Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/crypto/openssl/ssl/ssl_ciph.c
48150 views
1
/*
2
* Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
* Copyright 2005 Nokia. All rights reserved.
5
*
6
* Licensed under the Apache License 2.0 (the "License"). You may not use
7
* this file except in compliance with the License. You can obtain a copy
8
* in the file LICENSE in the source distribution or at
9
* https://www.openssl.org/source/license.html
10
*/
11
12
#include <stdio.h>
13
#include <ctype.h>
14
#include <openssl/objects.h>
15
#include <openssl/comp.h>
16
#include <openssl/engine.h>
17
#include <openssl/crypto.h>
18
#include <openssl/conf.h>
19
#include <openssl/trace.h>
20
#include "internal/nelem.h"
21
#include "ssl_local.h"
22
#include "internal/thread_once.h"
23
#include "internal/cryptlib.h"
24
#include "internal/comp.h"
25
#include "internal/ssl_unwrap.h"
26
27
/* NB: make sure indices in these tables match values above */
28
29
typedef struct {
30
uint32_t mask;
31
int nid;
32
} ssl_cipher_table;
33
34
/* Table of NIDs for each cipher */
35
static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
36
{SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
37
{SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
38
{SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
39
{SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
40
{SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
41
{SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
42
{SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
43
{SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
44
{SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
45
{SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
46
{SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
47
{SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
48
{SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
49
{SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
50
{SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
51
{SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
52
{SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
53
{SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
54
{SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
55
{SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
56
{SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
57
{SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
58
{SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
59
{SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
60
};
61
62
/* NB: make sure indices in this table matches values above */
63
static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
64
{SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
65
{SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
66
{SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
67
{SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
68
{SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
69
{SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
70
{SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
71
{SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
72
{SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
73
{0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
74
{0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
75
{0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
76
{SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
77
{SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
78
};
79
80
/* *INDENT-OFF* */
81
static const ssl_cipher_table ssl_cipher_table_kx[] = {
82
{SSL_kRSA, NID_kx_rsa},
83
{SSL_kECDHE, NID_kx_ecdhe},
84
{SSL_kDHE, NID_kx_dhe},
85
{SSL_kECDHEPSK, NID_kx_ecdhe_psk},
86
{SSL_kDHEPSK, NID_kx_dhe_psk},
87
{SSL_kRSAPSK, NID_kx_rsa_psk},
88
{SSL_kPSK, NID_kx_psk},
89
{SSL_kSRP, NID_kx_srp},
90
{SSL_kGOST, NID_kx_gost},
91
{SSL_kGOST18, NID_kx_gost18},
92
{SSL_kANY, NID_kx_any}
93
};
94
95
static const ssl_cipher_table ssl_cipher_table_auth[] = {
96
{SSL_aRSA, NID_auth_rsa},
97
{SSL_aECDSA, NID_auth_ecdsa},
98
{SSL_aPSK, NID_auth_psk},
99
{SSL_aDSS, NID_auth_dss},
100
{SSL_aGOST01, NID_auth_gost01},
101
{SSL_aGOST12, NID_auth_gost12},
102
{SSL_aSRP, NID_auth_srp},
103
{SSL_aNULL, NID_auth_null},
104
{SSL_aANY, NID_auth_any}
105
};
106
/* *INDENT-ON* */
107
108
/* Utility function for table lookup */
109
static int ssl_cipher_info_find(const ssl_cipher_table *table,
110
size_t table_cnt, uint32_t mask)
111
{
112
size_t i;
113
for (i = 0; i < table_cnt; i++, table++) {
114
if (table->mask == mask)
115
return (int)i;
116
}
117
return -1;
118
}
119
120
#define ssl_cipher_info_lookup(table, x) \
121
ssl_cipher_info_find(table, OSSL_NELEM(table), x)
122
123
/*
124
* PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
125
* is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
126
* found
127
*/
128
static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
129
/* MD5, SHA, GOST94, MAC89 */
130
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
131
/* SHA256, SHA384, GOST2012_256, MAC89-12 */
132
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
133
/* GOST2012_512 */
134
EVP_PKEY_HMAC,
135
/* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
136
NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
137
};
138
139
#define CIPHER_ADD 1
140
#define CIPHER_KILL 2
141
#define CIPHER_DEL 3
142
#define CIPHER_ORD 4
143
#define CIPHER_SPECIAL 5
144
/*
145
* Bump the ciphers to the top of the list.
146
* This rule isn't currently supported by the public cipherstring API.
147
*/
148
#define CIPHER_BUMP 6
149
150
typedef struct cipher_order_st {
151
const SSL_CIPHER *cipher;
152
int active;
153
int dead;
154
struct cipher_order_st *next, *prev;
155
} CIPHER_ORDER;
156
157
static const SSL_CIPHER cipher_aliases[] = {
158
/* "ALL" doesn't include eNULL (must be specifically enabled) */
159
{0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
160
/* "COMPLEMENTOFALL" */
161
{0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
162
163
/*
164
* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
165
* ALL!)
166
*/
167
{0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
168
169
/*
170
* key exchange aliases (some of those using only a single bit here
171
* combine multiple key exchange algs according to the RFCs, e.g. kDHE
172
* combines DHE_DSS and DHE_RSA)
173
*/
174
{0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
175
176
{0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
177
{0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
178
{0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
179
180
{0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
181
{0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
182
{0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
183
184
{0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
185
{0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
186
{0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
187
{0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
188
{0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
189
{0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
190
{0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
191
192
/* server authentication aliases */
193
{0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
194
{0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
195
{0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
196
{0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
197
{0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
198
{0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
199
{0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
200
{0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
201
{0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
202
{0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
203
{0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
204
205
/* aliases combining key exchange and server authentication */
206
{0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
207
{0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
208
{0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
209
{0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
210
{0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
211
{0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
212
{0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
213
{0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
214
{0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
215
{0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
216
217
/* symmetric encryption aliases */
218
{0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
219
{0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
220
{0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
221
{0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
222
{0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
223
{0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
224
{0, SSL_TXT_GOST, NULL, 0, 0, 0,
225
SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
226
{0, SSL_TXT_AES128, NULL, 0, 0, 0,
227
SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
228
{0, SSL_TXT_AES256, NULL, 0, 0, 0,
229
SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
230
{0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
231
{0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
232
{0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
233
SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
234
{0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
235
{0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
236
{0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
237
{0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
238
{0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
239
{0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
240
241
{0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
242
{0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
243
{0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
244
{0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
245
{0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
246
247
/* MAC aliases */
248
{0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
249
{0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
250
{0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
251
{0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
252
{0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
253
{0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
254
{0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
255
{0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
256
257
/* protocol version aliases */
258
{0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
259
{0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
260
{0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
261
{0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
262
263
/* strength classes */
264
{0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
265
{0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
266
{0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
267
/* FIPS 140-2 approved ciphersuite */
268
{0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
269
270
/* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
271
{0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
272
SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
273
{0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
274
SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
275
276
};
277
278
/*
279
* Search for public key algorithm with given name and return its pkey_id if
280
* it is available. Otherwise return 0
281
*/
282
#ifdef OPENSSL_NO_ENGINE
283
284
static int get_optional_pkey_id(const char *pkey_name)
285
{
286
const EVP_PKEY_ASN1_METHOD *ameth;
287
int pkey_id = 0;
288
ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
289
if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
290
ameth) > 0)
291
return pkey_id;
292
return 0;
293
}
294
295
#else
296
297
static int get_optional_pkey_id(const char *pkey_name)
298
{
299
const EVP_PKEY_ASN1_METHOD *ameth;
300
ENGINE *tmpeng = NULL;
301
int pkey_id = 0;
302
ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
303
if (ameth) {
304
if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
305
ameth) <= 0)
306
pkey_id = 0;
307
}
308
tls_engine_finish(tmpeng);
309
return pkey_id;
310
}
311
312
#endif
313
314
int ssl_load_ciphers(SSL_CTX *ctx)
315
{
316
size_t i;
317
const ssl_cipher_table *t;
318
EVP_KEYEXCH *kex = NULL;
319
EVP_SIGNATURE *sig = NULL;
320
321
ctx->disabled_enc_mask = 0;
322
for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
323
if (t->nid != NID_undef) {
324
const EVP_CIPHER *cipher
325
= ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
326
327
ctx->ssl_cipher_methods[i] = cipher;
328
if (cipher == NULL)
329
ctx->disabled_enc_mask |= t->mask;
330
}
331
}
332
ctx->disabled_mac_mask = 0;
333
for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
334
const EVP_MD *md
335
= ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
336
337
ctx->ssl_digest_methods[i] = md;
338
if (md == NULL) {
339
ctx->disabled_mac_mask |= t->mask;
340
} else {
341
int tmpsize = EVP_MD_get_size(md);
342
343
if (!ossl_assert(tmpsize > 0))
344
return 0;
345
ctx->ssl_mac_secret_size[i] = tmpsize;
346
}
347
}
348
349
ctx->disabled_mkey_mask = 0;
350
ctx->disabled_auth_mask = 0;
351
352
/*
353
* We ignore any errors from the fetches below. They are expected to fail
354
* if these algorithms are not available.
355
*/
356
ERR_set_mark();
357
sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
358
if (sig == NULL)
359
ctx->disabled_auth_mask |= SSL_aDSS;
360
else
361
EVP_SIGNATURE_free(sig);
362
kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
363
if (kex == NULL)
364
ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
365
else
366
EVP_KEYEXCH_free(kex);
367
kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
368
if (kex == NULL)
369
ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
370
else
371
EVP_KEYEXCH_free(kex);
372
sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
373
if (sig == NULL)
374
ctx->disabled_auth_mask |= SSL_aECDSA;
375
else
376
EVP_SIGNATURE_free(sig);
377
ERR_pop_to_mark();
378
379
#ifdef OPENSSL_NO_PSK
380
ctx->disabled_mkey_mask |= SSL_PSK;
381
ctx->disabled_auth_mask |= SSL_aPSK;
382
#endif
383
#ifdef OPENSSL_NO_SRP
384
ctx->disabled_mkey_mask |= SSL_kSRP;
385
#endif
386
387
/*
388
* Check for presence of GOST 34.10 algorithms, and if they are not
389
* present, disable appropriate auth and key exchange
390
*/
391
memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
392
sizeof(ctx->ssl_mac_pkey_id));
393
394
ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
395
get_optional_pkey_id(SN_id_Gost28147_89_MAC);
396
if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
397
ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
398
else
399
ctx->disabled_mac_mask |= SSL_GOST89MAC;
400
401
ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
402
get_optional_pkey_id(SN_gost_mac_12);
403
if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
404
ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
405
else
406
ctx->disabled_mac_mask |= SSL_GOST89MAC12;
407
408
ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
409
get_optional_pkey_id(SN_magma_mac);
410
if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
411
ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
412
else
413
ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
414
415
ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
416
get_optional_pkey_id(SN_kuznyechik_mac);
417
if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
418
ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
419
else
420
ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
421
422
if (!get_optional_pkey_id(SN_id_GostR3410_2001))
423
ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
424
if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
425
ctx->disabled_auth_mask |= SSL_aGOST12;
426
if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
427
ctx->disabled_auth_mask |= SSL_aGOST12;
428
/*
429
* Disable GOST key exchange if no GOST signature algs are available *
430
*/
431
if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
432
(SSL_aGOST01 | SSL_aGOST12))
433
ctx->disabled_mkey_mask |= SSL_kGOST;
434
435
if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
436
ctx->disabled_mkey_mask |= SSL_kGOST18;
437
438
return 1;
439
}
440
441
int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
442
const EVP_CIPHER **enc)
443
{
444
int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher,
445
sslc->algorithm_enc);
446
447
if (i == -1) {
448
*enc = NULL;
449
} else {
450
if (i == SSL_ENC_NULL_IDX) {
451
/*
452
* We assume we don't care about this coming from an ENGINE so
453
* just do a normal EVP_CIPHER_fetch instead of
454
* ssl_evp_cipher_fetch()
455
*/
456
*enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
457
if (*enc == NULL)
458
return 0;
459
} else {
460
const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
461
462
if (cipher == NULL
463
|| !ssl_evp_cipher_up_ref(cipher))
464
return 0;
465
*enc = ctx->ssl_cipher_methods[i];
466
}
467
}
468
return 1;
469
}
470
471
int ssl_cipher_get_evp_md_mac(SSL_CTX *ctx, const SSL_CIPHER *sslc,
472
const EVP_MD **md,
473
int *mac_pkey_type, size_t *mac_secret_size)
474
{
475
int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, sslc->algorithm_mac);
476
477
if (i == -1) {
478
*md = NULL;
479
if (mac_pkey_type != NULL)
480
*mac_pkey_type = NID_undef;
481
if (mac_secret_size != NULL)
482
*mac_secret_size = 0;
483
} else {
484
const EVP_MD *digest = ctx->ssl_digest_methods[i];
485
486
if (digest == NULL || !ssl_evp_md_up_ref(digest))
487
return 0;
488
489
*md = digest;
490
if (mac_pkey_type != NULL)
491
*mac_pkey_type = ctx->ssl_mac_pkey_id[i];
492
if (mac_secret_size != NULL)
493
*mac_secret_size = ctx->ssl_mac_secret_size[i];
494
}
495
return 1;
496
}
497
498
int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
499
const EVP_CIPHER **enc, const EVP_MD **md,
500
int *mac_pkey_type, size_t *mac_secret_size,
501
SSL_COMP **comp, int use_etm)
502
{
503
int i;
504
const SSL_CIPHER *c;
505
506
c = s->cipher;
507
if (c == NULL)
508
return 0;
509
if (comp != NULL) {
510
SSL_COMP ctmp;
511
STACK_OF(SSL_COMP) *comp_methods;
512
513
*comp = NULL;
514
ctmp.id = s->compress_meth;
515
comp_methods = SSL_COMP_get_compression_methods();
516
if (comp_methods != NULL) {
517
i = sk_SSL_COMP_find(comp_methods, &ctmp);
518
if (i >= 0)
519
*comp = sk_SSL_COMP_value(comp_methods, i);
520
}
521
/* If were only interested in comp then return success */
522
if ((enc == NULL) && (md == NULL))
523
return 1;
524
}
525
526
if ((enc == NULL) || (md == NULL))
527
return 0;
528
529
if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
530
return 0;
531
532
if (!ssl_cipher_get_evp_md_mac(ctx, c, md, mac_pkey_type,
533
mac_secret_size)) {
534
ssl_evp_cipher_free(*enc);
535
return 0;
536
}
537
538
if ((*enc != NULL)
539
&& (*md != NULL
540
|| (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
541
&& (c->algorithm_mac == SSL_AEAD
542
|| mac_pkey_type == NULL || *mac_pkey_type != NID_undef)) {
543
const EVP_CIPHER *evp = NULL;
544
545
if (use_etm
546
|| s->ssl_version >> 8 != TLS1_VERSION_MAJOR
547
|| s->ssl_version < TLS1_VERSION)
548
return 1;
549
550
if (c->algorithm_enc == SSL_RC4
551
&& c->algorithm_mac == SSL_MD5)
552
evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
553
ctx->propq);
554
else if (c->algorithm_enc == SSL_AES128
555
&& c->algorithm_mac == SSL_SHA1)
556
evp = ssl_evp_cipher_fetch(ctx->libctx,
557
NID_aes_128_cbc_hmac_sha1,
558
ctx->propq);
559
else if (c->algorithm_enc == SSL_AES256
560
&& c->algorithm_mac == SSL_SHA1)
561
evp = ssl_evp_cipher_fetch(ctx->libctx,
562
NID_aes_256_cbc_hmac_sha1,
563
ctx->propq);
564
else if (c->algorithm_enc == SSL_AES128
565
&& c->algorithm_mac == SSL_SHA256)
566
evp = ssl_evp_cipher_fetch(ctx->libctx,
567
NID_aes_128_cbc_hmac_sha256,
568
ctx->propq);
569
else if (c->algorithm_enc == SSL_AES256
570
&& c->algorithm_mac == SSL_SHA256)
571
evp = ssl_evp_cipher_fetch(ctx->libctx,
572
NID_aes_256_cbc_hmac_sha256,
573
ctx->propq);
574
575
if (evp != NULL) {
576
ssl_evp_cipher_free(*enc);
577
ssl_evp_md_free(*md);
578
*enc = evp;
579
*md = NULL;
580
}
581
return 1;
582
}
583
584
return 0;
585
}
586
587
const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
588
{
589
idx &= SSL_HANDSHAKE_MAC_MASK;
590
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
591
return NULL;
592
return ctx->ssl_digest_methods[idx];
593
}
594
595
const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
596
{
597
return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
598
}
599
600
const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
601
{
602
return ssl_md(SSL_CONNECTION_GET_CTX(s),
603
ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
604
}
605
606
607
#define ITEM_SEP(a) \
608
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
609
610
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
611
CIPHER_ORDER **tail)
612
{
613
if (curr == *tail)
614
return;
615
if (curr == *head)
616
*head = curr->next;
617
if (curr->prev != NULL)
618
curr->prev->next = curr->next;
619
if (curr->next != NULL)
620
curr->next->prev = curr->prev;
621
(*tail)->next = curr;
622
curr->prev = *tail;
623
curr->next = NULL;
624
*tail = curr;
625
}
626
627
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
628
CIPHER_ORDER **tail)
629
{
630
if (curr == *head)
631
return;
632
if (curr == *tail)
633
*tail = curr->prev;
634
if (curr->next != NULL)
635
curr->next->prev = curr->prev;
636
if (curr->prev != NULL)
637
curr->prev->next = curr->next;
638
(*head)->prev = curr;
639
curr->next = *head;
640
curr->prev = NULL;
641
*head = curr;
642
}
643
644
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
645
int num_of_ciphers,
646
uint32_t disabled_mkey,
647
uint32_t disabled_auth,
648
uint32_t disabled_enc,
649
uint32_t disabled_mac,
650
CIPHER_ORDER *co_list,
651
CIPHER_ORDER **head_p,
652
CIPHER_ORDER **tail_p)
653
{
654
int i, co_list_num;
655
const SSL_CIPHER *c;
656
657
/*
658
* We have num_of_ciphers descriptions compiled in, depending on the
659
* method selected (SSLv3, TLSv1 etc).
660
* These will later be sorted in a linked list with at most num
661
* entries.
662
*/
663
664
/* Get the initial list of ciphers */
665
co_list_num = 0; /* actual count of ciphers */
666
for (i = 0; i < num_of_ciphers; i++) {
667
c = ssl_method->get_cipher(i);
668
/* drop those that use any of that is not available */
669
if (c == NULL || !c->valid)
670
continue;
671
if ((c->algorithm_mkey & disabled_mkey) ||
672
(c->algorithm_auth & disabled_auth) ||
673
(c->algorithm_enc & disabled_enc) ||
674
(c->algorithm_mac & disabled_mac))
675
continue;
676
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
677
c->min_tls == 0)
678
continue;
679
if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
680
c->min_dtls == 0)
681
continue;
682
683
co_list[co_list_num].cipher = c;
684
co_list[co_list_num].next = NULL;
685
co_list[co_list_num].prev = NULL;
686
co_list[co_list_num].active = 0;
687
co_list_num++;
688
}
689
690
/*
691
* Prepare linked list from list entries
692
*/
693
if (co_list_num > 0) {
694
co_list[0].prev = NULL;
695
696
if (co_list_num > 1) {
697
co_list[0].next = &co_list[1];
698
699
for (i = 1; i < co_list_num - 1; i++) {
700
co_list[i].prev = &co_list[i - 1];
701
co_list[i].next = &co_list[i + 1];
702
}
703
704
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
705
}
706
707
co_list[co_list_num - 1].next = NULL;
708
709
*head_p = &co_list[0];
710
*tail_p = &co_list[co_list_num - 1];
711
}
712
}
713
714
static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
715
int num_of_group_aliases,
716
uint32_t disabled_mkey,
717
uint32_t disabled_auth,
718
uint32_t disabled_enc,
719
uint32_t disabled_mac,
720
CIPHER_ORDER *head)
721
{
722
CIPHER_ORDER *ciph_curr;
723
const SSL_CIPHER **ca_curr;
724
int i;
725
uint32_t mask_mkey = ~disabled_mkey;
726
uint32_t mask_auth = ~disabled_auth;
727
uint32_t mask_enc = ~disabled_enc;
728
uint32_t mask_mac = ~disabled_mac;
729
730
/*
731
* First, add the real ciphers as already collected
732
*/
733
ciph_curr = head;
734
ca_curr = ca_list;
735
while (ciph_curr != NULL) {
736
*ca_curr = ciph_curr->cipher;
737
ca_curr++;
738
ciph_curr = ciph_curr->next;
739
}
740
741
/*
742
* Now we add the available ones from the cipher_aliases[] table.
743
* They represent either one or more algorithms, some of which
744
* in any affected category must be supported (set in enabled_mask),
745
* or represent a cipher strength value (will be added in any case because algorithms=0).
746
*/
747
for (i = 0; i < num_of_group_aliases; i++) {
748
uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
749
uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
750
uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
751
uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
752
753
if (algorithm_mkey)
754
if ((algorithm_mkey & mask_mkey) == 0)
755
continue;
756
757
if (algorithm_auth)
758
if ((algorithm_auth & mask_auth) == 0)
759
continue;
760
761
if (algorithm_enc)
762
if ((algorithm_enc & mask_enc) == 0)
763
continue;
764
765
if (algorithm_mac)
766
if ((algorithm_mac & mask_mac) == 0)
767
continue;
768
769
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
770
ca_curr++;
771
}
772
773
*ca_curr = NULL; /* end of list */
774
}
775
776
static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
777
uint32_t alg_auth, uint32_t alg_enc,
778
uint32_t alg_mac, int min_tls,
779
uint32_t algo_strength, int rule,
780
int32_t strength_bits, CIPHER_ORDER **head_p,
781
CIPHER_ORDER **tail_p)
782
{
783
CIPHER_ORDER *head, *tail, *curr, *next, *last;
784
const SSL_CIPHER *cp;
785
int reverse = 0;
786
787
OSSL_TRACE_BEGIN(TLS_CIPHER) {
788
BIO_printf(trc_out,
789
"Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
790
rule, (unsigned int)alg_mkey, (unsigned int)alg_auth,
791
(unsigned int)alg_enc, (unsigned int)alg_mac, min_tls,
792
(unsigned int)algo_strength, (int)strength_bits);
793
}
794
795
if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
796
reverse = 1; /* needed to maintain sorting between currently
797
* deleted ciphers */
798
799
head = *head_p;
800
tail = *tail_p;
801
802
if (reverse) {
803
next = tail;
804
last = head;
805
} else {
806
next = head;
807
last = tail;
808
}
809
810
curr = NULL;
811
for (;;) {
812
if (curr == last)
813
break;
814
815
curr = next;
816
817
if (curr == NULL)
818
break;
819
820
next = reverse ? curr->prev : curr->next;
821
822
cp = curr->cipher;
823
824
/*
825
* Selection criteria is either the value of strength_bits
826
* or the algorithms used.
827
*/
828
if (strength_bits >= 0) {
829
if (strength_bits != cp->strength_bits)
830
continue;
831
} else {
832
if (trc_out != NULL) {
833
BIO_printf(trc_out,
834
"\nName: %s:"
835
"\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
836
cp->name,
837
(unsigned int)cp->algorithm_mkey,
838
(unsigned int)cp->algorithm_auth,
839
(unsigned int)cp->algorithm_enc,
840
(unsigned int)cp->algorithm_mac,
841
cp->min_tls,
842
(unsigned int)cp->algo_strength);
843
}
844
if (cipher_id != 0 && (cipher_id != cp->id))
845
continue;
846
if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
847
continue;
848
if (alg_auth && !(alg_auth & cp->algorithm_auth))
849
continue;
850
if (alg_enc && !(alg_enc & cp->algorithm_enc))
851
continue;
852
if (alg_mac && !(alg_mac & cp->algorithm_mac))
853
continue;
854
if (min_tls && (min_tls != cp->min_tls))
855
continue;
856
if ((algo_strength & SSL_STRONG_MASK)
857
&& !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
858
continue;
859
if ((algo_strength & SSL_DEFAULT_MASK)
860
&& !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
861
continue;
862
}
863
864
if (trc_out != NULL)
865
BIO_printf(trc_out, "Action = %d\n", rule);
866
867
/* add the cipher if it has not been added yet. */
868
if (rule == CIPHER_ADD) {
869
/* reverse == 0 */
870
if (!curr->active) {
871
ll_append_tail(&head, curr, &tail);
872
curr->active = 1;
873
}
874
}
875
/* Move the added cipher to this location */
876
else if (rule == CIPHER_ORD) {
877
/* reverse == 0 */
878
if (curr->active) {
879
ll_append_tail(&head, curr, &tail);
880
}
881
} else if (rule == CIPHER_DEL) {
882
/* reverse == 1 */
883
if (curr->active) {
884
/*
885
* most recently deleted ciphersuites get best positions for
886
* any future CIPHER_ADD (note that the CIPHER_DEL loop works
887
* in reverse to maintain the order)
888
*/
889
ll_append_head(&head, curr, &tail);
890
curr->active = 0;
891
}
892
} else if (rule == CIPHER_BUMP) {
893
if (curr->active)
894
ll_append_head(&head, curr, &tail);
895
} else if (rule == CIPHER_KILL) {
896
/* reverse == 0 */
897
if (head == curr)
898
head = curr->next;
899
else
900
curr->prev->next = curr->next;
901
if (tail == curr)
902
tail = curr->prev;
903
curr->active = 0;
904
if (curr->next != NULL)
905
curr->next->prev = curr->prev;
906
if (curr->prev != NULL)
907
curr->prev->next = curr->next;
908
curr->next = NULL;
909
curr->prev = NULL;
910
}
911
}
912
913
*head_p = head;
914
*tail_p = tail;
915
916
OSSL_TRACE_END(TLS_CIPHER);
917
}
918
919
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
920
CIPHER_ORDER **tail_p)
921
{
922
int32_t max_strength_bits;
923
int i, *number_uses;
924
CIPHER_ORDER *curr;
925
926
/*
927
* This routine sorts the ciphers with descending strength. The sorting
928
* must keep the pre-sorted sequence, so we apply the normal sorting
929
* routine as '+' movement to the end of the list.
930
*/
931
max_strength_bits = 0;
932
curr = *head_p;
933
while (curr != NULL) {
934
if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
935
max_strength_bits = curr->cipher->strength_bits;
936
curr = curr->next;
937
}
938
939
number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
940
if (number_uses == NULL)
941
return 0;
942
943
/*
944
* Now find the strength_bits values actually used
945
*/
946
curr = *head_p;
947
while (curr != NULL) {
948
if (curr->active)
949
number_uses[curr->cipher->strength_bits]++;
950
curr = curr->next;
951
}
952
/*
953
* Go through the list of used strength_bits values in descending
954
* order.
955
*/
956
for (i = max_strength_bits; i >= 0; i--)
957
if (number_uses[i] > 0)
958
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
959
tail_p);
960
961
OPENSSL_free(number_uses);
962
return 1;
963
}
964
965
static int ssl_cipher_process_rulestr(const char *rule_str,
966
CIPHER_ORDER **head_p,
967
CIPHER_ORDER **tail_p,
968
const SSL_CIPHER **ca_list, CERT *c)
969
{
970
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
971
int min_tls;
972
const char *l, *buf;
973
int j, multi, found, rule, retval, ok, buflen;
974
uint32_t cipher_id = 0;
975
char ch;
976
977
retval = 1;
978
l = rule_str;
979
for (;;) {
980
ch = *l;
981
982
if (ch == '\0')
983
break; /* done */
984
if (ch == '-') {
985
rule = CIPHER_DEL;
986
l++;
987
} else if (ch == '+') {
988
rule = CIPHER_ORD;
989
l++;
990
} else if (ch == '!') {
991
rule = CIPHER_KILL;
992
l++;
993
} else if (ch == '@') {
994
rule = CIPHER_SPECIAL;
995
l++;
996
} else {
997
rule = CIPHER_ADD;
998
}
999
1000
if (ITEM_SEP(ch)) {
1001
l++;
1002
continue;
1003
}
1004
1005
alg_mkey = 0;
1006
alg_auth = 0;
1007
alg_enc = 0;
1008
alg_mac = 0;
1009
min_tls = 0;
1010
algo_strength = 0;
1011
1012
for (;;) {
1013
ch = *l;
1014
buf = l;
1015
buflen = 0;
1016
#ifndef CHARSET_EBCDIC
1017
while (((ch >= 'A') && (ch <= 'Z')) ||
1018
((ch >= '0') && (ch <= '9')) ||
1019
((ch >= 'a') && (ch <= 'z')) ||
1020
(ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
1021
#else
1022
while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
1023
|| (ch == '='))
1024
#endif
1025
{
1026
ch = *(++l);
1027
buflen++;
1028
}
1029
1030
if (buflen == 0) {
1031
/*
1032
* We hit something we cannot deal with,
1033
* it is no command or separator nor
1034
* alphanumeric, so we call this an error.
1035
*/
1036
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1037
return 0;
1038
}
1039
1040
if (rule == CIPHER_SPECIAL) {
1041
found = 0; /* unused -- avoid compiler warning */
1042
break; /* special treatment */
1043
}
1044
1045
/* check for multi-part specification */
1046
if (ch == '+') {
1047
multi = 1;
1048
l++;
1049
} else {
1050
multi = 0;
1051
}
1052
1053
/*
1054
* Now search for the cipher alias in the ca_list. Be careful
1055
* with the strncmp, because the "buflen" limitation
1056
* will make the rule "ADH:SOME" and the cipher
1057
* "ADH-MY-CIPHER" look like a match for buflen=3.
1058
* So additionally check whether the cipher name found
1059
* has the correct length. We can save a strlen() call:
1060
* just checking for the '\0' at the right place is
1061
* sufficient, we have to strncmp() anyway. (We cannot
1062
* use strcmp(), because buf is not '\0' terminated.)
1063
*/
1064
j = found = 0;
1065
cipher_id = 0;
1066
while (ca_list[j]) {
1067
if (strncmp(buf, ca_list[j]->name, buflen) == 0
1068
&& (ca_list[j]->name[buflen] == '\0')) {
1069
found = 1;
1070
break;
1071
} else if (ca_list[j]->stdname != NULL
1072
&& strncmp(buf, ca_list[j]->stdname, buflen) == 0
1073
&& ca_list[j]->stdname[buflen] == '\0') {
1074
found = 1;
1075
break;
1076
} else
1077
j++;
1078
}
1079
1080
if (!found)
1081
break; /* ignore this entry */
1082
1083
if (ca_list[j]->algorithm_mkey) {
1084
if (alg_mkey) {
1085
alg_mkey &= ca_list[j]->algorithm_mkey;
1086
if (!alg_mkey) {
1087
found = 0;
1088
break;
1089
}
1090
} else {
1091
alg_mkey = ca_list[j]->algorithm_mkey;
1092
}
1093
}
1094
1095
if (ca_list[j]->algorithm_auth) {
1096
if (alg_auth) {
1097
alg_auth &= ca_list[j]->algorithm_auth;
1098
if (!alg_auth) {
1099
found = 0;
1100
break;
1101
}
1102
} else {
1103
alg_auth = ca_list[j]->algorithm_auth;
1104
}
1105
}
1106
1107
if (ca_list[j]->algorithm_enc) {
1108
if (alg_enc) {
1109
alg_enc &= ca_list[j]->algorithm_enc;
1110
if (!alg_enc) {
1111
found = 0;
1112
break;
1113
}
1114
} else {
1115
alg_enc = ca_list[j]->algorithm_enc;
1116
}
1117
}
1118
1119
if (ca_list[j]->algorithm_mac) {
1120
if (alg_mac) {
1121
alg_mac &= ca_list[j]->algorithm_mac;
1122
if (!alg_mac) {
1123
found = 0;
1124
break;
1125
}
1126
} else {
1127
alg_mac = ca_list[j]->algorithm_mac;
1128
}
1129
}
1130
1131
if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1132
if (algo_strength & SSL_STRONG_MASK) {
1133
algo_strength &=
1134
(ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1135
~SSL_STRONG_MASK;
1136
if (!(algo_strength & SSL_STRONG_MASK)) {
1137
found = 0;
1138
break;
1139
}
1140
} else {
1141
algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1142
}
1143
}
1144
1145
if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1146
if (algo_strength & SSL_DEFAULT_MASK) {
1147
algo_strength &=
1148
(ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1149
~SSL_DEFAULT_MASK;
1150
if (!(algo_strength & SSL_DEFAULT_MASK)) {
1151
found = 0;
1152
break;
1153
}
1154
} else {
1155
algo_strength |=
1156
ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1157
}
1158
}
1159
1160
if (ca_list[j]->valid) {
1161
/*
1162
* explicit ciphersuite found; its protocol version does not
1163
* become part of the search pattern!
1164
*/
1165
1166
cipher_id = ca_list[j]->id;
1167
} else {
1168
/*
1169
* not an explicit ciphersuite; only in this case, the
1170
* protocol version is considered part of the search pattern
1171
*/
1172
1173
if (ca_list[j]->min_tls) {
1174
if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1175
found = 0;
1176
break;
1177
} else {
1178
min_tls = ca_list[j]->min_tls;
1179
}
1180
}
1181
}
1182
1183
if (!multi)
1184
break;
1185
}
1186
1187
/*
1188
* Ok, we have the rule, now apply it
1189
*/
1190
if (rule == CIPHER_SPECIAL) { /* special command */
1191
ok = 0;
1192
if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
1193
ok = ssl_cipher_strength_sort(head_p, tail_p);
1194
} else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
1195
int level = *buf - '0';
1196
if (level < 0 || level > 5) {
1197
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1198
} else {
1199
c->sec_level = level;
1200
ok = 1;
1201
}
1202
} else {
1203
ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1204
}
1205
if (ok == 0)
1206
retval = 0;
1207
/*
1208
* We do not support any "multi" options
1209
* together with "@", so throw away the
1210
* rest of the command, if any left, until
1211
* end or ':' is found.
1212
*/
1213
while ((*l != '\0') && !ITEM_SEP(*l))
1214
l++;
1215
} else if (found) {
1216
ssl_cipher_apply_rule(cipher_id,
1217
alg_mkey, alg_auth, alg_enc, alg_mac,
1218
min_tls, algo_strength, rule, -1, head_p,
1219
tail_p);
1220
} else {
1221
while ((*l != '\0') && !ITEM_SEP(*l))
1222
l++;
1223
}
1224
if (*l == '\0')
1225
break; /* done */
1226
}
1227
1228
return retval;
1229
}
1230
1231
static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1232
const char **prule_str)
1233
{
1234
unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1235
if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
1236
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1237
} else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
1238
suiteb_comb2 = 1;
1239
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1240
} else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
1241
suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1242
} else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
1243
suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1244
}
1245
1246
if (suiteb_flags) {
1247
c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1248
c->cert_flags |= suiteb_flags;
1249
} else {
1250
suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1251
}
1252
1253
if (!suiteb_flags)
1254
return 1;
1255
/* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1256
1257
if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1258
ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1259
return 0;
1260
}
1261
1262
switch (suiteb_flags) {
1263
case SSL_CERT_FLAG_SUITEB_128_LOS:
1264
if (suiteb_comb2)
1265
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1266
else
1267
*prule_str =
1268
"ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1269
break;
1270
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1271
*prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1272
break;
1273
case SSL_CERT_FLAG_SUITEB_192_LOS:
1274
*prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1275
break;
1276
}
1277
return 1;
1278
}
1279
1280
static int ciphersuite_cb(const char *elem, int len, void *arg)
1281
{
1282
STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1283
const SSL_CIPHER *cipher;
1284
/* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1285
char name[80];
1286
1287
if (len > (int)(sizeof(name) - 1))
1288
/* Anyway return 1 so we can parse rest of the list */
1289
return 1;
1290
1291
memcpy(name, elem, len);
1292
name[len] = '\0';
1293
1294
cipher = ssl3_get_cipher_by_std_name(name);
1295
if (cipher == NULL)
1296
/* Ciphersuite not found but return 1 to parse rest of the list */
1297
return 1;
1298
1299
if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1300
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1301
return 0;
1302
}
1303
1304
return 1;
1305
}
1306
1307
static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1308
{
1309
STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1310
1311
if (newciphers == NULL)
1312
return 0;
1313
1314
/* Parse the list. We explicitly allow an empty list */
1315
if (*str != '\0'
1316
&& (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1317
|| sk_SSL_CIPHER_num(newciphers) == 0)) {
1318
ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1319
sk_SSL_CIPHER_free(newciphers);
1320
return 0;
1321
}
1322
sk_SSL_CIPHER_free(*currciphers);
1323
*currciphers = newciphers;
1324
1325
return 1;
1326
}
1327
1328
static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1329
STACK_OF(SSL_CIPHER) *cipherstack)
1330
{
1331
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1332
1333
if (tmp_cipher_list == NULL) {
1334
return 0;
1335
}
1336
1337
sk_SSL_CIPHER_free(*cipher_list_by_id);
1338
*cipher_list_by_id = tmp_cipher_list;
1339
1340
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1341
sk_SSL_CIPHER_sort(*cipher_list_by_id);
1342
1343
return 1;
1344
}
1345
1346
static int update_cipher_list(SSL_CTX *ctx,
1347
STACK_OF(SSL_CIPHER) **cipher_list,
1348
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1349
STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1350
{
1351
int i;
1352
STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1353
1354
if (tmp_cipher_list == NULL)
1355
return 0;
1356
1357
/*
1358
* Delete any existing TLSv1.3 ciphersuites. These are always first in the
1359
* list.
1360
*/
1361
while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1362
&& sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1363
== TLS1_3_VERSION)
1364
(void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1365
1366
/* Insert the new TLSv1.3 ciphersuites */
1367
for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1368
const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1369
1370
/* Don't include any TLSv1.3 ciphersuites that are disabled */
1371
if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1372
&& (ssl_cipher_table_mac[sslc->algorithm2
1373
& SSL_HANDSHAKE_MAC_MASK].mask
1374
& ctx->disabled_mac_mask) == 0) {
1375
sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1376
}
1377
}
1378
1379
if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1380
sk_SSL_CIPHER_free(tmp_cipher_list);
1381
return 0;
1382
}
1383
1384
sk_SSL_CIPHER_free(*cipher_list);
1385
*cipher_list = tmp_cipher_list;
1386
1387
return 1;
1388
}
1389
1390
int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1391
{
1392
int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1393
1394
if (ret && ctx->cipher_list != NULL)
1395
return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1396
ctx->tls13_ciphersuites);
1397
1398
return ret;
1399
}
1400
1401
int SSL_set_ciphersuites(SSL *s, const char *str)
1402
{
1403
STACK_OF(SSL_CIPHER) *cipher_list;
1404
SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
1405
int ret;
1406
1407
if (sc == NULL)
1408
return 0;
1409
1410
ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
1411
1412
if (sc->cipher_list == NULL) {
1413
if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1414
sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1415
}
1416
if (ret && sc->cipher_list != NULL)
1417
return update_cipher_list(s->ctx, &sc->cipher_list,
1418
&sc->cipher_list_by_id,
1419
sc->tls13_ciphersuites);
1420
1421
return ret;
1422
}
1423
1424
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1425
STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1426
STACK_OF(SSL_CIPHER) **cipher_list,
1427
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1428
const char *rule_str,
1429
CERT *c)
1430
{
1431
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1432
uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1433
STACK_OF(SSL_CIPHER) *cipherstack;
1434
const char *rule_p;
1435
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1436
const SSL_CIPHER **ca_list = NULL;
1437
const SSL_METHOD *ssl_method = ctx->method;
1438
1439
/*
1440
* Return with error if nothing to do.
1441
*/
1442
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1443
return NULL;
1444
1445
if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1446
return NULL;
1447
1448
/*
1449
* To reduce the work to do we only want to process the compiled
1450
* in algorithms, so we first get the mask of disabled ciphers.
1451
*/
1452
1453
disabled_mkey = ctx->disabled_mkey_mask;
1454
disabled_auth = ctx->disabled_auth_mask;
1455
disabled_enc = ctx->disabled_enc_mask;
1456
disabled_mac = ctx->disabled_mac_mask;
1457
1458
/*
1459
* Now we have to collect the available ciphers from the compiled
1460
* in ciphers. We cannot get more than the number compiled in, so
1461
* it is used for allocation.
1462
*/
1463
num_of_ciphers = ssl_method->num_ciphers();
1464
1465
if (num_of_ciphers > 0) {
1466
co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1467
if (co_list == NULL)
1468
return NULL; /* Failure */
1469
}
1470
1471
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1472
disabled_mkey, disabled_auth, disabled_enc,
1473
disabled_mac, co_list, &head, &tail);
1474
1475
/* Now arrange all ciphers by preference. */
1476
1477
/*
1478
* Everything else being equal, prefer ephemeral ECDH over other key
1479
* exchange mechanisms.
1480
* For consistency, prefer ECDSA over RSA (though this only matters if the
1481
* server has both certificates, and is using the DEFAULT, or a client
1482
* preference).
1483
*/
1484
ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1485
-1, &head, &tail);
1486
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1487
&tail);
1488
ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1489
&tail);
1490
1491
/* Within each strength group, we prefer GCM over CHACHA... */
1492
ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1493
&head, &tail);
1494
ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1495
&head, &tail);
1496
1497
/*
1498
* ...and generally, our preferred cipher is AES.
1499
* Note that AEADs will be bumped to take preference after sorting by
1500
* strength.
1501
*/
1502
ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1503
-1, &head, &tail);
1504
1505
/* Temporarily enable everything else for sorting */
1506
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1507
1508
/* Low priority for MD5 */
1509
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1510
&tail);
1511
1512
/*
1513
* Move anonymous ciphers to the end. Usually, these will remain
1514
* disabled. (For applications that allow them, they aren't too bad, but
1515
* we prefer authenticated ciphers.)
1516
*/
1517
ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1518
&tail);
1519
1520
ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1521
&tail);
1522
ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1523
&tail);
1524
1525
/* RC4 is sort-of broken -- move to the end */
1526
ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1527
&tail);
1528
1529
/*
1530
* Now sort by symmetric encryption strength. The above ordering remains
1531
* in force within each class
1532
*/
1533
if (!ssl_cipher_strength_sort(&head, &tail)) {
1534
OPENSSL_free(co_list);
1535
return NULL;
1536
}
1537
1538
/*
1539
* Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1540
*/
1541
ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1542
&head, &tail);
1543
1544
/*
1545
* Irrespective of strength, enforce the following order:
1546
* (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1547
* Within each group, ciphers remain sorted by strength and previous
1548
* preference, i.e.,
1549
* 1) ECDHE > DHE
1550
* 2) GCM > CHACHA
1551
* 3) AES > rest
1552
* 4) TLS 1.2 > legacy
1553
*
1554
* Because we now bump ciphers to the top of the list, we proceed in
1555
* reverse order of preference.
1556
*/
1557
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1558
&head, &tail);
1559
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1560
CIPHER_BUMP, -1, &head, &tail);
1561
ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1562
CIPHER_BUMP, -1, &head, &tail);
1563
1564
/* Now disable everything (maintaining the ordering!) */
1565
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1566
1567
/*
1568
* We also need cipher aliases for selecting based on the rule_str.
1569
* There might be two types of entries in the rule_str: 1) names
1570
* of ciphers themselves 2) aliases for groups of ciphers.
1571
* For 1) we need the available ciphers and for 2) the cipher
1572
* groups of cipher_aliases added together in one list (otherwise
1573
* we would be happy with just the cipher_aliases table).
1574
*/
1575
num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1576
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1577
ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1578
if (ca_list == NULL) {
1579
OPENSSL_free(co_list);
1580
return NULL; /* Failure */
1581
}
1582
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1583
disabled_mkey, disabled_auth, disabled_enc,
1584
disabled_mac, head);
1585
1586
/*
1587
* If the rule_string begins with DEFAULT, apply the default rule
1588
* before using the (possibly available) additional rules.
1589
*/
1590
ok = 1;
1591
rule_p = rule_str;
1592
if (HAS_PREFIX(rule_str, "DEFAULT")) {
1593
ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1594
&head, &tail, ca_list, c);
1595
rule_p += 7;
1596
if (*rule_p == ':')
1597
rule_p++;
1598
}
1599
1600
if (ok && (rule_p[0] != '\0'))
1601
ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1602
1603
OPENSSL_free(ca_list); /* Not needed anymore */
1604
1605
if (!ok) { /* Rule processing failure */
1606
OPENSSL_free(co_list);
1607
return NULL;
1608
}
1609
1610
/*
1611
* Allocate new "cipherstack" for the result, return with error
1612
* if we cannot get one.
1613
*/
1614
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1615
OPENSSL_free(co_list);
1616
return NULL;
1617
}
1618
1619
/* Add TLSv1.3 ciphers first - we always prefer those if possible */
1620
for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1621
const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1622
1623
/* Don't include any TLSv1.3 ciphers that are disabled */
1624
if ((sslc->algorithm_enc & disabled_enc) != 0
1625
|| (ssl_cipher_table_mac[sslc->algorithm2
1626
& SSL_HANDSHAKE_MAC_MASK].mask
1627
& ctx->disabled_mac_mask) != 0) {
1628
sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1629
i--;
1630
continue;
1631
}
1632
1633
if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1634
OPENSSL_free(co_list);
1635
sk_SSL_CIPHER_free(cipherstack);
1636
return NULL;
1637
}
1638
}
1639
1640
OSSL_TRACE_BEGIN(TLS_CIPHER) {
1641
BIO_printf(trc_out, "cipher selection:\n");
1642
}
1643
/*
1644
* The cipher selection for the list is done. The ciphers are added
1645
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
1646
*/
1647
for (curr = head; curr != NULL; curr = curr->next) {
1648
if (curr->active) {
1649
if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1650
OPENSSL_free(co_list);
1651
sk_SSL_CIPHER_free(cipherstack);
1652
OSSL_TRACE_CANCEL(TLS_CIPHER);
1653
return NULL;
1654
}
1655
if (trc_out != NULL)
1656
BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1657
}
1658
}
1659
OPENSSL_free(co_list); /* Not needed any longer */
1660
OSSL_TRACE_END(TLS_CIPHER);
1661
1662
if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1663
sk_SSL_CIPHER_free(cipherstack);
1664
return NULL;
1665
}
1666
sk_SSL_CIPHER_free(*cipher_list);
1667
*cipher_list = cipherstack;
1668
1669
return cipherstack;
1670
}
1671
1672
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1673
{
1674
const char *ver;
1675
const char *kx, *au, *enc, *mac;
1676
uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1677
static const char *const format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1678
1679
if (buf == NULL) {
1680
len = 128;
1681
if ((buf = OPENSSL_malloc(len)) == NULL)
1682
return NULL;
1683
} else if (len < 128) {
1684
return NULL;
1685
}
1686
1687
alg_mkey = cipher->algorithm_mkey;
1688
alg_auth = cipher->algorithm_auth;
1689
alg_enc = cipher->algorithm_enc;
1690
alg_mac = cipher->algorithm_mac;
1691
1692
ver = ssl_protocol_to_string(cipher->min_tls);
1693
1694
switch (alg_mkey) {
1695
case SSL_kRSA:
1696
kx = "RSA";
1697
break;
1698
case SSL_kDHE:
1699
kx = "DH";
1700
break;
1701
case SSL_kECDHE:
1702
kx = "ECDH";
1703
break;
1704
case SSL_kPSK:
1705
kx = "PSK";
1706
break;
1707
case SSL_kRSAPSK:
1708
kx = "RSAPSK";
1709
break;
1710
case SSL_kECDHEPSK:
1711
kx = "ECDHEPSK";
1712
break;
1713
case SSL_kDHEPSK:
1714
kx = "DHEPSK";
1715
break;
1716
case SSL_kSRP:
1717
kx = "SRP";
1718
break;
1719
case SSL_kGOST:
1720
kx = "GOST";
1721
break;
1722
case SSL_kGOST18:
1723
kx = "GOST18";
1724
break;
1725
case SSL_kANY:
1726
kx = "any";
1727
break;
1728
default:
1729
kx = "unknown";
1730
}
1731
1732
switch (alg_auth) {
1733
case SSL_aRSA:
1734
au = "RSA";
1735
break;
1736
case SSL_aDSS:
1737
au = "DSS";
1738
break;
1739
case SSL_aNULL:
1740
au = "None";
1741
break;
1742
case SSL_aECDSA:
1743
au = "ECDSA";
1744
break;
1745
case SSL_aPSK:
1746
au = "PSK";
1747
break;
1748
case SSL_aSRP:
1749
au = "SRP";
1750
break;
1751
case SSL_aGOST01:
1752
au = "GOST01";
1753
break;
1754
/* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1755
case (SSL_aGOST12 | SSL_aGOST01):
1756
au = "GOST12";
1757
break;
1758
case SSL_aANY:
1759
au = "any";
1760
break;
1761
default:
1762
au = "unknown";
1763
break;
1764
}
1765
1766
switch (alg_enc) {
1767
case SSL_DES:
1768
enc = "DES(56)";
1769
break;
1770
case SSL_3DES:
1771
enc = "3DES(168)";
1772
break;
1773
case SSL_RC4:
1774
enc = "RC4(128)";
1775
break;
1776
case SSL_RC2:
1777
enc = "RC2(128)";
1778
break;
1779
case SSL_IDEA:
1780
enc = "IDEA(128)";
1781
break;
1782
case SSL_eNULL:
1783
enc = "None";
1784
break;
1785
case SSL_AES128:
1786
enc = "AES(128)";
1787
break;
1788
case SSL_AES256:
1789
enc = "AES(256)";
1790
break;
1791
case SSL_AES128GCM:
1792
enc = "AESGCM(128)";
1793
break;
1794
case SSL_AES256GCM:
1795
enc = "AESGCM(256)";
1796
break;
1797
case SSL_AES128CCM:
1798
enc = "AESCCM(128)";
1799
break;
1800
case SSL_AES256CCM:
1801
enc = "AESCCM(256)";
1802
break;
1803
case SSL_AES128CCM8:
1804
enc = "AESCCM8(128)";
1805
break;
1806
case SSL_AES256CCM8:
1807
enc = "AESCCM8(256)";
1808
break;
1809
case SSL_CAMELLIA128:
1810
enc = "Camellia(128)";
1811
break;
1812
case SSL_CAMELLIA256:
1813
enc = "Camellia(256)";
1814
break;
1815
case SSL_ARIA128GCM:
1816
enc = "ARIAGCM(128)";
1817
break;
1818
case SSL_ARIA256GCM:
1819
enc = "ARIAGCM(256)";
1820
break;
1821
case SSL_SEED:
1822
enc = "SEED(128)";
1823
break;
1824
case SSL_eGOST2814789CNT:
1825
case SSL_eGOST2814789CNT12:
1826
enc = "GOST89(256)";
1827
break;
1828
case SSL_MAGMA:
1829
enc = "MAGMA";
1830
break;
1831
case SSL_KUZNYECHIK:
1832
enc = "KUZNYECHIK";
1833
break;
1834
case SSL_CHACHA20POLY1305:
1835
enc = "CHACHA20/POLY1305(256)";
1836
break;
1837
default:
1838
enc = "unknown";
1839
break;
1840
}
1841
1842
switch (alg_mac) {
1843
case SSL_MD5:
1844
mac = "MD5";
1845
break;
1846
case SSL_SHA1:
1847
mac = "SHA1";
1848
break;
1849
case SSL_SHA256:
1850
mac = "SHA256";
1851
break;
1852
case SSL_SHA384:
1853
mac = "SHA384";
1854
break;
1855
case SSL_AEAD:
1856
mac = "AEAD";
1857
break;
1858
case SSL_GOST89MAC:
1859
case SSL_GOST89MAC12:
1860
mac = "GOST89";
1861
break;
1862
case SSL_GOST94:
1863
mac = "GOST94";
1864
break;
1865
case SSL_GOST12_256:
1866
case SSL_GOST12_512:
1867
mac = "GOST2012";
1868
break;
1869
default:
1870
mac = "unknown";
1871
break;
1872
}
1873
1874
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1875
1876
return buf;
1877
}
1878
1879
const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1880
{
1881
if (c == NULL)
1882
return "(NONE)";
1883
1884
/*
1885
* Backwards-compatibility crutch. In almost all contexts we report TLS
1886
* 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1887
*/
1888
if (c->min_tls == TLS1_VERSION)
1889
return "TLSv1.0";
1890
return ssl_protocol_to_string(c->min_tls);
1891
}
1892
1893
/* return the actual cipher being used */
1894
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1895
{
1896
if (c != NULL)
1897
return c->name;
1898
return "(NONE)";
1899
}
1900
1901
/* return the actual cipher being used in RFC standard name */
1902
const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1903
{
1904
if (c != NULL)
1905
return c->stdname;
1906
return "(NONE)";
1907
}
1908
1909
/* return the OpenSSL name based on given RFC standard name */
1910
const char *OPENSSL_cipher_name(const char *stdname)
1911
{
1912
const SSL_CIPHER *c;
1913
1914
if (stdname == NULL)
1915
return "(NONE)";
1916
c = ssl3_get_cipher_by_std_name(stdname);
1917
return SSL_CIPHER_get_name(c);
1918
}
1919
1920
/* number of bits for symmetric cipher */
1921
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1922
{
1923
int ret = 0;
1924
1925
if (c != NULL) {
1926
if (alg_bits != NULL)
1927
*alg_bits = (int)c->alg_bits;
1928
ret = (int)c->strength_bits;
1929
}
1930
return ret;
1931
}
1932
1933
uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1934
{
1935
return c->id;
1936
}
1937
1938
uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1939
{
1940
return c->id & 0xFFFF;
1941
}
1942
1943
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1944
{
1945
SSL_COMP *ctmp;
1946
SSL_COMP srch_key;
1947
int i;
1948
1949
if ((n == 0) || (sk == NULL))
1950
return NULL;
1951
srch_key.id = n;
1952
i = sk_SSL_COMP_find(sk, &srch_key);
1953
if (i >= 0)
1954
ctmp = sk_SSL_COMP_value(sk, i);
1955
else
1956
ctmp = NULL;
1957
1958
return ctmp;
1959
}
1960
1961
#ifdef OPENSSL_NO_COMP
1962
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1963
{
1964
return NULL;
1965
}
1966
1967
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1968
*meths)
1969
{
1970
return meths;
1971
}
1972
1973
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1974
{
1975
return 1;
1976
}
1977
1978
#else
1979
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1980
{
1981
STACK_OF(SSL_COMP) **rv;
1982
1983
rv = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1984
OSSL_LIB_CTX_COMP_METHODS);
1985
if (rv != NULL)
1986
return *rv;
1987
else
1988
return NULL;
1989
}
1990
1991
STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1992
*meths)
1993
{
1994
STACK_OF(SSL_COMP) **comp_methods;
1995
STACK_OF(SSL_COMP) *old_meths;
1996
1997
comp_methods = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1998
OSSL_LIB_CTX_COMP_METHODS);
1999
if (comp_methods == NULL) {
2000
old_meths = meths;
2001
} else {
2002
old_meths = *comp_methods;
2003
*comp_methods = meths;
2004
}
2005
2006
return old_meths;
2007
}
2008
2009
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2010
{
2011
STACK_OF(SSL_COMP) *comp_methods;
2012
SSL_COMP *comp;
2013
2014
comp_methods = SSL_COMP_get_compression_methods();
2015
2016
if (comp_methods == NULL)
2017
return 1;
2018
2019
if (cm == NULL || COMP_get_type(cm) == NID_undef)
2020
return 1;
2021
2022
/*-
2023
* According to draft-ietf-tls-compression-04.txt, the
2024
* compression number ranges should be the following:
2025
*
2026
* 0 to 63: methods defined by the IETF
2027
* 64 to 192: external party methods assigned by IANA
2028
* 193 to 255: reserved for private use
2029
*/
2030
if (id < 193 || id > 255) {
2031
ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2032
return 1;
2033
}
2034
2035
comp = OPENSSL_malloc(sizeof(*comp));
2036
if (comp == NULL)
2037
return 1;
2038
2039
comp->id = id;
2040
if (sk_SSL_COMP_find(comp_methods, comp) >= 0) {
2041
OPENSSL_free(comp);
2042
ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2043
return 1;
2044
}
2045
if (!sk_SSL_COMP_push(comp_methods, comp)) {
2046
OPENSSL_free(comp);
2047
ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
2048
return 1;
2049
}
2050
2051
return 0;
2052
}
2053
#endif
2054
2055
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2056
{
2057
#ifndef OPENSSL_NO_COMP
2058
return comp ? COMP_get_name(comp) : NULL;
2059
#else
2060
return NULL;
2061
#endif
2062
}
2063
2064
const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2065
{
2066
#ifndef OPENSSL_NO_COMP
2067
return comp->name;
2068
#else
2069
return NULL;
2070
#endif
2071
}
2072
2073
int SSL_COMP_get_id(const SSL_COMP *comp)
2074
{
2075
#ifndef OPENSSL_NO_COMP
2076
return comp->id;
2077
#else
2078
return -1;
2079
#endif
2080
}
2081
2082
const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
2083
const unsigned char *ptr,
2084
int all)
2085
{
2086
const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
2087
2088
if (c == NULL || (!all && c->valid == 0))
2089
return NULL;
2090
return c;
2091
}
2092
2093
const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2094
{
2095
return ssl->method->get_cipher_by_char(ptr);
2096
}
2097
2098
int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2099
{
2100
int i;
2101
if (c == NULL)
2102
return NID_undef;
2103
i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2104
if (i == -1)
2105
return NID_undef;
2106
return ssl_cipher_table_cipher[i].nid;
2107
}
2108
2109
int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2110
{
2111
int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2112
2113
if (i == -1)
2114
return NID_undef;
2115
return ssl_cipher_table_mac[i].nid;
2116
}
2117
2118
int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2119
{
2120
int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2121
2122
if (i == -1)
2123
return NID_undef;
2124
return ssl_cipher_table_kx[i].nid;
2125
}
2126
2127
int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2128
{
2129
int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2130
2131
if (i == -1)
2132
return NID_undef;
2133
return ssl_cipher_table_auth[i].nid;
2134
}
2135
2136
int ssl_get_md_idx(int md_nid) {
2137
int i;
2138
2139
for(i = 0; i < SSL_MD_NUM_IDX; i++) {
2140
if (md_nid == ssl_cipher_table_mac[i].nid)
2141
return i;
2142
}
2143
return -1;
2144
}
2145
2146
const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2147
{
2148
int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2149
2150
if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2151
return NULL;
2152
return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2153
}
2154
2155
int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2156
{
2157
return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2158
}
2159
2160
int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2161
size_t *int_overhead, size_t *blocksize,
2162
size_t *ext_overhead)
2163
{
2164
int mac = 0, in = 0, blk = 0, out = 0;
2165
2166
/* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2167
* because there are no handy #defines for those. */
2168
if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2169
out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2170
} else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2171
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2172
} else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2173
out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2174
} else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2175
out = 16;
2176
} else if (c->algorithm_mac & SSL_AEAD) {
2177
/* We're supposed to have handled all the AEAD modes above */
2178
return 0;
2179
} else {
2180
/* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2181
int digest_nid = SSL_CIPHER_get_digest_nid(c);
2182
const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2183
2184
if (e_md == NULL)
2185
return 0;
2186
2187
mac = EVP_MD_get_size(e_md);
2188
if (mac <= 0)
2189
return 0;
2190
if (c->algorithm_enc != SSL_eNULL) {
2191
int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2192
const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2193
2194
/* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2195
known CBC cipher. */
2196
if (e_ciph == NULL ||
2197
EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2198
return 0;
2199
2200
in = 1; /* padding length byte */
2201
out = EVP_CIPHER_get_iv_length(e_ciph);
2202
if (out < 0)
2203
return 0;
2204
blk = EVP_CIPHER_get_block_size(e_ciph);
2205
if (blk <= 0)
2206
return 0;
2207
}
2208
}
2209
2210
*mac_overhead = (size_t)mac;
2211
*int_overhead = (size_t)in;
2212
*blocksize = (size_t)blk;
2213
*ext_overhead = (size_t)out;
2214
2215
return 1;
2216
}
2217
2218
int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2219
{
2220
const SSL_CERT_LOOKUP *cl;
2221
2222
/* A provider-loaded key type is always enabled */
2223
if (idx >= SSL_PKEY_NUM)
2224
return 0;
2225
2226
cl = ssl_cert_lookup_by_idx(idx, ctx);
2227
if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2228
return 1;
2229
return 0;
2230
}
2231
2232
/*
2233
* Default list of TLSv1.2 (and earlier) ciphers
2234
* SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2235
* Update both macro and function simultaneously
2236
*/
2237
const char *OSSL_default_cipher_list(void)
2238
{
2239
return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2240
}
2241
2242
/*
2243
* Default list of TLSv1.3 (and later) ciphers
2244
* TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2245
* Update both macro and function simultaneously
2246
*/
2247
const char *OSSL_default_ciphersuites(void)
2248
{
2249
return "TLS_AES_256_GCM_SHA384:"
2250
"TLS_CHACHA20_POLY1305_SHA256:"
2251
"TLS_AES_128_GCM_SHA256";
2252
}
2253
2254