Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/ssl/ssl_ciph.c
106927 views
1
/*
2
* Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
* Copyright 2005 Nokia. All rights reserved.
5
*
6
* Licensed under the Apache License 2.0 (the "License"). You may not use
7
* this file except in compliance with the License. You can obtain a copy
8
* in the file LICENSE in the source distribution or at
9
* https://www.openssl.org/source/license.html
10
*/
11
12
#include <stdio.h>
13
#include <ctype.h>
14
#include <openssl/objects.h>
15
#include <openssl/comp.h>
16
#include <openssl/engine.h>
17
#include <openssl/crypto.h>
18
#include <openssl/conf.h>
19
#include <openssl/trace.h>
20
#include "internal/nelem.h"
21
#include "ssl_local.h"
22
#include "internal/thread_once.h"
23
#include "internal/cryptlib.h"
24
#include "internal/comp.h"
25
#include "internal/ssl_unwrap.h"
26
27
/* NB: make sure indices in these tables match values above */
28
29
typedef struct {
30
uint32_t mask;
31
int nid;
32
} ssl_cipher_table;
33
34
/* Table of NIDs for each cipher */
35
static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
36
{ SSL_DES, NID_des_cbc }, /* SSL_ENC_DES_IDX 0 */
37
{ SSL_3DES, NID_des_ede3_cbc }, /* SSL_ENC_3DES_IDX 1 */
38
{ SSL_RC4, NID_rc4 }, /* SSL_ENC_RC4_IDX 2 */
39
{ SSL_RC2, NID_rc2_cbc }, /* SSL_ENC_RC2_IDX 3 */
40
{ SSL_IDEA, NID_idea_cbc }, /* SSL_ENC_IDEA_IDX 4 */
41
{ SSL_eNULL, NID_undef }, /* SSL_ENC_NULL_IDX 5 */
42
{ SSL_AES128, NID_aes_128_cbc }, /* SSL_ENC_AES128_IDX 6 */
43
{ SSL_AES256, NID_aes_256_cbc }, /* SSL_ENC_AES256_IDX 7 */
44
{ SSL_CAMELLIA128, NID_camellia_128_cbc }, /* SSL_ENC_CAMELLIA128_IDX 8 */
45
{ SSL_CAMELLIA256, NID_camellia_256_cbc }, /* SSL_ENC_CAMELLIA256_IDX 9 */
46
{ SSL_eGOST2814789CNT, NID_gost89_cnt }, /* SSL_ENC_GOST89_IDX 10 */
47
{ SSL_SEED, NID_seed_cbc }, /* SSL_ENC_SEED_IDX 11 */
48
{ SSL_AES128GCM, NID_aes_128_gcm }, /* SSL_ENC_AES128GCM_IDX 12 */
49
{ SSL_AES256GCM, NID_aes_256_gcm }, /* SSL_ENC_AES256GCM_IDX 13 */
50
{ SSL_AES128CCM, NID_aes_128_ccm }, /* SSL_ENC_AES128CCM_IDX 14 */
51
{ SSL_AES256CCM, NID_aes_256_ccm }, /* SSL_ENC_AES256CCM_IDX 15 */
52
{ SSL_AES128CCM8, NID_aes_128_ccm }, /* SSL_ENC_AES128CCM8_IDX 16 */
53
{ SSL_AES256CCM8, NID_aes_256_ccm }, /* SSL_ENC_AES256CCM8_IDX 17 */
54
{ SSL_eGOST2814789CNT12, NID_gost89_cnt_12 }, /* SSL_ENC_GOST8912_IDX 18 */
55
{ SSL_CHACHA20POLY1305, NID_chacha20_poly1305 }, /* SSL_ENC_CHACHA_IDX 19 */
56
{ SSL_ARIA128GCM, NID_aria_128_gcm }, /* SSL_ENC_ARIA128GCM_IDX 20 */
57
{ SSL_ARIA256GCM, NID_aria_256_gcm }, /* SSL_ENC_ARIA256GCM_IDX 21 */
58
{ SSL_MAGMA, NID_magma_ctr_acpkm }, /* SSL_ENC_MAGMA_IDX */
59
{ SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm }, /* SSL_ENC_KUZNYECHIK_IDX */
60
};
61
62
/* NB: make sure indices in this table matches values above */
63
static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
64
{ SSL_MD5, NID_md5 }, /* SSL_MD_MD5_IDX 0 */
65
{ SSL_SHA1, NID_sha1 }, /* SSL_MD_SHA1_IDX 1 */
66
{ SSL_GOST94, NID_id_GostR3411_94 }, /* SSL_MD_GOST94_IDX 2 */
67
{ SSL_GOST89MAC, NID_id_Gost28147_89_MAC }, /* SSL_MD_GOST89MAC_IDX 3 */
68
{ SSL_SHA256, NID_sha256 }, /* SSL_MD_SHA256_IDX 4 */
69
{ SSL_SHA384, NID_sha384 }, /* SSL_MD_SHA384_IDX 5 */
70
{ SSL_GOST12_256, NID_id_GostR3411_2012_256 }, /* SSL_MD_GOST12_256_IDX 6 */
71
{ SSL_GOST89MAC12, NID_gost_mac_12 }, /* SSL_MD_GOST89MAC12_IDX 7 */
72
{ SSL_GOST12_512, NID_id_GostR3411_2012_512 }, /* SSL_MD_GOST12_512_IDX 8 */
73
{ 0, NID_md5_sha1 }, /* SSL_MD_MD5_SHA1_IDX 9 */
74
{ 0, NID_sha224 }, /* SSL_MD_SHA224_IDX 10 */
75
{ 0, NID_sha512 }, /* SSL_MD_SHA512_IDX 11 */
76
{ SSL_MAGMAOMAC, NID_magma_mac }, /* sSL_MD_MAGMAOMAC_IDX */
77
{ SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac } /* SSL_MD_KUZNYECHIKOMAC_IDX */
78
};
79
80
/* *INDENT-OFF* */
81
static const ssl_cipher_table ssl_cipher_table_kx[] = {
82
{ SSL_kRSA, NID_kx_rsa },
83
{ SSL_kECDHE, NID_kx_ecdhe },
84
{ SSL_kDHE, NID_kx_dhe },
85
{ SSL_kECDHEPSK, NID_kx_ecdhe_psk },
86
{ SSL_kDHEPSK, NID_kx_dhe_psk },
87
{ SSL_kRSAPSK, NID_kx_rsa_psk },
88
{ SSL_kPSK, NID_kx_psk },
89
{ SSL_kSRP, NID_kx_srp },
90
{ SSL_kGOST, NID_kx_gost },
91
{ SSL_kGOST18, NID_kx_gost18 },
92
{ SSL_kANY, NID_kx_any }
93
};
94
95
static const ssl_cipher_table ssl_cipher_table_auth[] = {
96
{ SSL_aRSA, NID_auth_rsa },
97
{ SSL_aECDSA, NID_auth_ecdsa },
98
{ SSL_aPSK, NID_auth_psk },
99
{ SSL_aDSS, NID_auth_dss },
100
{ SSL_aGOST01, NID_auth_gost01 },
101
{ SSL_aGOST12, NID_auth_gost12 },
102
{ SSL_aSRP, NID_auth_srp },
103
{ SSL_aNULL, NID_auth_null },
104
{ SSL_aANY, NID_auth_any }
105
};
106
/* *INDENT-ON* */
107
108
/* Utility function for table lookup */
109
static int ssl_cipher_info_find(const ssl_cipher_table *table,
110
size_t table_cnt, uint32_t mask)
111
{
112
size_t i;
113
for (i = 0; i < table_cnt; i++, table++) {
114
if (table->mask == mask)
115
return (int)i;
116
}
117
return -1;
118
}
119
120
#define ssl_cipher_info_lookup(table, x) \
121
ssl_cipher_info_find(table, OSSL_NELEM(table), x)
122
123
/*
124
* PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
125
* is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
126
* found
127
*/
128
static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
129
/* MD5, SHA, GOST94, MAC89 */
130
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
131
/* SHA256, SHA384, GOST2012_256, MAC89-12 */
132
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
133
/* GOST2012_512 */
134
EVP_PKEY_HMAC,
135
/* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
136
NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
137
};
138
139
#define CIPHER_ADD 1
140
#define CIPHER_KILL 2
141
#define CIPHER_DEL 3
142
#define CIPHER_ORD 4
143
#define CIPHER_SPECIAL 5
144
/*
145
* Bump the ciphers to the top of the list.
146
* This rule isn't currently supported by the public cipherstring API.
147
*/
148
#define CIPHER_BUMP 6
149
150
typedef struct cipher_order_st {
151
const SSL_CIPHER *cipher;
152
int active;
153
int dead;
154
struct cipher_order_st *next, *prev;
155
} CIPHER_ORDER;
156
157
static const SSL_CIPHER cipher_aliases[] = {
158
/* "ALL" doesn't include eNULL (must be specifically enabled) */
159
{ 0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL },
160
/* "COMPLEMENTOFALL" */
161
{ 0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL },
162
163
/*
164
* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
165
* ALL!)
166
*/
167
{ 0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT },
168
169
/*
170
* key exchange aliases (some of those using only a single bit here
171
* combine multiple key exchange algs according to the RFCs, e.g. kDHE
172
* combines DHE_DSS and DHE_RSA)
173
*/
174
{ 0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA },
175
176
{ 0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE },
177
{ 0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE },
178
{ 0, SSL_TXT_DH, NULL, 0, SSL_kDHE },
179
180
{ 0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE },
181
{ 0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE },
182
{ 0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE },
183
184
{ 0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK },
185
{ 0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK },
186
{ 0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK },
187
{ 0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK },
188
{ 0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP },
189
{ 0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST },
190
{ 0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18 },
191
192
/* server authentication aliases */
193
{ 0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA },
194
{ 0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS },
195
{ 0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS },
196
{ 0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL },
197
{ 0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA },
198
{ 0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA },
199
{ 0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK },
200
{ 0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01 },
201
{ 0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12 },
202
{ 0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12 },
203
{ 0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP },
204
205
/* aliases combining key exchange and server authentication */
206
{ 0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL },
207
{ 0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL },
208
{ 0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL },
209
{ 0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL },
210
{ 0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL },
211
{ 0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA },
212
{ 0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL },
213
{ 0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL },
214
{ 0, SSL_TXT_PSK, NULL, 0, SSL_PSK },
215
{ 0, SSL_TXT_SRP, NULL, 0, SSL_kSRP },
216
217
/* symmetric encryption aliases */
218
{ 0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES },
219
{ 0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4 },
220
{ 0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2 },
221
{ 0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA },
222
{ 0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED },
223
{ 0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL },
224
{ 0, SSL_TXT_GOST, NULL, 0, 0, 0,
225
SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK },
226
{ 0, SSL_TXT_AES128, NULL, 0, 0, 0,
227
SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8 },
228
{ 0, SSL_TXT_AES256, NULL, 0, 0, 0,
229
SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8 },
230
{ 0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES },
231
{ 0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM },
232
{ 0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
233
SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8 },
234
{ 0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8 },
235
{ 0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128 },
236
{ 0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256 },
237
{ 0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA },
238
{ 0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20 },
239
{ 0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12 },
240
241
{ 0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA },
242
{ 0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM },
243
{ 0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM },
244
{ 0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM },
245
{ 0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC },
246
247
/* MAC aliases */
248
{ 0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5 },
249
{ 0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1 },
250
{ 0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1 },
251
{ 0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94 },
252
{ 0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12 },
253
{ 0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256 },
254
{ 0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384 },
255
{ 0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256 },
256
257
/* protocol version aliases */
258
{ 0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION },
259
{ 0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION },
260
{ 0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION },
261
{ 0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION },
262
263
/* strength classes */
264
{ 0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW },
265
{ 0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM },
266
{ 0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH },
267
/* FIPS 140-2 approved ciphersuite */
268
{ 0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS },
269
270
/* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
271
{ 0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
272
SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS },
273
{ 0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
274
SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS },
275
276
};
277
278
/*
279
* Search for public key algorithm with given name and return its pkey_id if
280
* it is available. Otherwise return 0
281
*/
282
#ifdef OPENSSL_NO_ENGINE
283
284
static int get_optional_pkey_id(const char *pkey_name)
285
{
286
const EVP_PKEY_ASN1_METHOD *ameth;
287
int pkey_id = 0;
288
ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
289
if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth) > 0)
290
return pkey_id;
291
return 0;
292
}
293
294
#else
295
296
static int get_optional_pkey_id(const char *pkey_name)
297
{
298
const EVP_PKEY_ASN1_METHOD *ameth;
299
ENGINE *tmpeng = NULL;
300
int pkey_id = 0;
301
ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
302
if (ameth) {
303
if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
304
ameth)
305
<= 0)
306
pkey_id = 0;
307
}
308
tls_engine_finish(tmpeng);
309
return pkey_id;
310
}
311
312
#endif
313
314
int ssl_load_ciphers(SSL_CTX *ctx)
315
{
316
size_t i;
317
const ssl_cipher_table *t;
318
EVP_KEYEXCH *kex = NULL;
319
EVP_SIGNATURE *sig = NULL;
320
321
ctx->disabled_enc_mask = 0;
322
for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
323
if (t->nid != NID_undef) {
324
const EVP_CIPHER *cipher
325
= ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
326
327
ctx->ssl_cipher_methods[i] = cipher;
328
if (cipher == NULL)
329
ctx->disabled_enc_mask |= t->mask;
330
}
331
}
332
ctx->disabled_mac_mask = 0;
333
for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
334
const EVP_MD *md
335
= ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
336
337
ctx->ssl_digest_methods[i] = md;
338
if (md == NULL) {
339
ctx->disabled_mac_mask |= t->mask;
340
} else {
341
int tmpsize = EVP_MD_get_size(md);
342
343
if (!ossl_assert(tmpsize > 0))
344
return 0;
345
ctx->ssl_mac_secret_size[i] = tmpsize;
346
}
347
}
348
349
ctx->disabled_mkey_mask = 0;
350
ctx->disabled_auth_mask = 0;
351
352
/*
353
* We ignore any errors from the fetches below. They are expected to fail
354
* if these algorithms are not available.
355
*/
356
ERR_set_mark();
357
sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
358
if (sig == NULL)
359
ctx->disabled_auth_mask |= SSL_aDSS;
360
else
361
EVP_SIGNATURE_free(sig);
362
kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
363
if (kex == NULL)
364
ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
365
else
366
EVP_KEYEXCH_free(kex);
367
kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
368
if (kex == NULL)
369
ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
370
else
371
EVP_KEYEXCH_free(kex);
372
sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
373
if (sig == NULL)
374
ctx->disabled_auth_mask |= SSL_aECDSA;
375
else
376
EVP_SIGNATURE_free(sig);
377
ERR_pop_to_mark();
378
379
#ifdef OPENSSL_NO_PSK
380
ctx->disabled_mkey_mask |= SSL_PSK;
381
ctx->disabled_auth_mask |= SSL_aPSK;
382
#endif
383
#ifdef OPENSSL_NO_SRP
384
ctx->disabled_mkey_mask |= SSL_kSRP;
385
#endif
386
387
/*
388
* Check for presence of GOST 34.10 algorithms, and if they are not
389
* present, disable appropriate auth and key exchange
390
*/
391
memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
392
sizeof(ctx->ssl_mac_pkey_id));
393
394
ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id(SN_id_Gost28147_89_MAC);
395
if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
396
ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
397
else
398
ctx->disabled_mac_mask |= SSL_GOST89MAC;
399
400
ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] = get_optional_pkey_id(SN_gost_mac_12);
401
if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
402
ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
403
else
404
ctx->disabled_mac_mask |= SSL_GOST89MAC12;
405
406
ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] = get_optional_pkey_id(SN_magma_mac);
407
if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
408
ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
409
else
410
ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
411
412
ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] = get_optional_pkey_id(SN_kuznyechik_mac);
413
if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
414
ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
415
else
416
ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
417
418
if (!get_optional_pkey_id(SN_id_GostR3410_2001))
419
ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
420
if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
421
ctx->disabled_auth_mask |= SSL_aGOST12;
422
if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
423
ctx->disabled_auth_mask |= SSL_aGOST12;
424
/*
425
* Disable GOST key exchange if no GOST signature algs are available *
426
*/
427
if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) == (SSL_aGOST01 | SSL_aGOST12))
428
ctx->disabled_mkey_mask |= SSL_kGOST;
429
430
if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
431
ctx->disabled_mkey_mask |= SSL_kGOST18;
432
433
return 1;
434
}
435
436
int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
437
const EVP_CIPHER **enc)
438
{
439
int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher,
440
sslc->algorithm_enc);
441
442
if (i == -1) {
443
*enc = NULL;
444
} else {
445
if (i == SSL_ENC_NULL_IDX) {
446
/*
447
* We assume we don't care about this coming from an ENGINE so
448
* just do a normal EVP_CIPHER_fetch instead of
449
* ssl_evp_cipher_fetch()
450
*/
451
*enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
452
if (*enc == NULL)
453
return 0;
454
} else {
455
const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
456
457
if (cipher == NULL
458
|| !ssl_evp_cipher_up_ref(cipher))
459
return 0;
460
*enc = ctx->ssl_cipher_methods[i];
461
}
462
}
463
return 1;
464
}
465
466
int ssl_cipher_get_evp_md_mac(SSL_CTX *ctx, const SSL_CIPHER *sslc,
467
const EVP_MD **md,
468
int *mac_pkey_type, size_t *mac_secret_size)
469
{
470
int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, sslc->algorithm_mac);
471
472
if (i == -1) {
473
*md = NULL;
474
if (mac_pkey_type != NULL)
475
*mac_pkey_type = NID_undef;
476
if (mac_secret_size != NULL)
477
*mac_secret_size = 0;
478
} else {
479
const EVP_MD *digest = ctx->ssl_digest_methods[i];
480
481
if (digest == NULL || !ssl_evp_md_up_ref(digest))
482
return 0;
483
484
*md = digest;
485
if (mac_pkey_type != NULL)
486
*mac_pkey_type = ctx->ssl_mac_pkey_id[i];
487
if (mac_secret_size != NULL)
488
*mac_secret_size = ctx->ssl_mac_secret_size[i];
489
}
490
return 1;
491
}
492
493
int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
494
const EVP_CIPHER **enc, const EVP_MD **md,
495
int *mac_pkey_type, size_t *mac_secret_size,
496
SSL_COMP **comp, int use_etm)
497
{
498
int i;
499
const SSL_CIPHER *c;
500
501
c = s->cipher;
502
if (c == NULL)
503
return 0;
504
if (comp != NULL) {
505
SSL_COMP ctmp;
506
STACK_OF(SSL_COMP) *comp_methods;
507
508
*comp = NULL;
509
ctmp.id = s->compress_meth;
510
comp_methods = SSL_COMP_get_compression_methods();
511
if (comp_methods != NULL) {
512
i = sk_SSL_COMP_find(comp_methods, &ctmp);
513
if (i >= 0)
514
*comp = sk_SSL_COMP_value(comp_methods, i);
515
}
516
/* If were only interested in comp then return success */
517
if ((enc == NULL) && (md == NULL))
518
return 1;
519
}
520
521
if ((enc == NULL) || (md == NULL))
522
return 0;
523
524
if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
525
return 0;
526
527
if (!ssl_cipher_get_evp_md_mac(ctx, c, md, mac_pkey_type,
528
mac_secret_size)) {
529
ssl_evp_cipher_free(*enc);
530
return 0;
531
}
532
533
if ((*enc != NULL)
534
&& (*md != NULL
535
|| (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
536
&& (c->algorithm_mac == SSL_AEAD
537
|| mac_pkey_type == NULL || *mac_pkey_type != NID_undef)) {
538
const EVP_CIPHER *evp = NULL;
539
540
if (use_etm
541
|| s->ssl_version >> 8 != TLS1_VERSION_MAJOR
542
|| s->ssl_version < TLS1_VERSION)
543
return 1;
544
545
if (c->algorithm_enc == SSL_RC4
546
&& c->algorithm_mac == SSL_MD5)
547
evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
548
ctx->propq);
549
else if (c->algorithm_enc == SSL_AES128
550
&& c->algorithm_mac == SSL_SHA1)
551
evp = ssl_evp_cipher_fetch(ctx->libctx,
552
NID_aes_128_cbc_hmac_sha1,
553
ctx->propq);
554
else if (c->algorithm_enc == SSL_AES256
555
&& c->algorithm_mac == SSL_SHA1)
556
evp = ssl_evp_cipher_fetch(ctx->libctx,
557
NID_aes_256_cbc_hmac_sha1,
558
ctx->propq);
559
else if (c->algorithm_enc == SSL_AES128
560
&& c->algorithm_mac == SSL_SHA256)
561
evp = ssl_evp_cipher_fetch(ctx->libctx,
562
NID_aes_128_cbc_hmac_sha256,
563
ctx->propq);
564
else if (c->algorithm_enc == SSL_AES256
565
&& c->algorithm_mac == SSL_SHA256)
566
evp = ssl_evp_cipher_fetch(ctx->libctx,
567
NID_aes_256_cbc_hmac_sha256,
568
ctx->propq);
569
570
if (evp != NULL) {
571
ssl_evp_cipher_free(*enc);
572
ssl_evp_md_free(*md);
573
*enc = evp;
574
*md = NULL;
575
}
576
return 1;
577
}
578
579
return 0;
580
}
581
582
const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
583
{
584
idx &= SSL_HANDSHAKE_MAC_MASK;
585
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
586
return NULL;
587
return ctx->ssl_digest_methods[idx];
588
}
589
590
const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
591
{
592
return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
593
}
594
595
const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
596
{
597
return ssl_md(SSL_CONNECTION_GET_CTX(s),
598
ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
599
}
600
601
#define ITEM_SEP(a) \
602
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
603
604
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
605
CIPHER_ORDER **tail)
606
{
607
if (curr == *tail)
608
return;
609
if (curr == *head)
610
*head = curr->next;
611
if (curr->prev != NULL)
612
curr->prev->next = curr->next;
613
if (curr->next != NULL)
614
curr->next->prev = curr->prev;
615
(*tail)->next = curr;
616
curr->prev = *tail;
617
curr->next = NULL;
618
*tail = curr;
619
}
620
621
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
622
CIPHER_ORDER **tail)
623
{
624
if (curr == *head)
625
return;
626
if (curr == *tail)
627
*tail = curr->prev;
628
if (curr->next != NULL)
629
curr->next->prev = curr->prev;
630
if (curr->prev != NULL)
631
curr->prev->next = curr->next;
632
(*head)->prev = curr;
633
curr->next = *head;
634
curr->prev = NULL;
635
*head = curr;
636
}
637
638
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
639
int num_of_ciphers,
640
uint32_t disabled_mkey,
641
uint32_t disabled_auth,
642
uint32_t disabled_enc,
643
uint32_t disabled_mac,
644
CIPHER_ORDER *co_list,
645
CIPHER_ORDER **head_p,
646
CIPHER_ORDER **tail_p)
647
{
648
int i, co_list_num;
649
const SSL_CIPHER *c;
650
651
/*
652
* We have num_of_ciphers descriptions compiled in, depending on the
653
* method selected (SSLv3, TLSv1 etc).
654
* These will later be sorted in a linked list with at most num
655
* entries.
656
*/
657
658
/* Get the initial list of ciphers */
659
co_list_num = 0; /* actual count of ciphers */
660
for (i = 0; i < num_of_ciphers; i++) {
661
c = ssl_method->get_cipher(i);
662
/* drop those that use any of that is not available */
663
if (c == NULL || !c->valid)
664
continue;
665
if ((c->algorithm_mkey & disabled_mkey) || (c->algorithm_auth & disabled_auth) || (c->algorithm_enc & disabled_enc) || (c->algorithm_mac & disabled_mac))
666
continue;
667
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) && c->min_tls == 0)
668
continue;
669
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) && c->min_dtls == 0)
670
continue;
671
672
co_list[co_list_num].cipher = c;
673
co_list[co_list_num].next = NULL;
674
co_list[co_list_num].prev = NULL;
675
co_list[co_list_num].active = 0;
676
co_list_num++;
677
}
678
679
/*
680
* Prepare linked list from list entries
681
*/
682
if (co_list_num > 0) {
683
co_list[0].prev = NULL;
684
685
if (co_list_num > 1) {
686
co_list[0].next = &co_list[1];
687
688
for (i = 1; i < co_list_num - 1; i++) {
689
co_list[i].prev = &co_list[i - 1];
690
co_list[i].next = &co_list[i + 1];
691
}
692
693
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
694
}
695
696
co_list[co_list_num - 1].next = NULL;
697
698
*head_p = &co_list[0];
699
*tail_p = &co_list[co_list_num - 1];
700
}
701
}
702
703
static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
704
int num_of_group_aliases,
705
uint32_t disabled_mkey,
706
uint32_t disabled_auth,
707
uint32_t disabled_enc,
708
uint32_t disabled_mac,
709
CIPHER_ORDER *head)
710
{
711
CIPHER_ORDER *ciph_curr;
712
const SSL_CIPHER **ca_curr;
713
int i;
714
uint32_t mask_mkey = ~disabled_mkey;
715
uint32_t mask_auth = ~disabled_auth;
716
uint32_t mask_enc = ~disabled_enc;
717
uint32_t mask_mac = ~disabled_mac;
718
719
/*
720
* First, add the real ciphers as already collected
721
*/
722
ciph_curr = head;
723
ca_curr = ca_list;
724
while (ciph_curr != NULL) {
725
*ca_curr = ciph_curr->cipher;
726
ca_curr++;
727
ciph_curr = ciph_curr->next;
728
}
729
730
/*
731
* Now we add the available ones from the cipher_aliases[] table.
732
* They represent either one or more algorithms, some of which
733
* in any affected category must be supported (set in enabled_mask),
734
* or represent a cipher strength value (will be added in any case because algorithms=0).
735
*/
736
for (i = 0; i < num_of_group_aliases; i++) {
737
uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
738
uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
739
uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
740
uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
741
742
if (algorithm_mkey)
743
if ((algorithm_mkey & mask_mkey) == 0)
744
continue;
745
746
if (algorithm_auth)
747
if ((algorithm_auth & mask_auth) == 0)
748
continue;
749
750
if (algorithm_enc)
751
if ((algorithm_enc & mask_enc) == 0)
752
continue;
753
754
if (algorithm_mac)
755
if ((algorithm_mac & mask_mac) == 0)
756
continue;
757
758
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
759
ca_curr++;
760
}
761
762
*ca_curr = NULL; /* end of list */
763
}
764
765
static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
766
uint32_t alg_auth, uint32_t alg_enc,
767
uint32_t alg_mac, int min_tls,
768
uint32_t algo_strength, int rule,
769
int32_t strength_bits, CIPHER_ORDER **head_p,
770
CIPHER_ORDER **tail_p)
771
{
772
CIPHER_ORDER *head, *tail, *curr, *next, *last;
773
const SSL_CIPHER *cp;
774
int reverse = 0;
775
776
OSSL_TRACE_BEGIN(TLS_CIPHER)
777
{
778
BIO_printf(trc_out,
779
"Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
780
rule, (unsigned int)alg_mkey, (unsigned int)alg_auth,
781
(unsigned int)alg_enc, (unsigned int)alg_mac, min_tls,
782
(unsigned int)algo_strength, (int)strength_bits);
783
}
784
785
if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
786
reverse = 1; /* needed to maintain sorting between currently
787
* deleted ciphers */
788
789
head = *head_p;
790
tail = *tail_p;
791
792
if (reverse) {
793
next = tail;
794
last = head;
795
} else {
796
next = head;
797
last = tail;
798
}
799
800
curr = NULL;
801
for (;;) {
802
if (curr == last)
803
break;
804
805
curr = next;
806
807
if (curr == NULL)
808
break;
809
810
next = reverse ? curr->prev : curr->next;
811
812
cp = curr->cipher;
813
814
/*
815
* Selection criteria is either the value of strength_bits
816
* or the algorithms used.
817
*/
818
if (strength_bits >= 0) {
819
if (strength_bits != cp->strength_bits)
820
continue;
821
} else {
822
if (trc_out != NULL) {
823
BIO_printf(trc_out,
824
"\nName: %s:"
825
"\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
826
cp->name,
827
(unsigned int)cp->algorithm_mkey,
828
(unsigned int)cp->algorithm_auth,
829
(unsigned int)cp->algorithm_enc,
830
(unsigned int)cp->algorithm_mac,
831
cp->min_tls,
832
(unsigned int)cp->algo_strength);
833
}
834
if (cipher_id != 0 && (cipher_id != cp->id))
835
continue;
836
if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
837
continue;
838
if (alg_auth && !(alg_auth & cp->algorithm_auth))
839
continue;
840
if (alg_enc && !(alg_enc & cp->algorithm_enc))
841
continue;
842
if (alg_mac && !(alg_mac & cp->algorithm_mac))
843
continue;
844
if (min_tls && (min_tls != cp->min_tls))
845
continue;
846
if ((algo_strength & SSL_STRONG_MASK)
847
&& !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
848
continue;
849
if ((algo_strength & SSL_DEFAULT_MASK)
850
&& !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
851
continue;
852
}
853
854
if (trc_out != NULL)
855
BIO_printf(trc_out, "Action = %d\n", rule);
856
857
/* add the cipher if it has not been added yet. */
858
if (rule == CIPHER_ADD) {
859
/* reverse == 0 */
860
if (!curr->active) {
861
ll_append_tail(&head, curr, &tail);
862
curr->active = 1;
863
}
864
}
865
/* Move the added cipher to this location */
866
else if (rule == CIPHER_ORD) {
867
/* reverse == 0 */
868
if (curr->active) {
869
ll_append_tail(&head, curr, &tail);
870
}
871
} else if (rule == CIPHER_DEL) {
872
/* reverse == 1 */
873
if (curr->active) {
874
/*
875
* most recently deleted ciphersuites get best positions for
876
* any future CIPHER_ADD (note that the CIPHER_DEL loop works
877
* in reverse to maintain the order)
878
*/
879
ll_append_head(&head, curr, &tail);
880
curr->active = 0;
881
}
882
} else if (rule == CIPHER_BUMP) {
883
if (curr->active)
884
ll_append_head(&head, curr, &tail);
885
} else if (rule == CIPHER_KILL) {
886
/* reverse == 0 */
887
if (head == curr)
888
head = curr->next;
889
else
890
curr->prev->next = curr->next;
891
if (tail == curr)
892
tail = curr->prev;
893
curr->active = 0;
894
if (curr->next != NULL)
895
curr->next->prev = curr->prev;
896
if (curr->prev != NULL)
897
curr->prev->next = curr->next;
898
curr->next = NULL;
899
curr->prev = NULL;
900
}
901
}
902
903
*head_p = head;
904
*tail_p = tail;
905
906
OSSL_TRACE_END(TLS_CIPHER);
907
}
908
909
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
910
CIPHER_ORDER **tail_p)
911
{
912
int32_t max_strength_bits;
913
int i, *number_uses;
914
CIPHER_ORDER *curr;
915
916
/*
917
* This routine sorts the ciphers with descending strength. The sorting
918
* must keep the pre-sorted sequence, so we apply the normal sorting
919
* routine as '+' movement to the end of the list.
920
*/
921
max_strength_bits = 0;
922
curr = *head_p;
923
while (curr != NULL) {
924
if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
925
max_strength_bits = curr->cipher->strength_bits;
926
curr = curr->next;
927
}
928
929
number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
930
if (number_uses == NULL)
931
return 0;
932
933
/*
934
* Now find the strength_bits values actually used
935
*/
936
curr = *head_p;
937
while (curr != NULL) {
938
if (curr->active)
939
number_uses[curr->cipher->strength_bits]++;
940
curr = curr->next;
941
}
942
/*
943
* Go through the list of used strength_bits values in descending
944
* order.
945
*/
946
for (i = max_strength_bits; i >= 0; i--)
947
if (number_uses[i] > 0)
948
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
949
tail_p);
950
951
OPENSSL_free(number_uses);
952
return 1;
953
}
954
955
static int ssl_cipher_process_rulestr(const char *rule_str,
956
CIPHER_ORDER **head_p,
957
CIPHER_ORDER **tail_p,
958
const SSL_CIPHER **ca_list, CERT *c)
959
{
960
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
961
int min_tls;
962
const char *l, *buf;
963
int j, multi, found, rule, retval, ok, buflen;
964
uint32_t cipher_id = 0;
965
char ch;
966
967
retval = 1;
968
l = rule_str;
969
for (;;) {
970
ch = *l;
971
972
if (ch == '\0')
973
break; /* done */
974
if (ch == '-') {
975
rule = CIPHER_DEL;
976
l++;
977
} else if (ch == '+') {
978
rule = CIPHER_ORD;
979
l++;
980
} else if (ch == '!') {
981
rule = CIPHER_KILL;
982
l++;
983
} else if (ch == '@') {
984
rule = CIPHER_SPECIAL;
985
l++;
986
} else {
987
rule = CIPHER_ADD;
988
}
989
990
if (ITEM_SEP(ch)) {
991
l++;
992
continue;
993
}
994
995
alg_mkey = 0;
996
alg_auth = 0;
997
alg_enc = 0;
998
alg_mac = 0;
999
min_tls = 0;
1000
algo_strength = 0;
1001
1002
for (;;) {
1003
ch = *l;
1004
buf = l;
1005
buflen = 0;
1006
#ifndef CHARSET_EBCDIC
1007
while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
1008
#else
1009
while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
1010
|| (ch == '='))
1011
#endif
1012
{
1013
ch = *(++l);
1014
buflen++;
1015
}
1016
1017
if (buflen == 0) {
1018
/*
1019
* We hit something we cannot deal with,
1020
* it is no command or separator nor
1021
* alphanumeric, so we call this an error.
1022
*/
1023
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1024
return 0;
1025
}
1026
1027
if (rule == CIPHER_SPECIAL) {
1028
found = 0; /* unused -- avoid compiler warning */
1029
break; /* special treatment */
1030
}
1031
1032
/* check for multi-part specification */
1033
if (ch == '+') {
1034
multi = 1;
1035
l++;
1036
} else {
1037
multi = 0;
1038
}
1039
1040
/*
1041
* Now search for the cipher alias in the ca_list. Be careful
1042
* with the strncmp, because the "buflen" limitation
1043
* will make the rule "ADH:SOME" and the cipher
1044
* "ADH-MY-CIPHER" look like a match for buflen=3.
1045
* So additionally check whether the cipher name found
1046
* has the correct length. We can save a strlen() call:
1047
* just checking for the '\0' at the right place is
1048
* sufficient, we have to strncmp() anyway. (We cannot
1049
* use strcmp(), because buf is not '\0' terminated.)
1050
*/
1051
j = found = 0;
1052
cipher_id = 0;
1053
while (ca_list[j]) {
1054
if (strncmp(buf, ca_list[j]->name, buflen) == 0
1055
&& (ca_list[j]->name[buflen] == '\0')) {
1056
found = 1;
1057
break;
1058
} else if (ca_list[j]->stdname != NULL
1059
&& strncmp(buf, ca_list[j]->stdname, buflen) == 0
1060
&& ca_list[j]->stdname[buflen] == '\0') {
1061
found = 1;
1062
break;
1063
} else
1064
j++;
1065
}
1066
1067
if (!found)
1068
break; /* ignore this entry */
1069
1070
if (ca_list[j]->algorithm_mkey) {
1071
if (alg_mkey) {
1072
alg_mkey &= ca_list[j]->algorithm_mkey;
1073
if (!alg_mkey) {
1074
found = 0;
1075
break;
1076
}
1077
} else {
1078
alg_mkey = ca_list[j]->algorithm_mkey;
1079
}
1080
}
1081
1082
if (ca_list[j]->algorithm_auth) {
1083
if (alg_auth) {
1084
alg_auth &= ca_list[j]->algorithm_auth;
1085
if (!alg_auth) {
1086
found = 0;
1087
break;
1088
}
1089
} else {
1090
alg_auth = ca_list[j]->algorithm_auth;
1091
}
1092
}
1093
1094
if (ca_list[j]->algorithm_enc) {
1095
if (alg_enc) {
1096
alg_enc &= ca_list[j]->algorithm_enc;
1097
if (!alg_enc) {
1098
found = 0;
1099
break;
1100
}
1101
} else {
1102
alg_enc = ca_list[j]->algorithm_enc;
1103
}
1104
}
1105
1106
if (ca_list[j]->algorithm_mac) {
1107
if (alg_mac) {
1108
alg_mac &= ca_list[j]->algorithm_mac;
1109
if (!alg_mac) {
1110
found = 0;
1111
break;
1112
}
1113
} else {
1114
alg_mac = ca_list[j]->algorithm_mac;
1115
}
1116
}
1117
1118
if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1119
if (algo_strength & SSL_STRONG_MASK) {
1120
algo_strength &= (ca_list[j]->algo_strength & SSL_STRONG_MASK) | ~SSL_STRONG_MASK;
1121
if (!(algo_strength & SSL_STRONG_MASK)) {
1122
found = 0;
1123
break;
1124
}
1125
} else {
1126
algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1127
}
1128
}
1129
1130
if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1131
if (algo_strength & SSL_DEFAULT_MASK) {
1132
algo_strength &= (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) | ~SSL_DEFAULT_MASK;
1133
if (!(algo_strength & SSL_DEFAULT_MASK)) {
1134
found = 0;
1135
break;
1136
}
1137
} else {
1138
algo_strength |= ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1139
}
1140
}
1141
1142
if (ca_list[j]->valid) {
1143
/*
1144
* explicit ciphersuite found; its protocol version does not
1145
* become part of the search pattern!
1146
*/
1147
1148
cipher_id = ca_list[j]->id;
1149
} else {
1150
/*
1151
* not an explicit ciphersuite; only in this case, the
1152
* protocol version is considered part of the search pattern
1153
*/
1154
1155
if (ca_list[j]->min_tls) {
1156
if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1157
found = 0;
1158
break;
1159
} else {
1160
min_tls = ca_list[j]->min_tls;
1161
}
1162
}
1163
}
1164
1165
if (!multi)
1166
break;
1167
}
1168
1169
/*
1170
* Ok, we have the rule, now apply it
1171
*/
1172
if (rule == CIPHER_SPECIAL) { /* special command */
1173
ok = 0;
1174
if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
1175
ok = ssl_cipher_strength_sort(head_p, tail_p);
1176
} else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
1177
int level = *buf - '0';
1178
if (level < 0 || level > 5) {
1179
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1180
} else {
1181
c->sec_level = level;
1182
ok = 1;
1183
}
1184
} else {
1185
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1186
}
1187
if (ok == 0)
1188
retval = 0;
1189
/*
1190
* We do not support any "multi" options
1191
* together with "@", so throw away the
1192
* rest of the command, if any left, until
1193
* end or ':' is found.
1194
*/
1195
while ((*l != '\0') && !ITEM_SEP(*l))
1196
l++;
1197
} else if (found) {
1198
ssl_cipher_apply_rule(cipher_id,
1199
alg_mkey, alg_auth, alg_enc, alg_mac,
1200
min_tls, algo_strength, rule, -1, head_p,
1201
tail_p);
1202
} else {
1203
while ((*l != '\0') && !ITEM_SEP(*l))
1204
l++;
1205
}
1206
if (*l == '\0')
1207
break; /* done */
1208
}
1209
1210
return retval;
1211
}
1212
1213
static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1214
const char **prule_str)
1215
{
1216
unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1217
if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
1218
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1219
} else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
1220
suiteb_comb2 = 1;
1221
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1222
} else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
1223
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1224
} else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
1225
suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1226
}
1227
1228
if (suiteb_flags) {
1229
c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1230
c->cert_flags |= suiteb_flags;
1231
} else {
1232
suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1233
}
1234
1235
if (!suiteb_flags)
1236
return 1;
1237
/* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1238
1239
if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1240
ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1241
return 0;
1242
}
1243
1244
switch (suiteb_flags) {
1245
case SSL_CERT_FLAG_SUITEB_128_LOS:
1246
if (suiteb_comb2)
1247
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1248
else
1249
*prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1250
break;
1251
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1252
*prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1253
break;
1254
case SSL_CERT_FLAG_SUITEB_192_LOS:
1255
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1256
break;
1257
}
1258
return 1;
1259
}
1260
1261
static int ciphersuite_cb(const char *elem, int len, void *arg)
1262
{
1263
STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1264
const SSL_CIPHER *cipher;
1265
/* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1266
char name[80];
1267
1268
if (len > (int)(sizeof(name) - 1))
1269
/* Anyway return 1 so we can parse rest of the list */
1270
return 1;
1271
1272
memcpy(name, elem, len);
1273
name[len] = '\0';
1274
1275
cipher = ssl3_get_cipher_by_std_name(name);
1276
if (cipher == NULL)
1277
/* Ciphersuite not found but return 1 to parse rest of the list */
1278
return 1;
1279
1280
if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1281
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1282
return 0;
1283
}
1284
1285
return 1;
1286
}
1287
1288
static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1289
{
1290
STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1291
1292
if (newciphers == NULL)
1293
return 0;
1294
1295
/* Parse the list. We explicitly allow an empty list */
1296
if (*str != '\0'
1297
&& (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1298
|| sk_SSL_CIPHER_num(newciphers) == 0)) {
1299
ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1300
sk_SSL_CIPHER_free(newciphers);
1301
return 0;
1302
}
1303
sk_SSL_CIPHER_free(*currciphers);
1304
*currciphers = newciphers;
1305
1306
return 1;
1307
}
1308
1309
static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1310
STACK_OF(SSL_CIPHER) *cipherstack)
1311
{
1312
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1313
1314
if (tmp_cipher_list == NULL) {
1315
return 0;
1316
}
1317
1318
sk_SSL_CIPHER_free(*cipher_list_by_id);
1319
*cipher_list_by_id = tmp_cipher_list;
1320
1321
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1322
sk_SSL_CIPHER_sort(*cipher_list_by_id);
1323
1324
return 1;
1325
}
1326
1327
static int update_cipher_list(SSL_CTX *ctx,
1328
STACK_OF(SSL_CIPHER) **cipher_list,
1329
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1330
STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1331
{
1332
int i;
1333
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1334
1335
if (tmp_cipher_list == NULL)
1336
return 0;
1337
1338
/*
1339
* Delete any existing TLSv1.3 ciphersuites. These are always first in the
1340
* list.
1341
*/
1342
while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1343
&& sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1344
== TLS1_3_VERSION)
1345
(void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1346
1347
/* Insert the new TLSv1.3 ciphersuites */
1348
for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1349
const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1350
1351
/* Don't include any TLSv1.3 ciphersuites that are disabled */
1352
if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1353
&& (ssl_cipher_table_mac[sslc->algorithm2
1354
& SSL_HANDSHAKE_MAC_MASK]
1355
.mask
1356
& ctx->disabled_mac_mask)
1357
== 0) {
1358
sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1359
}
1360
}
1361
1362
if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1363
sk_SSL_CIPHER_free(tmp_cipher_list);
1364
return 0;
1365
}
1366
1367
sk_SSL_CIPHER_free(*cipher_list);
1368
*cipher_list = tmp_cipher_list;
1369
1370
return 1;
1371
}
1372
1373
int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1374
{
1375
int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1376
1377
if (ret && ctx->cipher_list != NULL)
1378
return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1379
ctx->tls13_ciphersuites);
1380
1381
return ret;
1382
}
1383
1384
int SSL_set_ciphersuites(SSL *s, const char *str)
1385
{
1386
STACK_OF(SSL_CIPHER) *cipher_list;
1387
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
1388
int ret;
1389
1390
if (sc == NULL)
1391
return 0;
1392
1393
ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
1394
1395
if (sc->cipher_list == NULL) {
1396
if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1397
sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1398
}
1399
if (ret && sc->cipher_list != NULL)
1400
return update_cipher_list(s->ctx, &sc->cipher_list,
1401
&sc->cipher_list_by_id,
1402
sc->tls13_ciphersuites);
1403
1404
return ret;
1405
}
1406
1407
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1408
STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1409
STACK_OF(SSL_CIPHER) **cipher_list,
1410
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1411
const char *rule_str,
1412
CERT *c)
1413
{
1414
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1415
uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1416
STACK_OF(SSL_CIPHER) *cipherstack;
1417
const char *rule_p;
1418
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1419
const SSL_CIPHER **ca_list = NULL;
1420
const SSL_METHOD *ssl_method = ctx->method;
1421
1422
/*
1423
* Return with error if nothing to do.
1424
*/
1425
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1426
return NULL;
1427
1428
if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1429
return NULL;
1430
1431
/*
1432
* To reduce the work to do we only want to process the compiled
1433
* in algorithms, so we first get the mask of disabled ciphers.
1434
*/
1435
1436
disabled_mkey = ctx->disabled_mkey_mask;
1437
disabled_auth = ctx->disabled_auth_mask;
1438
disabled_enc = ctx->disabled_enc_mask;
1439
disabled_mac = ctx->disabled_mac_mask;
1440
1441
/*
1442
* Now we have to collect the available ciphers from the compiled
1443
* in ciphers. We cannot get more than the number compiled in, so
1444
* it is used for allocation.
1445
*/
1446
num_of_ciphers = ssl_method->num_ciphers();
1447
1448
if (num_of_ciphers > 0) {
1449
co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1450
if (co_list == NULL)
1451
return NULL; /* Failure */
1452
}
1453
1454
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1455
disabled_mkey, disabled_auth, disabled_enc,
1456
disabled_mac, co_list, &head, &tail);
1457
1458
/* Now arrange all ciphers by preference. */
1459
1460
/*
1461
* Everything else being equal, prefer ephemeral ECDH over other key
1462
* exchange mechanisms.
1463
* For consistency, prefer ECDSA over RSA (though this only matters if the
1464
* server has both certificates, and is using the DEFAULT, or a client
1465
* preference).
1466
*/
1467
ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1468
-1, &head, &tail);
1469
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1470
&tail);
1471
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1472
&tail);
1473
1474
/* Within each strength group, we prefer GCM over CHACHA... */
1475
ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1476
&head, &tail);
1477
ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1478
&head, &tail);
1479
1480
/*
1481
* ...and generally, our preferred cipher is AES.
1482
* Note that AEADs will be bumped to take preference after sorting by
1483
* strength.
1484
*/
1485
ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1486
-1, &head, &tail);
1487
1488
/* Temporarily enable everything else for sorting */
1489
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1490
1491
/* Low priority for MD5 */
1492
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1493
&tail);
1494
1495
/*
1496
* Move anonymous ciphers to the end. Usually, these will remain
1497
* disabled. (For applications that allow them, they aren't too bad, but
1498
* we prefer authenticated ciphers.)
1499
*/
1500
ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1501
&tail);
1502
1503
ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1504
&tail);
1505
ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1506
&tail);
1507
1508
/* RC4 is sort-of broken -- move to the end */
1509
ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1510
&tail);
1511
1512
/*
1513
* Now sort by symmetric encryption strength. The above ordering remains
1514
* in force within each class
1515
*/
1516
if (!ssl_cipher_strength_sort(&head, &tail)) {
1517
OPENSSL_free(co_list);
1518
return NULL;
1519
}
1520
1521
/*
1522
* Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1523
*/
1524
ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1525
&head, &tail);
1526
1527
/*
1528
* Irrespective of strength, enforce the following order:
1529
* (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1530
* Within each group, ciphers remain sorted by strength and previous
1531
* preference, i.e.,
1532
* 1) ECDHE > DHE
1533
* 2) GCM > CHACHA
1534
* 3) AES > rest
1535
* 4) TLS 1.2 > legacy
1536
*
1537
* Because we now bump ciphers to the top of the list, we proceed in
1538
* reverse order of preference.
1539
*/
1540
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1541
&head, &tail);
1542
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1543
CIPHER_BUMP, -1, &head, &tail);
1544
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1545
CIPHER_BUMP, -1, &head, &tail);
1546
1547
/* Now disable everything (maintaining the ordering!) */
1548
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1549
1550
/*
1551
* We also need cipher aliases for selecting based on the rule_str.
1552
* There might be two types of entries in the rule_str: 1) names
1553
* of ciphers themselves 2) aliases for groups of ciphers.
1554
* For 1) we need the available ciphers and for 2) the cipher
1555
* groups of cipher_aliases added together in one list (otherwise
1556
* we would be happy with just the cipher_aliases table).
1557
*/
1558
num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1559
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1560
ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1561
if (ca_list == NULL) {
1562
OPENSSL_free(co_list);
1563
return NULL; /* Failure */
1564
}
1565
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1566
disabled_mkey, disabled_auth, disabled_enc,
1567
disabled_mac, head);
1568
1569
/*
1570
* If the rule_string begins with DEFAULT, apply the default rule
1571
* before using the (possibly available) additional rules.
1572
*/
1573
ok = 1;
1574
rule_p = rule_str;
1575
if (HAS_PREFIX(rule_str, "DEFAULT")) {
1576
ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1577
&head, &tail, ca_list, c);
1578
rule_p += 7;
1579
if (*rule_p == ':')
1580
rule_p++;
1581
}
1582
1583
if (ok && (rule_p[0] != '\0'))
1584
ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1585
1586
OPENSSL_free(ca_list); /* Not needed anymore */
1587
1588
if (!ok) { /* Rule processing failure */
1589
OPENSSL_free(co_list);
1590
return NULL;
1591
}
1592
1593
/*
1594
* Allocate new "cipherstack" for the result, return with error
1595
* if we cannot get one.
1596
*/
1597
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1598
OPENSSL_free(co_list);
1599
return NULL;
1600
}
1601
1602
/* Add TLSv1.3 ciphers first - we always prefer those if possible */
1603
for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1604
const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1605
1606
/* Don't include any TLSv1.3 ciphers that are disabled */
1607
if ((sslc->algorithm_enc & disabled_enc) != 0
1608
|| (ssl_cipher_table_mac[sslc->algorithm2
1609
& SSL_HANDSHAKE_MAC_MASK]
1610
.mask
1611
& ctx->disabled_mac_mask)
1612
!= 0) {
1613
sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1614
i--;
1615
continue;
1616
}
1617
1618
if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1619
OPENSSL_free(co_list);
1620
sk_SSL_CIPHER_free(cipherstack);
1621
return NULL;
1622
}
1623
}
1624
1625
OSSL_TRACE_BEGIN(TLS_CIPHER)
1626
{
1627
BIO_printf(trc_out, "cipher selection:\n");
1628
}
1629
/*
1630
* The cipher selection for the list is done. The ciphers are added
1631
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
1632
*/
1633
for (curr = head; curr != NULL; curr = curr->next) {
1634
if (curr->active) {
1635
if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1636
OPENSSL_free(co_list);
1637
sk_SSL_CIPHER_free(cipherstack);
1638
OSSL_TRACE_CANCEL(TLS_CIPHER);
1639
return NULL;
1640
}
1641
if (trc_out != NULL)
1642
BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1643
}
1644
}
1645
OPENSSL_free(co_list); /* Not needed any longer */
1646
OSSL_TRACE_END(TLS_CIPHER);
1647
1648
if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1649
sk_SSL_CIPHER_free(cipherstack);
1650
return NULL;
1651
}
1652
sk_SSL_CIPHER_free(*cipher_list);
1653
*cipher_list = cipherstack;
1654
1655
return cipherstack;
1656
}
1657
1658
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1659
{
1660
const char *ver;
1661
const char *kx, *au, *enc, *mac;
1662
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1663
static const char *const format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1664
1665
if (buf == NULL) {
1666
len = 128;
1667
if ((buf = OPENSSL_malloc(len)) == NULL)
1668
return NULL;
1669
} else if (len < 128) {
1670
return NULL;
1671
}
1672
1673
alg_mkey = cipher->algorithm_mkey;
1674
alg_auth = cipher->algorithm_auth;
1675
alg_enc = cipher->algorithm_enc;
1676
alg_mac = cipher->algorithm_mac;
1677
1678
ver = ssl_protocol_to_string(cipher->min_tls);
1679
1680
switch (alg_mkey) {
1681
case SSL_kRSA:
1682
kx = "RSA";
1683
break;
1684
case SSL_kDHE:
1685
kx = "DH";
1686
break;
1687
case SSL_kECDHE:
1688
kx = "ECDH";
1689
break;
1690
case SSL_kPSK:
1691
kx = "PSK";
1692
break;
1693
case SSL_kRSAPSK:
1694
kx = "RSAPSK";
1695
break;
1696
case SSL_kECDHEPSK:
1697
kx = "ECDHEPSK";
1698
break;
1699
case SSL_kDHEPSK:
1700
kx = "DHEPSK";
1701
break;
1702
case SSL_kSRP:
1703
kx = "SRP";
1704
break;
1705
case SSL_kGOST:
1706
kx = "GOST";
1707
break;
1708
case SSL_kGOST18:
1709
kx = "GOST18";
1710
break;
1711
case SSL_kANY:
1712
kx = "any";
1713
break;
1714
default:
1715
kx = "unknown";
1716
}
1717
1718
switch (alg_auth) {
1719
case SSL_aRSA:
1720
au = "RSA";
1721
break;
1722
case SSL_aDSS:
1723
au = "DSS";
1724
break;
1725
case SSL_aNULL:
1726
au = "None";
1727
break;
1728
case SSL_aECDSA:
1729
au = "ECDSA";
1730
break;
1731
case SSL_aPSK:
1732
au = "PSK";
1733
break;
1734
case SSL_aSRP:
1735
au = "SRP";
1736
break;
1737
case SSL_aGOST01:
1738
au = "GOST01";
1739
break;
1740
/* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1741
case (SSL_aGOST12 | SSL_aGOST01):
1742
au = "GOST12";
1743
break;
1744
case SSL_aANY:
1745
au = "any";
1746
break;
1747
default:
1748
au = "unknown";
1749
break;
1750
}
1751
1752
switch (alg_enc) {
1753
case SSL_DES:
1754
enc = "DES(56)";
1755
break;
1756
case SSL_3DES:
1757
enc = "3DES(168)";
1758
break;
1759
case SSL_RC4:
1760
enc = "RC4(128)";
1761
break;
1762
case SSL_RC2:
1763
enc = "RC2(128)";
1764
break;
1765
case SSL_IDEA:
1766
enc = "IDEA(128)";
1767
break;
1768
case SSL_eNULL:
1769
enc = "None";
1770
break;
1771
case SSL_AES128:
1772
enc = "AES(128)";
1773
break;
1774
case SSL_AES256:
1775
enc = "AES(256)";
1776
break;
1777
case SSL_AES128GCM:
1778
enc = "AESGCM(128)";
1779
break;
1780
case SSL_AES256GCM:
1781
enc = "AESGCM(256)";
1782
break;
1783
case SSL_AES128CCM:
1784
enc = "AESCCM(128)";
1785
break;
1786
case SSL_AES256CCM:
1787
enc = "AESCCM(256)";
1788
break;
1789
case SSL_AES128CCM8:
1790
enc = "AESCCM8(128)";
1791
break;
1792
case SSL_AES256CCM8:
1793
enc = "AESCCM8(256)";
1794
break;
1795
case SSL_CAMELLIA128:
1796
enc = "Camellia(128)";
1797
break;
1798
case SSL_CAMELLIA256:
1799
enc = "Camellia(256)";
1800
break;
1801
case SSL_ARIA128GCM:
1802
enc = "ARIAGCM(128)";
1803
break;
1804
case SSL_ARIA256GCM:
1805
enc = "ARIAGCM(256)";
1806
break;
1807
case SSL_SEED:
1808
enc = "SEED(128)";
1809
break;
1810
case SSL_eGOST2814789CNT:
1811
case SSL_eGOST2814789CNT12:
1812
enc = "GOST89(256)";
1813
break;
1814
case SSL_MAGMA:
1815
enc = "MAGMA";
1816
break;
1817
case SSL_KUZNYECHIK:
1818
enc = "KUZNYECHIK";
1819
break;
1820
case SSL_CHACHA20POLY1305:
1821
enc = "CHACHA20/POLY1305(256)";
1822
break;
1823
default:
1824
enc = "unknown";
1825
break;
1826
}
1827
1828
switch (alg_mac) {
1829
case SSL_MD5:
1830
mac = "MD5";
1831
break;
1832
case SSL_SHA1:
1833
mac = "SHA1";
1834
break;
1835
case SSL_SHA256:
1836
mac = "SHA256";
1837
break;
1838
case SSL_SHA384:
1839
mac = "SHA384";
1840
break;
1841
case SSL_AEAD:
1842
mac = "AEAD";
1843
break;
1844
case SSL_GOST89MAC:
1845
case SSL_GOST89MAC12:
1846
mac = "GOST89";
1847
break;
1848
case SSL_GOST94:
1849
mac = "GOST94";
1850
break;
1851
case SSL_GOST12_256:
1852
case SSL_GOST12_512:
1853
mac = "GOST2012";
1854
break;
1855
default:
1856
mac = "unknown";
1857
break;
1858
}
1859
1860
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1861
1862
return buf;
1863
}
1864
1865
const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1866
{
1867
if (c == NULL)
1868
return "(NONE)";
1869
1870
/*
1871
* Backwards-compatibility crutch. In almost all contexts we report TLS
1872
* 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1873
*/
1874
if (c->min_tls == TLS1_VERSION)
1875
return "TLSv1.0";
1876
return ssl_protocol_to_string(c->min_tls);
1877
}
1878
1879
/* return the actual cipher being used */
1880
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1881
{
1882
if (c != NULL)
1883
return c->name;
1884
return "(NONE)";
1885
}
1886
1887
/* return the actual cipher being used in RFC standard name */
1888
const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1889
{
1890
if (c != NULL)
1891
return c->stdname;
1892
return "(NONE)";
1893
}
1894
1895
/* return the OpenSSL name based on given RFC standard name */
1896
const char *OPENSSL_cipher_name(const char *stdname)
1897
{
1898
const SSL_CIPHER *c;
1899
1900
if (stdname == NULL)
1901
return "(NONE)";
1902
c = ssl3_get_cipher_by_std_name(stdname);
1903
return SSL_CIPHER_get_name(c);
1904
}
1905
1906
/* number of bits for symmetric cipher */
1907
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1908
{
1909
int ret = 0;
1910
1911
if (c != NULL) {
1912
if (alg_bits != NULL)
1913
*alg_bits = (int)c->alg_bits;
1914
ret = (int)c->strength_bits;
1915
}
1916
return ret;
1917
}
1918
1919
uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1920
{
1921
return c->id;
1922
}
1923
1924
uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1925
{
1926
return c->id & 0xFFFF;
1927
}
1928
1929
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1930
{
1931
SSL_COMP *ctmp;
1932
SSL_COMP srch_key;
1933
int i;
1934
1935
if ((n == 0) || (sk == NULL))
1936
return NULL;
1937
srch_key.id = n;
1938
i = sk_SSL_COMP_find(sk, &srch_key);
1939
if (i >= 0)
1940
ctmp = sk_SSL_COMP_value(sk, i);
1941
else
1942
ctmp = NULL;
1943
1944
return ctmp;
1945
}
1946
1947
#ifdef OPENSSL_NO_COMP
1948
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1949
{
1950
return NULL;
1951
}
1952
1953
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1954
*meths)
1955
{
1956
return meths;
1957
}
1958
1959
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1960
{
1961
return 1;
1962
}
1963
1964
#else
1965
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1966
{
1967
STACK_OF(SSL_COMP) **rv;
1968
1969
rv = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1970
OSSL_LIB_CTX_COMP_METHODS);
1971
if (rv != NULL)
1972
return *rv;
1973
else
1974
return NULL;
1975
}
1976
1977
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1978
*meths)
1979
{
1980
STACK_OF(SSL_COMP) **comp_methods;
1981
STACK_OF(SSL_COMP) *old_meths;
1982
1983
comp_methods = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1984
OSSL_LIB_CTX_COMP_METHODS);
1985
if (comp_methods == NULL) {
1986
old_meths = meths;
1987
} else {
1988
old_meths = *comp_methods;
1989
*comp_methods = meths;
1990
}
1991
1992
return old_meths;
1993
}
1994
1995
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1996
{
1997
STACK_OF(SSL_COMP) *comp_methods;
1998
SSL_COMP *comp;
1999
2000
comp_methods = SSL_COMP_get_compression_methods();
2001
2002
if (comp_methods == NULL)
2003
return 1;
2004
2005
if (cm == NULL || COMP_get_type(cm) == NID_undef)
2006
return 1;
2007
2008
/*-
2009
* According to draft-ietf-tls-compression-04.txt, the
2010
* compression number ranges should be the following:
2011
*
2012
* 0 to 63: methods defined by the IETF
2013
* 64 to 192: external party methods assigned by IANA
2014
* 193 to 255: reserved for private use
2015
*/
2016
if (id < 193 || id > 255) {
2017
ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2018
return 1;
2019
}
2020
2021
comp = OPENSSL_malloc(sizeof(*comp));
2022
if (comp == NULL)
2023
return 1;
2024
2025
comp->id = id;
2026
if (sk_SSL_COMP_find(comp_methods, comp) >= 0) {
2027
OPENSSL_free(comp);
2028
ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2029
return 1;
2030
}
2031
if (!sk_SSL_COMP_push(comp_methods, comp)) {
2032
OPENSSL_free(comp);
2033
ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
2034
return 1;
2035
}
2036
2037
return 0;
2038
}
2039
#endif
2040
2041
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2042
{
2043
#ifndef OPENSSL_NO_COMP
2044
return comp ? COMP_get_name(comp) : NULL;
2045
#else
2046
return NULL;
2047
#endif
2048
}
2049
2050
const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2051
{
2052
#ifndef OPENSSL_NO_COMP
2053
return comp->name;
2054
#else
2055
return NULL;
2056
#endif
2057
}
2058
2059
int SSL_COMP_get_id(const SSL_COMP *comp)
2060
{
2061
#ifndef OPENSSL_NO_COMP
2062
return comp->id;
2063
#else
2064
return -1;
2065
#endif
2066
}
2067
2068
const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
2069
const unsigned char *ptr,
2070
int all)
2071
{
2072
const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
2073
2074
if (c == NULL || (!all && c->valid == 0))
2075
return NULL;
2076
return c;
2077
}
2078
2079
const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2080
{
2081
return ssl->method->get_cipher_by_char(ptr);
2082
}
2083
2084
int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2085
{
2086
int i;
2087
if (c == NULL)
2088
return NID_undef;
2089
i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2090
if (i == -1)
2091
return NID_undef;
2092
return ssl_cipher_table_cipher[i].nid;
2093
}
2094
2095
int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2096
{
2097
int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2098
2099
if (i == -1)
2100
return NID_undef;
2101
return ssl_cipher_table_mac[i].nid;
2102
}
2103
2104
int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2105
{
2106
int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2107
2108
if (i == -1)
2109
return NID_undef;
2110
return ssl_cipher_table_kx[i].nid;
2111
}
2112
2113
int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2114
{
2115
int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2116
2117
if (i == -1)
2118
return NID_undef;
2119
return ssl_cipher_table_auth[i].nid;
2120
}
2121
2122
int ssl_get_md_idx(int md_nid)
2123
{
2124
int i;
2125
2126
for (i = 0; i < SSL_MD_NUM_IDX; i++) {
2127
if (md_nid == ssl_cipher_table_mac[i].nid)
2128
return i;
2129
}
2130
return -1;
2131
}
2132
2133
const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2134
{
2135
int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2136
2137
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2138
return NULL;
2139
return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2140
}
2141
2142
int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2143
{
2144
return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2145
}
2146
2147
int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2148
size_t *int_overhead, size_t *blocksize,
2149
size_t *ext_overhead)
2150
{
2151
int mac = 0, in = 0, blk = 0, out = 0;
2152
2153
/* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2154
* because there are no handy #defines for those. */
2155
if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2156
out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2157
} else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2158
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2159
} else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2160
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2161
} else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2162
out = 16;
2163
} else if (c->algorithm_mac & SSL_AEAD) {
2164
/* We're supposed to have handled all the AEAD modes above */
2165
return 0;
2166
} else {
2167
/* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2168
int digest_nid = SSL_CIPHER_get_digest_nid(c);
2169
const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2170
2171
if (e_md == NULL)
2172
return 0;
2173
2174
mac = EVP_MD_get_size(e_md);
2175
if (mac <= 0)
2176
return 0;
2177
if (c->algorithm_enc != SSL_eNULL) {
2178
int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2179
const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2180
2181
/* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2182
known CBC cipher. */
2183
if (e_ciph == NULL || EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2184
return 0;
2185
2186
in = 1; /* padding length byte */
2187
out = EVP_CIPHER_get_iv_length(e_ciph);
2188
if (out < 0)
2189
return 0;
2190
blk = EVP_CIPHER_get_block_size(e_ciph);
2191
if (blk <= 0)
2192
return 0;
2193
}
2194
}
2195
2196
*mac_overhead = (size_t)mac;
2197
*int_overhead = (size_t)in;
2198
*blocksize = (size_t)blk;
2199
*ext_overhead = (size_t)out;
2200
2201
return 1;
2202
}
2203
2204
int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2205
{
2206
const SSL_CERT_LOOKUP *cl;
2207
2208
/* A provider-loaded key type is always enabled */
2209
if (idx >= SSL_PKEY_NUM)
2210
return 0;
2211
2212
cl = ssl_cert_lookup_by_idx(idx, ctx);
2213
if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2214
return 1;
2215
return 0;
2216
}
2217
2218
/*
2219
* Default list of TLSv1.2 (and earlier) ciphers
2220
* SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2221
* Update both macro and function simultaneously
2222
*/
2223
const char *OSSL_default_cipher_list(void)
2224
{
2225
return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2226
}
2227
2228
/*
2229
* Default list of TLSv1.3 (and later) ciphers
2230
* TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2231
* Update both macro and function simultaneously
2232
*/
2233
const char *OSSL_default_ciphersuites(void)
2234
{
2235
return "TLS_AES_256_GCM_SHA384:"
2236
"TLS_CHACHA20_POLY1305_SHA256:"
2237
"TLS_AES_128_GCM_SHA256";
2238
}
2239
2240