
166
167
/*
168
* Utility which can be used to poll on up to two FDs. This is designed to
169
* support use of split FDs (e.g. with SSL_set_rfd and SSL_set_wfd where
170
* different FDs are used for read and write).
171
*
172
* Generally use of poll(2) is preferred where available. Windows, however,
173
* hasn't traditionally offered poll(2), only select(2). WSAPoll() was
174
* introduced in Vista but has seemingly been buggy until relatively recent
175
* versions of Windows 10. Moreover we support XP so this is not a suitable
176
* target anyway. However, the traditional issues with select(2) turn out not to
177
* be an issue on Windows; whereas traditional *NIX select(2) uses a bitmap of
178
* FDs (and thus is limited in the magnitude of the FDs expressible), Windows
179
* select(2) is very different. In Windows, socket handles are not allocated
180
* contiguously from zero and thus this bitmap approach was infeasible. Thus in
181
* adapting the Berkeley sockets API to Windows a different approach was taken
182
* whereby the fd_set contains a fixed length array of socket handles and an
183
* integer indicating how many entries are valid; thus Windows select()
184
* ironically is actually much more like *NIX poll(2) than *NIX select(2). In
185
* any case, this means that the relevant limit for Windows select() is the
186
* number of FDs being polled, not the magnitude of those FDs. Since we only
187
* poll for two FDs here, this limit does not concern us.
188
*
189
* Usage: rfd and wfd may be the same or different. Either or both may also be
190
* -1. If rfd_want_read is 1, rfd is polled for readability, and if
191
* wfd_want_write is 1, wfd is polled for writability. Note that since any
192
* passed FD is always polled for error conditions, setting rfd_want_read=0 and
193
* wfd_want_write=0 is not the same as passing -1 for both FDs.
194
*
195
* deadline is a timestamp to return at. If it is ossl_time_infinite(), the call
196
* never times out.
197
*
198
* Returns 0 on error and 1 on success. Timeout expiry is considered a success
199
* condition. We don't elaborate our return values here because the way we are
200
* actually using this doesn't currently care.
201
*
202
* If mutex is non-NULL, it is assumed to be held for write and is unlocked for
203
* the duration of the call.
204
*
205
* Precondition: mutex is NULL or is held for write (unchecked)
206
* Postcondition: mutex is NULL or is held for write (unless
207
* CRYPTO_THREAD_write_lock fails)
208
*/
209
static int poll_two_fds(int rfd, int rfd_want_read,
210
int wfd, int wfd_want_write,
211
int notify_rfd,
212
OSSL_TIME deadline,
213
CRYPTO_MUTEX *mutex)
214
{
215
#if defined(OPENSSL_SYS_WINDOWS) || !defined(POLLIN)
216
fd_set rfd_set, wfd_set, efd_set;
217
OSSL_TIME now, timeout;
218
struct timeval tv, *ptv;
219
int maxfd, pres;
220
221
# ifndef OPENSSL_SYS_WINDOWS
222
/*
223
* On Windows there is no relevant limit to the magnitude of a fd value (see
224
* above). On *NIX the fd_set uses a bitmap and we must check the limit.
225
*/
226
if (rfd >= FD_SETSIZE || wfd >= FD_SETSIZE)
227
return 0;
228
# endif
229
230
FD_ZERO(&rfd_set);
231
FD_ZERO(&wfd_set);
232
FD_ZERO(&efd_set);
233
234
if (rfd != INVALID_SOCKET && rfd_want_read)
235
openssl_fdset(rfd, &rfd_set);
236
if (wfd != INVALID_SOCKET && wfd_want_write)
237
openssl_fdset(wfd, &wfd_set);
238
239
/* Always check for error conditions. */
240
if (rfd != INVALID_SOCKET)
241
openssl_fdset(rfd, &efd_set);
242
if (wfd != INVALID_SOCKET)
243
openssl_fdset(wfd, &efd_set);
244
245
/* Check for notifier FD readability. */
246
if (notify_rfd != INVALID_SOCKET) {
247
openssl_fdset(notify_rfd, &rfd_set);
248
openssl_fdset(notify_rfd, &efd_set);
249
}
250
251
maxfd = rfd;
252
if (wfd > maxfd)
253
maxfd = wfd;
254
if (notify_rfd > maxfd)
255
maxfd = notify_rfd;
256
257
if (!ossl_assert(rfd != INVALID_SOCKET || wfd != INVALID_SOCKET
258
|| !ossl_time_is_infinite(deadline)))
259
/* Do not block forever; should not happen. */
260
return 0;
261
262
/*
263
* The mutex dance (unlock/re-locak after poll/seclect) is
264
* potentially problematic. This may create a situation when
265
* two threads arrive to select/poll with the same file
266
* descriptors. We just need to be aware of this.
267
*/
268
# if defined(OPENSSL_THREADS)
269
if (mutex != NULL)
270
ossl_crypto_mutex_unlock(mutex);
271
# endif
272
273
do {
274
/*
275
* select expects a timeout, not a deadline, so do the conversion.
276
* Update for each call to ensure the correct value is used if we repeat
277
* due to EINTR.
278
*/
279
if (ossl_time_is_infinite(deadline)) {
280
ptv = NULL;
281
} else {
282
now = ossl_time_now();
283
/*
284
* ossl_time_subtract saturates to zero so we don't need to check if
285
* now > deadline.
286
*/
287
timeout = ossl_time_subtract(deadline, now);
288
tv = ossl_time_to_timeval(timeout);
289
ptv = &tv;
290
}
291
292
pres = select(maxfd + 1, &rfd_set, &wfd_set, &efd_set, ptv);
293
} while (pres == -1 && get_last_socket_error_is_eintr());
294
295
# if defined(OPENSSL_THREADS)
296
if (mutex != NULL)
297
ossl_crypto_mutex_lock(mutex);
298
# endif
299
300
return pres < 0 ? 0 : 1;
301
#else
302
int pres, timeout_ms;
303
OSSL_TIME now, timeout;
304
struct pollfd pfds[3] = {0};
305
size_t npfd = 0;
306
307
if (rfd == wfd) {
308
pfds[npfd].fd = rfd;
309
pfds[npfd].events = (rfd_want_read ? POLLIN : 0)
310
| (wfd_want_write ? POLLOUT : 0);
311
if (rfd >= 0 && pfds[npfd].events != 0)
312
++npfd;
313
} else {
314
pfds[npfd].fd = rfd;
315
pfds[npfd].events = (rfd_want_read ? POLLIN : 0);
316
if (rfd >= 0 && pfds[npfd].events != 0)
317
++npfd;
318
319
pfds[npfd].fd = wfd;
320
pfds[npfd].events = (wfd_want_write ? POLLOUT : 0);
321
if (wfd >= 0 && pfds[npfd].events != 0)
322
++npfd;
323
}
324
325
if (notify_rfd >= 0) {
326
pfds[npfd].fd = notify_rfd;
327
pfds[npfd].events = POLLIN;
328
++npfd;
329
}
330
331
if (!ossl_assert(npfd != 0 || !ossl_time_is_infinite(deadline)))
332
/* Do not block forever; should not happen. */
333
return 0;
334
335
# if defined(OPENSSL_THREADS)
336
if (mutex != NULL)
337
ossl_crypto_mutex_unlock(mutex);
338
# endif
339
340
do {
341
if (ossl_time_is_infinite(deadline)) {
342
timeout_ms = -1;
343
} else {
344
now = ossl_time_now();
345
timeout = ossl_time_subtract(deadline, now);
346
timeout_ms = ossl_time2ms(timeout);
347
}
348
349
pres = poll(pfds, npfd, timeout_ms);
350
} while (pres == -1 && get_last_socket_error_is_eintr());
351
352
# if defined(OPENSSL_THREADS)
353
if (mutex != NULL)
354
ossl_crypto_mutex_lock(mutex);
355
# endif
356
357
return pres < 0 ? 0 : 1;
358
#endif
359
}
360
361
static int poll_descriptor_to_fd(const BIO_POLL_DESCRIPTOR *d, int *fd)
362
{
363
if (d == NULL || d->type == BIO_POLL_DESCRIPTOR_TYPE_NONE) {
364
*fd = INVALID_SOCKET;
365
return 1;
366
}
367
368
if (d->type != BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD
369
|| d->value.fd == INVALID_SOCKET)
370
return 0;
371
372
*fd = d->value.fd;
373
return 1;
374
}
375
376
/*
377
* Poll up to two abstract poll descriptors, as well as an optional notify FD.
378
* Currently we only support poll descriptors which represent FDs.
379
*
380
* If mutex is non-NULL, it is assumed be a lock currently held for write and is
381
* unlocked for the duration of any wait.
382
*
383
* Precondition: mutex is NULL or is held for write (unchecked)
384
* Postcondition: mutex is NULL or is held for write (unless
385
* CRYPTO_THREAD_write_lock fails)
386
*/
387
static int poll_two_descriptors(const BIO_POLL_DESCRIPTOR *r, int r_want_read,
388
const BIO_POLL_DESCRIPTOR *w, int w_want_write,
389
int notify_rfd,
390
OSSL_TIME deadline,
391
CRYPTO_MUTEX *mutex)
392
{
393
int rfd, wfd;
394
395
if (!poll_descriptor_to_fd(r, &rfd)
396
|| !poll_descriptor_to_fd(w, &wfd))
397
return 0;
398
399
return poll_two_fds(rfd, r_want_read, wfd, w_want_write,
400
notify_rfd, deadline, mutex);
401
}
402
403
/*
404
* Notify other threads currently blocking in
405
* ossl_quic_reactor_block_until_pred() calls that a predicate they are using
406
* might now be met due to state changes.
407
*
408
* This function must be called after state changes which might cause a
409
* predicate in another thread to now be met (i.e., ticking). It is a no-op if
410
* inter-thread notification is not being used.
411
*
412
* The reactor mutex must be held while calling this function.
413
*/
414
static void rtor_notify_other_threads(QUIC_REACTOR *rtor)
415
{
416
if (!rtor->have_notifier)
417
return;
418
419
/*
420
* This function is called when we have done anything on this thread which
421
* might allow a predicate for a block_until_pred call on another thread to
422
* now be met.
423
*
424
* When this happens, we need to wake those threads using the notifier.
425
* However, we do not want to wake *this* thread (if/when it subsequently
426
* enters block_until_pred) due to the notifier FD becoming readable.
427
* Therefore, signal the notifier, and use a CV to detect when all other
428
* threads have woken.
429
*/
430
431
if (rtor->cur_blocking_waiters == 0)
432
/* Nothing to do in this case. */
433
return;
434
435
/* Signal the notifier to wake up all threads. */
436
if (!rtor->signalled_notifier) {
437
ossl_rio_notifier_signal(&rtor->notifier);
438
rtor->signalled_notifier = 1;
439
}
440
441
/*
442
* Wait on the CV until all threads have finished the first phase of the
443
* wakeup process and the last thread out has taken responsibility for
444
* unsignalling the notifier.
445
*/
446
while (rtor->signalled_notifier)
447
ossl_crypto_condvar_wait(rtor->notifier_cv, rtor->mutex);
448
}
449
450
/*
451
* Block until a predicate function evaluates to true.
452
*
453
* If mutex is non-NULL, it is assumed be a lock currently held for write and is
454
* unlocked for the duration of any wait.
455
*
456
* Precondition: Must hold channel write lock (unchecked)
457
* Precondition: mutex is NULL or is held for write (unchecked)
458
* Postcondition: mutex is NULL or is held for write (unless
459
* CRYPTO_THREAD_write_lock fails)
460
*/
461
int ossl_quic_reactor_block_until_pred(QUIC_REACTOR *rtor,
462
int (*pred)(void *arg), void *pred_arg,
463
uint32_t flags)
464
{
465
int res, net_read_desired, net_write_desired, notifier_fd;
466
OSSL_TIME tick_deadline;
467
468
notifier_fd
469
= (rtor->have_notifier ? ossl_rio_notifier_as_fd(&rtor->notifier)
470
: INVALID_SOCKET);
471
472
for (;;) {
473
if ((flags & SKIP_FIRST_TICK) != 0)
474
flags &= ~SKIP_FIRST_TICK;
475
else
476
/* best effort */
477
ossl_quic_reactor_tick(rtor, 0);
478
479
if ((res = pred(pred_arg)) != 0)
480
return res;
481
482
net_read_desired = ossl_quic_reactor_net_read_desired(rtor);
483
net_write_desired = ossl_quic_reactor_net_write_desired(rtor);
484
tick_deadline = ossl_quic_reactor_get_tick_deadline(rtor);
485
if (!net_read_desired && !net_write_desired
486
&& ossl_time_is_infinite(tick_deadline))
487
/* Can't wait if there is nothing to wait for. */
488
return 0;
489
490
ossl_quic_reactor_enter_blocking_section(rtor);
491
492
res = poll_two_descriptors(ossl_quic_reactor_get_poll_r(rtor),
493
net_read_desired,
494
ossl_quic_reactor_get_poll_w(rtor),
495
net_write_desired,
496
notifier_fd,
497
tick_deadline,
498
rtor->mutex);
499
500
/*
501
* We have now exited the OS poller call. We may have
502
* (rtor->signalled_notifier), and other threads may still be blocking.
503
* This means that cur_blocking_waiters may still be non-zero. As such,
504
* we cannot unsignal the notifier until all threads have had an
505
* opportunity to wake up.
506
*
507
* At the same time, we cannot unsignal in the case where
508
* cur_blocking_waiters is now zero because this condition may not occur
509
* reliably. Consider the following scenario:
510
*
511
* T1 enters block_until_pred, cur_blocking_waiters -> 1
512
* T2 enters block_until_pred, cur_blocking_waiters -> 2
513
* T3 enters block_until_pred, cur_blocking_waiters -> 3
514
*
515
* T4 enters block_until_pred, does not block, ticks,
516
* sees that cur_blocking_waiters > 0 and signals the notifier
517
*
518
* T3 wakes, cur_blocking_waiters -> 2
519
* T3 predicate is not satisfied, cur_blocking_waiters -> 3, block again
520
*
521
* Notifier is still signalled, so T3 immediately wakes again
522
* and is stuck repeating the above steps.
523
*
524
* T1, T2 are also woken by the notifier but never see
525
* cur_blocking_waiters drop to 0, so never unsignal the notifier.
526
*
527
* As such, a two phase approach is chosen when designalling the
528
* notifier:
529
*
530
* First, all of the poll_two_descriptor calls on all threads are
531
* allowed to exit due to the notifier being signalled.
532
*
533
* Second, the thread which happened to be the one which decremented
534
* cur_blocking_waiters to 0 unsignals the notifier and is then
535
* responsible for broadcasting to a CV to indicate to the other
536
* threads that the synchronised wakeup has been completed. Other
537
* threads wait for this CV to be signalled.
538
*
539
*/
540
ossl_quic_reactor_leave_blocking_section(rtor);
541
542
if (!res)
543
/*
544
* We don't actually care why the call succeeded (timeout, FD
545
* readiness), we just call reactor_tick and start trying to do I/O
546
* things again. If poll_two_fds returns 0, this is some other
547
* non-timeout failure and we should stop here.
548
*
549
* TODO(QUIC FUTURE): In the future we could avoid unnecessary
550
* syscalls by not retrying network I/O that isn't ready based
551
* on the result of the poll call. However this might be difficult
552
* because it requires we do the call to poll(2) or equivalent
553
* syscall ourselves, whereas in the general case the application
554
* does the polling and just calls SSL_handle_events().
555
* Implementing this optimisation in the future will probably
556
* therefore require API changes.
557
*/
558
return 0;
559
}
560
561
return res;
562
}
563
564
void ossl_quic_reactor_enter_blocking_section(QUIC_REACTOR *rtor)
565
{
566
++rtor->cur_blocking_waiters;
567
}
568
569
void ossl_quic_reactor_leave_blocking_section(QUIC_REACTOR *rtor)
570
{
571
assert(rtor->cur_blocking_waiters > 0);
572
--rtor->cur_blocking_waiters;
573
574
if (rtor->have_notifier && rtor->signalled_notifier) {
575
if (rtor->cur_blocking_waiters == 0) {
576
ossl_rio_notifier_unsignal(&rtor->notifier);
577
rtor->signalled_notifier = 0;
578
579
/*
580
* Release the other threads which have woken up (and possibly
581
* rtor_notify_other_threads as well).
582
*/
583
ossl_crypto_condvar_broadcast(rtor->notifier_cv);
584
} else {
585
/* We are not the last waiter out - so wait for that one. */
586
while (rtor->signalled_notifier)
587
ossl_crypto_condvar_wait(rtor->notifier_cv, rtor->mutex);
588
}
589
}
590
}
591
592